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Abstract

Let 7 be a nontrivial tree with diameter D(T) and radius R(7T). Let /(T) be the inverse
dual degree of 7 which is defined to be 3, ) 1/d(u), where d(u) = Qvenw d))/d(u)
for uc V(T). For any longest path P of T, denote by a(P) the number of vertices outside P
with degree at least 2, h(P) the number of vertices on P with degree at least 3 and distance
at least 2 to each of the end-vertices of P, and ¢(P) the number of vertices adjacent to one of
the end-vertices of P and with degree at least 3. In this note we prove that I(7) = D(T)/2 +
a(P)/3 + b(P)/10 4 c(P)/12 + % As a corollary we then get

{ R(T)+1/3 if D(T) is odd,
I(T) >
R(T)+5/6 if D(T) is even,

with equality if and only if 7 is a path of at least four vertices. The latter inequality strengthens
a conjecture made by the program Graffiti.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Investigation of relations among various graph invariants is one of the most funda-
mental tasks of graph theory. One can easily find a number of results of this kind in
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any standard textbook on graphs. Well-known examples include the theorem of Brooks
which claims that the chromatic number of a connected graph does not exceed its
maximum degree unless the graph is complete or is an odd cycle, and Vizing’s result
which asserts that the edge chromatic number of a simple graph is equal to the maxi-
mum degree or the maximum degree plus one. In this short paper we will present an
inequality connecting the diameter D(T') of a nontrivial tree 7 = (V' (T),E(T)) and the
inverse dual degree [4] of T, defined by

[(Ty:= > 1/d(u)

uev(G)

with

dw):= | Y d(v) /d(u),

vEN(u)

where N(u):={veV(T):v is adjacent to u in T} is the neighbourhood and
d(u):=|N(u)| the degree of u in T. The motivation of seeking such an inequality arises
from the following conjecture, made by using the program Graffiti [4], about relation-
ship between /(7)) and the radius R(T) of T.

Graffiti Conjecture 577. The inequality [(7)>R(T) holds for any nontrivial
tree T.

Our main result, Theorem 1 below, implies that not only is this true but also the
difference I(7) — R(T) is large in general. Fajtlowicz has suggested that the differ-
ence /(G) — R(G) may be useful as a measure of the “branching” of a graph G =
(V(G),E(G)) (not necessarily a tree), where /(G) is defined in the same way as
above. Other measures of similar flavour include the well-known Wiener index and
the Randic index [8], the latter being defined as ) . EGy /+/w(e) with w(e) denoting
the product of the degrees of the two vertices incident to e. It is reported that Randic
index is useful in predicting the boiling point of certain hydrocarbons, see [8] for
details.

For a simple and connected graph G, the distance d(u,v) in G between two vertices
u, v€V(G) is the minimum length of a path of G joining u and v. The diameter
D(G) of G is the maximum distance between any two vertices of G. The radius R(G)
of G is defined to be min,cy(g)max,cy(G)d(u,v). For SCV(G) and uc V(G)\S, we
define d(u,S):= minycs d(u,v), which can be viewed as the distance in G from u to
S. Whenever ambiguity exists we will use subscript G in these notations to emphasize
the underlying graph G. So we will write say dg(u) and dg(u) instead of d(u) and
d(u) in such cases. It is well-known that, for a tree 7', the diameter and radius satisfy
R(T) = [D(T)/2], where [x| denotes the smallest integer no less than x. Also, D(T)
is equal to the length of a longest path of 7. Let P = vyv; ...vp be such a path, where
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D = D(T). Then d(vy) = d(vp) = 1 by definition. Define

a(P) :=[{v e V(I)\V(P): d(v)>2}],

ii d(v;)=3, 2<i<D -2 if D=4,
o) { {i: d(w) }

otherwise

and

{i: d(v;)=3,i=1o0r D—1}| if D=2,
c(P) = .
0 if D=1.

Theorem 1. For any nontrivial tree T and any longest path P of T, we have
I(T)=D(T)/2 + a(P)/3 + b(P)/10 + c¢(P)/12 + 2.

Since R(T) = [D(T)/2], and since a(P)=0, b(P)>0 and ¢(P)=0 with equality
occurring simultaneously if and only if 7 is a path, this theorem implies the following
corollary. (For paths of less than four vertices, the equality in the corollary does not
hold, see the beginning of the proof of Theorem 1.)

Corollary 1. For any nontrivial tree T, we have

R(T)+1/3 if D(T) is odd,

0= {
R(T)+5/6 if D(T) is even,

with equality if and only if T is a path of at least four vertices.

