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Abstract

Let � be a G-symmetric graph admitting a nontrivial G-invariant partition B. For B∈B,
let D(B)= (B; �B(B); I) be the 1-design in which �IC for �∈B and C ∈�B(B) if and only
if � is adjacent to at least one vertex of C, where �B(B) is the neighbourhood of B in the
quotient graph �B of � relative to B. In a natural way the setwise stabilizer GB of B in G
induces a group of automorphisms of D(B). In this paper, we study those graphs � such that
the actions of GB on B and �B(B) are permutationally equivalent, that is, there exists a bijection
� :B → �B(B) such that �(�x)= (�(�))x for �∈B and x∈GB. In this case the vertices of � can
be labelled naturally by the arcs of B. By using this labelling technique we analyse �B; D(B)
and the bipartite subgraph �[B; C] induced by adjacent blocks B; C of B, and study the in9uence
of them on the structure of �. We prove that the class of such graphs � is precisely the class
of those graphs obtained from G-symmetric graphs 	 and self-paired G-orbits on 3-arcs of 	
by a construction introduced in a recent paper of Li, Praeger and the author, and that � can be
reconstructed from �B via this construction. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let � be a ?nite graph and s¿ 1 an integer. An s-arc of � is a sequence
(�0; �1; : : : ; �s) of vertices of � such that �i; �i+1 are adjacent in � and �i−1 �= �i+1

for each i. If � admits a group G of automorphisms such that G is transitive on
the vertex set V (�) of � and, in its induced action, is transitive on the set As(�)
of s-arcs of �, then � is said to be (G; s)-arc transitive. In the literature a 1-arc is
usually called an arc and a (G; 1)-arc transitive graph is called a G-symmetric graph.
Clearly, a G-symmetric graph � is regular, that is, all the vertices of � have the same
valency, which we call the valency of � and denote by val(�). Instead of A1(�) we
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will use A(�) to denote the arc set of the graph �. For a group G acting on two
?nite sets �1 and �2; respectively, if there exists a bijection � :�1 → �2 such that
�(�x)= (�(�))x for any �∈�1 and x∈G, then the actions of G on �1 and �2 are said
to be permutationally equivalent with respect to �.
The study of symmetric graphs and highly arc-transitive graphs has been one of

the mainstreams in algebraic combinatorics over many years. The reader is referred to
[9–11] for survey information about recent research in this area. Roughly speaking,
in most cases the vertex set V (�) of a G-symmetric graph � admits a nontrivial
G-invariant partition, that is, a partition B of V (�) such that 1¡ |B|¡ |V (�)| and
Bg ∈B for any B∈B and g∈G, where Bg:={�g: �∈B}. If this occurs then � is
said to be an imprimitive G-symmetric graph. In the opposite case, G is primitive on
V (�) and the well-known O’Nan–Scott theorem has been proved to be very useful
(see e.g. [10]). On the contrary, it seems that no such a powerful mathematical tool
is available for imprimitive G-symmetric graphs. In an ambitious scheme, Gardiner
and Praeger [3] introduced a geometric approach to studying such a graph �, which
involves an analysis of the following three con?gurations (see Section 2, paragraph 2
for de?nitions) associated with (�;B):

(i) the quotient graph �B with respect to B;
(ii) the bipartite subgraph �[B; C] of � induced by adjacent blocks B; C of B; and
(iii) the 1-design D(B)= (B; �B(B); I) induced on a block B∈B such that �∈B is

incident with C ∈�B(B) (that is, �IC) if and only if � is adjacent in � to at
least one vertex of C, where �B(B) is the set of blocks of B adjacent to B
in �B.

Note that D(B) may contain repeated blocks, that is, blocks of D(B) incident with
the same subset of vertices of B. It was proved in [6, Theorem 1] that, if the block
size k:=|{�∈B: �IC}| (for C ∈�B(B)) of D(B) satis?es k = |B| − 1¿ 2, then D(B)
contains no repeated blocks if and only if �B is (G; 2)-arc transitive, and in this case
(see [6, Theorem 5(b)]) the induced actions of GB on the “points” B and the “blocks”
�B(B) of D(B) are permutationally equivalent with respect to the bijection de?ned
by � �→ C, for �∈B, where C is the unique block in �B(B) not incident with �.
Moreover, in this case � can be reconstructed in a natural way from the (G; 2)-arc
transitive quotient �B and the action of G on B ([6, Theorem 1]), namely � is iso-
morphic to a 3-arc graph of �B relative to a self-paired G-orbit on A3(�B). For a
regular graph 	, a subset � of As(	) is said to be self-paired if (�0; �1; : : : ; �s)∈� im-
plies (�s; : : : ; �1; �0)∈�. For a self-paired subset � of A3(	), the 3-arc graph Arc�(	)
of 	 relative to � was de?ned in [6, Section 6] to have vertex set A(	) in which
(�; �); (�′; �′) are adjacent if and only if (�; �; �′; �′)∈�. The self-parity of � ensures
that adjacency in this graph is well-de?ned. For further development of the geometric
approach above, the reader is referred to [4–6,12,13].
In a natural way, the setwise stabilizer GB of B in G induces a group of auto-

morphisms of the ‘cross-sectional’ geometry D(B), and GB is transitive on the points,
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the blocks and the 9ags of D(B) (see Lemma 2.1). So the permutation equivalence
between the actions of GB on the “points” B and the “blocks” �B(B) of D(B) is a
geometric property bridging naturally the two parts of D(B). We notice that, besides
the case mentioned above, this property is also possessed by some other imprimitive
G-symmetric graphs (see Example 2.2). This motivated us to study such graphs � with-
out necessarily assuming that k = |B|−1 or D(B) contains no repeated blocks. That is,
we will study in this paper G-symmetric graphs � admitting a nontrivial G-invariant
partition B such that the following (PE) holds for some block B∈B.

Assumption (PE). The actions of GB on B and �B(B) are permutationally equivalent
with respect to some bijection � :B → �B(B).

To avoid triviality, we will assume without mentioning explicitly that val(�)¿ 1
and that �B has at least one edge. This latter assumption on �B implies that each block
of B is an independent set of � (see e.g. [3,8]). As we will see later, any G-symmetric
graph � satisfying (PE) can be reconstructed from the G-symmetric quotient �B via
the 3-arc graph construction. In fact, we will show that the class of such graphs � is
precisely the class of all 3-arc graphs Arc�(	) with 	 a G-symmetric graph and � a
self-paired G-orbit on A3(	), and hence it is a quite large class of symmetric graphs.

