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Abstract

Let X be a finite set and P a hereditary property associated with the subsets of X. A partition
of X into n subsets each with property P is said to be a P-n-coloring of X. The minimum »
such that a P-n-coloring of X exists is defined to be the P-chromatic number of X. In this paper
we give a sequential coloring algorithm for P-coloring X. From the algorithm we then get «
few upper bounds for the P-chromatic number. In particular, we generalize the Welsh-Powell
upper bound for ordinary chromatic number to the case of P-chromatic number of any finite set
X. © 1999 Elsevier Science B.V. All rights reserved
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1. Introduction

A simple but useful way of coloring the vertices of a graph G is as follows. First
order the vertices, say x; < --- < x,,, and then color them one by one: color x; with
1, then color x; with 1 if x; and x, are not adjacent and 2 otherwise, and so on; color
each vertex with the smallest color it can have at that stage (see [18] for techniques
based on this method). In this paper, we will show how the similar method works for
conditional colorings of a finite set.

Let X be a finite set whose elements are called vertices. Let P be a property as-
sociated with the subsets of X. If ¥ CX possesses P, we call ¥ a P-set; otherwise
a P-set. In the following we always suppose that P is hereditary in the sense that
whenever Y is a P-set then each subset of Y is also a P-set. We also suppose without
mentioning that each singleton {x} for x € X is a P-set. A P-n-coloring of X is an
assignment of n colors 1,2,...,n to the vertices of X such that for each color i the
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subset of all vertices colored with i is a P-set. Equivalently, a P-n-coloring of X is a
partition of X into n P-sets. This concept of P-coloring of a finite set can date back
to [7] when Cockayne, Miller and Prins proved the interpolation theorem for complete
P-n-colorings. In [20], the P-chromatic number of X, denoted by xp(X), was defined
to be the minimum » such that a P-n-coloring of X exists. Since each {x} is a P-set,
xp(X) is well-defined. If Y is a P-set but ¥ \ {x} is a P-set for each x € Y, then we
say that Y is a minimal P-set. For each x € X, we define the P-degree of x in X,
denoted by dp(x,X), to be the largest number of members in a family <7, of minimal
P-sets of X with the property that ANA’ = {x} for any distinct 4,4’ € /.. Let 5p(X)
and Ap(X) be, respectively, the minimum P-degree and the maximum P-degree of
the vertices of X. Note that when restricted to a subset ¥ of X, P is also a heredlitary
property associated with the subsets of Y. Thus, xp(Y), dp(x,Y), dp(Y) and Ap(Y)
are well-defined, where x € Y. If yp(X \ {x}) < xp(X) for each x € X, then X is said
to be P-critical. We use p to denote the cardinality of X.

The main purpose of this paper is to give an algorithm for sequentially P-coloring
the finite set X. By using this algorithm we derive several upper bounds for yp(X). In
particular, we generalize the well-known Welsh-Powell upper bound [3,17] for ordinary
chromatic number to the case of P-chromatic number of any finite set. From this we
can get upper bounds for some known graphical invariants such as the arboricity,
vertex arboricity, and so on. Also, the upper bounds obtained for P-chromatic number
imply a theorem of Tomescu [16] and an upper bound [2, Corollary 1, p. 117] for the
chromatic number of a hypergraph.

2. The algorithm and its consequences

Algorithm SC(O)

(1) Suppose O :x; < --- < x, is a given order of the vertices of X. Color x; with
color 1.

(2) Generally suppose xi,...,x;_; have been colored, let X; = {x,...,x;.1,x}. If
X; is a P-set, then color x; with any color that has been used already; otherwise X;
contains minimal P-sets and we define

;= {4CX; : A is a minimal P-set containing x; and 4\ {x;} is monochromatically
colored},

#; = {BC X, : B is a minimal P-set containing x; and B\ {x;} is not monochromatic},
and

%; = {CCX;:C is a minimal P-set not containing x;}.

(3) If there exists a color used by a vertex in Uceg,C but not used by any vertex
in Uye,us (Y \ {x;}), then assign this color to x;.

(4) If all colors used in Ucey,C are also used in Uyey,us,(Y \ {x;}), then we
distinguish two cases:

(4a) If there is a color used in Ugcy B but not in Uye 4, then assign this color
to x;;
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(4b) otherwise, assign x; a new color.
(5) If i = p, stop; otherwise set i := i+ 1 and go to (2).

