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Abstract

A 1nite graph is said to be locally-quasiprimitive relative to a subgroup G of automorphisms
if, for all vertices �, the stabiliser in G of � is quasiprimitive on the set of vertices adjacent to
�. (A permutation group is said to be quasiprimitive if all of its non-trivial normal subgroups
are transitive.) The graph theoretic condition of local quasiprimitivity is strictly weaker than the
conditions of local primitivity and 2-arc transitivity which have been studied previously. It is
shown that the family of locally-quasiprimitive graphs is closed under the formation of a certain
kind of quotient graph, called a normal quotient, induced by a normal subgroup. Moreover, a
locally-quasiprimitive graph is proved to be a multicover of each of its normal quotients. Thus
1nite locally-quasiprimitive graphs which are minimal in the sense that they have no non-trivial
proper normal quotients form an important sub-family, since each 1nite locally-quasiprimitive
graph has at least one such graph as a normal quotient. These minimal graphs in the family
are called “basic” locally-quasiprimitive graphs, and their structure is analysed. The process of
constructing locally-quasiprimitive graphs with a given locally-quasiprimitive graph � as a normal
quotient is then considered. It turns out that this can be viewed as a problem of constructing
covering graphs of certain multigraphs associated with �. Further, it is shown that, under certain
conditions, a locally-quasiprimitive graph can be reconstructed from knowledge of two of its
normal quotients. Finally a series of open problems is presented. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Perhaps the most celebrated use of group theory in e=ecting a classi1cation of a class
of graphs is that leading to the classi1cation of the 1nite distance transitive graphs,
which is now approaching completion, see [12]. The suggestion that this classi1cation
might indeed be feasible comes from early work of Biggs and Smith [2,27] which in
a sense reduced the problem to the case of vertex-primitive distance transitive graphs.
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Then work of Saxl, Yokoyama and the second author in [25] further reduced the
vertex-primitive classi1cation to the case where the automorphism group is almost
simple or aIne.
The key step of reducing a classi1cation problem to the vertex-primitive case seems

not to be possible for many other interesting families of 1nite arc-transitive graphs.
However, some families of arc-transitive graphs possess a weaker property which still
allows certain members of the family to be designated as “basic”, and also allows the
structure of an arbitrary member of the family to be described in terms of some of the
basic members. The largest family of 1nite arc-transitive graphs which possesses one
such property is the family F of 1nite, locally-quasiprimitive, arc-transitive graphs,
and these graphs are the subject of this paper.
A graph �=(V; E) consists of a set V of vertices and a subset E of unordered pairs

from V , called edges. Such a graph is called a simple graph since there is at most one
edge between each pair of vertices. In Section 3, we need to extend this de1nition to
allow multiple edges. A group G of permutations of a set � is said to be quasiprimitive
if each non-trivial normal subgroup of G is transitive on �. For a graph �, and a group
G acting as a group of automorphisms of � (not necessarily faithfully), we say that
� is G-arc-transitive if G acts transitively on the arcs of � (arcs being ordered pairs
of vertices joined by an edge of �), and G-locally-quasiprimitive if, for each vertex
�, the stabiliser G� is quasiprimitive in its action on the set �(�)= {	: {�; 	}∈E} of
neighbours of � in �.
The family of 1nite vertex-transitive locally-quasiprimitive graphs contains several

families of arc-transitive graphs which have been studied extensively, for example,
2-arc transitive graphs and locally-primitive graphs, (which are vertex-transitive graphs
� such that the stabilizer of each vertex � is 2-transitive or primitive on �(�), respec-
tively). It is well-known that the family of 2-arc-transitive graphs is a proper subset of
the family of locally-primitive graphs. Similarly, the family of locally-primitive graphs
is a proper subset of the family of locally-quasiprimitive graphs, as the following ex-
ample demonstrates.

Example 1.1. For each prime p¿ 29 such that p ≡ ±1 (mod 5), there exists a graph
� of valency 20 with Aut� ∼= PSL(2; p) acting primitively on vertices such that Aut�
is locally-quasiprimitive but not locally-primitive on �. (See Proposition 2.1 for the
construction and proof.)

De�nition 1.2. Let F be the family of those graphs � which are G-vertex-transitive
and G-locally-quasiprimitive for some G6Aut (�). In such a case we say that �∈F

with respect to G.

The fundamental observation about the class F of 1nite locally-quasiprimitive, arc-
transitive graphs is that it is closed under the formation of a certain type of quotient
graph. For P a partition of the vertex set V of a graph �, we de1ne the quotient
graph �P of � relative to P as the graph with vertex set P such that two parts P; P′
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form an edge if and only if there is at least one edge of � joining a vertex of P
and a vertex of P′. If P is G-invariant for some group G of automorphisms of �
(that is, G permutes the parts of P setwise), then the action of G on � induces a
natural action of G as a group of automorphisms of �P. In this case, although the
property of arc-transitivity is preserved, more restrictive local properties, such as local
quasiprimitivity, are not in general inherited by the action of G on the quotient graph.
However, local quasiprimitivity is inherited by quotients relative to normal partitions.
We call a partition P of vertices G-normal relative to N if N is a normal subgroup of
G and P is the set of N -orbits in V ; for such partitions we write P=PN , and we write
the quotient graph �P as �N , and call �N a normal quotient, or a G-normal quotient,
of �. When N has more than two orbits in V , not only is �N a G-locally-quasiprimitive
graph, but also � is a multicover of �N and N is semiregular on vertices. (A graph �
is said to be a multicover of its quotient graph �P if, for each edge {P; P′} of �P and
each �∈P, the cardinality |�(�)∩P′|¿ 0. In the case where the cardinality |�(�)∩P′|
is always 1 we say that � is a cover of �P. A permutation group N on a set V is
semiregular on V if the only element of N which 1xes a point of V is the identity. If
a group G has an action on a set V then GV denotes the permutation group induced
by G on V .)

Theorem 1.3 ([19, Section 1]). Let �=(V; E) be a 2nite connected G-vertex-transitive;
G-locally-quasiprimitive graph of valency v; and let N be a normal subgroup of G.
Then one of the following holds.

(a) N is transitive on V ; or
(b) � is bipartite and the N -orbits in V are the two parts of the bipartition of �; or
(c) N has more than two orbits in V; �N =(PN ; EN ) is a connected G-arc-transitive;

G-locally-quasiprimitive graph of valency v=k where; for each {P; P′}∈EN and
each �∈P; |�(�) ∩ P′|= k; and � is a multicover of �N . Moreover;
(i) N is semiregular on V and is the kernel of the action of G on PN ;
(ii) if P ∈PN and �∈P; thenG�(�)

� acts faithfully on the partitionP(�) :={�(�)∩
P′ | {P; P′}∈EN} of �(�); and the permutation groups GP(�)

� and G�N (P)
P are

permutationally isomorphic;
(iii) if moreover � is G-locally-primitive then � is a cover of �N (that is k =1)

and �N is G-locally-primitive.

The proof of this result may be found in [19, Lemmas 1:1, 1:4(p), 1:5 and 1:6]. In
that paper a multicover was called a pseudocover, but the term multicover has been
used more recently, and we believe that it is more appropriate. Theorem 1.3 may be
re1ned as follows, thus identifying certain graphs in F as candidates for designation as
“basic”. These are graphs for which the action of the group G on vertices is “close” to
being quasiprimitive. They are obtained by taking the normal subgroup N in Theorem
1.3 to be maximal in some sense.
We say that a group G acting on a set V is bi-quasiprimitive on V if
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(i) G is transitive on V , and
(ii) each normal subgroup of G which acts non-trivially on V has at most two orbits

in V , and
(iii) there exists a normal subgroup of G with two orbits in V .

