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Abstract

Let Γ be a G-symmetric graph, and let B be a nontrivial G-invariant partition of the vertex set of Γ . This
paper aims to characterize (Γ ,G) under the conditions that the quotient graph ΓB is (G, 2)-arc transitive
and the induced subgraph between two adjacent blocks is 2 · K2 or K2,2. The results answer two questions
about the relationship between Γ and ΓB for this class of graphs.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to answer two questions [8] regarding 2-arc transitivity of quotient
graphs for a class of finite symmetric graphs.

Let Γ = (V (Γ ), E(Γ )) be a finite graph. For an integer s ≥ 1, an s-arc of Γ is an (s+1)-tuple
(α0, α1, . . . , αs) of vertices of Γ such that αi , αi+1 are adjacent for i = 0, . . . , s − 1 and αi−1
6= αi+1 for i = 1, . . . , s −1. We will use Arcs(Γ ) to denote the set of s-arcs of Γ , and Arc(Γ ) in
place of Arc1(Γ ). Γ is said to admit a group G as a group of automorphisms if G acts on V (Γ )
and preserves the adjacency of Γ , that is, for any α, β ∈ V (Γ ) and g ∈ G, α and β are adjacent
in Γ if and only if αg and βg are adjacent in Γ . In the case where G is transitive on V (Γ ) and,
under the induced action, transitive on Arcs(Γ ), Γ is said to be (G, s)-arc transitive. A (G, s)-arc
transitive graph Γ is called (G, s)-arc regular if G is regular on Arcs(Γ ), that is, only the
identity element of G can fix an s-arc of Γ . A 1-arc is usually called an arc, and a (G, 1)-arc
transitive graph is called a G-symmetric graph. Since Tutte’s seminal paper [16], symmetric
graphs have been studied intensively; see [14,15] for a contemporary treatment of the subject.
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Often a G-symmetric graph Γ admits a nontrivial G-invariant partition, that is, a partition B
of V (Γ ) such that Bg

:= {αg
: α ∈ B} ∈ B and 1 < |B| < |V (Γ )| for any B ∈ B and g ∈ G. In

this case Γ is called an imprimitive G-symmetric graph. The quotient graph of Γ with respect to
B, ΓB, is then defined to have vertex set B such that B,C ∈ B are adjacent if and only if there
exists at least one edge of Γ between B and C . As usual we assume without mentioning explicitly
that ΓB contains at least one edge, so that each block of B is an independent set of Γ (e.g. [1,
Proposition 22.1]). For blocks B,C of B adjacent in ΓB, let Γ [B,C] denote the induced bipartite
subgraph of Γ with bipartition {Γ (C)∩ B,Γ (B)∩C}. Here we define Γ (D) :=

⋃
α∈D Γ (α) for

each D ∈ B, where Γ (α) is the neighbourhood of α in Γ . Γ is called [1] a |B|-fold cover of ΓB if
Γ [B,C] ∼= |B|·K2 is a perfect matching between B and C . Similarly, if Γ [B,C] ∼= (|B|−1)·K2,
then Γ is called [20] an almost cover of ΓB. The reader is referred to [6,17–21] for recent results
on imprimitive symmetric graphs.

In this paper we focus on the case where |Γ (C) ∩ B| = 2 for adjacent B,C ∈ B, that is,
Γ [B,C] ∼= 2 · K2 (two independent edges) or K2,2 (complete bipartite graph with two vertices
in each part). In this case we may associate a multigraph [B] with each B ∈ B, which is
defined [6, Section 6] to have vertex set B and an edge joining the two vertices of Γ (C) ∩ B
for all C ∈ ΓB(B), where ΓB(B) is the neighbourhood of B in ΓB. Denote by G B the setwise
stabilizer of B in G. A near n-gonal graph [13] is a connected graph Σ of girth at least 4 together
with a set E of n-cycles of Σ such that each 2-arc of Σ is contained in a unique member of E ;
we also say that Σ is a near n-gonal graph with respect to E . The following theorem summarizes
the main results of this paper.

