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Abstract

The domination number y of a graph G is the minimum cardinality of a subset D of vertices of
G such that each vertex outside D is adjacent to at least one vertex in D. For any subset 4 of the
vertex set of G, let 87 (4) be the set of vertices not in 4 which are adjacent to at least one vertex
in 4. Let N(4) be the union of 4 and 9% (4), and d(4) be the sum of degrees of all the vertices
of A. In this paper we prove the inequality 2¢ <(p—y)(p—7+2)—|87(4)| (p—y+1)+d(N(4)),
and characterize the extremal graphs for which the equality holds, where p and g are the
numbers of vertices and edges of G, respectively. From this we then get an upper bound for
y which generalizes the known upper bound y<p + 1 — /2¢ + 1. Let I(4) be the set of
vertices adjacent to all vertices of 4, and I(A) be the union of A4 and I(4). We prove that
2g<(p—7— | +2)p —y+4)+dI(4)) —min{p — y — [I(4)] + 2,|4],[/(4)], 3}, which
implies an upper bound for y as well. © 1999 Elsevier Science B.V. All rights reserved

1. Introduction

Let G be a finite, undirected and simple graph with vertex set V(G). A subset
D of V(G) is a dominating set if each vertex in V(G)\D is adjacent to at least
one vertex in D. The domination number of G, denoted by y(G), is defined to be
the minimum cardinality of a dominating set of G. Topics on domination number
and related parameters have long attracted graph theorists for their strongly practical
background and theoretical interesting. It has been proved [7] that the decision problem
corresponding to the domination number for arbitrary graphs is NP-complete. Thus, the
exploration of lower and upper bounds for the domination number as sharp as possible
is of great significance. In this direction there are now a number of estimations for the
domination number of a graph in terms of some basic parameters such as the numbers
of vertices and edges, the minimum and maximum degrees, and so on. For example,
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an early result of Ore [10] states that the domination number y < p/2 if G contains no
isolated vertices, where p is the number of vertices of G. This result was improved
as y<2p/5 in [9] for connected graph G which has minimum degree at least two and
is not one of seven exceptional graphs. In 1965, Vizing [14] proved the following
inequality involving the domination number and the numbers of vertices and edges.

Theorem 1 (Vizing [14]). For any graph G with p vertices and q edges, the domi-
nation number y satisfies

2q<(p—y)p—7v+2) (1)

Moreover, the equality holds if and only if G is the vertex disjoint union of y — 2
isolated vertices and a ( p—y+2)-clique with the removal of a minimum edge covering.

Theorem 1 implies the following upper bound.

Corollary 1 (Vizing [14]). y<p+1— /29 + 1. (2)
As an improvement of Vizing’s inequality, Fulmann [6] proved the following

Theorem 2 (Fulman [6]). Let A be the maximum degree of G. Then
<(p—y)(p—yv+2)—Ad(p—y—4). (3)

By using this, Fulmann [6] gave a short proof for a result of Sanchis [13] which
states that

29<(p—yNp—y+1)

if >3 and G has no isolated vertices (the same result was proved in [15] for connected
graph with y>3). The equality is unattainable when A< p — y — 1, as showed in [6].
In [11] Payan proved that

y<3(p+2-9)

and

—1= —2_
o= 20,
p—1
where 4 and 0 are, respectively, the maximum and minimum degrees of G. Further,
Payan [11] stated without proof the inequality

s

y<Hp+1-36)

for the graphs without isolated vertices not isomorphic to the complement of a 1-regular
graph or with at least one component not isomorphic to a square. This inequality was
proved in [5]. In the same paper, Flach and Volkmann also gave several upper bounds
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for y in terms of the neighbourhood union N(A4) of a subset 4 of V(G). They proved
among others that

1<z (ol - - P, @

where N(4) is the set of vertices adjacent in G to at least one vertex of 4. From this
they obtained that

1 A6 - 1)
v<i (p+1— —T—)

and

y<3(p— (6 - 2)),

where o is the maximum cardinality of an independent set of G such that no vertex
of G is adjacent to two distinct vertices in the set. Relationships between the dom-
ination number and the neighbourhood union can be found in [2, Lemma 2] also.
For other estimations of the domination number, the reader can consult, for example,
[2-5,11,12].

