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Abstract

Given an independence system (E,P), the Minimum Partition Problem (MPP) seeks a
partition of E into the least number of independent sets. This notion provides a unifying
framework for a number of combinatorial optimisation problems, including various condi-
tional colouring problems for graphs. The smallest integer n such that E can be partitioned
into n independent sets is called the P-chromatic number of E. In this article we study MPP
and the P-chromatic number with emphasis on connections with a few other well-studied
optimisation problems. In particular, we show that the P-chromatic number of E is equal
to the domination number of a split graph associated with (E,P). With the help of this
connection we give a few upper bounds on the P-chromatic number of E in terms of some
basic invariants of (E,P).
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1 Introduction

A set system (S,A) is a finite set S together with a family A of subsets of S. An independence
system is a set system (E,P) such that Y ⊆ X,X ∈ P implies Y ∈ P. A subset X of E is
independent if X ∈ P and dependent otherwise. Thus the set of dependent sets of (E,P) is
Q = 2E \ P, and (E,Q) is a dependence system in the sense that Y ⊆ X,Y ∈ Q implies X ∈ Q.
Throughout this article we assume without mentioning explicitly that P 6= ∅ and Q 6= ∅, so that
∅ ∈ P and E ∈ Q. For X ⊆ E, a base of X is a maximal (with respect to set-theoretic inclusion)
independent set of (E,P) contained in X, and a base of (E,P) is a base of E. A circuit of X is
a minimal (with respect to set-theoretic inclusion) dependent set of (E,P) containing X, and
a circuit of (E,P) is a circuit of ∅. We use B and C to denote the sets of bases and circuits of
(E,P), respectively.

Independence systems have been studied extensively, especially in the context of combi-
natorial optimisation [2, 11, 16, 20, 23, 26, 27, 28, 30, 32, 34, 39, 40, 42, 43, 44, 46]. Much
work in this area has been focused on the fundamental maximum independent set problem,
∗Supported by a Discovery Project Grant (DP0558677) of the Australian Research Council.
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which seeks an independent set with maximum weight in a given weighted independence system
[12, 13, 17, 19, 26, 27, 28, 30, 35]. In this article we will investigate the following problem.

Minimum Partition Problem (MPP) Given an independence system (E,P),
partition E into minimum number of independent sets of (E,P).

This problem is NP-complete since it contains the ordinary graph colouring problem as a special
case. Define the chromatic number of (E,P), χ(E,P), to be the smallest integer n ≥ 1 such
that E can be partitioned into n independent sets. To avoid redundant elements, we assume
without mentioning explicitly that each x ∈ E is contained in at least one independent set. Under
this assumption, {{x} : x ∈ E} is a partition of E into independent sets and hence χ(E,P) is
well-defined.

The importance of MPP lies in that it provides a unifying framework for a number of
combinatorial problems. At least six other languages can be used to describe MPP. First, in the
language of algebraic topology an independence system is an abstract simplicial complex [36]
with independent sets as faces, and vice versa. Thus, MPP seeks a partition of the vertex set E
into minimum number of faces of the simplicial complex (E,P), and χ(E,P) is the minimum
number of faces in such a partition. Partitions of this kind without involving minimisation were
studied by Fisk in [21]. Second, MPP is equivalent to the ordinary vertex colouring problem
[3, Chapter 4] for the hypergraph (E, C), and thus χ(E,P) is equal to the chromatic number of
(E, C). In the literature an independence system is also called a hereditary system. In fact, we
may identify P with the property that is possessed precisely by independent sets of (E,P). Then
P is a hereditary property associated with the subsets of E. Conversely, any hereditary property
P associated with the subsets of a finite set E gives rise to an independence system, namely
(E,P) with P identified with the family of subsets of E possessing P. It is from this viewpoint
that MPP arises naturally. Clearly, a partition of E into n independent sets of (E,P) can be
identified with a colouring π : E → {1, 2, . . . , n} of E such that, for each colour i ∈ {1, 2, . . . , n},
the colour class π−1(i) := {x ∈ E : π(x) = i} has property P, and vice versa. In the following we
will mainly use this language of colourings, which is the third language for MPP. The colouring
π is called a P-n-colouring of E, or a P-colouring of E if the number of colours used is unknown
or is less important in the context. Thus χ(E,P) is the least number of colours required by
a P-colouring of E, and so is also called the P-chromatic number of E. For any subset X of
E, P induces a hereditary property associated with the subsets of X, which corresponds to the
induced independence system (X,PX) of (E,P), where PX is the family of independent sets of
(E,P) contained in X. Thus, the PX -chromatic number χ(X,PX) is well-defined. For brevity
we will use χ(X,P) instead of χ(X,PX), and call it the P-chromatic number of X. Similarly, a
P-colouring of X is meant a PX -colouring of X.