A bi-quasiprimitive group G on V has a system of imprimitivity consisting of two
blocks of size |V |=2, and hence has a subgroup G+ of index 2 which 1xes the two
blocks setwise. Moreover, provided that G 	∼= Z2 × Z2 (acting regularly on a set of
four points), then G+ is the unique subgroup with these properties. A bipartite graph
�=(V; E) is said to be G-bi-quasiprimitive if G acts as a group of automorphisms of
� and G is bi-quasiprimitive on V .

Theorem 1.4. Let �=(V; E) be a 2nite; connected graph of valency v which is G-
vertex-transitive and G-locally-quasiprimitive; and let N be a normal subgroup of G
which is maximal subject to having more than two orbits in V . Then one of the
following holds for the quotient �N .

(a) �N is G-quasiprimitive; or
(b) � and �N are both bipartite; N 6G+; and �N is G-bi-quasiprimitive. Moreover;

either �=Kv;v; or G+ acts faithfully on each part of the bipartition {�1; �2} of
�. In the latter case; either
(i) G+ is quasiprimitive on each part of the bipartition of �N ; or
(ii) G+ has two normal subgroups M1 and M2 properly containing N which are

interchanged by G; are semiregular on V and intransitive on each �i; and are
such that; M1=N and M2=N are distinct minimal normal subgroups of G+=N .

The class F of 1nite vertex-transitive, locally-quasiprimitive graphs was 1rst in-
vestigated in [20]. At that time the ‘O’Nan-Scott Theorem’ [21] for quasiprimitive
groups, which described the possible structures of 1nite quasiprimitive permutation
groups, was not available, and many of the results in [20] constitute precursors for
parts of that theorem. Complete bipartite graphs Kv;v were singled out in [20, Lemma
1:1]. These certainly arise as examples in Theorem 1.4 (b) as can be seen by tak-
ing G = Sv wr S2. Moreover in [20] the concept of a G-irreducible graph in F was
introduced as a G-vertex-transitive, G-locally-quasiprimitive graph which is not a mul-
ticover of any of its proper quotient graphs (that is, quotient graphs with more than
two vertices) relative to G-invariant partitions. Whether or not a graph is G-irreducible
may be diIcult to determine because the complete lattice of all G-invariant parti-
tions of V may not be known. It is usually simpler to determine all the G-normal
partitions than all the G-invariant ones. Consequently, we de1ne a G-vertex-transitive,
G-locally-quasiprimitive graph to be G-basic if it is not a multicover of any of its
proper G-normal quotients. By Theorem 1.3, every graph in F has at least one basic
normal quotient, and by Theorem 1.4, the basic graphs in F, apart from complete
bipartite graphs, arise in three broad categories. A subgroup M of automorphisms of
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� is said to be locally-transitive if M� is transitive on �(�) for each vertex �; in this
case, if � is connected, then either M is vertex-transitive on �, or � is bipartite and
M has as orbits the two parts of the bipartition.

Theorem 1.5. Let �=(V; E) be a 2nite; connected; G-vertex-transitive; G-locally-
quasiprimitive graph of valency v; and suppose that � is G-basic. If � is not bipar-
tite then � is G-quasiprimitive. On the other hand; if � is bipartite with bipartition
{�1; �2}; then � is G-bi-quasiprimitive; and either �=Kv;v; or G+ is faithful on each
of the �i and one of the following holds:

(a) G+ is quasiprimitive on each of the �i;
(b) G+ has distinct minimal normal subgroups; M1 and M2; which are semiregular

on V; intransitive on the �i; and interchanged by G; the group M :=M1 × M2 is
normal in G and either
(i) M is regular on each of the �i; or
(ii) M is locally-transitive on �; M is the unique minimal normal subgroup of

G; M ∼= T 2k for some non-abelian simple group T and positive integer k;
and M� is a subgroup of a diagonal subgroup of M =M1 × M2.

Theorems 1.4 and 1.5 will be proved in Section 2. There many examples known of
graphs satisfying Theorem 1.5(a) and (b) (i) (see, for example [12,21,22]). We shall
prove in Section 2 that there are also many examples of graphs satisfying Theorem
1.5(b) (ii):

Example 1.6. Let p be a prime, and suppose that T is a 1nite simple group with
a generating set {x; y} such that o(x)= o(y)=p and there is no automorphism of
T which maps x to y. Then there exists a G-basic, G-locally-primitive graph � of
valency p satisfying Theorem 1.5(b) (ii) with M1

∼= M2
∼= T . (See Proposition 2.2 for

the construction and proof.)

A natural problem arising from these results is the problem of constructing 1nite
locally-quasiprimitive graphs as multicovers of a given locally-quasiprimitive graph.
A universal construction method for such multicovers will be presented in Section 4.
There we de1ne (see De1nition 4.1) a G-extender of � as a certain G-vertex-transitive,
G-locally-quasiprimitive graph with multiple edges (where these de1nitions are appro-
priately amended to apply to graphs with multiple edges). Trivially � is a G-extender
of itself, and it turns out that there are only 1nitely many G-extenders for a given
�. Moreover, there is an important link between extenders and (locally-quasiprimitive
normal) multicovers of � which admit an action of the given group G (see
Section 3:2).

Theorem 1.7. Let�be a 2nite; connected; G-vertex-transitive; G-locally-quasiprimitive
graph. Then the 2nite; locally-quasiprimitive; normal multicovers of � are precisely
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the simple G-admissible covers of the G-extenders of �. Further; from each G-extender
arise in2nitely many multicovers.

Remark 1.8. This result demonstrates that the set of all “nice” (that is, G-locally-
quasiprimitive normal) multicovers of � is partitioned naturally into in1nite subsets
corresponding to the G-extenders. Those which are covers of � correspond to the
trivial G-extender �.

Although the construction implicit in the statement of Theorem 1.7 produces ev-
ery 1nite locally-quasiprimitive multicover of a given H -locally-quasiprimitive graph
� (see Theorem 4.5), it does not seem to admit a re1nement whereby we may spec-
ify a group G with a normal subgroup N such that G=N ∼= H , and construct all
G-locally-quasiprimitive graphs � such that �N

∼= �. Some preliminary results along
these lines, when we are given G and a pair of intransitive normal subgroups N1; N2,
will be given in Section 5 where we discuss the problem of reconstructing � from a
collection of its normal quotients. In the 1nal section we discuss several open problems
concerning 1nite locally-quasiprimitive graphs suggested by the results of this paper.

2. Examples

It is well-known that all arc-transitive-graphs may be constructed by a method in-
troduced by Sabidussi [26]. This is described as follows. For a group G, a core-free
subgroup H of G (that is,

⋂
x∈G H x =1), and a 2-element g∈G, we de1ne the coset

graph �(G; H; HgH)= (V; E) to have vertex set V = [G :H ] = {Hx: x∈G} and edge
set E = {{Hx; Hy}: xy−1 ∈HgH}. We require that g 	∈ NG(H); g2 ∈H and 〈H; g〉=G.
Then �(G; H; HgH) is a connected G-arc-transitive graph where G acts on V by right
multiplication. Moreover (see, for example, [16] or [23]), every arc-transitive graph
is isomorphic to a coset graph of this type. We use this construction to justify the
assertion made in Example 1.1. The socle of a 1nite group G is the product of its
minimal normal subgroups, and is denoted by soc(G).

Proposition 2.1. Let p be a prime such that p¿ 29 and p ≡ ±1 (mod 5). Let G ∼=
PSL(2; p). Then G contains a maximal subgroup H ∼= A5 and an involution g∈G\H
such that the orbital graph �(G; H; HgH) has full automorphism group isomorphic to
G; and is locally-quasiprimitive; but not locally-primitive; of valency 20.