The structure and main results of this paper are as follows. After introducing ter-
minology and giving an example in Section 2, we develop in Section 3 a labelling
technique for studying G-symmetric graphs � satisfying (PE). More precisely, we will
show that each vertex of � can be labelled uniquely by an ordered pair “BC” of adja-
cent blocks B; C of �B, and we will prove some basic results relating to this labelling
(Theorem 3.2). In particular, we will show that each vertex “BC” of � has a unique
mate (Theorem 3.2(b)), labelled by “CB”, and that V (�) admits two other G-invariant
partitions (Theorem 3.2(b) and (c)), namely B∗ = {B∗: B∈B} with B∗ the set of mates
of the vertices of B, and P with each block consisting of two mated vertices. Moreover,
there is no edge of � between B and B∗ (Theorem 3.2(d)). In the case where adjacent
vertices of � have the same second coordinate in their labels, the girth(�B) of �B is
equal to 3 and � is a disconnected graph with each connected component contained in
some block of B∗ (Theorem 3.3(b)). In the case where girth(�B)¿ 5, we give some
structural information about the bipartite graph �[P;Q], where P;Q are adjacent blocks
of P or adjacent blocks of B∗, and show that the involution interchanging each pair
of mated vertices induces a graph monomorphism from � to its complement P�, and
induces a graph monomorphism from �B to �B∗ (Theorem 3.4). Based on this we
obtain upper bounds for the valencies of � and �B in this case (Corollary 3.5).
Under the assumption (PE), one may expect a more active role played by D(B) in

in9uencing �, �B and �[B; C], and this will be studied in Section 4. In particular, we
characterize the case where k = v−1¿ 2 and D(B) contains no repeated blocks as the
only case such that �B is (G; 2)-arc transitive (Theorem 4.1(c)), and characterize the
case where �[B; C] ∼= Kv−1; v−1 as the only case such that �B is (G; 3)-arc transitive
(Theorem 4.1(d)).
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In Section 5, we continue our study under the additional assumption that the mapping
� in (PE) preserves the incidence relation of D(B) in the sense that, for �∈B and
C ∈�B(B), �IC if and only if �−1(C)I�(�). In this case, D(B) is a self-dual 1-design
and � induces a polarity of D(B) (Proposition 5.1). We will prove in particular that, if
adjacent vertices of � have labels involving four distinct blocks and if �[B; C] ∼= kK2

is a matching of k edges, then there exists a G-orbit O on n-cycles of �B, for a certain
even integer n¿ 4, such that the adjacency of � and the incidence relation of D(B)
are determined completely by O (Theorem 5.3).
In Section 6, we will prove (Theorem 6.2) that any G-symmetric graph � satisfying

(PE) can be reconstructed from �B and the action of G on B, namely � is isomorphic
to a 3-arc graph of �B relative to a certain self-paired G-orbit on A3(�B). Conversely,
we will show that, for any G-symmetric graph 	 and any self-paired G-orbit � on
A3(	), the 3-arc graph Arc�(	) is a G-symmetric graph which admits a G-invariant
partition B such that (PE) is satis?ed for all B∈B.

2. De�nitions, notation and example

We refer to [1] for terminology and notation on incidence structures and designs,
and to [2] for that on permutation groups. For a graph � and an integer n¿ 1, we
use n� to denote the graph consisting of n vertex-disjoint copies of �. So in particular
nK2 is a matching of n edges. We denote by �(�) the neighbourhood in � of a vertex
�∈V (�), that is, the set of vertices of � adjacent to � in �. For two graphs � and
	, a mapping ’ :V (�) → V (	) is called a graph homomorphism if ’ maps adjacent
vertices of � to adjacent vertices of 	; if in addition ’ is one-to-one, then it is called
a graph monomorphism.
Let � be a G-symmetric graph and B a nontrivial G-invariant partition of V (�).

The quotient graph of � with respect to B, denoted by �B, is de?ned to be the graph
with vertex set B in which two blocks B; C ∈B are adjacent if and only if there is
an edge of � joining a vertex of B and a vertex of C. For �∈V (�), we use B(�) to
denote the block of B containing �. For B∈B, denote by �B(B) the neighbourhood
of B in �B, and set �(B):=

⋃
�∈B �(�). For two adjacent blocks B; C of B, denote

by �[B; C] the induced bipartite subgraph of � with bipartition {�(C) ∩ B; �(B) ∩
C}. De?ne D(B):=(B; �B(B); I) to be the incidence structure such that, for �∈B and
C ∈�B(B); �IC if and only if �∈�(C). Clearly, the set of points of D(B) incident
with C is �(C) ∩ B. Since � is G-symmetric and B is G-invariant, one can see that
the following (i)–(iv) hold [3,6]:

(i) B(�x)= (B(�))x for �∈V (�) and x∈G;
(ii) �B is G-symmetric under the induced action (possibly unfaithful) of G on B;
(iii) �[B; C] and D(B) are, up to isomorphism, independent of the choice of adjacent

blocks B; C and the block B, respectively; and
(iv) D(B) is a 1-(v; k; r) design, where v:=|B|; k:=|�(B) ∩ C| for C ∈�B(B), and

r:=|�B(�)| with �B(�):={C ∈�B(B): �IC}, for �∈B.
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By (i) above the number of times a block C of D(B) is repeated is independent
of the choice of B; C. We call this number the multiplicity of D(B) and denote it
by m. Clearly, m divides the valency b : = |�B(B)| of �B. Denote by GB and G(B),
respectively, the setwise and pointwise stabilizers of B in G, and by G[B] the subgroup
of GB ?xing each C ∈�B(B) setwise. For B; C; D∈B, we set GB;C :=(GB)C =(GC)B
and GB;C;D:=(GB;C)D. For �∈V (�), denote by G� the stabilizer of � in G, and set
G�;B:=(G�)B. Clearly, GB induces nature actions on B and on �B(B). The following
lemma shows that GB induces an automorphism group of D(B). (This was observed
in [3] in the case where G� is primitive on �(�).)