Combinatorialists and graph theorists have long been studying χ(E,P) for various indepen-
dence systems (E,P). In particular, enormous work has been done when E = V (G) or E(G)
for a graph G = (V (G), E(G)) and P is a hereditary graphical property. (In these situations a
subset X of V (G) or E(G) is said to have property P if the subgraph G[X] of G induced by X
possesses P.) A large number of invariants for graphs can be expressed as χ(E,P); see e.g. [53,
Table 1] and [1, 6, 18, 24, 47, 48, 52, 54] and the references cited therein. For example, if P
is the property of being a vertex independent set, then χ(V (G),P) is the ordinary chromatic
number of G; if P is the property of being an edge independent set, then χ(E(G),P) is the edge
chromatic number of G; if P is the property of being a forest, then χ(E(G),P) is the arboricity
of G. A number of results for χ(E(G),P) concerning individual graphical properties P exist
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in the literature. In [6, 7] Brown and Corneil studied the P-chromatic number χ(E,P) of a
graph G, where E = V (G) and P is a hereditary property for graphs. For general independence
systems (E,P), Cockayne, Miller and Prins [11] proved that, if (E,P) admits complete P-n-
colourings for n = k, `, where k < `, then it admits such a colouring for every n between k and
`, where a P-n-colouring of E is said to be complete if the union of any two colour classes is
not an independent set. In [32] Ivančo gave the dual of this result for dependence systems, and
in [31] he compared χ(E,P) with other invariants associated with (E,P). In [53] the author
obtained interpolation theorems for χ(E,P) and a few other invariants for (E,P), and in [54] he
gave a sequential algorithm for P-colouring E and obtained a Welsh-Powell type upper bound
[51] for χ(E,P). It is well-known that an independence system (E,P) is a matroid [50] in the
case where for any X ⊆ E the bases of X all have the same cardinality, which is called the rank
[50] of X and denoted by ρ(X). In this case MPP was studied by Edmonds in [15], where he
proved the celebrated result χ(E,P) = max∅6=X⊆E d|X|/ρ(X)e for any matroid (E,P). For an
arbitrary independence system (E,P), it is hard to obtain even a good estimate of χ(E,P): the
class of independence systems is too broad to sustain deep results.

This article is an attempt towards understanding P-colourings and P-chromatic numbers
with emphasis on connections between MPP and a few other well-studied problems. In §2 we
give a structure theorem for P-n-critical sets, which is a generalisation of [6, Theorem 2.5] for
conditional colourings of graphs. In §3 we observe that MPP is equivalent to the minimum set
cover problems for (E,P) and (E,B), and that it can be reduced to the maximum independent set
problem for a derived independence system; thus we have the fourth and the fifth languages for
MPP. These observations lead to two greedy algorithms for MPP by invoking known algorithms
for the minimum set cover and maximum independent set problems. In §4 we introduce a split
graph associated with (E,P) and prove that its domination number is equal to χ(E,P); hence
the sixth language. With the help of this connection we then give a few upper bounds for
χ(E,P) in terms of some basic parameters of (E,P).

The reader is referred to [5], [50] and [37, 49] for notation and terminology concerning graphs,
matroids and algorithms, respectively. Unless stated otherwise, throughout the article (E,P) is
an arbitrary independence system. Sometimes it is convenient to view (E,B) as an incidence
structure [4] with point set E, block set B and incidence relation the usual containment. Thus,
the flags of (E,B) are (x,B), where x ∈ E,B ∈ B with x ∈ B. For a fixed x ∈ E, let Bx denote
the set of bases B of (E,P) such that (x,B) is a flag. Using notation from design theory [4],
define

v = |E|, b = |B|, r(x) = |Bx|, f =
∑
x∈E

r(x) (1)

B = {B1, B2, . . . , Bb}, Bx = {B1,x, B2,x, . . . , Br(x),x}

where x ∈ E and B ∈ B. Call ρ(E,P) = max{|B| : B ∈ B} the rank of (E,P). Note that
f =

∑
B∈B |B| by double counting.

2 Structure of critical sets

A subset X of E is said to be P-n-critical if χ(X,P) = n but χ(X \ {x},P) < n for any x ∈ X.
It is expected that investigation of P-critical sets will help understand the P-chromatic number,
as is the case for the ordinary chromatic number [5] and various conditional chromatic numbers
(see e.g. [6, 7]) of graphs. In the case of P-colourings for graphs, a structure theorem for P-
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critical subsets of the vertex set was obtained in [6, Theorem 2.5]. In this section we extend this
result to any independence system (E,P) by using similar techniques.

Lemma 2.1 If χ(E,P) = n, then E contains a P-m-critical subset for every m with 1 ≤ m ≤ n.