Proof. By [28, p. 416, Ex. 2], G has two conjugacy classes of maximal subgroups
isomorphic to A5, which are fused in Aut (G) ∼= PGL(2; p). Thus in particular
NAut (G)(H)=H .
Let � be an orbital graph of G with respect to the permutation representation of

G on [G :H ]. Then G ¡Sym([G :H ]) is primitive. If soc(Aut�) 	=G, then by [15,
Theorem], all possibilities for the pair (G; soc(Aut�)) are listed in [15, Tables II–VI].
Checking these tables, we conclude that there are no possibilities with G =PSL(2; p)
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and degree |G|=|A5|=p(p2−1)=120. Thus soc(Aut�)=G. Further, since NAut (G)(H)=
H , it follows that Aut�=G.

Let a; z ∈H be such that o(a)= 5; o(z)= 2 and 〈a〉o 〈z〉 ∼= D10. Then NG(〈a; z〉)=
D10 or D20, and hence NG(〈a; z〉) contains 5 or 11 involutions, respectively. Since
5 divides p + j where j=1 or −1, NG(〈a〉) ∼= Dp+j, and so NG(〈a〉) contains
at least (p + j)=2 involutions. Therefore, as (p + j)=2¿ 11, there exists an invo-
lution g in NG(〈a〉)\NG(〈a; z〉). Then g 	∈ H , and it follows that H ∩ H g = 〈a〉 ∼= Z5.
Let � :=�(G; H; HgH). Let � be the vertex of � corresponding to H , and let 	 be
the vertex of � corresponding to H g. Then G� =H , 	 is adjacent to �, and G�	 =
H ∩H g ∼= Z5. Thus G�	 is not a maximal subgroup of G�, and so G� is not primitive
on �(�), that is � is not locally-primitive. But since H ∼= A5 is simple, � is locally-
quasiprimitive.

Our next example of the Sabidussi construction yields an in1nite family of
graphs which satisfy Theorem 1.5(b) (ii), and which prove the assertion made in
Example 1:6.

Proposition 2.2. Let p be a prime; and suppose that T is a 2nite simple group with
a generating set {x; y} such that o(x)= o(y)=p and there is no automorphism of T
which maps x to y. Let G =T wrZ2. Then there exists a G-locally-primitive graph
� of valency p satisfying Theorem 1:5(b) (ii) with M1

∼= M2
∼= T .

Proof. Let M :=T1 × T2 denote the base group of G, where T1
∼= T2

∼= T . Let H
be the subgroup of M generated by the element (x; y). Then H ∼= Zp. Let g be the
involution of G such that (u; v)g =(v; u) for all (u; v)∈M . Then g interchanges T1 and
T2, and G =M:〈g〉. Consider the subgroup N := 〈H; H g〉 of M . Since N contains both
(x; y) and (x; y)g =(y; x), and since T = 〈x; y〉, it follows that N projects onto both
T1 and T2. Suppose that N 	=M . Then N is a diagonal subgroup of T1 × T2, that is,
N = {(t; t!) | t ∈T} for some !∈Aut (T ). This is not the case since x and y are not
conjugate in Aut (T ). So N =M , and hence 〈H; g〉=G. Let �=�(G; H; HgH): Since
〈H; g〉=G and |H :H ∩ H g|=p, � is a connected graph of valency p. Further, �
is bipartite, M is intransitive on V , each of the Ti is semiregular on V , and M is
locally-primitive on V .

There are many simple groups T with generating sets satisfying the condition of
Proposition 2.2. For example, if p¿ 5 and T =A2p, then x=(1; 2; : : : ; p)(p+1; : : : ; 2p)
and y=(1; 2; : : : ; p − 1; p + 1) have the desired properties.

3. Proofs of Theorems 1.4 and 1.5

Throughout this section �=(V; E) will be a 2nite; connected; G-vertex-transitive;
G-locally-quasiprimitive graph of valency v; and N will be a normal subgroup of G
which has more than two orbits in V . Thus N is semiregular on V by Theorem 1.3.
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Set G+ := 〈G� | �∈V 〉. Then |G :G+|6 2 with equality if and only if � is bipartite.
Whether or not the graphs � and �N are bipartite is governed by the following simple
criterion.

Lemma 3.1. �N is bipartite if and only if � is bipartite and N 6G+.

Proof. Since � is connected, all edges of � join vertices in distinct N -orbits. Thus if
�N is bipartite, then � is also bipartite and the parts of the bipartition are unions of
N -orbits, so in addition N 6G+. The converse implication is clear.

Thus, for example, if � is bipartite but N � G+, then the quotient graph �N is not
bipartite, and in particular no normal subgroup of G has two orbits on the vertices of
�N . In this case, if N is maximal normal subject to having more than two orbits in
V , then �N is G-quasiprimitive, and part (a) of Theorem 1.4 holds.

Before proceeding with the proof of Theorem 1.4 we make a few remarks about
bipartite graphs � which possess a non-bipartite normal quotient �N . It turns out that
such a graph � also has a normal quotient which is isomorphic to a direct product
of K2 (the complete graph on two vertices) and �N . The direct product (see [9,
p. 231]) � ⊗ � of graphs �=(V�; E�) and �=(V�; E�) is the graph with vertex set
V� × V� such that ("; #) is joined by an edge to ("′; #′) if and only if {"; "′}∈E�

and {#; #′}∈E�. First we characterise the situation where the graph � itself is such a
direct product, and then we prove our assertions above as a corollary.

Proposition 3.2. Suppose that � is bipartite. Then the following are equivalent.

(a) Aut (�) has a subgroup G0 =G+ × Z ∼= G+ × Z2 which is vertex-transitive and
locally-quasiprimitive on �.

(b) � ∼= K2 ⊗ �; where � is G+-vertex-transitive; G+-locally-quasiprimitive; and
non-bipartite.

Given G0 as in (a); the graph � obtained in (b) is isomorphic to the G0-normal
quotient �Z .

Proof. Suppose that G06Aut (�) with G0 as in part (a), and note that (G0)+ =G+,
Z / G0 and G0=Z ∼= G+. Then by Theorem 1.3, the G0-normal quotient �Z =(VZ ; EZ)
is G+-vertex-transitive and G+-locally-quasiprimitive; and by Lemma 3.1, �Z is not
bipartite. Each Z-orbit consists of one vertex from each part of the bipartition {�1; �2}
of �. We de1ne a mapping ’ :V → {1; 2} × VZ as follows: for �∈�i and � in
the Z-orbit #, de1ne ’(�)= (i; #). Clearly ’ is a bijection. Moreover, if ’(�)= (i; #)
and ’(	)= (j; "), then {�; 	}∈E if and only if i 	= j and {#; "}∈EZ . Thus ’ is an
isomorphism from � to K2 ⊗ �Z and part (b) holds with �=�Z .
Conversely suppose that � ∼= K2 ⊗ � as in part (b). Then Aut� contains AutK2 ×

Aut� which contains G0 :=AutK2 × G+ ∼= Z2 × G+. Also G0 is vertex-transitive and
locally-quasiprimitive on �.
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Corollary 3.3. Suppose that � is bipartite and that �N is not bipartite; and let
N+ =N ∩ G+. Then �N+ ∼= K2 ⊗ �N .

Proof. The subgroup N+ is normal in G and contained in G+, and so, by Theorem
1.3 and Lemma 3.1, �N+ is an H -vertex-transitive, H -locally-quasiprimitive bipartite
graph, where H :=G=N+. Now |N :N+|=2, H+ =G+=N+, and H ∼= (N=N+)×H+ ∼=
Z2 × H+. It therefore follows from Proposition 3.2 that �N+ ∼= K2 ⊗ �N .