The main purpose of this paper is to investigate further the relationships between
the domination number and the neighbourhood union and intersection. More precisely,
we will give inequalities involving y and either the neighbourhood union or the neigh-
bourhood intersection of a subset of V(G), and then derive sharp upper bounds for 7.
It is expected that this can supplement the existing results mentioned above. The work
was mainly motivated by the desire of giving a more general form (see Theorem 3
in the next section) for Theorems 1 and 2. It was also inspired by the recent year’s
work on the characterization of the hamiltonicity by using neighbourhood conditions
(see e.g. the survey paper [8]).

Throughout the paper we assume G is a finite, undirected and simple graph with
vertex set V(G). As above, we use 7, p, ¢, 4 and  to denote the domination number,
the number of vertices, the number of edges, the maximum degree and the minimum
degree of G, respectively. Dominating sets of G with the minimum cardinality are
called the minimum dominating sets. The neighbourhood N(x) of a vertex x of G is
the set of vertices adjacent to x in G. For a subset 4 of V(G), the neighbourhood
union and the neighbourhood intersection of A are defined to be N(4)= J,.,N(x)
and I(4) = [, N(x), respectively. Denote N(4)=AUN(4) and T(4) =AU I(4). We
call 0Y(4)=N(A)\4 and 3=(4)= 8" (V(G)\A4) the outer and inner boundaries of A,
respectively. For any vertex x € V'(G), let d(x) = [N(x)NA|. Thus, dy)(x)=d(x) is
the degree of x in G, and if x € 4 then d 4(x) is the degree of x in G[4], the subgraph
of G induced by 4. We use d(4) to denote the sum of degrees d(x) of all the vertices
x€A. A minimum edge covering of a graph is a smallest set of edges such that each
vertex of the graph is incident with at least one edge in the set. For other undefined
notations and terminology, the reader is referred to [1].
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2. Domination number and neighborhood unions

Let ACV(G) and S=V(G)\N(4). We call 4 a type I set of G if

(a) 07(4)# 0,8 #0;

(b) S is an independent set of G;

(c) AUS is a minimum dominating set of G; and

(d) ds(y)=1 for all y€d™(4), and dp+(4y(z)=1 for all z€S.

A is said to be a rype 2 set if it satisfies (a) and the following (e)—(g):

(e) G[S] is a complete graph with the removal of a perfect matching;

(f) A4 together with any two nonadjacent vertices in S is a minimum dominating set

of G;

(8) ds(y)=1S| =1 for all y € 3"(4), and if |S|=2 then de+(4y(z)=1 for each z € S.
Note that in both cases, 4 is the unique minimum dominating set of G[N(4)]. The

main result in this section is the following theorem.

Theorem 3. For any subset A of V(G), we have

29<(p—7Xp—7+2)— 7] (p—y+ 1)+ d(N(4)). (5)
Furthermore, if G contains no isolated vertices, then the equality holds if and only if
A is either a type 1 set or a type 2 set.
Proof. Let S=V(G)\N(4). Then

IS]=p = 4] — |07 (4)]. (6)

Since the union of 4 and a minimum dominating set of G[S] is a dominating set of G,
we have

WG =y — [4]. (7)
Clearly, (S\N(y))UAU{y} is a dominating set of G for any y € 9*(4). This implies
IND)OS|<|S| + 4] + 1 —y. (8)

Note that 2g = d(V(G)) and 2¢(G[S1) <(|S|-(G[SD)(|S|—-7(G[S]1)+2) by Theorem 1.
From (6)—(8) we get

29 =29(G[SD+ > IN(»)NS|+d(N(4))

VyEM(A)
< (S = y(GISHYIS| — WGIST) + 2) + [@H(DI(S| + 4] + 1 = 3) + d(N(4))
SUST+ 4] = )UST+ Al +2 = 9) + [ (DI(S] + 4] + 1 — y) + d(N(4))
=(S[+ 4] = y)p = 7+ 2) + |37 ()] + d(N(4))
=(p=1) (P=y+2) =8| (p—y+ 1) +d(N(4)),

which is just (5).
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It is not difficult to check that if 4 is a type 1 set or a type 2 set, then the equality
in (5) occurs. Conversely, suppose that the equality in (5) is attained. Then from the
proof above we have

(i) 7= 4| + ¥(GIS]);

(ii) for any y€d7(4), (S\N(»))UAU {y} is a minimum dominating set of G, thus
(ii.1) [N(G)YNS| =S| + 4] +1 -7,
(i1.2) S\N(y) is an independent set,
(ii.3) if y' € 07(4), ¥ # y, then dg\v(,)(¥) <1,
(ii.4) for each z€ N(y)NS,ds\n(,)(2)<1; and

(ili) § can be partitioned into S; and §; such that G[S;] is an (|S| — & + 2)-clique
with the removal of a minimum edge covering and S, is a set of £ — 2 isolated
vertices in G[S], where k = y(G[S)).