Proof Let A = {X ⊆ E : χ(X,P) = n}. Then A 6= ∅ as E ∈ A, and the minimal (with respect
to set-theoretic inclusion) members of A are P-n-critical. Thus, E contains at least one P-n-
critical subset, say X1. If n = 1, we are done; otherwise defineA1 = {X ⊆ X1 : χ(X,P) = n−1}.
Then A1 6= ∅ since X1 \ {x1} ∈ A1 for any x1 ∈ X1, and the minimal members of A1 are P-
(n− 1)-critical. Continuing this process one can show that E contains a P-m-critical subset for
each m between 1 and n. 2

Lemma 2.2 If E is P-n-critical, then χ(E \X,P) = n− 1 for any X ∈ P with X 6= ∅.

Proof Since E is P-n-critical, we have χ(E \ X,P) ≤ n − 1. On the other hand, since
χ(E,P) = n and X 6= ∅ is an independent set, we have χ(E \ X,P) ≥ n − 1 for otherwise a
P-(n−2)-colouring of E \X and the additional colour class X would form a P-(n−1)-colouring
of E, a contradiction. 2

Lemma 2.3 Suppose χ(E,P) = n. Then for any x ∈ E the following statements are equivalent:

(i) χ(E \ {x},P) = n− 1;

(ii) x is in every subset X of E with χ(X,P) = n;

(iii) x is in every P-n-critical subset of E.

Proof (i) =⇒ (ii) Suppose χ(E \{x},P) = n−1. If x 6∈ X for some X ⊆ E with χ(X,P) = n,
then χ(E \ {x},P) ≥ χ(X \ {x},P) = χ(X,P) = n, a contradiction.

(ii) =⇒ (iii) Obvious.
(iii) =⇒ (i) Suppose x is in every P-n-critical subset of E. If χ(E \ {x},P) 6= n − 1, then

χ(E \ {x},P) = n as χ(E,P) = n, and hence E \ {x} contains a P-n-critical set by Lemma 2.1.
This contradicts our assumption and hence χ(E \ {x},P) = n− 1. 2

The main result in this section is the following proposition.

Proposition 2.4 For any n ≥ 2 the following statements are equivalent:

(i) E is P-n-critical;

(ii) for any x ∈ E and each i with 1 ≤ i ≤ r(x), E \ Bi,x contains a P-(n− 1)-critical subset

Ci,x, and moreover E \ {x} =
⋃r(x)
i=1 Ci,x;

(iii) for each i with 1 ≤ i ≤ b, E \ Bi contains a P-(n − 1)-critical subset Ci, and moreover
E =

⋃b
i=1Ci.

Proof (i) =⇒ (ii) Suppose E is P-n-critical and let x ∈ E. From Lemmas 2.1 and 2.2,
E \ Bi,x contains a P-(n − 1)-critical subset Ci,x for each i, 1 ≤ i ≤ r(x). Let y ∈ E \ {x}.
Then χ(E \ {y},P) = n− 1 by Lemma 2.2. Let π be a P-(n− 1)-colouring of E \ {y}, and let
Z = {z ∈ E \ {y} : π(z) = π(x)} be the colour class of π containing x. Clearly, χ(E \ ({y} ∪
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Z),P) ≥ n − 2 for otherwise χ(E \ {y},P) would be smaller than n − 1. On the other hand,
the restriction of π to E \ ({y} ∪ Z) gives rise to a P-(n− 2)-colouring of E \ ({y} ∪ Z). Thus,
χ(E \ ({y} ∪ Z),P) = n− 2. Since Z is an independent set containing x, we have Z ⊆ Bj,x for
some j. Furthermore, y 6∈ Bj,x for otherwise we would have E \Bj,x ⊆ E \ ({y} ∪Z) and hence
χ(E \ ({y} ∪ Z),P) ≥ χ(E \ Bj,x,P) = n − 1 by Lemma 2.2, a contradiction. By Lemma 2.2
we have χ(E \ Z,P) = n − 1. Since χ((E \ Z) \ {y},P) = n − 2 as proved above, by Lemma
2.3 y is in every P-(n − 1)-critical subset of E \ Z. Thus y ∈ Cj,x, where Cj,x is a P-(n − 1)-
critical set contained in E \ Bj,x ⊆ E \ Z. Since y ∈ E \ {x} is arbitrary, we conclude that

E \ {x} =
⋃r(x)
i=1 Ci,x.

(ii) =⇒ (iii) Note that |E| ≥ 2 as n ≥ 2. Since each Bi ∈ B is also a member of Bx
for x ∈ Bi, it follows from (ii) that E \ Bi contains a P-(n − 1)-critical subset Ci for each i,
1 ≤ i ≤ b. For any x ∈ E and each i with 1 ≤ i ≤ r(x), we have Bi,x = Bj ∈ B for some j.