Now we return to the proof of Theorem 1.4. Suppose that N is maximal subject to
having more than two orbits in V . From the remarks following Lemma 3.1, we may
assume that � is bipartite with bipartition {�1; �2}, and that N ¡ G+. Let g∈G \G+;
since g2 ∈G+, we may assume that g is a 2-element. By [20, Lemma 1:1], if G+ acts
unfaithfully on �1 or �2, then � ∼= Kv;v. Hence we may assume that G+ is faithful on
each of the �i.
We claim that every minimal normal subgroup of G is contained in G+; for suppose

that K is a minimal normal subgroup of G with K � G+. Then, by the minimality of
K , K ∩ G+ =1, and hence |K |=2, 〈K; N 〉=K × N , and the number of orbits in V of
K × N is one half of the number of N -orbits in V . By the maximality of N , K × N
has exactly two orbits in V , but these are not the �i, contradicting Theorem 1.3. This
proves the claim.
It now follows that �N is G-bi-quasiprimitive: for if K is normal in G with more

than two orbits in the vertex set PN of �N , then KN also has more than two orbits
in PN (since N acts trivially on PN ) and hence more than two orbits in V . Then, by
the maximality of N , it follows that K ⊆ N and so K acts trivially on PN .

If G+ is quasiprimitive on one (and hence both) of the �i then Theorem 1.4(b) (i)
holds, so we may assume that this is not the case. To complete the proof we need
to show that part (b) (ii) of Theorem 1.4 holds. It is suIcient to do this in the case
where N =1. Thus, we assume that N =1, and we note that, in proving Theorem 1.4
in this case, we also complete the proof of Theorem 1.5. Note that the assumption
N =1 means that every non-trivial normal subgroup of G has at most two orbits in V .
Since we are assuming that G+ is not quasiprimitive on �1 and �2, without loss of
generality there exists a minimal normal subgroup M1 of G+ such that M1 is intransitive
on �1, and hence M1 has more than two orbits in V . Thus M1 is not normal in G, and
so M2 :=M g

1 	=M1. Since g2 ∈G+, it follows that M g
2 =M1, so g, and hence also G,

interchanges M1 and M2. Clearly M2 is a minimal normal subgroup of G+, and M2 is
intransitive on �2. By minimality, M1∩M2 = 1, and hence M :=M1M2 =M1×M2. Also
M/G, and hence M is transitive on each �i. Suppose 1rst that M is regular on �1. Since
G+ is faithful on �1 it follows that |M |= |�1|= |�2| and hence that M is semiregular
on V . Therefore each of the Mi is semiregular on V with |V |=|Mi|=2|M |=|Mi|¿ 2
orbits in V , and Theorem 1.4 (b) (ii) holds. Thus we may assume that M is not
regular on �1.
This means in particular that the Mi are non-abelian, for if not, then M would be

abelian, and transitive on �1, and hence would be regular on �1, which is not the
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case. Thus M1
∼= M2

∼= T k for some non-abelian simple group T and some positive
integer k. Therefore M ∼= T 2k and G is transitive on the 2k simple direct factors of M ,
whence M is a minimal normal subgroup of G. Next suppose that G has a minimal
normal subgroup K distinct from M . Then, as we observed above, K 6G+, and K is
transitive on each of the �i. By minimality, K ∩M =1, so M centralises K . However,
the centraliser in the symmetric group on �1 of the transitive group K is semiregular,
whereas M is not semiregular on �1. This contradiction shows that M is the unique
minimal normal subgroup of G. Since M is not semiregular on V , the hypotheses of
[20, Theorem 2:1B] hold, and by this result we have that M1 and M2 are semiregular
on V . This completes the proof of Theorems 1.4 and 1.5.

4. Constructing multicovers

The process of forming normal quotient graphs produces the subclass of basic graphs
of the class F of 1nite, vertex-transitive, locally-quasiprimitive graphs. It is of interest
to reverse this process.
Suppose that �̃ is G̃-vertex-transitive and G̃-locally-quasiprimitive, and that N is a

normal subgroup of G̃ with more than two orbits on vertices. Let �= �̃N and G = G̃=N .
As observed in part (c) of Theorem 1.3, �̃ is a multicover of �; but it is not necessarily
a cover. In this section, we show that �̃ may be considered as a cover of a graph with
multiple edges, which we will call a G-extender, and which is closely related to �.
There are only 1nitely many G-extenders of �, and, most importantly, the set of
all G-extenders of � is completely determined by certain local properties of the G-
action on �, namely by the stabilisers in G of a pair of adjacent vertices and the edge
between them.
Let Y be a topological space and G a group of homeomorphisms of Y . It is known

(see [10] or [18, Proposition 8:2]) that, under certain conditions, Y is a regular covering
space of the topological quotient space Y=G. It is essentially this observation, in the
combinatorial setting we are interested in, that will form the basis of our method; the
quotients Y=G will be the G-extenders. The process can be represented 1guratively as
below (where “Locally-QP” is an abbreviation for “Locally-quasiprimitive”):

Locally-QP Graph
Local properties−→ ExtendersAdmissible covers−→ Locally-QP Multicovers:

4.1. De2ning and constructing extenders

We 1rst de1ne the concept of a G-extender �′ of �, together with an action of
G on �′. Such an extender is a graph which in general will have multiple edges.
An automorphism of such a graph is a permutation of the vertex set together with a
permutation of the edge set so that vertex-edge incidence is preserved. An arc of such
a graph is a directed edge.
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De�nition 4.1. Let �=(V; E) be a G-vertex-transitive, G-locally-quasiprimitive graph.
A G-extender of �, sometimes called an extender of the pair (�; G), is de1ned as a
graph �′ =(V; E′) together with an action of G on �′ (as a group of automorphisms)
so that the following conditions are satis1ed:

(a) for �; 	∈V , there is an edge between � and 	 in � if and only if there is at least
one edge in �′ incident with � and 	.

(b) The action of G on the set V of vertices is the same for both the G-action on �
and the G-action on �′; therefore �g may be unambiguously de1ned for �∈V and
g∈G.

(c) G acts transitively on the arcs of �′.

In addition, we say that �′ is a G-locally-quasiprimitive G-extender if the stabiliser
G� of �∈V acts quasiprimitively on the edges of �′ incident with �.

We will say an edge E of �′ lies above an edge � of � if E and � are incident with
the same vertices of V . Let �; 	∈V be adjacent in � and let � be the edge between
them. Let G� be the stabiliser of � in G, and let G�	 be (as before) the subgroup of
G 1xing both � and 	. Let E be any edge between � and 	 in �′ (so E lies above
�) and let H =GE, the stabiliser of E. Then H 6G�. Since the action of G on the
arcs, and therefore the edges, of �′ is transitive, we may identify the edge set of �′

with the right cosets of H in G. Further the “edge” Hx of �′ lies above the edge
�x of �, and the two vertices incident with this edge are �x and 	x. Hence, given �
and G, the graph structure of �′ is entirely speci1ed by H , and clearly knowledge of
H determines the action of G (by right multiplication) on the edges of �′. Finally,
arc-transitivity of G on �′ is expressed by the statement that H is not contained in
G�	; for once it is known that G is transitive on the edges of �′, the only additional
condition required for arc-transitivity is that there exists an element g∈G which 1xes
the edge E but switches the two vertices incident with E.
These remarks demonstrate that every extender �′ may be constructed by the method

we describe below.

Construction 4.2. Let � be a connected G-arc-transitive graph. Let � be an edge of �
incident with vertices � and 	. Let H be a proper subgroup of G� not contained in G�	.
The edge set E′ of the extender �′ is de1ned as the set of right cosets of H in G,

so G acts transitively on E′ by right multiplication. Also, for x∈G, the edge Hx of �′

lies above the edge �x of �, thus determining the vertices with which it is incident.
Further, �′ is G-locally-quasiprimitive if and only if G� is quasiprimitive on the

right cosets of G�	 ∩ H in G�.