From (i) and (ii) we know S# 0 . If |S] =1, then y=|4]+1 by (i) and [N(y)N S| =1
by (ii.1). So clearly 4 is a type 1 set in such case. In the following we suppose |$]>2.
From (i) and (ii) we have k = |S\N(y)| + 1 for each y € 3" (4). Thus,

IS\N(»)] =8| + 1, (9)
INOHNS|=[8] - 1. (10)

We distinguish two cases.

Case 1: |S| — k is even.

Then G[S)] is an (|S| — & + 2)-clique with the removal of a perfect matching. So
by (ii.2) there are for each y € d7(4) at most two vertices of S; which are not in
N()NS.

Subcase 1.1: There exists a vertex yo € 87 (4) such that there are exactly two vertices
z,z' € S) which are not in N(yy)NS. Then S$)\{z,z'} CN(¥)NS and z,z’ € S\N(yp)
are not adjacent. In fact, we must have S| = {z,z’} since otherwise a vertex of Sy\{z,z'}
is adjacent to both z and z’, contradicting (ii.4). So for any y € 81 (4),{N(y)NS|=1
by (10). Note that S is in fact an independent set and y=|4| + |S| by (i). So 4 is a
type 1 set.

Subcase 1.2: For each y € 0%(4), there is exactly one vertex z, € S| which is not in
N(»)NS. From (10) we know N(¥)NS=38,\{z,}. Since G has no isolated vertices,
we have S; =0. Hence k=2 and y=14| + 2 by (i). Clearly, 4 is a type 2 set.

Case 2: |S| —k is odd.

In such case |S)|>3 and there is a vertex zp€S) with dg(z)=151| — 3 and
ds, (z)=|8,| — 2 for all zeSi\{zo}. Suppose z, z; € S; are the vertices not adjacent
to zg. From (ii.2) and (10) we know |5)| — 2<ds (¥)<|S1| — 1 for each y € d7(4).

Subcase 2.1: There exists yp € 07(4) with dg (3)=|S)| — 2. Then N(y)NS=
($i1\{z.2’})U{w} and S\N(y0)=(S:\{w})U{z,z'}, where z,z’ are nonadjacent ver-
tices of G[S1] and w € S,. Note that S\{z,z'} # 0 and by (ii.4) any vertex of $\{z,z'}
cannot be adjacent to z and z’' simultaneously. We must have [S)|=3 since other-
wise there exists a vertex of S\\{z,z'} which is adjacent to both z and z’. Thus
81 ={20,21,22} and {z,z'} = {z9,2/ } or {z0,2;}. From (10), ds(y) =2 for all y € *(A4).
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Since G[S] contains only one edge z;z;, we have 2g = d(N(4))+2|8*(4)| +2. On the
other hand, we have y=|4| + |S| — | by (i) and hence the right-hand side of (5) is
d(N(A)) + 2|0%(4)| + 3, contradicting our assumption.

Subcase 2.2: For all ye 0% (A4), we have ds (y)=1S)| — 1. Then N(y)NS=N(y)N
Sy =8\{z,} for a vertex z, € §,. Since G contains no isolated vertices, we have S, =0.
Thus y(G[S])=2 and y=|4] + 2. Summing up the degrees of the vertices of G, we
get 2g =d(N(4))+10(4)| (|S| = 1)+ |S|(|S| = 2) — 1. But the right-hand side of (5)
can be simplified as d(N(4)) + |8+(4)| (|S] — 1)+ |S|(|S| —2), a contradiction as well.

In summary, we have proved that if G contains no isolated vertices and if the
equality in (5) occurs, then 4 is either a type 1 set or a type 2 set. This completes
the proof of Theorem 3. [

Theorem 2 can be deduced from Theorem 3 by setting 4 to be the singleton of
a maximum degree vertex. Moreover, we are now able to characterize the extremal
graphs for (3).