Setting Ci,x = Cj , from (ii) we have E =
⋃
x∈E(E \ {x}) =

⋃
x∈E

(⋃r(x)
i=1 Ci,x

)
⊆
⋃b
i=1Ci, which

implies E =
⋃b
i=1Ci.

(iii) =⇒ (i) Let us first prove χ(E,P) ≥ n. Suppose otherwise, and let π be a P-(n − 1)-
colouring of E and Z a colour class of π. Then χ(E \ Z,P) ≤ n− 2. Since Z is an independent
set, it is contained in a base of (E,P), say, Z ⊆ Bj . Thus, χ(E \Bj ,P) ≤ χ(E \ Z,P) ≤ n− 2,
which contradicts the assumption that E \ Bj contains a P-(n − 1)-critical set. Therefore, we
have χ(E,P) ≥ n and it suffices to show χ(E \ {x},P) ≤ n− 1 for each x ∈ E.

For any x ∈ E, we claim that there exists j such that x is in every P-(n− 1)-critical set of
E \ Bj . Suppose otherwise, then we can choose, for each i with 1 ≤ i ≤ b, a P-(n − 1)-critical
set Ci of E \ Bi such that x 6∈ Ci and hence x 6∈

⋃b
i=1Ci = E, a contradiction. By Lemma 2.3

we have χ(E \ ({x} ∪Bj),P) = n− 2 and therefore χ(E \ {x},P) ≤ n− 1. 2

Proposition 2.4 generalises both [6, Theorem 2.5] and [48, Proposition 8]. It also implies the
following generalisation of [6, Corollary 2.6].

Corollary 2.5 Suppose that X ⊆ E is P-n-critical. Then, for any m with 1 ≤ m ≤ n− 1 and
any n−m+ 1 pairwise distinct vertices x, x1, . . . , xn−m of X, there exists a P-m-critical subset
of X which contains x but none of x1, . . . , xn−m.

Proof We use induction on n−m. By Proposition 2.4, if X is a P-n-critical set, then for any
x1 ∈ X, X \ {x1} can be covered by P-(n− 1)-critical subsets. That is, any x ∈ X \ {x1} is in
a P-(n − 1)-critical subset of X \ {x1}. Hence the statement is true for n −m = 1. Suppose
that the statement is true for n − m with 1 ≤ n − m ≤ n − 2. Then, for pairwise distinct
vertices x, x1, . . . , xn−m, xn−m+1 of X, there exists a P-m-critical subset Y of X containing x

but none of x1, . . . , xn−m. If xn−m+1 6∈ Y , then by Lemma 2.1 there exists a P-(m− 1)-critical
subset of Y , and any such subset contains x but none of x1, . . . , xn−m, xn−m+1. If xn−m+1 ∈ Y ,
then by Proposition 2.4 we can take a P-(m − 1)-critical subset of Y which contains x but
not xn−m+1. In either case we got a P-(m − 1)-critical subset of X containing x but none of
x1, . . . , xn−m, xn−m+1. Hence the statement is true for n−m+ 1, and the proof is complete. 2

3 Greedy algorithms

This section is largely expository. We will show that two well-known greedy algorithms for the
minimum set cover and maximum independent set problems can be applied to MPP.
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For a set system (S,A), an A-cover of S (or a cover of S by A) is a subset J of A such that⋃
X∈J X = S. Given (S,A) and a weight function c : A → R+, the minimum weight set cover

problem [49] seeks an A-cover J of S with minimum weight c(J ), where c(J ) =
∑
X∈J c(X).

A number of combinatorial optimisation problems take the form of this fundamental problem
[37, 49]. In the case where each member of A has a unit weight, the problem is called the
minimum set cover problem and we use ψ(S,A) to denote the minimum cardinality of an A-
cover of S. Johnson [33] and Lovász [41] proposed a greedy algorithm for this problem, and
Chvátal [9] generalised it to the weighted case. In each iteration the algorithm picks up a
member X of A such that the “average cost” c(X)/|X \C| at which it covers new elements is as
small as possible, where C is the set of elements of S already covered before the beginning of the
iteration. Chvátal [9] proved that this algorithm is an H(m)-factor approximation algorithm
(see also [37, 49]), where m = maxX∈A |X| and H(m) = 1 + 1

2 + · · ·+ 1
m . This simple algorithm

is essentially the best one can hope as explained in [37, 49].
Given (E,P), trivially any P-colouring of E is a P-cover of E. Conversely, a P-cover

{X1, X2, . . . , Xn} of E gives rise to a P-colouring {E1, E2, . . . , En} of E, where E1 = X1 and
Ei = Xi \ (

⋃i−1
j=1Xj) for 2 ≤ i ≤ n. (It may happen that Ei = ∅ for some i, and hence we

obtain a P-colouring of E using at most n colours.) Thus, χ(E,P) is equal to the minimum
number of independent sets in a P-cover of E. Moreover, a solution to MPP for (E,P) gives
rise to a solution to the minimum set cover problem for (E,P), and vice versa. Therefore, the
two problems are equivalent. Similarly, since any independent set of (E,P) can be extended to
a base of (E,P), MPP is equivalent to the minimum set cover problem for (E,B).