Lemma 2.1 (Gardiner and Praeger [3, Section 3]). Suppose that � is a 7nite
G-symmetric graph and B is a nontrivial G-invariant partition of V (�). Let B be a
block of B. Then GB induces a group of automorphisms of D(B) which is transitive
on the points, the blocks and the 9ags of D(B).

We now give the following example of G-symmetric graph � which satis?es (PE)
for a G-invariant partition of V (�). Note that in this example we have k ¡v− 1 and
D(B) contains repeated blocks.

Example 2.2. Let PG(2; 2) be the Fano plane whose points 1; 2; : : : ; 7 are as shown
in Fig. 1. Let V be the set of ordered pairs of distinct points of PG(2; 2). Then
G:=PGL(3; 2) is transitive on V (see e.g. [2, Section 2:8]). De?ne � to be the graph
with vertex set V such that two vertices �"; #$∈V are adjacent if and only if (i)
�; "; #; $ are distinct, and (ii) "; $ and the unique point collinear with �; # are dis-
tinct and are collinear in PG(2; 2). For example, 17; 26 are adjacent in � since the
unique point collinear with 1; 2 is 3 and since 7; 6; 3 are collinear in PG(2; 2). Simi-
larly, we have �(17)= {26; 62; 35; 53}. Note that the pointwise stabilizer G17 of 1; 7
in G contains an element which exchanges 2 and 6 and exchanges 3 and 5; also

Fig. 1. Fano plane.
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G17 contains an element which exchanges 2 and 3 and exchanges 6 and 5. So G17

is transitive on �(17), and hence � is G-symmetric. One can see that � ∼= 7K2;2;2

and B:={B(�): � is a point of PG(2; 2)} is a G-invariant partition of V , where
B(�):={�": " is a point of PG(2; 2) with " �= �}. We have �B

∼= K7; �[B(�); B(")] ∼=
4K2 for � �= "; D(B(1)) is a 1-(6; 4; 4) design, and the sets �B(1") for 1"∈B(1) are
{12; 13; 14; 17}; {14; 15; 16; 17}; {12; 13; 16; 15} with each repeated twice. Thus, the
block size of D(B(1)) is less than |B(1)| − 1. Clearly, the induced actions of GB(�)

on B(�) and �B(B(�)) are permutationally equivalent with respect to the bijection
� : �" �→ B("). Note that �" is adjacent to a vertex in a block B(#) if and only if �#
is adjacent to a vertex in the block B(").

3. The labelling technique

As a fundamental fact, we now show that (PE) holds if and only if the vertices
of � can be labelled in a natural way by the arcs of �B. For convenience we call a
mapping % :V (�) → A(�B) compatible with B if, for any �∈V (�), the arc %(�) of
�B is initiated at the block B(�).

Lemma 3.1. Suppose that � is a 7nite G-symmetric graph admitting a nontrivial
G-invariant partition B. Then (PE) holds for some B∈B if and only if the actions
of G on V (�) and A(�B) are permutationally equivalent with respect to a bijection
% :V (�) → A(�B) compatible with B. Moreover, in this case we have b= v¿ 2;
G[B] =G(B); G is faithful on B if G is faithful on V (�); and (PE) holds for all blocks
B of B.

Proof. Suppose ?rst that (PE) holds for some block B∈B and a bijection � :B →
�B(B), and let � be a ?xed vertex of B. Then, since � is G-vertex-transitive, each ver-
tex of � has the form �x for some x∈G. We will show that % : �x �→(Bx; (�(�))x); x∈G;
de?nes a bijection from V (�) to A(�B) which is compatible with B. In fact, if �x = �y

for some x; y∈G, then xy−1 ∈G� (6GB), and hence Bxy−1
=B and (�(�))xy

−1
=

�(�xy
−1
) = �(�). Therefore, we have %(�x)= %(�y) and thus % is well-de?ned. Sec-

ondly, if %(�x)= %(�y) for two vertices �x; �y; then xy−1 ∈GB since Bx =By. This,
together with (�(�))x =(�(�))y, implies that �(�)= (�(�))xy

−1
= �(�xy

−1
). Note that

xy−1 ∈GB implies �xy
−1 ∈B, and that � is a bijection from B to �B(B). So we have

�xy
−1

= �, implying �x = �y and hence % is injective. Since G is transitive on arcs of
�B; % is in fact a bijection from V (�) to A(�B). Since B and �(�) are adjacent blocks
and Bx =(B(�))x =B(�x); Bx and (�(�))x are adjacent blocks and hence % is compat-
ible with B. It follows from the de?nition that the actions of G on V (�) and A(�B)
are permutationally equivalent with respect to %. Moreover, the de?nition of % does
not depend on the choice of �∈B. In fact, for another vertex "∈B and any vertex of
�, say #= �x = "y for some x; y∈G, we have Bx =B(�x)=B("y)=By and hence xy−1

∈GB. So (�(�))xy
−1

= �(�xy
−1
) = �("), implying (B; �(�))x =(B; �("))y and indeed
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the de?nition of % is independent of the choice of �∈B. One can see that, for each
block D∈B, the actions of GD on D and �B(D) are permutationally equivalent with
respect to the bijection �D :D → �B(D) de?ned by (D; �D(#))= %(#), for #∈D.
Now suppose conversely that the actions of G on V (�) and A(�B) are permuta-

tionally equivalent with respect to a bijection % :V (�) → A(�B) which is compatible
with B. Then (B; �(�))= %(�), for �∈B, de?nes a bijection � :B → �B(B). It is easily
checked that the actions of GB on B and �B(B) are permutationally equivalent with
respect to �.
Finally, if (PE) holds, then b= |�B(B)|= |B|= v¿ 2. Also, in this case G[B] =G(B)

for each B∈B. So if G is faithful on V (�), then G is faithful on B as well.