This corollary strengthens the above-mentioned conjecture of Graffiti. The authors
were notified by one of the referees that this conjecture was confirmed also by Ronghua
Shi who proved that 7(7) >D(T)/2+% (see the on-line form of “Written on the Wall”
which extends [4] and is maintained at Fajtlowicz’s homepage http://www.math.uh.
edu/~siemion/). However, Corollary 1 is slightly stronger, and also it gives a charac-
terization of the extreme graphs. Moreover, Theorem 1 suggests that usually /(7)—R(T)
is much larger than g In fact, this difference is unbounded above: for the full binary
tree T of height 4>3 we have I(T)—R(T)=2"*?/5—h—1/4, which can be arbitrarily
large as A tends to infinity.

The inequality /(G)=R(G) is not true in general for graphs containing cycles, and
hence so are the inequalities in Theorem 1 and Corollary 1. In view of this, further
investigation of the “branching” measure /(G) — R(G) for general graphs G would be
necessary. For more results about Graffiti conjectures, the reader is referred to [1-7,9]

and the website above.
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2. Proof of the main result

In the following we assume 7 is a nontrivial tree and P =wvgv;...vp is a longest
path of T, where D=D(T). We will simply write a, b and ¢ in place of a(P), b(P)
and c(P), respectively. To prove Theorem 1 we will first prune the tree to a caterpillar,
and then prune the caterpillar to a path. By definition a tree is called a caterpillar if
the removal of all degree-one vertices yields a path, called the spine. Note that if T
is a caterpillar, then vy ...vp_; is the spine of T; and if T is not a caterpillar, then
D(T)>=4. At each step of the pruning we need to monitor the change of the inverse
dual degree, and this is given by the following three lemmas.

Lemma 1. Suppose T is not a caterpillar, and let u be a vertex not in P such that
du)=2 and d(u,V(P)) is as large as possible. Let T' be the subtree obtained
from T by deleting all degree-one vertices adjacent to u. Then D(T)=D(T") and
I(T)=KT")+ 1.

Proof. Clearly, D(T)>4 as mentioned above, and D(T)=D(T') as the specified
vertex-deletion does not hurt the path P. We first note that all but one of the neigh-
bours of u have degree one, for otherwise there would be a neighbour w of u not
in P with d(w)=2 and d(w,V(P))>d(u, V(P)), violating the choice of u. Suppose
N(@w)=A{wu,...,un,v}, where d(u;)=1 for 1<i<m, and denote d(v)=r. Denote
0= e N\ {up d(w). Since 6+ 1=r, by the definition of the inverse dual degree we
have

LS 1 LR
I 1T = Z dr(u;) i (d_T(u) 5’7'(“)) i <“7T(U) ‘?T’(v)>

i=1
m m—+1 1 r r
m—+ 1 m-+r r m+o+1 o+1

1 1 1 m r r
=1+ - — = + + —
m+r r m+1 m+r m+o-+1 o+ 1
1 1 1

m+r r m+1

\Y

I+

Note that m>1, r>=2, and 1/(m+x)— 1/x is an increasing function of x. So furthering
the inequality above we get

1 1 1
I(M-I(TY>14+ —— — - — ——
(1)~ {T7) w2 2 mtd

Lo
2 (m+1D(m+2)
1
> -
3

as required. [
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Lemma 2. Suppose T is a caterpillar but not a path and D=D(T)>=4. If at least
one of d(vy) and d(vp_1) is no less than 3, say d(v))=3, let T' be the subtree
obtained from T by deleting all degree-one vertices adjacent to vy excepting vy. Then
D(T)Y=D(T") and [(T)=I(T") + 1/12.

Proof. Clearly, we have D(T)=D(T’). Suppose d(vi;)=m + 2>=3 and N(v;)=

{vo, v2,u1,...,uy}. Denote d(vy)=r and d(v3)=s. Then r,s=2 since D>4. We
have

I(T)— (T

m 1 2 1 1
2t (dr(m B c?r(v,»))

m 1 1 m-+2 2 r r
=——+4+|— -z ]+ — + —
m-+2 m+2 2 m+r—+1 r+1 m+r+s r+s

1
{[2(m+2) (r+D(m+r+ l)}

1
(r+1)(m+r+1) (r—l—s)(m—&—r—l—s)}}

= m

1
[2(m+2) r+D(m+r—+ 1)]

3

1 1
[Z(m +2) 3(m+ 3)]

_ m(m 4+ 5)
~6(m+2)(m+3)

Lemma 3. Suppose T is a caterpillar but not a path and D=D(T)>=4. If d(v,)=
d(vp_1)=2, let v, be a vertex on P which is nearest to one end-vertex of P and
is such that d(v,)=3, and let T' be the subtree obtained by deleting all degree-one
neighbours of vy. Then D(T)=D(T") and I(T)=I(T") + 1.