Lemma 3.1 MPP for (E,P) is equivalent to the minimum set cover problem for (E,P), which
in turn is equivalent to the minimum set cover problem for (E,B). Thus,

χ(E,P) = ψ(E,P) = ψ(E,B). (2)

This lemma together with its justification enables us to translate the greedy algorithm [37, 49]
for the minimum set cover problem into the following algorithm for MPP.

Algorithm 3.2 (Greedy Set Cover Algorithm)
Input: An independence system (E,P).
Output: A P-colouring of E.

(1) Set J := ∅ and C := ∅ initially.
(2) While C 6= E do

Choose X ∈ B \ J such that |X \ C| is as large as possible;
set J := J ∪ {X} and C := C ∪X.

(3) Let J = {X1, X2, . . . , Xn} be obtained from step (2) when it terminates (that is, C = E),
where the subsets Xi are the bases added to J sequentially.

Set Ei = Xi \ (
⋃i−1
j=1Xj), 1 ≤ i ≤ n;

output the P-colouring {E1, E2, . . . , En}.

From the discussion above, Algorithm 3.2 is an H(ρ)-factor approximation algorithm for MPP
with running time O(vb), where ρ = ρ(E,P). It is essentially the best one can hope for an
arbitrary independence system.

The second algorithm that we will present is based on the well-known greedy algorithm
for the maximum independent set problem. To this end we will reduce further the minimum
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set cover problem for (E,B) to the maximum (cardinality) independent set problem for the
independence system consisting of those subsets of B which are not B-covers of E. Denote by
J the set of such B-covers of E. It is clear that, for any J ∈ J and J ⊆ J ′ ⊆ B, J ′ is also a
B-cover of E. Hence (B,J) is a dependence system, or equivalently (B, 2B\J) is an independence
system. The minimum set cover problem for (E,B) is then equivalent to the problem of finding
a dependent set of (B,J) with minimum cardinality, or the problem of finding an independent
set of (B, 2B \J) with maximum cardinality. Thus, we may apply the “best-in” greedy algorithm
[37] to (B, 2B \ J) or equivalently the “worst-out” greedy algorithm [37] to (B,J), and this gives
the following algorithm.

Algorithm 3.3 (Worst-out Greedy Algorithm)
Input: An independence system (E,P).
Output: A P-colouring of E.

(0) Order the bases B1, B2, . . . , Bb of (E,P) such that |B1| ≤ |B2| ≤ · · · ≤ |Bb|.
(1) Set J := {B1, B2, . . . , Bb} initially.
(2) For each i = 1, 2, . . . , b,

if J \ {Bi} ∈ J, then set J := J \ {Bi};
otherwise output J and go to step (3).

(3) Let J = {Bi1 , Bi2 , . . . , Bin} be obtained from step (2) when it terminates.
Set Et = Bit \ (

⋃t−1
j=1Bij ), 1 ≤ t ≤ n;

output the P-colouring {E1, E2, . . . , En}.

This algorithm is genuinely simple and one may come to it without bothering (B,J) or
(B, 2B \ J). The nontrivial thing is to analyse its performance, and for this we invoke a recent
result of [30]. Note that, for A ⊆ B, a circuit of A in (B, 2B \ J) is a minimal (with respect to
inclusion) B-cover of E containing A. Let gu(A) and gl(A) be, respectively, the maximum and
minimum cardinalities of such a circuit of A. Define

c(E,P) = max
A⊆B

gu(A)− |A|
gl(A)− |A|

which is the dependence curvature of (B, 2B \ J) in terms of [30, (5)]. Lemma 3.1 and [30,
Theorem 6] together imply the following result.

Proposition 3.4 Algorithm 3.3 is a c(E,P)-factor approximation algorithm for MPP.

4 P-colouring and domination

In this section we present a connection between χ(E,P) and the domination number of a graph
associated with (E,P), and then give upper bounds for χ(E,P) by using this connection.

Denote E = {x1, . . . , xv} and B = {B1, . . . , Bb}, where v = |E| and b = |B|. Let E∗ =
{x∗1, . . . , x∗b} be a set without common elements with E. Define G(E,P) to be the graph with
vertex set V (G(E,P)) = E ∪E∗ and edge set E(G(E,P)) = {xix∗j : xi ∈ Bj , 1 ≤ i ≤ v, 1 ≤ j ≤
b} ∪ {x∗ix∗j : 1 ≤ i 6= j ≤ b}. In other words, G(E,P) is the graph obtained from the incidence
graph of (E,B) (as an incidence structure) by adding an edge between any two members of B.
Then G(E,P) is a split graph since E is an independent set and E∗ is a clique of G(E,P). (A
graph is called a split graph if its vertex set can be partitioned into an independent set and a
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clique.) Note that G(E,P) is connected since each xi ∈ E is contained in at least one base of
(E,P).