Corollary 2. For any graph G, we have
<(p—)(p-y+2)—AMp—vy—4) (3)

Furthermore, if G contains no isolated vertices, then the equality holds if and only

if G is a complete graph with the removal of a perfect matching or there exists an

even number k=4 such that p=k* — k + | and G is a complete (k* — 2k)-reqular

graph with the properties that for any vertex x € V(G),

(a) S;=V(G)\N(x) induces a complete graph with the removal of a perfect
matching; and

(b) any vertex in N(x) is adjacent to k — 1 vertices in S..

Proof. Let x be a vertex with the maximum degree 4. By setting 4 = {x} and noting
that d(N(4))<A(4+ 1) we get (3) immediately from (5). One can check that if G is
one of the graphs described in the corollary, then the equality in (3) occurs. Conversely,
suppose that the equality in (3) holds, then by Theorem 3 for any maximum degree
vertex x, {x} is either a type 1 set or a type 2 set and d(y)=4 for all y € N(x). Let
S. =V(G)\N(x). Then |S,|= p — 4 — 1. We distinguish two cases.

Case 1: There exists a maximum degree vertex x such that {x} is a type 1 set.

Then dy)(y)=d(y) —2=4 -2 for each y € N(x). Thus G[N(x)] is a complete
graph with the removal of a perfect matching (which implies that A4 is even). For
any y € N(x), let z, be the unique vertex in S, adjacent to y. If y, ' € N(x) are not
adjacent, then we have z, =z, since otherwise (S,\{z,})U {y} would be a dominating
set of G, contradicting the fact that y =S, + 1. For the case when |S,| =1, it can be
seen easily that G is a complete graph with the removal of a perfect matching. Suppose
now [S;|>2. Then 4>4 and for y € N(x) we have N(y)=(N)\{».y'}DU{xz},
Sy =(S:\{z,HU{y'}, where ' is the unique vertex in N(x) not adjacent to y. If
|Sc| >3, then by noting that S, is an independent set we know {y} cannot be a type 2
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set. So it must be of type 1. Thus any y” € N(x)\{y, ¥’} CN(y) is adjacent to exactly
one vertex in S,. Since y” is adjacent to y’ € S,, we conclude that y" is not adjacent
to any vertex in S;\{z,}. But ¥’ € N(x), so it is adjacent to exactly one vertex in 5.
This implies that y” is adjacent to z, and hence the vertices in S;\{z,} are isolated,
contradicting our assumption. If |S,|=2, then {x} and all {y} are both type 1 and
type 2 sets. Thus, the vertices in N(y) must all have degree A. Since z, E N(y), z,
is adjacent to each vertex in N(x). Therefore, the vertex in S,\{z,} is isolated, a
contradiction as well.

Case 2: For all maximum degree vertex x, {x} is a type 2 set.

Then |S;]>2 is even. If |§,]=2, then a contradiction can be made by a simi-
lar discussion as above. In the following, we suppose |S;|=>4. Note that G is con-
nected and the vertices adjacent to a maximum degree vertex are also of maximum
degree. So G is A-regular. Since each y € N(x) is adjacent to |Sy| — 1 vertices in
Sy and GIS,] is a complete graph with the removal of a perfect matching, we have
A|Sx‘ =d(8;)= A(‘St| 1)+ ‘SYK'Sx' — 2), which imphes

IS.| =1+ VA +1. (11)

Thus 4 + 1 is a square number (the square of a positive integer). Since |S;|=p —
A4—1,(11) gives p—A4—-1=1+4++A4+1. So we get A=(2p — 3 — /dp —3)/2,
which implies that 4p — 3 is also a square number. Suppose 4p — 3 = (2k — 1)>. Then
p=k>—k+1,4=k’~ 2k and |S,| = k. Hence & must be even. Since {x} is a type 2
set, each vertex in N(x) is adjacent to exactly & — 1 vertices in S,. Thus, G satisfies
(a) and (b). The proof is complete. (]

Note that in Theorem 3 and Corollary 2 the condition that G contains no isolated
vertices is non-essential since p--y and ¢ remain unchanged when isolated vertices are
deleted from a graph. The extremal graphs described in Corollary 2 have domination
number 2 or 3. So we have the following consequence which shows that (3) can be
slightly improved in some cases.