Inductively, one can show that the subset of the vertices in X; with any one color
contains no minimal P-sets. Therefore, the algorithm SC(Q) gives rise to a P-coloring
of X for any given order O. The algorithm is justified also by the fact that it gives
an optimal P-coloring (that is, a P-coloring using yp(X) colors) for some order O of
X. In fact, let n = yp(X) and {4;,...,4,} be a P-n-coloring of X. Let us order the
vertices of X in such a way that x < y whenever x € 4;, y € 4; with i < j. For
such an order Oy : x; < ... < X, one can prove by induction on j that if x; € X;,
then SC(Oy) uses at most i colors for {xi,...,x;}. Thus, SC(Oy) exploits at most
n colors for coloring all the vertices in X. By the minimality of n, SC(Oy) gives a
P-n-coloring of X.

Let O be the given order as in the algorithm. In applying SC(QO), we denote ds(x) =
0 for all x € X and, if x(, --,x;_; have been colored, define ds;(x) to be the number
of distinct colors that have been assigned to vertices in U(4 \ {x}), where the union
is taken over all minimal P-sets 4 C{x),...,x;_),x} such that x € 4 and 4 \ {x} is
monochromatic. Define

DS(0) = ]rgagpmm{i, dsi(x;)+ 1} = lréxljcg(pds,-(x,-) +1,

B(0O) = max min{i,dp(x;,X;) + 1} = max dp(x;,X;)+ 1,
Isisp I<i<p

SIS

WP(0) = 1T?<)(pmin{i’dp(XE’X) +1}

Note that if 4,4’ C{xi,...,x;_),x} are minimal P-sets containing x such that
A\ {x},4’ \ {x} are monochromatic and 4,4’ contain a common vertex other than
x, then the colors used for 4\ {x},4" \ {x} are the same. Thus, ds;(x;)<dp(x;,X;).
This, together with dp(x;,X;)<dp(x;,X ), implies that DS(O)<B(Q)<WP(0O). From
the algorithm SC(QO) we get the following upper bounds for P-chromatic number.

Theorem 1. Let P be a hereditary property associated with the subsets of a finite
set X. Then for any order O of the vertices of X, we have

xp(X)<DS(0).
In particular, we have

1P(X)<B(0),
and

xp(X )< WP(O).

Proof. It suffices to prove that SC(O) uses at most DS(O) colors for coloring all
the vertices in X. Let ¢; be the number of colors used in coloring X; = {xi,...,x;}
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by SC(0). We prove ¢; <DS(0), 1<i< p, by induction on i. Clearly, ¢; <i. If (3)
or (4a) happens, then ¢; = ¢;—) <DS(O) by the induction hypothesis. If (4b) occurs,
then ¢; <|o7!|, where &7/ C o/; is such that for distinct 4,4’ € o/! the colors used for
A\ {x;},4"\ {x;} are different and /] is maximal with respect to this property. Thus,
ci<ei + 1|l + 1<dsi(x;) + 1<DS(O). This completes the proof. [

If x; < x; in the order O and dp(x;,X) < dp(x;,X), then we can exchange the posi-
tions of x; and x; and thus get a new order O'. It can be verified that WP(O") <WP(0).
So WP(O) is minimized when X is ordered as Oyp : x; < -+ < x, such that
dp(x1,X)2 -+ 2dp(xp,X). From Theorem 1, we have

COl’O“ary 1. Suppose X = {xl,...,xp} with dp(X],X)> ZdP(xp’X)' Then
2p(X)< max min{i,dp(x;, X ) + 1}.
I<ig<p

Note that if X is the vertex set of a graph G and P is the property of being a
vertex independent set of G, then xp(X) is the ordinary chromatic number x(G) of
G and, for each x € X, the P-degree dp(x,X) is just the degree d(x) of x in G. So
Corollary 1 is a generalization of the well-known Welsh—Powell bound [3,17]: If the
vertices x1,xz,...,X, of a graph G are indexed in such a way that d(x;)> ... =d(x,),
then

2(G)< max min{i,d(x;) + 1}.
1<i<p

An n-coloring of a hypergraph H [2] is a partition of the set of vertices of H into
n subsets each contains no edges with cardinality greater than one. The chromatic
number y(H) of H [2] is the minimum » such that an n-coloring of H exists. The
p-degree df,(x) of x in H [2] is the maximum number of edges different from {x}
whose pairwise intersections are {x}. Theorem 1 implies also the following theorem
of Tomescu which is stronger than Corollary 1.