The following definitions are standard in domination graph theory [29]. A dominating set of a
graph G = (V (G), E(G)) is a subset D of V (G) such that each vertex outside D is adjacent to at
least one vertex in D. A connected dominating set is a dominating set D such that the subgraph
G[D] induced by D is connected. The domination number γ(G) is the minimum cardinality of
a dominating set of G, and the connected domination number γc(G) is defined similarly when
G is connected. A dominating set with cardinality γ(G) is called a minimum dominating set of
G. A dominating set which is also a clique is called a dominating clique [14, 38]. The clique
domination number [14, 38] of G, γcl(G), is the minimum cardinality of a dominating clique of
G if such a clique exists, and is defined to be ∞ otherwise. Clearly, we have

γ(G) ≤ γc(G) ≤ γcl(G). (3)

Proposition 4.1 Let G(E,P) be the graph defined above. Then

χ(E,P) = γ(G(E,P)) = γc(G(E,P)) = γcl(G(E,P)).

Proof There is a one-to-one correspondence between the set of covers of E by B and the set of
dominating sets of G(E,P) contained in E∗, namely a cover {Bi1 , . . . , Bin} of E by B gives rise to
the dominating set {x∗i1 , . . . , x

∗
in} ⊆ E∗ of G(E,P), and vice versa. Taking a minimum B-cover

{Bi1 , . . . , Bin} of E, it follows that γ(G(E,P)) ≤ ψ(E,B). Thus, since χ(E,P) = ψ(E,B) by
(2), to prove χ(E,P) = γ(G(E,P)) it suffices to show that there exists a minimum dominating
set of G(E,P) which is contained entirely in E∗.

Let us first prove that there exists a minimum dominating set D of G(E,P) such that
D ∩ E∗ 6= ∅. To this end let D = X ∪X∗ be any minimum dominating set of G(E,P), where
X ⊆ E and X∗ ⊆ E∗. Since we are done in the case where X∗ 6= ∅, let us assume in the following
that X∗ = ∅. Then D = X = E since E is an independent set of G(E,P). If |Bj | ≥ 2 for each
j, 1 ≤ j ≤ b, then we take, say x∗1 ∈ E∗ and x ∈ B1. Since each x∗i for i ≥ 2 is adjacent to at
least one vertex in E \{x}, it follows that (E \{x})∪{x∗1} is a dominating set of G(E,P) which
intersects E∗ at x∗1, and it is minimum since it has the same cardinality as D. On the other
hand, if there exists j with |Bj | = 1, let, say, |B1| = · · · = |Bt| = 1 and |Bj | > 1 for j ≥ t + 1,
where 1 ≤ t ≤ b, and let Y =

⋃t
i=1Bi. Then |Y | = t and, since Bi for 1 ≤ i ≤ t are bases of

(E,P), no vertex in Y can be contained in any Bj for j ≥ t+ 1. Thus, (E \ Y )∪ {x∗1, . . . , x∗t } is
a minimum dominating set of G(E,P) which has nonempty intersection with E∗, as required.

From the result above there exists a minimum dominating set D = X ∪X∗ of G(E,P) with
X ⊆ E and ∅ 6= X∗ ⊆ E∗. Note that each xi ∈ E \ X is adjacent to at least one x∗j ∈ X∗.
If there exists xi ∈ X which is adjacent to some x∗j ∈ X∗, then we can delete xi from D and
thus obtain a smaller dominating set, a contradiction. So no vertex xi ∈ X is adjacent to any
x∗j ∈ X∗. Thus, each xi ∈ X must be contained in some Bi′ with x∗i′ ∈ E∗ \ X∗. Replacing
each xi ∈ X by its corresponding x∗i′ , we obtain a new minimum dominating set which is
contained entirely in E∗. Therefore, we have proved that χ(E,P) = γ(G(E,P)). Note that this
new minimum domination set induces a clique and hence is a dominating clique of G(E,P).
Thus, γcl(G(E,P)) ≤ γ(G(E,P)). This together with (3) gives γ(G(E,P)) = γc(G(E,P)) =
γcl(G(E,P)). 2

It was observed in [14] that γ(G) = γc(G) = γcl(G) for any connected split graph G. Thus,
Proposition 4.1 says essentially that χ(E,P) = γ(G(E,P)). This link enables us to obtain
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results for χ(E,P) by applying known results for the domination, connected domination or
clique domination number of a split graph. As examples we now give several upper bounds for
χ(E,P) by using Proposition 4.1 and known upper bounds for the domination number. For
B ∈ B, let

r̄(B) =
∑

x∈E\B
r(x).