Corollary 3. If the graph resulted from G by deleting all the isolated vertices has
domination number =4 or is not a regular graph of degree 41(1 — 1) for some [>2,
then

2q< {(p-?) (p—y+2)—A(p—y—A4)-2 if both p—y and A are even,

(p—y) p—y+2)—A(p—y—A)—1  otherwise. (12)

By choosing A4 to be a 2-subset of ¥(G) in (5), we get the following:

Corollary 4. For any two distinct vertices x, y € V(G), we have

29 <(p=-Np=v+2)=(p—y = AYINEUN)| = 20,)
+ [NX)NN(y)| + 2055, (13)

where 0., =1 if x, y are adjacent in G, and 0 otherwise.



88 B. Chen, S. Zhou! Discrete Mathematics 195 (1999) 81-91

If G[A4] contains no isolated vertices, then we can do even better than (5). In fact, in
such case G[4\07(4)] also contains no isolated vertices and hence y(G[4\6~(4)]) <
|A\G(4)|/2 by Ore [10]. Note that the union of d~(4), a minimum dominating set
of G[S] and a minimum dominating set of G[4\07(4)] is a dominating set of G.
Thus, y<y(G[S]) + |07 (4)| + |4\0(4)|/2 and (7) can be improved as y(G[S])=>
y = (4] + [67(4)])/2. Similarly, for any y € d7(4),(S\N(y))Ud~(4)U{y} together
with a minimum dominating set of G[4\0~(4)] gives a dominating set of G. So (8)
can be improved as [N(y)NS|<|S| + (|4 + [¢7(4)])/2 + 1 — 7. Similar to the proof
of (5) we can prove the following

Theorem 3'. If AC V(G) and G[A] contains no isolated vertices, then
g <(p=—)(p—7+2)— (A (DI +[0"DINp—y+1)
+ (NG ()] (|4\0(4)] +2[87 (4)]) + d(N(4)). (5)

This is better than (5) when 6(G[4])>0. Note that (3) can give an upper bound
for y only if 4<2(/6q + 4 —1)/3. However, (5) and (5') always imply upper bounds
for the domination number.

Corollary 5. (i) For any A CV(G), we have

y<p+ 1= 36"+ \/Iﬁ*(z‘i)l2 +8q +4 — 4d(N(4))), (14)

with equality if and only if A is a type 1 set or a type 2 set.
(i) If in addition 5(G[A])>0, then

P<p+ 1= 314\ (D] + 0" ()] + \/Ia*(/i)l2 +8q+4-4d(N(4))). (14)

Since A is arbitrary, we can specify (14) and (14') and thus get interesting upper
bounds for y by taking 4 to be special subsets of ¥'(G). For example, in the degenerate
case where 4 =0, (14) becomes Vizing’s upper bound (2). Taking 4 = {x}, we get
the following corollary.

Corollary 6. For any x e V(G),

y<p+1-Ldx)+ \/(d(x))2+8q+4—4d(7v“(x))). (15)

In particular, we have

y<p+1— 34+ /A +8g+4—4d,), (16)

where djy=ming)-4 d(N(x)).

Thi upper bound (15) ((16), respectively) is better than the known bound (2)
if d(N(x))<d(x)\/2q + 1(ds < 4\/2q + 1, respectively). Inequalities (5) and (13) are
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sometimes better than (3), and (14) and (15) are better than (2) in some cases when
A and x are chosen appropriately. Also, neither (14) nor (4) is implied by the other.

3. Domination number and neighbourhood intersections

In this section we discuss the relationships between the domination number and the
neighbourhood intersection. Since /(4)=N(A) when |4|=1 and the case has been
studied in Section 2, we assume |4| =2 in the following discussion.

Theorem 4. Suppose AC V(G) with |A|=22 and |[(4)|=1. Then

2 <(p—y- ) +2) (p—y+4)+dI(4))
—min{p —y — [I(4)| + 2,4, [1(4)|,3}. (17)

Proof. Let S=V(G)\I(4). Then y(G[S])=y — 2. For any x €4, y € I(4),(S\N(x))U
{x,»} and (S\N(»))U {x, y} are both dominating sets of G. So we have |N(x)NS|<
|S| —y+2 and [N(y)NS|<|S| — y + 2. By using Vizing’s theorem and summing up
the degrees of vertices of G, we get

29 < 2¢(G[SD + ZA(IN(X)HSI + [N + ;(A)(IN(J’)QSI + INO)D

xXe ye

S| = WGISDS| = WGISD + 2) + [I(4)| (S| — 7 +2) +d((4))
IS| = v+ 2)IS| =7+ ) + I (IS| -y +2) +d((4))
=(p—y - A +2) (p—y+4)+d(I(4)). (18)