Lemma 3.1 implies that, under the assumption (PE), each vertex � of � can be
uniquely labelled by an ordered pair “BC” of adjacent blocks of �B, where (B; C)=
%(�). In the following, we will identify � with the label “BC”, so we have G“BC” =GB;C .
Since (%(�))x = %(�x), it follows that

“BC”x =“BxCx” (1)

for x∈G and “BC”∈V (�). One can see that the block B is precisely the set of those
vertices of � whose labels have the ?rst coordinate B, that is, B= {“BC”: (B; C)∈
A(�B)}. Note that each vertex �=“BC” of � has a unique mate �′:=“CB”, and that
z: � �→ �′ de?nes an involution on V (�). Also, z centralises G since “BC”zx =“CB”x =
“CxBx”= “BxCx”z =“BC”xz for any x∈G. Since G preserves B invariant whilst it is
easy to see that Bz = {�′: �∈B} �∈ B, we have z �∈ G. Clearly, {{�; �′}: �∈V (�)}
is a (G × 〈z〉)-invariant partition of V (�), and the graph �′ with vertex set V (�)
and arc set {(�; �′): �∈V (�)} is G-symmetric. We record these basic results in the
following theorem, which will be used repeatedly in our later discussion. For B∈B,
we set B∗:=Bz.

Theorem 3.2. Suppose that � is a 7nite G-symmetric graph admitting a nontrivial
G-invariant partition B such that the actions of GB on B and �B(B) are permutation-
ally equivalent; for some B∈B. Let % :V (�) → A(�B) be the bijection guaranteed
by Lemma 3:1. Then the following (a)–(d) hold:

(a) Each vertex � of � can be labelled uniquely by an ordered pair “BC” of ad-
jacent blocks of �B; where (B; C)= %(�). Moreover; we have G“BC” =GB;C and
“BC”x =“BxCx” for “BC”∈V (�) and x∈G.

(b) Each vertex �=“BC” has a unique mate �′:=“CB”; the mapping z : � �→ �′ de7nes
an involution such that z �∈ G and z centralises G; P:={{�; �′}: �∈V (�)} is a
(G×〈z〉)-invariant partition of V (�); and the graph �′ with vertex set V (�) and
arc set {(�; �′): �∈V (�)} is G-symmetric.

(c) B∗:={B∗: B∈B} is a G-invariant partition of V (�); GB =GB∗ ; and the actions
of GB on B and B∗ are transitive and permutationally equivalent with respect to
the restriction of z on B.
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(d) There is no edge of � joining vertices of B and B∗. In particular; for each arc
(“BC”; “DE”) of �; (C; B; D; E) is a 3-arc of �B.

Proof. The truth of (a) and (b) has been shown above, and from this we get (c) by
a routine argument. To prove (d), we assume that B; C are two adjacent blocks of
�B. If “CB” is adjacent to “BC”, then, since val(�)¿ 1, “CB” is adjacent to a vertex
“B1C1” distinct from “BC”. By the G-symmetry of �, there exists x∈G such that
(“CB”; “BC”)x =(“CB”; “B1C1”). From (1) this implies that C =Cx =C1; B=Bx =B1,
a contradiction. Hence each vertex “CB” of V (�) is not adjacent to its mate “BC”.
Similarly, if “CB” is adjacent to a vertex “BD”∈B \ {“BC”}, then we can take
a vertex “B1D1” which is distinct from “BD” and is adjacent to “CB”, and hence
(“CB”; “BD”)x =(“CB”; “B1D1”) for some x∈G, implying B=Bx =B1. On the other
hand, there exists y∈G such that (“CB”; “BD”)y =(“B1D1”; “CB”). This implies
C =By =D1, and hence “B1D1”= “BC”. Again, this is a contradiction and hence there
is no edge of � between B and B∗. In particular, if (“BC”; “DE”) is an arc of �, then
C �=D; B �=E and hence (C; B; D; E) is a 3-arc of �B.

As shown in the following theorem, the G-symmetric graphs satisfying (PE) fall
into two categories according to the nature of labels of adjacent vertices of �.

Theorem 3.3. Suppose that � is a 7nite G-symmetric graph admitting a nontrivial
G-invariant partition B such that the actions of GB on B and �B(B) are permuta-
tionally equivalent; for some B∈B. Then one; and only one; of the following (a) and
(b) occurs.

(a) Any two adjacent vertices have labels involving four distinct blocks. In this case;
each block of B∗ is an independent set of �.

(b) Any two adjacent vertices of � share the same second coordinate. In this case; �
is disconnected with each block of B∗ consisting of connected components of
�. Moreover; we have girth(�B)= 3; �[B; C] ∼= kK2 and val(�)= |DGB;C |; where
B; C; D∈B such that “CB”; “DB” are adjacent in �. In particular; �[B∗] ∼= Kv if
and only if �B is (G; 2)-arc transitive; and in this case we have � ∼= n(v+ 1)Kv;
�[B; C] ∼= (v − 1)K2 and �B

∼= nKv+1 for an integer n; and the group induced
on the vertex set of a connected component of �B is 3-transitive.

Proof. It is easy to see that either (a) or (b) occurs, and that (a) occurs if and only
if each block of B∗ is an independent set of �. In the following, we suppose (b) oc-
curs, and let “CB”; “DB” be adjacent vertices. Then girth(�B)= 3 since (B; C; D; B) is
a triangle of �B. Clearly, any two adjacent vertices of � lie in the same block of B∗,
and hence the subgraph �[E∗] induced by each E∗ ∈B∗ consists of connected com-
ponents of �. By our assumption, “CB” is the unique vertex in C adjacent to “DB”.
So we have �[C;D] ∼= kK2. Moreover, a vertex “D1B”∈B∗ is adjacent to “CB” in
� ⇔ there exists g∈G such that (“CB”; “DB”)g =(“CB”; “D1B”) ⇔ there exists
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g∈GB;C such that Dg =D1. Thus, we have val(�)= |DGB;C |. In particular, �[B∗] ∼=
Kv ⇔ GB;C is transitive on �B(B)\{C} ⇔ GB is 2-transitive on �B(B) ⇔ �B is (G; 2)-
arc transitive. In this case, the argument above shows that (i) � ∼= |B∗|Kv, (ii) {B} ∪
�B(B) induces the complete graph Kv+1 which is a connected component of �B (note
that b= v by Lemma 3.1), and (iii) G induces a 3-transitive group on {B} ∪ �B(B).
Therefore, we have �B

∼= nKv+1 and � ∼= n(v + 1)Kv for an integer n. Counting the
number of edges of � in two ways, we get (n(v+1)v=2)k = n(v+1)(v(v−1)=2), which
implies k = v− 1 and hence �[C;D] ∼= (v− 1)K2.

Note that case (a) in Theorem 3.3 occurs when girth (�B)¿ 4. If girth(�B)¿ 5,
then we get the following generalizations of [6, Theorem 9 and Corollary 1]—the
proofs are much similar and hence omitted.