Note that if there exists a base with cardinality one, say, B1 = {xi}, then any minimum dominat-
ing set of G(E,P) contains exactly one of xi and x∗1, and moreover χ(E,P) = χ(E \{xi},P)+1.
Therefore, without loss of generality we may assume |Bj | ≥ 2, 1 ≤ j ≤ b in the following propo-
sition. Denote by p(G), q(G), δ(G) and ∆(G) respectively the number of vertices, the number
of edges, the minimum degree and the maximum degree of a graph G.

Proposition 4.2 Suppose that all bases of (E,P) have cardinality at least two. Let v (≥
3), b, r(x) be as defined in (1), and let r̄(B) be as above. Let δ = minx∈E r(x), ρ = ρ(E,P), and
τ be the maximum cardinality of a subset of E which has at most one common element with
each base of (E,P). Then each of the following (i)-(vi) is an upper bound for χ(E,P).

(i) v + b+ 1−maxB∈B

{
|B|+b−1

2 +
√(

|B|+b−1
2

)2
+ r̄(B) + 1

}
;

(ii) (v − ρ)
(
1− δ+1

v+b−1

)
+ 2;

(iii) 1
2

(
v − ρ+ ρ+b−1

δ

)
+ 1;

(iv) 1
2 (v + b− τ(δ − 2));

(v)
(
1−

∏δ+1
i=1

iδ
iδ+1

)
(v + b);

(vi) 1
2(v + b+ 1− δ).

Proof Since, by our assumption, |B| ≥ 2 for all B ∈ B, we have f =
∑
B∈B |B| ≥ 2b. Let

E = {x1, . . . , xv} and B = {B1, . . . , Bb} as before. By the definition of G(E,P), the degree in
G(E,P) of xi ∈ E is

d(xi) = r(xi), 1 ≤ i ≤ v (4)

and the degree in G(E,P) of x∗j ∈ E∗ is

d(x∗j ) = |Bj |+ b− 1, 1 ≤ j ≤ b. (5)

Since r(xi) ≤ |Bj |+ b− 1 for all pairs i, j, we have δ(G(E,P)) = δ and ∆(G(E,P)) = ρ+ b− 1.
Note that G(E,P) has v + b vertices and f + b(b − 1)/2 edges. Since χ(E,P) = γ(G(E,P))
by Proposition 4.1, it suffices to prove the desired bounds for γ(G(E,P)). This will be done by
straightforward applications of certain upper bounds for the domination number of a graph.

(i) It was proved by Chen and Zhou [8, Corollary 6] that

γ(G) ≤ p(G) + 1− 1
2

{
d(x) +

√
(d(x))2 + 8q(G) + 4− 4d(N(x))

}
(6)

for any graph G and any vertex x of G, where d(N(x)) is the sum of the degrees of x and the
neighbours of x. For the vertex x∗j ∈ E∗ of G(E,P), we have d(x∗j ) = |Bj | + b − 1 by (5) and
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d(N(x∗j )) =
∑
x:x∈Bj

r(x)+
∑
B∈B(b+|B|−1) = (f− r̄(Bj))+(b(b−1)+f) = 2f+b(b−1)− r̄(Bj)

by the definition of G(E,P). Plugging these into (6) we obtain

χ(E,P) = γ(G(E,P)) ≤ v + b+ 1−

 |Bj |+ b− 1
2

+

√( |Bj |+ b− 1
2

)2

+ r̄(Bj) + 1

 .
Since this holds for all x∗j , (i) follows immediately.

(ii) Payan [45] proved that γ(G) ≤ (p(G)− 1−∆(G))(p(G)− 2− δ(G))/(p(G)− 1) + 2 for
any graph G. Applying this to G(E,P), the bound (ii) follows by using the data of G(E,P)
given at the beginning of the proof.

(iii) Flach and Volkmann [22] proved that γ(G) ≤ {p(G) + 1−∆(G)(δ(G)− 1)/δ(G)}/2 for
any graph G. Applying this to G(E,P) and using the data of G(E,P), we have

χ(E,P) = γ(G(E,P))

≤ 1
2
{v + b+ 1− (ρ+ b− 1)(1− (1/δ))}

=
1
2
{v − ρ+ (ρ+ b− 1)/δ}+ 1.

(iv) This follows from another inequality of Flach and Volkmann [22], which asserts that
γ(G) ≤ {p(G) − (δ(G) − 2)α(G)}/2 for any graph G, where α(G) is the maximum cardinality
of an independent set of G such that each vertex of G is adjacent to at most one vertex in the
set. One can check that α(G(E,P)) ≥ τ , and hence the result follows.