Proof. Again, we have D(T)=D(T'). Without loss of generality, we may suppose
a<D/2. Let uy,...,u, be the degree-one neighbours of v,, so that d(v,)=m + 2.
Denote d(vy,_>2)=r, d(vy+1)=s and d(v,42)=¢t. By the definition of v,, we have
d(vy—1)=2, and r=1 if =2 and =2 otherwise. If D=5, then #>2 and hence by
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the monotonicity of the function 1/(m + x) — 1/x we have

/ m 1 atl 1 1
[(T)—I(T)—;m"' > <07T(vl.)_c?T,(u,.))

i=o—1

m n 2 _ 2 n m—+2 _ 2
m+2 m+r+2 r+2 m+s+2 s+2
n K s

m+4+s+t s+t
m 2 2 m-+2 2
z——+|— -z |+ —

m—+2 m+3 3 m+s+2 s+2
n K s

m+s+2 s+2

B m(m +5)
~ 3(m42)(m+3)

1

6

A\

1
10°

=

If D=4, then a straightforward calculation shows that
4 2 2
m+3 m+2 m+4

1 4
6 (m+2)m+3)(m+4)

I(T)-I(T) = é +

= —. 1
10

Proof of Theorem 1. Let us first deal with paths and the case where D(7T') is small. If
T =P,, the path with n vertices, then

3
2
I(F) —D(F)/2=4q 1, n=3,
5
6

If D(T)=2, then T is a star with a=b=0, c=1 and I(T) — D(T)/2=1=¢/12 + %.
If D(T)=3 and T#Py, then a=b=0 and T has exactly two vertices (namely v,
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and v,) with degree >2. Suppose the degrees of them are / + 1 and m + 1. Then
max{/,m}>2 as T#P,, and ¢ =2 if both / and m are at least 2 and ¢ =1 otherwise.
So we have

{+m+2 / m 3
I(T)—D(T))2 = -
D =DM2= T Y i Y w1 2
B 1 1 1 +§
T4 m+1l S+ m+1 2
e 5
126

In the following we suppose T is not a path and D=D(T)>4. If T is not a caterpil-
lar, let u be a vertex not in P such that d(u)>2 and d(u, V(P)) is as large as possible.
Then all but one of the neighbours of u have degree one. Removing from 7' all the
degree-one neighbours of # we get a subtree 7 with D(T)=D(T,) and I(T)=I1(T1)+
%, according to Lemma 1. If 7 is not a caterpillar, then repeat this procedure until a
caterpillar is obtained. It is clear that after a steps we get a sequence 7T =Ty, T1,..., I,
such that each T;.; is a subtree of 7;, D(T;)=D(T;11), I(T;)=1(Tiy1) + %, and T, is
a caterpillar. Thus, we have D(T)=D(T,) and I(T)>=I1(T,) + a/3.

If dr,(vi)=d(v;) =3, then delete from T, all the degree-one neighbours of v; ex-
cept vg. Thus we get a subtree 7,,; of 7, with the same diameter as 7 and with
I(T)H)=1(T,.1) + 11—2, according to Lemma 2. If d(vp—;)=3, then we do the same
thing for vp_;. In this way, c subtrees are added to the sequence above and we get
T=ToTh,....Tas..., Tysc With D(T)=D(Tssc) and I(T)=1(Tysc) + a/3 + c/12.
Now we have dyr,, (v1)=dy, (vp—1)=2 and dy,, (v;)=d(v;) for i¢ {1,D — 1}. If
T+ 1s not a path, then according to Lemma 3 we can delete all degree-one neighbours
of some v, and obtain a subtree T, .1 with I(T,;.)=1(T,1c11) + 1/10. Repeat the
procedure until we obtain the path P. When the process stops we get a sequence
T=To,T1y- s Tuseees Tyicsevvs Tyvers =P with I(T)Z1(T, 40 )+a/3+c/12=1(P)+a/3+
b/10 + ¢/12. Since I(P)=D(P)/2 + %, as shown at the beginning of the proof, and
since D(P)=D(T), we get I(T)=D(T)/2+ a/3 + b/10 + ¢/12 + % as required. [
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