Theorem 3.4. Suppose that � is a 7nite G-symmetric graph admitting a nontrivial
G-invariant partition B such that the actions of GB on B and �B(B) are permuta-
tionally equivalent; for some B∈B. Suppose further that girth(�B)¿ 5. Then

(a) �[{�; �′}; {"; "′}] ∼= K2 for adjacent blocks {�; �′} and {"; "′} of P.
(b) �[B∗; C∗] is a matching for adjacent blocks B∗; C∗ of B∗; in particular

�[B∗; C∗] ∼= K2 if girth(�B)¿ 7.
(c) The involution z : � �→ �′ for �∈V (�) de7nes a graph monomorphism from

� to the complement P�. Moreover; z induces graph monomorphisms from �B to
�B∗ ; and from �B∗ to �B; de7ned by B �→ B∗; and B∗ �→ B; respectively.

Corollary 3.5. With the same assumptions as in Theorem 3:4; we have val(�)6
(|V (�)| − 2)=4 and val(�B∗)6 (|V (�)|=v)− v− 1. If in addition girth(�B)¿ 7, then
val(�)6 (|V (�)|=v2)− (1=v)− 1.

Remark 3.6. Let k∗ denote the block size of the 1-design D(B∗). If k∗ =1, then
val(�B∗)= v · val(�)¿v= |B∗|, and hence the actions of GB∗ on B∗ and �B∗(B∗)
cannot be permutationally equivalent. From Theorem 3.4(b), this is the case in par-
ticular when girth(�B)¿ 7. Thus the G-invariant partition B∗ may not satisfy (PE).
Moreover if k∗ =1, then the construction given in [13, Section 4] applies, and so �
can be constructed from a certain G-point- and G-block-transitive 1-design with point
set B∗.

4. The 1-design D(B)

Part (d) of Theorem 3.2 is equivalent to saying that, if (“BC”; D) is a 9ag of D(B),
then C �=D and hence (C; B; D) is a 2-arc of �B. Denote by PA2(�B) the set of all
such 2-arcs of �B, that is,

PA2(�B):={(C; B; D) : “BC”ID}:
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Denote by D∗(B)= (�B(B); B; I∗) the dual 1-design of D(B), so CI∗� for C ∈�B(B)
and �∈B if and only if �IC. The main result of this section is the following theorem,
which gives more information about the 1-design D(B).

Theorem 4.1. Suppose that � is a 7nite G-symmetric graph admitting a nontrivial
G-invariant partition B such that the actions of GB on B and �B(B) are permuta-
tionally equivalent; for some B∈B. Then the following (a)–(d) hold:

(a) Both D(B) and D∗(B) are 1-(v; k; k) designs.
(b) PA2(�B) is a G-orbit on A2(�B); k = |CGB;D |; and k + m6 v; where (C; B; D)∈

PA2(�B) and m is the multiplicity of D(B).
(c) The following conditions (i)–(iv) are equivalent:

(i) �B is (G; 2)-arc transitive;
(ii) PA2(�B)=A2(�B);
(iii) k = v− 1;
(iv) k = v− 1 and D(B) contains no repeated blocks.

(d) �[B; C] ∼= Kk;k if and only if GB;C;D is transitive on �(B) ∩ D; for (C; B; D)∈
PA2(�B). In particular; �[B; C] ∼= Kv−1; v−1 if and only if �B is (G; 3)-arc
transitive.

Proof. (a) That D(B) is a 1-design implies vr= bk. Since b= v (Lemma 3.1), we
have r= k and hence both D(B) and D∗(B) are 1-(v; k; k) designs.
(b) Let (C; B; D); (C1; B1; D1)∈ PA2(�B). Then “BC” is adjacent to a vertex "∈D and

“B1C1” is adjacent to a vertex "1 ∈D1. So “BxCx” is adjacent to "x ∈Dx for any x∈G.
Thus (Cx; Bx; Dx)∈ PA2(�B) and hence PA2(�B) is G-invariant. On the other hand, since
� is G-symmetric, there exists y∈G such that (“BC”; ")y =(“B1C1”; "1). This implies
(C; B; D)x =(C1; B1; D1) and hence G is transitive on PA2(�B). Therefore, PA2(�B) is
a G-orbit on A2(�B). From this we have: “BE”∈B is adjacent to a vertex in D ⇔
(E; B; D)∈ PA2(�B) ⇔ there exists x∈G such that (C; B; D)x =(E; B; D) ⇔ there exists
x∈GB;D such that Cx =E. So we have k = |CGB;D |. Now suppose D1; : : : ; Dm ∈�B(B)
are repeated blocks of D(B) (that is, �(D1) ∩ B= · · ·=�(Dm) ∩ B). Then by Theorem
3.2(d), none of the m distinct vertices “BD1”; : : : ; “BDm” of B is in �(D1) ∩ B, and
hence k + m6 v.
(c) Clearly, (i) and (ii) are equivalent since PA2(�B) is a G-orbit on A2(�B). Note

that k = v − 1 implies k = v − 1¿ 2 for otherwise we would have val(�)= 1, contra-
dicting our assumption on the valency of �. From the argument in the proof of (b),
we have: k = v − 1 ⇔ k = v − 1¿ 2 ⇔ GB;D is transitive on �B(B) \ {D} ⇔ GB

is 2-transitive on �B(B) ⇔ �B is (G; 2)-arc transitive. So (i) and (iii) are equiva-
lent. Clearly, (iv) implies (iii). Conversely, since k +m6 v as we have shown above,
k = v − 1 implies m=1 and hence D(B) has no repeated blocks. The equivalence of
(i)–(iv) is then established.
(d) Let (C; B; D)∈ PA2(�B). Then, by the G-symmetry of �, G“BC”;D =GB;C;D is

transitive on �(“BC”) ∩ D �= ∅. Clearly, we have: �[B;D] ∼= Kk;k ⇔ �(“BC”) ∩
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D=�(B) ∩D ⇔ G“BC”;D is transitive on �(B) ∩D ⇔ GB;C;D is transitive on �(B) ∩D.
In particular, from (c) above and Theorem 3.2(d) we have: �[B;D] ∼= Kv−1; v−1 ⇔
k = v − 1 and GB;C;D is transitive on D \ {“DB”} ⇔ �B is (G; 2)-arc transitive and
GB;C;D is transitive on �B(D) \ {B} ⇔ �B is (G; 3)-arc transitive.