(v) This bound follows from Proposition 4.1 and a result in [10] which asserts that γ(G) ≤
(1− Sδ)p(G) for any graph G, where δ = δ(G) and Sδ =

∏δ+1
i=1 (iδ/(iδ + 1)).

(vi) It is known that γ(G) ≤ (p(G) − δ(G) + 1)/2 for any connected graph G which is not
isomorphic to the cycle C4 of length 4 (communicated in [45] and proved in [22]). Applying this
to G(E,P) and noting that G(E,P) 6∼= C4 as v ≥ 3, we obtain (vi) directly. 2

The bounds in Proposition 4.2 are valid for any independence system (E,P). Because of
this generality it is unrealistic to expect that they are good in all situations, although they do
produce good upper bounds for some independence systems. Similar to any upper bound for the
domination number of a graph, each bound in Proposition 4.2 has its advantages and drawbacks.
As a benchmark let us consider the following simple bound:

χ(E,P) ≤ v − ρ+ 1, (7)

which is due to the fact that {B} ∪ {{x} : x ∈ E \ B} is a P-colouring of E for any base B of
(E,P) with maximum cardinality. One can easily see that (i) is always no worse than (7). The
bound (ii) is better than (7) if and only if δ > (b+ ρ− 1)/(v − ρ). The same statement is true
for (iii) as well. The bound (iv) is better than (7) if and only if τ(δ− 2) > b− v+ 2(ρ− 1), and
(v) is better than (7) if and only if

∏δ+1
i=1 (iδ/(iδ + 1)) > (b + ρ − 1)/(b + v). In general, (vi) is

weak and it is better than (7) if and only if δ > b − v + 2ρ − 1. In fact, (vi) is inferior to (iii)
when δ ≥ 2, and is slightly better than (iii) when δ = 1. Similar to (i)-(vi), one can derive other
upper bounds for χ(E,P) from known bounds for domination number.

It can be easily verified that not every split graph is of the form G(E,P). In fact, since
no base of (E,P) is contained in any other base of (E,P), G(E,P) has the property that the
subsets N(x∗j ) ∩ E of E, for j = 1, 2, . . . , b, are mutually non-inclusive, where N(x∗j ) is the
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neighbourhood of x∗j in G(E,P). Call a split graph with this property a strong split graph.
More explicitly, a split graph G with vertex-set partitioned into an independent set V and a
clique V ∗ is said to be a strong split graph if it satisfies the following condition (where NG(x∗)
is the neighbourhood of x∗ in G):

NG(x∗) ∩ V 6⊆ NG(y∗) ∩ V, for distinct x∗, y∗ ∈ V ∗. (8)

Proposition 4.3 A graph is a strong split graph if and only if it is isomorphic to G(E,P) for
some independence system (E,P).

Proof That G(E,P) is a strong split graph has been justified above. Conversely, let G be
a strong slit graph with partition {V, V ∗}. For each x∗ ∈ V ∗, define B(x∗) = {x ∈ V :
x is adjacent to x∗ in G}. Since G is a strong split graph, by (8) we have B(x∗) 6⊆ B(y∗) for
distinct x∗, y∗ ∈ V ∗. Thus, B = {B(x∗) : x∗ ∈ V ∗} defines an independence system, namely
(V,P) where P = {X ⊆ V : X ⊆ B(x∗) for some x∗ in V ∗}, and B is the set of bases of this
independence system. Clearly, we have G ∼= G(E,P) via the identification of x∗ and B(x∗) for
each x∗. 2

5 Concluding remarks

In view of Propositions 4.1 and 4.3, investigations of the clique domination number of a strong
split graph will benefit our understanding to the chromatic number of an independence system.
From a computational point of view, Proposition 4.1 together with the construction of G(E,P)
can be taken as a transformation from MPP to the dominating clique problem for strong split
graphs. (The dominating clique problem [38] is the problem of determining a dominating clique
with minimum cardinality.) Unfortunately, even for split graphs this problem is NP-complete
[14]. Moreover, the transformation itself is not necessarily polynomial since the construction of
G(E,P) involves all bases of (E,P) and the problem of generating them is NP-hard [40]. Nev-
ertheless, for some special types of independence systems [40] it is possible to generate all bases
in polynomial time. (Here and in the following when we say an algorithm for (E,P) is polyno-
mial, we mean it is polynomial in v and b.) In general, if F is a class of independence systems
(E,P) such that generating all bases is achievable in polynomial time, then the transformation
above is polynomial for (E,P) ∈ F since the remaining time needed to construct G(E,P) is
O(vb). Thus, Proposition 4.1 implies that MPP for (E,P) ∈ F can be reduced in polynomial
time to the dominating clique problem for G(E,P), and so any polynomial-time approximation
algorithm for the latter for strong split graphs would imply a polynomial-time approximation
algorithm for the former for (E,P) ∈ F.
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