Corollary 2. (Tomescu [16]). Let {4,,...,A,} be an n-coloring of a hypergraph H,
and d; = max,ey, df,(x), 1<i<n. Then we have

x(H)< max min{i,d; + 1}.
I<ign

Proof. Set X to be the vertex set of H and call Y CX a P-set if it contains no
edges of H with cardinality greater than one. Then y(H) = yp(X). Define an order
of the vertices in X such that x < y whenever x € 4,,y € A;,i < j. For such
an order O : x; < ... < x,, it can be proved that if xj € A; then dsi(x;) + 1<
min{i,d; + 1}. Thus, DS(O)< max, ¢;<, min{i,d; + 1} and the result follows from
1p(X)<DS(0). O
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The order O in SC(O) is arbitrarily set beforechand. To make the number of colors
used reasonably small, an effective way is to use the so-called smallest-last technique
for determining an order Og;, as in the case of ordinary vertex colorings of graphs
[14]. More precisely, we construct an order Oy in the following way:

(1) Let x, be a vertex of X with the minimum P-degree in X, = X;

(2) for i = p—1,...,2,1, let x; be a vertex with the minimum P-degree in X; =
X\ {xp,...,xi11} when x,,...,x;;| have been chosen.

Denote

AX) = )I}lg\’glel?dp(x’y)+ 1= }r,nga)lé op(Y)-+1.

Since dp(x;,X;) = minyey, dp(x,X;), we have B(OsL ) <A(X). On the other hand, let
¥, be a subset of X which attains the maximum in the definition of A(X), and let x;
be the last vertex of Y, in the order Og;. Then

dp(x, ;) + 1 2dp(x, Yo) + 1> mindp(x, Yo) + 1 = ACY).

Thus, B(Os )2 A(X) and hence B(Osp) = A(X). The use of this smallest-last tech-
nique leads to the upper bounds (i) and (ii) in the following corollary, where (ii) is
a generalization of the known result y(G)<1 + A(G) for the chromatic number y(G)
of a graph G to the case of P-chromatic number. The equivalent hypergraph forms of
these two upper bounds can be found in [2, pp. 116-117].

Corollary 3. Suppose X is a finite set and P is a hereditary property associated with
the subsets of X. Then the following (i1)-(iii) hold.
(i) yp(X)<1+maxycy op(Y).
(i) xp(X)<1+ Ap(X).
(iii) If X is P-critical, then yp(X)<1+ dp(X).

Proof. We have proved that B(Os.) = A(X). So (i) follows from yxp(X)<B(Os )
immediately. For each x € Y, we have dp(x,Y)<dp(x,X). Hence dp(¥)<Ap(X)
and (ii) follows from (i). For (ii1), if there exists a vertex x € X with dp(x,X) <
n — 1, where n = yp(X), then since X is P-critical there exists a P-(n — 1)-coloring
{4),....4,—1} of X \ {x}. Let O be the order of X such that the vertices in A,
precede those in 4; whenever i < j and all vertices in X \ {x} precede x. Clearly,
DS(O)<n — 1 and hence yp(X)<n — 1 by Theorem 1. This contradiction shows that
dp(x,X)=yp(X) — 1 for each x € X and hence proves (iii). [J

3. Concluding remarks
If P is a hereditary graphical property and X is the vertex set of a graph G, then

xp(X) is the P-chromatic number [9] of G; if P is an edge hereditary graphical
property [11] and X is the edge set of G, then yp(X) is just the P-chromatic index
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[9] of G. A study on P-chromatic number of a graph was conducted in [4]. As shown
in the literature (see e.g. [1,9,19,20]), a large number of known graphical invariants
such as the ordinary chromatic number, edge chromatic number, thickness, arboricity,
vertex arboricity [6], linear arboricity [10], vertex linear arboricity [13], unicyclicity
[10], biparticity [10], n-th chromatic number [5], cochromatic number [12], chromatic
partition number [15], subchromatic number [1], partite chromatic number [8] can be
expressed as yp(X), where X is the vertex set or edge set of the graph and P is a
specific graphical property. The algorithm in previous section can be applied to all
these invariants and a Welsh-Powell-type upper bound can be obtained from Corollary
1 for each of them. As an example, we consider the vertex arboricity a(G) which
is precisely the P-chromatic number xp(X'), where X is the vertex set of G and P
is the property such that ¥ C X is a P-set if and only if the subgraph G[Y] induced
by Y is a forest. Note that the minimal P-sets are those Y C V(G) such that G[Y]
is a chordless cycle. For each x € X, let ¢(x) be the maximum number of chordless
cycles containing x such that any two of them have no common vertex other than x.
Then c¢(x) = dp(x,X ) and hence Corollary 1 gives a(G)< max, ;< , min{i,c(x;)+ 1},
where xi,...,x, are the vertices of G and c(x;)> ... Z2c(x,). This new upper bound
for vertex arboricity is sharp in some cases since, for example, if G is the Petersen
graph then ¢(x) = 1 for all vertices x and both sides of the inequality above are equal
to 2.

The reader is referred to a subsequent paper [21] for an analysis on the structure of
a P-critical set and for the relationship between yp(X) and the domination number of
an associated graph.
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