All the claims here have already been addressed, except the last on quasiprimitivity.
This follows easily, however, since G�	 ∩H is the stabiliser in G� of the edge H , that
is, of the coset H ·1. The Orbit-Stabiliser theorem then shows that the action of G� on
the edges of �′ incident with � is permutationally isomorphic to its action (by right
multiplication) on the right cosets of G�	 ∩ H in G�.
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The existence and analysis of G-extenders is thereby reduced to a purely group-
theoretic problem. Most importantly, this is a group theoretic problem which takes as
input purely local information: point, edge and arc stabilisers corresponding to a pair
of adjacent vertices; the entirety of G does not enter into the calculation at all. It is
also clear that � will have only 1nitely many G-extenders. We demonstrate this by
the following example, where the graph � is the complete graph Kn and the group
G = Sn.

Example 4.3. Take �=Kn and G = Sn. Identify the vertex set V with {1; 2; : : : ; n},
and take �=1; 	=2 in the above construction. Then for �= {�; 	}, we have G� =
Sym({2; 3; : : : ; n}) ∼= Sn−1, and G�= 〈(12)〉 × Sym({3; : : : ; n}) ∼= S2 × Sn−2. Suppose,
1rst, that n¿ 6. Then there exist G-locally-quasiprimitive extenders: take the subgroup
H to be 〈(12)〉×P, where P is any subgroup of Sym{3; 4; : : : ; n} that is not contained
in the alternating group An. Certainly H is not contained in G�	. Also G�

∼= Sn−1 is
quasiprimitive in its action, by right multiplication, on the set of right cosets in G� of
G�	 ∩ H =P since P is not contained in An.
If n=5 the situation is di=erent: there are no non-trivial G-locally-quasiprimitive

extenders. In fact, up to conjugacy, we have two possibilities for H of order 6, namely,

H1 = 〈(12)〉 × 〈(345)〉; H2 = 〈(12)(34); (345)〉;
leading to G-extenders �′ with edges of multiplicity 2; one possibility corresponding to
a G-extender �′ with edges of multiplicity 3, namely, H3 = 〈(12); (34)〉; and two possi-
bilities where the G-extender �′ has edges with multiplicity 6, namely H4 = 〈(12)(34)〉,
and H5 = 〈(12)〉. In none of these cases is the G-extender G-locally-quasiprimitive be-
cause the normal elementary abelian subgroup of G� of order 4 is, in each case,
intransitive on the (multiple) edges incident with � (as there are in each case at least
8 such edges).

4.2. Covers and multicovers

Let us 1rst introduce the concept of a covering graph (�̃; p) of a graph �, where
both �̃ and � may have multiple edges. We will assume the graphs do not have loops.
A simple graph is then a graph with no multiple edges.
Let �=(V1; E1) and +=(V2; E2) be graphs, possibly with multiple edges. Because

of the possibility of multiple edges, we de1ne a homomorphism f: � → + to consist of
a pair of maps fV :V1 → V2 and fE :E1 → E2 which preserve vertex-edge incidence.
A covering graph of � is a graph �̃, together with a graph homomorphism p : �̃ → �

such that p is surjective (both as a map between vertex-sets and between edge-sets);
and for each vertex �̃ of �̃, p maps the edges incident with �̃ bijectively onto the edges
incident with (�̃)p. We sometimes refer to the map p as a covering. It is possible that
the graph �̃ is simple even when � is not. (We could at this point also de1ne a
multicover by replacing the condition of “local bijectivity” with “local surjectivity.”)
We will call a covering graph (�̃; p) simple when �̃ is simple. Unless otherwise stated,
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Fig. 1. The de1nition of a lift.

in this section we will assume all graphs to be connected. In particular all the covering
graphs we consider will be connected.
An automorphism g of � is said to lift if there is an automorphism g̃ of �̃ such

that the diagram in Fig. 1 commutes.
The set N of lifts of the identity automorphism forms a group under composition,

and the covering is said to be regular or normal if N acts transitively on each vertex
1bre (�)p−1. It is known that N acts semiregularly on the vertex set of �̃; N is called
the covering group of the covering graph (�̃; p).
Now suppose that G is a group of automorphisms of �. The covering graph (�̃; p)

is said to be G-admissible if the covering is regular and each automorphism g∈G lifts
to an automorphism of �̃. Let G̃ denote the lifted group; that is, the set of all lifts of
elements of G. Admissible coverings have been studied previously; see [4,17] or [29].
We will require the following simple lemma on G-admissible coverings.

Lemma 4.4. Let (�̃; p) be a G-admissible covering graph of �; let �̃ be a vertex of
�̃ such that (�̃)p= �. Then the actions of G̃�̃ on the edges of �̃ incident with �̃, and
of G� on the edges of � incident with � are permutationally isomorphic.

Proof. The projection p gives a bijection between the edges of �̃ adjacent with �̃ and
the edges of � adjacent with �. There is a natural homomorphism - from G̃�̃ to G�,
which is compatible with p (this follows from the de1nition of lifting). The kernel of
- is trivial as the covering group N is semiregular. Further, given g∈G�, there exists
a lift g̃∈ G̃ of g. By regularity of the covering there exists n∈N such that �̃n = �̃g̃,
and it follows that g̃n−1 is a lift of g contained in G̃�̃. Hence - is surjective also.

We introduce a de1nition for ease of notation in stating Theorem 4.5 below. Let
� be a G-locally-quasiprimitive graph. A locally-quasiprimitive normal multicover,
associated with (�; G), is de1ned as a graph �̃ admitting a vertex-transitive, locally-
quasiprimitive action of a group G̃, such that, for some normal subgroup N of G̃, we
have �̃N =�, and the group induced by G̃ on �̃N is G̃=N ∼= G. Our main theorem
reduces the problem of 1nding multicovers to the much better understood problem of
1nding admissible coverings.
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Theorem 4.5. Let � be a G-locally-quasiprimitive graph, and �′ a G-locally-
quasiprimitive G-extender of �. If (�̃; p) is a simple G-admissible cover of �′ and
G̃ is the lifted group, then �̃ is a locally-quasiprimitive normal multicover associated
with (�; G). Conversely, any locally-quasiprimitive normal multicover (�̃; G̃) associ-
ated with (�; G) arises in this way.

Proof. Firstly, suppose (�̃; p) is a simple G-admissible covering graph of the G-
extender �′. Then, by Lemma 4.4, �̃ is G̃-locally-quasiprimitive, where G̃ is the lifted
group. Let N be the covering group. Using the de1nition of G-admissibility and the
vertex-transitivity of G on �, we easily check that G̃ is also vertex-transitive on �̃.
So �̃ is a G̃-vertex-transitive, G̃-locally-quasiprimitive graph. Moreover, it is easy to
check that �̃N is isomorphic to �. (In fact, this quotient graph is just a version of
�′ with the multiple edges coalesced, that is, �.) Also, almost by de1nition of the
covering group, we have G̃=N ∼= G. It follows that (�̃; G̃) is a locally-quasiprimitive
multicover associated with (�; G).
Conversely, suppose we are given a G̃-locally-quasiprimitive graph �̃ and N / G̃, so

that �̃ is a multicover of the graph �= �̃N . Let G = G̃=N . We wish to show that �̃ is
a G-admissible cover of some G-locally-quasiprimitive G-extender �′ of �.
Let �′ be the graph with vertices the N -orbits on the vertex set of �̃, with edges

the N -orbits on edges of �̃, and with incidence induced from �. The multiplicity of
the edges of �′, that is, the number of �′-edges incident with each pair of adjacent
vertices of �′, is the constant k of Theorem 1.3 (c). Moreover, the group G = G̃=N
acts naturally on �′.
We claim that �′ is a G-extender of �. Firstly, it follows from the de1nitions that the

vertex sets and the G-actions on the vertex sets are the same. Secondly, two vertices
�; 	 of �′ are joined by at least one edge in �′ if and only if there is at least one edge
between the corresponding N -orbits in �̃; that is, if and only � and 	 are joined by an
edge in �. The fact that G acts arc-transitively on �′ follows from the corresponding
statement for the action of G̃ on �̃.
We claim now that �̃ is a G-admissible cover of �′ with respect to the natural map

p : � �→ �N . The covering part follows in a straightforward way from the de1nition
of �′, and the fact that, by Theorem 1.3, N is semiregular. The G-admissibility of p
(that is, the fact that p is regular and every element of G has a lift) follows from the
de1nitions. Finally, the G-local-quasiprimitivity of �′ now follows from Lemma 4.4
and the fact that �̃ is G̃-locally-quasiprimitive.