Remark 4.2. As mentioned in the introduction, if k = v− 1¿ 2 and D(B) contains no
repeated blocks, then the actions of GB on B and �B(B) are permutationally equivalent.
So part (c) of Theorem 4.1 implies the result [6, Theorem 8] that in this case �B is
(G; 2)-arc transitive. Furthermore, it shows that, under the assumption (PE), this is the
only case where �B is (G; 2)-arc transitive. Part (d) of Theorem 4.1 implies that in
such a case �B is (G; 3)-arc transitive if and only if �[B; C] ∼= Kv−1; v−1 ([6, Theorem
2]), and that this is the only case where �B is (G; 3)-arc transitive.

5. The case where � is incidence-preserving

In this section, we study the case where the bijection � in (PE) is incidence-preserving
in the sense that it satis?es

�ID ⇔ �−1(D)I�(�) (2)

for �∈B and D∈�B(B). Using labels for vertices of �, this condition can be restated
as

“BC”ID ⇔ “BD”IC (3)

for distinct C;D∈�B(B), which in turn is equivalent to saying that

(C; B; D)∈ PA2(�B) ⇔ (D; B; C)∈ PA2(�B): (4)

Thus, in view of Theorem 4.1(b), one of the above holds if and only if PA2(�B) is a
self-paired G-orbit on A2(�B). By Theorem 4.1(c), this is the case in particular when
�B is (G; 2)-arc transitive. However, there are other cases in which (3) is satis?ed.
This happens for the graph � in Example 2.2, where (3) is satis?ed (see the last
sentence in that example) but �B is not (G; 2)-arc transitive by Theorem 4.1(c) and
the fact that 4= k ¡v− 1=5.

The additional requirement above implies immediately that D(B) is a self-dual
1-design, as stated below.

Proposition 5.1. Suppose that � is a 7nite G-symmetric graph admitting a nontrivial
G-invariant partition B such that; for some B∈B, the actions of GB on B and �B(B)
are permutationally equivalent with respect to an incidence-preserving bijection �.
Then D(B) is a self-dual 1-(v; k; k) design and � induces a polarity of D(B).
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Proof. Let + be the bijection from B ∪ �B(B) to �B(B) ∪ B de?ned by +(�)= �(�),
+(C)= �−1(C) for �∈B and C ∈�B(B). Then +(B)=�B(B), +(�B(B))=B, and (2)
implies that �IC ⇔ +(C)I+(�) ⇔ +(�)I∗+(C). Thus, + is an isomorphism from D(B)
to D∗(B) and hence D(B) is self-dual. Clearly, we have +2 = 1 and hence + is a
polarity of D(B).

For brevity we call a chordless 6-cycle in a given graph a hexagon, where a
chord of a cycle is an edge joining two non-consecutive vertices of the cycle. Re-
call that in Section 3, we de?ned �′ to be the graph with vertex set V (�) and edge
set {{�; �′}: �∈V (�)}. In the case where (b) in Theorem 3.3 occurs, we have the
following result which is interesting from a combinatorial point of view.

Theorem 5.2. Suppose that � is a 7nite G-symmetric graph admitting a nontrivial
G-invariant partition B such that; for some B∈B; the actions of GB on B and �B(B)
are permutationally equivalent with respect to an incidence-preserving bijection. Sup-
pose further that adjacent vertices of � have the same second coordinate. Then there
exists a G-invariant set H of hexagons of the graph � ∪ �′ such that

(a) the edges of each hexagon of H lie in � and �′ alternatively;
(b) each edge of � belongs to a unique hexagon of H; and each edge of �′ belongs

to exactly k hexagons of H; and
(c) any two hexagons of H have at most one common edge.

Proof. Let {“BC”, “DC”} be an edge of �. Then “BC”ID and “DC”IB. From (3)
and our assumption on labels of adjacent vertices, it follows that “BD” is adjacent
to “CD” and “DB” is adjacent to “CB”. It is easy to see that h{“BC”; “DC”}:=
(“BC”; “DC”; “CD”; “BD”; “DB”; “CB”; “BC”) is a hexagon of � ∪�′ whose edges be-
long to � and �′ alternatively. (See Fig. 2, where the dashed lines represent edges of
�′.) Set

H:={h{“BC”; “DC”}: (“BC”; “DC”)∈A(�)}:
Since both � and �′ are G-symmetric, H is G-invariant. One can see that
h{“BC”; “DC”}= h{“CD”; “BD”}= h{“DB”; “CB”}, and this is the unique hexagon in
H containing the edge {“BC”; “DC”} of �. By Theorem 3.3(b), we have
�[B;D] ∼= kK2. When {“BC”; “DC”} runs over all the edges of �[B;D], we get k
hexagons h{“BC”; “DC”}, and these are the only members of H containing the edge
{“BD”; “DB”} of �′. By the de?nition of the hexagons of H, the validity of (c) is
clear.

The case where two adjacent vertices of � have labels involving four distinct blocks
seems to be much more complicated, even under our additional assumption that � is
incidence-preserving. So we concentrate on the extreme case where �[B; C] ∼= kK2

is a matching. In this case, the following theorem shows that there exists a G-orbit
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Fig. 2. Hexagons in � ∪ �′.

on n-cycles of �B, for some even integer n¿ 4, which determines completely the
adjacency of �.

Theorem 5.3. Suppose that � is a 7nite G-symmetric graph admitting a nontrivial
G-invariant partition B such that; for some B∈B; the actions of GB on B and �B(B)
are permutationally equivalent with respect to an incidence-preserving bijection. Sup-
pose further that adjacent vertices of � have labels involving four distinct blocks and
that �[B; C] ∼= kK2 for adjacent blocks B; C of B. Then there exist an even integer
n¿ 4 and a G-orbit O on n-cycles of �B such that

(a) no two n-cycles of O have a 2-arc in common;
(b) (C; B; D)∈ PA2(�B) if and only if (C; B; D) is contained in a (unique) n-cycle of

O; and
(c) two vertices “BC”; “DE” of � are adjacent if and only if (C; B; D; E) is a 3-arc

of �B contained in an n-cycle of O.