<
<

(
(

We will show that this upper bound can be further improved.
Case 1: There exists we I(4) with N(w)NS = 0.
Then from the proof above we know the right-hand side of (18) can be decreased

by [S| -7+ 2.
Case 2: For all weI(4),N(w)NS #0.
Let

Ar={xed: [INx)NS|=|S| -7 +2},
L={yel(4) IN(»)NS|=|S| -y +2},
AZZA\A] and ]2 =I(A)\I|
Subcase 2.1: Ay =0 or I; =0. If 4; =0, then [N(x)NS|<|S| —y+ 1 for all xe 4

and the right-hand side of (18) decreases by |4|. If /; =0, it decreases by |/(4)).
Subcase 2.2: A #0 and I, # 0. Then we have the following:

Claim 1. If x€ 4y, then N(y)NSCN(x)NS for all ycI(A4).
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In fact, (S\N(x))U {x, y} is a minimum dominating set since x €4,. If N(y)NS &
N(x)NS, then there exists z € S\N(x) which is adjacent to y. So ((S\N(x)\{z})U
{x, y} is a dominating set, a contradiction. Similarly, we have

Claim 2. If y€l,, then N(x)NSCN(y)NS for all x€ A.

Claims 1 and 2 imply that N(w) NS are all identical for w € 4, U1, i.e., there exists
0#S8* CS with [S*|=|S|] ~ y + 2 such that N(w)NS=S* for all we 4, U],. Thus,
we have 4 # () since otherwise the vertices in S* are adjacent to all vertices in 4, a
contradiction. Also, from Claims 1 and 2 we know N(w)NSCS™* for all we 4, UL.

Now, we prove that 2¢(G[S1)<(|S| — y+2) (|S| —y +4). Suppose otherwise, then
7=7(G[S])+2 and by Vizing’s theorem S can be partitioned into two parts S| and S,
such that G[S;] is a complete graph with the removal of a minimum edge covering and
S, 1s a set of isolated vertices of G[S]. Thus |S|=|S|—y+4 and |S| =y(G[S]) -2 =
y—4. Since |S*| =S|~y +2, there are at least two vertices in S; which are not in S*.
But S\S* is an independent set, so there are exactly two nonadjacent vertices z|,z> of
S| which are not in S*. Therefore, we have $* =S\{z},2,},5\8* =S U{z,z}. If
[S*|>2, then by the structure of G[S)] there exists a vertex z € S* which is adjacent
to both z; and z;. Thus, for x €4,y € I(4), S, U{x, y,z} is a dominating set of y — 1
vertices, a contradiction. So we must have [$*|=1. But § £#N(w)NSCS* for all
wE Ay, so we get N(w)NS=S*, a contradiction as well. Thus, we have proved that

2q(GISD<(S[—y +2)IS| -y +4) - L (19)
If , =0, take a vertex zo €™ and put 4'=A4U{z}. Then I(4’)=1I(4). Note that
Az #0 and hence d(zo)<([I(4)| — 1)+ (S| —2)= p —y + 1, we get from (18) that
29 <(p—y—[[A)+2)p—-y+4)+dI(4))
=(p-y— [+ 1) (p—y+4)+dI(4)) +d(z))
S(p—y= WD +2)p - y+4)+dI(4)) - 3.
If I # 0, then from (19), the proof of (18) and the fact 4> 0} we know that the above
inequality is also true. This completes the proof of Theorem 4. [J

Corollary 7. Suppose ACV(G) with |4| 22 and |I(4)|>1. Let

0 if d(x)=0 for all xeV(G)\I(4),
1  otherwise.

MA) = {

Then

y<p+3 = LT+ J(TW)] + 272 + 8 + 4A(4) — 4d(T(4))). (20)

Proof. Let j(4)= min{p — y — [I(4)| + 2,
follows from (17) immediately. [J

A),11(4)|,3}. Then u(4)>Ai(4) and (20)
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Both (17) and (20) are attainable. As a simple example, we take G to be a complete
bipartite graph with the bipartition X U Y, where 2<|X|<|Y|, and set 4 =X. Then the
equalities in both (17) and (20) appear. Unfortunately, at the moment we are not able
to characterize the extremal graphs for (17).

It is expected that for some special families of graphs the results in this paper can
be further improved.
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