Topologically, the multigraph �′ de1ned in the proof above is the quotient space
�̃=N , but we avoided this terminology so as not to confuse �′ with the quotient graph
�̃N . It is important to note that �′ is not in general the same as the quotient graph �̃N .
Indeed, these are the same if and only if �̃ is a cover of �̃N .
Using this result, the reconstruction process decomposes naturally into the process of

1nding extenders, and that of constructing their regular coverings. The latter question,
fortunately, is well-investigated. Some slight complications arise here from the fact that
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we are taking coverings of graphs with multiple edges, and we wish to end up with
coverings which are simple graphs. It is easy to translate this condition into either the
language of “voltage assignments” or into a condition on subgroups of the fundamental
group. Then, a careful modi1cation of the covering graph construction of Biggs allows
us to construct the simple covers we need, and obtain the following important result.

Proposition 4.6. To each extender �′ there corresponds at least one, and in fact
in2nitely many, simple G-admissible covers.

Proof. We use a construction of Biggs given in [2, Theorem 19:5 and the preceding
remarks], or more precisely its natural generalisation to graphs with multiple edges.
We take connected components to ensure that we get connected covering graphs. Using
the terminology of Biggs, the reason the resulting graph is simple is the following: the
K-chain ! constructed before [2, Theorem 19:5] assigns di=erent values to di=erent
arcs with the same beginning and end vertices. In fact, if a is any arc, the only other
arc a′ with !(a)=!(a′) is the reverse of a.
If �′ is any graph, possibly with multiple edges, and G a group of automorphisms of

�′, this construction may be used to construct a simple, G-admissible covering graph
�′
1. Let G1 be the group of all lifts of G to �′

1. Then any G1-admissible covering
graph of �′

1 is in a natural way a simple, G-admissible cover of �′. It is well known
that there are in1nitely many of the former; for instance one may repeat Biggs’ con-
struction in1nitely many times as in Corollary 19:6 of his book. (See [2, De1nition
4:4] for the de1nition of the terms rank and co-rank used in [2, Corollary 19:6]; the
co-rank is always greater than 1 for the non-trivial graphs we consider, since they are
vertex-transitive and so contain a cycle.) Consequently we 1nd in1nitely many simple,
G-admissible covers of �′.

Theorem 1.7 in the introduction follows from Theorem 4.5 and Proposition 4.6.

5. Reconstruction

Let � be a connected G-vertex-transitive, G-locally-quasiprimitive graph. Here, we
consider the problem of reconstructing the pair (�; G) from some of the G-normal
quotient graphs of �. Let {Ni}i∈I be a family of intransitive normal subgroups of G,
and for i∈ I , denote by �i the quotient graph �Ni of � relative to the partition into
Ni-orbits.

Question 5.1. Given the group G, the quotient graphs �i (i∈ I), and the G-actions on
the �i, under what circumstances can we reconstruct � and the G-action on �? In
particular, what extra information is required to make reconstruction possible?

The essence of this question of reconstructing �=(V; E) from a given collection
�i (i∈ I) lies in the case where there are just two intransitive normal subgroups
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N1 and N2. From such information it is impossible to determine more than the quo-
tient graph �N1∩N2 , and so we shall assume that I = {1; 2} and that N1 ∩ N2 = 1. We
denote by M the product M :=N1N2. By Theorem 1.3, either M has at most two
orbits on V , or M is semiregular and intransitive on V . If M is not semiregular
then it acts locally-transitively on �, and in this case the techniques we develop give
no information. We shall examine the case where M is semiregular and intransitive
on V .
Fixing notation. �, G, Ni, M and �i will be as stated above with M semiregular

and intransitive on V . The vertex and edge sets of � (respectively �i) will be denoted
by V and E (respectively, Vi and Ei). Vertices will be denoted by Greek letters, and
we reserve the letter � for denoting edges. Edges and vertices belonging to �i will
be subscripted with an i. We will often identify Vi with the set of Ni-orbits on V .
It should be noted that a corresponding identi1cation cannot be e=ected for edges, in
general. (However, in the special case where � covers �i, we can identify Ei with the
set of Ni-orbits on E.)
The natural quotient map from � to �i will be denoted by !i, so !i :V → Vi is

given by � �→ �i where �i = �Ni = {�n | n∈N}; and !i induces a natural map E → Ei.
We shall denote by / the product map / :V → V1 × V2, given by � �→ (�1; �2) where
�i =(�)!i = �Ni . Then, similarly, / induces a natural map E → E1 × E2. Now G acts
naturally on both V1×V2 and E1×E2 (by (�1; �2)g =(�g

1; �
g
2) and similarly for edges),

and / commutes with these G-actions in the sense that (�g)/=((�)/)g.
We de1ne V and E to be the images of V and E, respectively under /. Further,

we will say that vertices �1 ∈V1 and �2 ∈V2 are cognate if (�1; �2)∈V, and similarly
edges �1 ∈E1 and �2 ∈E2 will be called cognate if (�1; �2)∈E. Since V and E are
both G-orbits, it follows that a single pair of cognate edges determines E and a single
pair of cognate vertices determines V.
First we prove a simple lemma which demonstrates that the vertex set V may be

identi1ed with the set V of cognate vertex pairs when M is semiregular. Note that in
the lemma we do identify Vi with the set of Ni-orbits in V .

Lemma 5.2. Choose �∈V and set H :=G�, H1 :=HN1 and H2 :=HN2.

(a) A pair (�1; �2)∈V1 × V2 lies in V if and only if
⋃

m∈M �m
1 =

⋃
m∈M �m

2 .
(b) If M is semiregular, then for all !∈V , !N1 ∩ !N2 = {!}. Moreover, if M is

semiregular and intransitive and 2∈�(!), then !M ∩ 2M = ∅.
(c) H1 ∩ H2 =H if and only if M is semiregular.
(d) / is injective if and only if M is semiregular.

Proof. Let (�1; �2)∈V1 × V2, say �i = 	Ni
i for some 	i ∈V; i=1; 2. By de1nition,

(�1; �2) lies in V if and only if, for some 	∈V , we have 	Ni = 	Ni
i for i=1; 2.

If the latter condition is true then clearly
⋃

m∈M �m
1 = 	M =

⋃
m∈M �m

2 . Conversely, if
⋃

m∈M �m
1 =

⋃
m∈M �m

2 , then 	1 = 	m
2 for some m= n1n2 ∈M and, writing 	 := 	n−1

1
1 = 	n2

2 ,
we have 	Ni

i = 	Ni for i=1; 2. This establishes part (a).
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The proof of part (b) is straightforward and is omitted. For part (c), we observe
that certainly H ⊆ H1∩H2. Moreover, for hi ∈H; ni ∈Ni (i=1; 2), we have n1h1 = n2h2
∈H1∩H2 if and only if n−1

2 n1 = h2h−1
1 ∈M∩H , and M∩H =1 if and only if M is semi-

regular. Thus M is semiregular if and only if H1 ∩ H2 ⊆ H , and hence H1 ∩ H2 =
H , proving (c). It follows immediately from part (b) that, if M is semiregular,
then / is injective. To complete the proof of part (d), suppose that / is injective.
Then as H1 ∩ H2 stabilises (�)/=(�1; �2), it also stabilises �, that is H1 ∩ H26H .
Hence H1 ∩ H2 =H , and so by part (c), M is semiregular.