Proof. Let (B0; B1; B2)∈ PA2(�B), that is, “B1B0”IB2. Then, since �[B1; B2] ∼= kK2

by our assumption, there exists a unique block B3 ∈�B(B2) such that “B2B3” is
the unique vertex in B2 adjacent to “B1B0”. This implies (B3; B2; B1)∈ PA2(�B) and
hence (B1; B2; B3)∈ PA2(�B) by (4). Thus “B2B1”IB3 and hence there exists a unique
block B4 ∈�B(B3) such that “B3B4” is the unique vertex in B3 adjacent to “B2B1”.
This in turn implies that (B4; B3; B2)∈ PA2(�B) and hence (B2; B3; B4)∈ PA2(�B). Induc-
tively, suppose that B0; B1; B2; : : : ; Bi have been determined for some i¿ 3 such that
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(Bj−1; Bj; Bj+1); (Bj+1; Bj; Bj−1)∈ PA2(�B) for j=1; 2; : : : ; i − 1, and that “BjBj−1” is
adjacent to “Bj+1Bj+2” for j=1; 2; : : : ; i − 2. Then in particular “Bi−1Bi−2”IBi and
hence there exists a unique block Bi+1 ∈�B(Bi) such that “BiBi+1” is the unique
vertex in Bi adjacent to “Bi−1Bi−2”. Thus we have (Bi+1; Bi; Bi−1)∈ PA2(�B) and hence
(Bi−1; Bi; Bi+1)∈ PA2(�B). Continuing this process, we see that each 2-arc (B0; B1; B2)
in PA2(�B) determines a unique sequence B0; B1; B2; : : : ; Bi; Bi+1; : : : of blocks of B such
that (Bi−1; Bi; Bi+1); (Bi+1; Bi; Bi−1)∈ PA2(�B) and “BiBi−1” is adjacent to “Bi+1Bi+2”
for each i¿ 1. Our assumption on labels of adjacent vertices of � implies that any
four consecutive blocks in this sequence are pairwise distinct. Since we have only
a ?nite number of blocks in B, this sequence must contain repeated terms. Let Bn

be the ?rst block in the sequence which coincides with one of the preceding blocks.
Then n¿ 4 and we claim that Bn must coincide with B0. Suppose to the contrary that
Bn =Bm for some integer m with m¿ 1. Then, since PA2(�B) is a G-orbit on A2(�B)
(Theorem 4.1(b)), there exists x∈G such that (Bx

m; B
x
m+1; B

x
m+2)= (B0; B1; B2). By the

construction above, one can see that the sequence determined by (Bx
m; B

x
m+1; B

x
m+2)

is Bx
m; B

x
m+1; B

x
m+2; : : : ; B

x
m+i ; : : : : So by the uniqueness of the sequence determined

by (B0; B1; B2) we must have Bx
m+i =Bi for each i¿ 0. In particular, we have Bx

n =
Bx
m+(n−m) =Bn−m. On the other hand, Bn =Bm implies that Bx

n =Bx
m =B0. Thus we

have Bn−m =B0, which contradicts the minimality of m. So Bn must coincide with
B0 and we get an n-cycle O(B0; B1; B2):=(B0; B1; B2; : : : ; Bn−1; B0) of �B. Note that
(B2; B1; B0)∈ PA2(�B) implies that there exists a unique block C ∈�B(B0) such that
“B0C” is the unique vertex in B0 adjacent to “B1B2”. So we have (C; B0; B1)∈ PA2(�B)
and, by the construction above, the sequence determined by (C; B0; B1) is C; B0; B1;
B2; : : : ; Bi; : : : : Since the ?rst repeated block in this sequence is C, as shown above,
we must have C =Bn−1 and hence (Bn−1; B0; B1); (B1; B0; Bn−1)∈ PA2(�B) and “B0Bn−1”
is adjacent to “B1B2”. In a similar way, one can show that (Bn−2; Bn−1; B0); (B0; Bn−1;
Bn−2)∈ PA2(�B) and “Bn−1Bn−2” is adjacent to “B0B1”. Therefore, reading the sub-
scripts modulo n (here and in the remainder of the proof), we have (Bi−1; Bi; Bi+1);
(Bi+1; Bi; Bi−1)∈ PA2(�B) and “BiBi−1” is adjacent to “Bi+1Bi+2” for each i¿ 1. Hence
n must be an even integer and, by de?nition, all these 2-arcs contained in O(B0; B1; B2)
determine the same n-cycle, namely O(B0; B1; B2). By Theorem 4.1(b) any 2-arc in
PA2(�B) has the form (Bx

0; B
x
1; B

x
2) for some x∈G, and by de?nition we have O(Bx

0; B
x
1;

Bx
2)= (Bx

0; B
x
1; B

x
2; : : : ; B

x
n−1; B

x
0)= (O(B0; B1; B2))x. This implies that O:={O(C; B; D):

(C; B; D)∈ PA2(�B)} is a G-orbit on n-cycles of �B. Note that, for a given 2-arc
(C; B; D) of PA2(�B), O(C; B; D) is the unique n-cycle in O containing (C; B; D). So
(a) and (b) are true. If “BC”; “DE” are adjacent in �, then (C; B; D)∈ PA2(�B) and by
the argument above (C; B; D; E) is a 3-arc contained in O(C; B; D). Conversely, from
the de?nition of the n-cycles in O, for each 3-arc (C; B; D; E) contained in an n-cycle
of O, “BC”; “DE” are adjacent in � and hence (c) follows.

For a G-symmetric graph � admitting a nontrivial G-invariant partition B of block
size v¿ 3, if girth(�B)¿ 4 and D(B) contains no repeated blocks, and if � almost
covers �B in the sense that �[B; C] ∼= (v − 1)K2, then the conditions of Theorem
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5.3 are satis?ed. In this case, we have PA2(�B)=A2(�B) by Theorem 4.1(c), and
hence Theorem 5.3 implies that �B is a near n-gonal graph with respect to O, that
is, each 2-arc of �B is contained in a unique n-cycle of O. Near-polygonal graphs
were introduced in [7], and a systematic study of almost covers of 2-arc transitive
near-polygonal graphs was conducted in [12].