The thrust of this lemma is that M is semiregular if (and only if) the vertex set V
of � is determined by the vertex sets of �1 and �2. Strictly speaking, we require also
a pair of cognate vertices. However, the arc-transitive graphs �; �1; �2 are often given
as coset graphs (as de1ned at the beginning of Section 2). The problem is to determine
�=�(G; H; HgH), given �i =�(G; Hi; HigiHi) for i=1; 2, where the Hi are as in the
lemma above and the elements g; g1; g2 are 2-elements. Thus the vertices �1 :=H1 and
�2 :=H2 are given to us, and (�1; �2) is a pair of cognate vertices.
The main problem is that of determining the edge set E for � from the edge sets

for �1 and �2, or equivalently, determining the double coset HgH from the given
double cosets H1g1H1 and H2g2H2. In Theorem 5.7, we will prove that, given as
additional information a pair of cognate edges of �1 and �2, we can do this and
thereby reconstruct �. The technical information we require is contained in the next
lemma.

Lemma 5.3. Suppose that M is semiregular and intransitive.

(a) Let � and 	 be adjacent vertices of �. Then {�; 	}=(�N1 ∪ 	N1 ) ∩ (�N2 ∪ 	N2 ).
(b) The map / induces a bijective map E → E.
(c) An edge �∈E is incident with �∈V if and only if (�)!i is incident with (�)!i for

i=1; 2. Further, if � and 	 are the two vertices incident with �, then (�)!i 	=(	)!i

for i=1; 2.

Proof. Clearly (�N1 ∪ 	N1 )∩ (�N2 ∪ 	N2 ) = {�; 	} ∪ (�N1 ∩ 	N2 )∪ (�N2 ∩ 	N1 ). However,
if we have an equality �n1 = 	n2 , it then follows that �n1n

−1
2 = 	, which contradicts

Lemma 5.2 (b). Thus �N1 ∩ 	N2 = ∅. Similarly it follows that �N2 ∩ 	N1 is empty. Thus
part (a) is proved, and part (b) follows from it. The 1rst statement of part (c) is a
consequence of part (a) applied to the two vertices � and 	 incident with �. The second
statement of (c) follows from Lemma 5.2 (b), since if (�)!i =(	)!i then � and 	 are
in the same Ni-orbit.

Lemmas 5.2 and 5.3 yield immediately the following theorem.

Theorem 5.4. Suppose that M is semiregular and intransitive on V . De2ne �∗ as the
graph with vertex set V, and edge set E (that is, (�1; �2) is adjacent to (	1; 	2) if
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and only if {�i; 	i}∈Ei for i=1; 2). Then the map / de2nes an isomorphism from
� to �∗ which respects the G-action on each.

In view of this theorem, it follows that if we could determine the sets V and E from
our knowledge of �1, �2 and the G-actions on these, then � would be determined.
It seems, however, that it is diIcult in general to obtain precise information about
edges. One of the reasons is that, for a normal subgroup N , the edges of the resulting
quotient graph �N cannot in general be identi1ed with the N -orbits on edges of �.
We lose more information about the edges than we do for vertices.
We may obtain reasonable results, however, in an important special case, namely,

when � covers �M . This will always be the case if we are dealing with G-locally-
primitive graphs and M has more than two orbits; and it is an important special case.
In this case, the edges of the quotient graph �M can be identi1ed with the M -orbits
on the edges of �; using this, we will be able to give a reasonable condition under
which we can reconstruct the graph �.
In order to prove Theorem 5.7, we construct two graphs isomorphic to �M us-

ing only the information available to us. Denote by �12 the quotient graph of �1

modulo the orbits in V1 of the normal subgroup N2; and by �21 the quotient graph
of �2 modulo the orbits in V2 of the normal subgroup N1. It is clear that �12

∼=
�21

∼= �M . In fact, there is a natural isomorphism f: �12 → �21 which is induced
by the identity automorphism of �. This is illustrated in Fig. 2, where p12 : �1 �→
�N2
1 and p21 : �2 �→ �N1

2 are the natural projection maps. It is easy to see that this natural

Fig. 2.
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isomorphism may be described as follows: map the N2-orbit �N2
1 in V1 to the N1-orbit

�N1
2 in V2, where �1 and �2 are cognate vertices.
It should be noted, however, that f cannot in general be determined purely from the

given information about G, �1 and �2. Nevertheless, we have the following result. If
a group G acts on sets 41 and 42, then a map f: 41 → 42 is said to preserve these
G-actions if (!g

1)f=((!1)f)g, for all !1 ∈41; g∈G.

Lemma 5.5. Suppose CAut(�M )(G=M)= 1. Then f is the only isomorphism from �12

to �21 that preserves the (G=M)-action on each. This condition holds, in particular,
if distinct vertices of �M have distinct stabilisers in G=M .

Proof. Suppose g :�12 → �21 is an isomorphism that preserves the (G=M)-actions on
�12 and �21. Since f has the same property, we can write g= hf, where h is an au-
tomorphism of �12 that preserves the (G=M)-actions. The latter condition is equivalent
to requiring h to lie in CAut(�12)(G=M). The 1nal assertion is true since CAut(�12)(G=M)
acts faithfully and semiregularly on the vertex set of �12, and CAut(�12)(G=M) 1xes
setwise the 1xed point sets of the stabiliser subgroups in G=M .

From the commutative diagram above, we see that two vertices �1 ∈V1 and �2 ∈V2

have the same image in �M if and only if their images in �12 and �21 are the same,
when the latter two graphs are identi1ed by means of f. That is to say, with p12

and p21 de1ned as in the diagram, we have ((�1)p12)f=(�2)p21. It follows from
Lemma 5.5 that, if CAut �M (G=M)= 1, then we can determine the natural isomorphism
f, since f is characterised in terms of known information, namely the (G=M)-actions
on �12 and �21. Hence, in this case, we can then determine from our given information
whether two vertices of V1 and V2 have the same image in �M , and similarly whether
two edges from E1 and E2 have the same image in �M . We combine this information
with the following result.

Proposition 5.6. Suppose that � covers �M . Then a pair of vertices �1 ∈V1; �2 ∈V2

(or edges �1 ∈E1 and �2 ∈E2) are cognate if and only if their images in �M are
equal.

Proof. In both cases, the “only if” part of this statement is trivial. The “if” statement
for vertices follows from Lemma 5.2 (a). Observe that since � covers �M , it also
covers �Ni . It therefore follows that the edges of �Ni (respectively of �M ) can be
identi1ed with the Ni-orbits (respectively the M -orbits) on the edges of �. This is the
critical fact which ensures that the statement for edges follows in the same way as the
statement for vertices.

It is now clear that, if CAut(�M )(G=M)= 1, then we can determine V and E purely
from information about �1 and �2. From Theorem 5.4 it follows that we can reconstruct
the graph �.
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Theorem 5.7. Suppose that �=(V; E) is a G-vertex-transitive, G-locally-
quasiprimitive graph, and that N1; N2 are distinct intransitive normal subgroups of
G such that

(a) N1 ∩ N2 = 1 and M :=N1N2 has more than two orbits in V ,
(b) � covers �M , and
(c) CAut(�M )(G=M)= 1.

Then � can be reconstructed from the two quotient graphs �N1 and �N2 , and is
isomorphic to the graph �∗ de2ned in Theorem 5:4.

Note that if (a) holds then, by Theorem 1.3, M is semiregular on V . The condition
on centralisers in part (c) holds, in particular, when distinct vertices of �M have distinct
stabilisers in G=M . Also the condition in (b) holds in particular when � is G-locally
primitive (see Theorem 1.3).

6. Problems

The results of this paper suggest a structured approach to investigating the graphs
in the family F of 1nite graphs which admit a group acting transitively and locally-
quasiprimitively on vertices. First more detailed information about the basic locally-
quasiprimitive graphs in F would be useful.

Problem 6.1. Analyse further the structure of G-basic, G-vertex-transitive, G-locally-
quasiprimitive graphs.

Much work on this problem has been undertaken already for the subfamily of
non-bipartite G-basic graphs which are (G; 2)-arc transitive (see [1,5,6,11,13,21,22];
a survey of these results is given in [24]). The most important tool currently available
for this investigation is the ‘O’Nan-Scott’ Theorem [21] for 1nite quasiprimitive permu-
tation groups. This can be used to analyse the non-bipartite G-basic graphs. However,
we are lacking a similar group theoretic result for analysing the bipartite examples.

Problem 6.2. Describe the 1nite bi-quasiprimitive permutation groups (in a manner
similar to the O’Nan-Scott Theorem).

The problem of reconstructing � from information about all its basic normal quotient
graphs �Ni , (i=1; : : : ; r, say) remains open, and of fundamental importance. The max-
imum amount of information we could expect to retrieve about � from these quotients
would relate only to the graph �N where N :=

⋂r
i=1 Ni.

Problem 6.3. Suppose that � is a 1nite graph which is G-vertex-transitive and G-locally-
quasiprimitive, and that �N1 ; : : : ; �Nr are quotients relative to normal subgroups Ni of G
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such that
⋂r

i=1 Ni =1. What extra information is needed in order to reconstruct � from
these normal quotients? In particular, what is required if the graphs �Ni are G-basic?

A preliminary result was given in the previous section for the case r =2. A more
complete solution to Problem 6:3, or to the following natural extension of it, would be
welcome.

Problem 6.4. Suppose that � is a 1nite graph which is G-vertex-transitive and G-locally-
quasiprimitive, with G-normal quotient �N . What extra information is needed to re-
construct � from �N ? For example, under what circumstances is � determined by �N

together with the bipartite graph induced on the union of two adjacent N -orbits?

Since quasiprimitivity is not necessarily inherited by overgroups, we need to address
the following problem.

Problem 6.5. Under what circumstances can we guarantee that a graph �∈F is
Aut(�)-locally-quasiprimitive? In particular, when is this true for the basic graphs
in F?

Problem 6.6. Suppose �∈F with respect to G, and � is G-basic. Under what cir-
cumstances is � also Aut(�)-basic?

This problem has already received some attention in the case of 2-arc transitive
graphs (see [14]) and almost simple locally-primitive graphs (see [7,8]). Finally, we
note the following conjecture.

Conjecture 6.7. There is a function f on the natural numbers such that, for a natural
number k, if �∈F and � has valency k, then the cardinality of a vertex stabilizer in
Aut(�) is at most f(k).

This conjecture is analogous to a conjecture made by Weiss [30] in 1978 for 1nite
locally-primitive graphs, and the task of proving Weiss’s conjecture for non-bipartite
graphs has been reduced in [3] to proving it in the case where Aut(�) is an almost
simple group (that is, T 6Aut(�)6Aut T for some non-abelian simple group T ).
Using the approach of this paper to describing graphs in F, it may be possible to
reduce the proofs of both this conjecture and the Weiss Conjecture to the case where
Aut(�) is almost simple (whether or not the graphs are bipartite). Certainly one need
only consider basic graphs � by Theorem 1.4.

References

[1] R.W. Baddeley, Two-arc transitive graphs and twisted wreath products, J. Algebra Combin. 2 (1993)
215–237.



218 C.H. Li et al. / Discrete Mathematics 246 (2002) 197–218

[2] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
[3] M.D. Conder, C.H. Li, C.E. Praeger, On the Weiss conjecture for 1nite locally-primitive graphs, Proc.

Edinburgh Math. Soc. 43 (2000) 129–138.
[4] D. UZ. DjokoviVc, Automorphisms of graphs and coverings, J. Combin. Theory Ser. B 16 (1974) 243–247.
[5] X.G. Fang, C.E. Praeger, Finite two-arc transitive graphs admitting a Suzuki simple group, Comm.

Algebra 27 (1999) 3727–3754.
[6] X.G. Fang, C.E. Praeger, Finite two-arc transitive graphs admitting a Ree simple group, Comm. Algebra

27 (1999) 3755–3769.
[7] X.G. Fang, C.E. Praeger, On graphs admitting arc-transitive actions of almost simple groups, J. Algebra

205 (1998) 37–52.
[8] X.G. Fang, G. Havas, C.E. Praeger, On the automorphism groups of quasiprimitive almost simple

graphs, J. Algebra, 222 (2000) 271–283.
[9] C.D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York and London, 1993.
[10] J.L. Gross, T.W. Tucker, Topological Graph Theory, Wiley, New York, 1987.
[11] A. Hassani, L. Nochefranca, C.E. Praeger, Two-arc transitive graphs admitting a two-dimensional

projective linear group, J. Group Theory 2 (2002) 335–353.
[12] A.A. Ivanov, Distance-transitive graphs and their classi1cation, in: I.A. Faradzev, et al., (Eds.),

Investigations in the Algebraic Theory of Combinatorial Objects, Kluwer Academic Publishers,
Dordrecht, 1994, pp. 283–378.

[13] A.A. Ivanov, C.E. Praeger, On 1nite aIne 2-arc transitive graphs, European J. Combin. 14 (1993)
421–444.

[14] C.H. Li, A family of quasiprimitive 2-arc transitive graphs which have non-quasiprimitive full
automorphism groups, European J. Combin. 19 (1998) 499–502.

[15] M. Liebeck, C.E. Praeger, J. Saxl, A classi1cation of the maximal subgroups of the 1nite alternating
and symmetric groups, J. Algebra 111 (1987) 365–383.

[16] P. Lorimer, Vertex-transitive graphs: symmetric graphs of prime valency, J. Graph Theory 8 (1984)
55–68.

[17] A. MalniUc, Group actions, coverings and lifts of automorphisms, Discrete Math. 182 (1998) 203–218.
[18] W. Massey, Algebraic Topology: an Introduction, Harcourt, Brace and World, New York, 1967.
[19] C.E. Praeger, Imprimitive symmetric graphs, Ars Combin. 19 A (1985) 149–163.
[20] C.E. Praeger, On automorphism groups of imprimitive symmetric graphs, Ars Combin. 23 A (1987)

207–224.
[21] C.E. Praeger, An O’Nan-Scott Theorem for 1nite quasiprimitive permutation groups and an application

to 2-arc transitive graphs, J. London Math. Soc. (2) 47 (1993) 227–239.
[22] C.E. Praeger, On a reduction theorem for 1nite, bipartite, 2-arc transitive graphs, Australas. J. Combin.

7 (1993) 21–36.
[23] C.E. Praeger, Finite transitive permutation groups and 1nite vertex transitive graphs, in: G. Hahn,

G. Sabidussi (Eds.), Graph Symmetry, NATO Advanced Science Institutes Series C, Mathematical
and Physical Sciences, Vol. 497, Kluwer Academic Publishing, Dordrecht, 1997, pp. 277–318.

[24] C.E. Praeger, Finite quasiprimitive graphs, in: R.A. Bailey (Ed.), London Mathematical Society, Lecture
Note Series, Vol. 241, Cambridge University Press, Cambridge, 1997, pp. 65–85.

[25] C.E. Praeger, J. Saxl, K. Yokohama, Distance transitive graphs and 1nite simple groups, Proc. London
Math. Soc. (3) 55 (1987) 1–21.

[26] G. Sabidussi, Vertex-transitive graphs, Monatsh. Math. 68 (1964) 426–438.
[27] D.H. Smith, Primitive and imprimitive graphs, Quart. J. Math. Oxford (2) 22 (1971) 551–557.
[28] M. Suzuki, Groups Theory I, Springer, New York, 1982.
[29] A. Venkatesh, Graph coverings and group liftings, preprint, Department of Mathematics, University of

Western Australia, 1998.
[30] R. Weiss, s-Transitive graphs, Colloq. Math. Soc. JVanos Bolyai 25 (1978) 827–847.