6. Three-arc graphs and the reconstruction of �

Let 	 be a regular graph of valency v¿ 2 and � a self-paired subset of A3(	).
As pointed out in [6, Section 6], if G6Aut(	) leaves � invariant, then G preserves
the adjacency relation of the 3-arc graph Arc�(	) and hence induces a faithful action
as a group of automorphisms of Arc�(	). (See the introduction for the de?nition of
a 3-arc graph.) Moreover, the vertex set A(	) of Arc�(	) admits the following three
G-invariant partitions:

(i) B(	):={B(�): �∈V (	)}, where B(�):={(�; �): �∈	(�)};
(ii) B∗(	):={B∗(�): �∈V (	)}, where B∗(�):={(�; �): �∈	(�)};
(iii) P(	):={{(�; �); (�; �)}: (�; �)∈A(	)}.

Lemma 6.1 (Li et al. [6, Lemma 3]). Let 	; � be as above; and let G6Aut(	) leave
� invariant. Then

(a) G is transitive on the vertices of Arc�(	) if and only if 	 is G-symmetric.
(b) G is transitive on the arcs of Arc�(	) if and only if G is transitive on �.
(c) For �∈V (	); G� =GB(�) =GB∗(�); and the actions of G� on 	(�); B(�) and B∗(�)

are permutationally equivalent.

In fact, the action of G� on 	(�) is permutationally equivalent to the actions of G�

on B(�), B∗(�) with respect to the bijections de?ned by �′ �→ (�; �′), �′ �→ (�′; �),
for �′ ∈	(�), respectively. Thus, if 	 is a G-symmetric graph and � is a self-paired
G-orbit on A3(	), then by Lemma 6.1, Arc�(	) is a G-symmetric graph satisfying
(PE) for the G-invariant partition B(	). By using the labelling technique developed
in Section 3, we now prove that any G-symmetric graph � satisfying (PE) has this
form, namely � is isomorphic to a 3-arc graph of �B relative to a certain self-paired
G-orbit on A3(�B). Therefore, such a graph � can be reconstructed from the quotient
�B and the action of G on B.

Theorem 6.2. Suppose that � is a 7nite G-symmetric graph admitting a nontrivial
G-invariant partition B such that; for some B∈B; the actions of GB on B and �B(B)
are permutationally equivalent; so the vertices of � are labelled by ordered pairs of
adjacent blocks of �B. Then � ∼= Arc�(�B) for � the (self-paired) G-orbit on A3(�B)
containing the 3-arc (C; B; D; E); where (“BC”; “DE”) is an arc of �.
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Conversely; for any G-symmetric graph 	 and any self-paired G-orbit � on A3(	);
the triple (�;G;B); where �=Arc�(	) and B=B(	); satis7es all the conditions
above. Moreover; we have �B

∼= 	.

Proof. Let �;G and B be as in the ?rst part of the theorem. Let (“BC”; “DE”) be
a ?xed arc of �. Then by Theorem 3.2(d), (C; B; D; E) is a 3-arc of �B. Let � be
the G-orbit on A3(�B) containing (C; B; D; E). Since � is G-symmetric, there exists
x∈G such that (“BC”; “DE”)x =(“DE”; “BC”). So (E;D; B; C)= (C; B; D; E)x ∈� by
(1), and hence � is self-paired. Again by the G-symmetry of � and (1), we have:
(C1; B1; D1; E1)∈� ⇔ there exists x∈G such that (C1; B1; D1; E1)= (C; B; D; E)x ⇔
there exists x∈G such that (“B1C1”; “D1E1”)= (“BC”; “DE”)x ⇔ (“B1C1”; “D1E1”)∈
A(�). Therefore, the mapping “B1C1” �→ (B1; C1), for “B1C1”∈V (�), establishes a
graph isomorphism from � to Arc�(�B).

Now suppose 	 is a G-symmetric graph and � is a self-paired G-orbit on A3(	),
and let (�; �; �′; �′)∈�. Then from Lemma 6.1, �:=Arc�(	) is a G-symmetric graph
with B:=B(	) a G-invariant partition of V (�). If B(�) and B(�′) are adjacent blocks
of B, then there exist (�; ")∈B(�) and (�′; "′)∈B(�′) such that (�; "); (�′; "′) are
adjacent in �, and hence ("; �; �′; "′)∈�. In particular, we have (�; �′)∈A(	). Con-
versely, suppose (�; �′)∈A(	). Then since 	 is G-symmetric there exists x∈G such
that (�; �′)x =(�; �′). Set �x = " and (�′)x = "′, then ("; �; �′; "′)= (�; �; �′; �′)x ∈�. So
(�; ")∈B(�) is adjacent to (�′; "′)∈B(�′) in � and hence B(�) and B(�′) are adjacent
blocks of B. Thus, � �→ B(�) de?nes an isomorphism from 	 to �B. From Lemma
6.1(c), the actions of GB(�) on B(�) and 	(�) are permutationally equivalent with re-
spect to the bijection (�; �′) �→ �′. So the actions of GB(�) on B(�) and �B(B(�)) are
permutationally equivalent with respect to the bijection � : (�; �′) �→ B(�′).

Remark 6.3. (a) Theorem 6.2 is a counterpart of [6, Theorems 10(a) and (b) and 11],
where �B and 	 are assumed to be (G; 2)-arc transitive and similar result is proved.

(b) From Theorem 5.3(c) and the proof above one can see that, under the assump-
tions of Theorem 5.3, the self-paired G-orbit � on A3(�B) such that Arc�(�B) ∼= �
is precisely the set of all 3-arcs of �B contained in some n-cycle of O.

Conversely, if, for a G-symmetric graph 	, there exist an even integer n¿ 4 and
a G-orbit O on n-cycles of 	 such that each 2-arc of 	 is contained in at most one
n-cycle of O, and that the set of 2-arcs of 	 contained in some n-cycle of O is a
G-orbit on A2(	), then one can check that the following (i)–(iii) hold:

(i) the set � of 3-arcs of 	 contained in some n-cycle of O is a self-paired G-orbit
on A3(	), and thus �=Arc�(	) is well-de?ned;

(ii) for B=B(	), the bijection � from B(�) to �B(B(�)) de?ned at the end of the
proof of Theorem 6.2 is incidence-preserving; and

(iii) �[B(�); B(�′)] ∼= kK2 for adjacent blocks B(�), B(�′) of B.

These results together give the inverse of Theorem 5.3.
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