Theorem 1.1. Let Γ = (V (Γ ), E(Γ )) be a G-symmetric graph. Suppose that V (Γ ) admits a
G-invariant partition B of block size at least three such that ΓB is connected, and for any two
adjacent blocks B,C ∈ B, Γ [B,C] ∼= 2 · K2 or K2,2. Then ΓB is (G, 2)-arc transitive if and
only if [B] ∼= K3 or (|B|/2) · K2, and G B is 2-transitive on the edge set of [B]. Moreover, if ΓB
is (G, 2)-arc transitive, then one of the following holds:

(a) Γ ∼= s · Ct with s, t ≥ 3, and ΓB ∼= K4 or ΓB is a trivalent near n-gonal graph for some
integer n ≥ 4;

(b) Γ [B,C] ∼= K2,2, ΓB is trivalent (G, 3)-arc transitive, Γ is 4-valent, connected and not
(G, 2)-arc transitive;

(c) Γ ∼= 2q · K2 or q · K2,2 for some integer q ≥ 3.

Thus ΓB is not (G, 2)-arc transitive when val(Γ ) ≥ 5.

The research in this paper was motivated by the following questions [8] for an imprimitive
G-symmetric graph (Γ ,B).

(1) Under what circumstances is ΓB (G, 2)-arc transitive, and what information can we obtain
about Γ if ΓB is (G, 2)-arc transitive?

(2) Assuming that Γ is (G, 2)-arc transitive, under what conditions is ΓB also (G, 2)-arc
transitive?

Theorem 1.1 answers Question (1) for the class of G-symmetric graphs (Γ ,B) such that
Γ [B,C] ∼= 2·K2 or K2,2. We will also answer Question (2) for the same class (see Theorem 3.4).
The full version of Theorem 1.1 with more technical details will be given in Theorem 3.1. A study
of G-symmetric graphs (Γ ,B) with |Γ (C) ∩ B| = 2 for adjacent B,C ∈ B was conducted in
[6, Section 6] under the additional assumption that Γ is G-locally primitive. In the present paper
we do not require Γ to be G-locally primitive. (A G-symmetric graph Γ is called G-locally
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primitive or G-locally imprimitive depending on whether Gα is primitive or imprimitive on Γ (α),
where Gα is the stabilizer of α in G.)

The two questions above have been answered for the class [10] of imprimitive symmetric
graphs with |Γ (C)∩ B| = |B| − 1 ≥ 2, and the one [8] with |Γ (C)∩ B| = |B| − 2 ≥ 1. In [11]
symmetric graphs with 2-arc transitive quotients were studied and their connections with 2-point
transitive block designs were explored. Relationships between a symmetric graph and a quotient
graph of it in the context of Questions (1) and (2) often play an important role in studying 2-arc
transitive graphs; see [9,12,14,15] for example.

2. Preliminaries

We follow the notation and terminology in [5] for permutation groups. Let G be a group acting
on a set Ω , and let X ⊆ Ω . As usual we use G X and G(X) to denote the setwise and pointwise
stabilizers of X in G, respectively. For a group G acting on two sets Ω1 and Ω2, if there exists a
bijection ψ : Ω1 → Ω2 such that ψ(αg) = (ψ(α))g for all α ∈ Ω1 and g ∈ G, then the actions
of G on Ω1 and Ω2 are said to be permutationally equivalent. By a graph we mean a simple
graph (i.e. without loops and multiple edges), whereas a multigraph means that multiple edges
may exist. We use val(Γ ) to denote the valency of a graph Γ . The union of n vertex-disjoint
copies of Γ is denoted by n · Γ . For two graphs Γ and Σ , the lexicographic product of Γ by Σ ,
Γ [Σ ], is the graph with vertex set V (Γ )× V (Σ ) such that (α, β), (γ, δ) are adjacent if and only
if either α, γ are adjacent in Γ , or α = γ and β, δ are adjacent in Σ .

Let (Γ ,B) be an imprimitive G-symmetric graph with |Γ (C) ∩ B| = 2 for adjacent blocks
B,C ∈ B. Since Γ is G-symmetric, the multigraph [B] defined in the introduction is independent
of the choice of B up to isomorphism. For adjacent vertices α, β of [B], define

〈α, β〉 := {C ∈ ΓB(B) : Γ (C) ∩ B = {α, β}}.

The cardinality m of 〈α, β〉 is independent of the choice of adjacent α and β, and is called the
multiplicity of [B]. Let

M(B) := {〈α, β〉 : α, β ∈ B are adjacent in [B]}.

The following two lemmas are straightforward, and hence we omit their proofs.

Lemma 2.1. Let Γ be a G-symmetric graph admitting a nontrivial G-invariant partition B such
that Γ [B,C] ∼= 2 · K2 or K2,2 for adjacent blocks B,C ∈ B. Then

(a) val(Γ ) = val([B]) or 2 val([B]), accordingly;
(b) val(ΓB) is equal to the number of edges of [B] and thus is a multiple of m;
(c) val([B]) = |{C ∈ B : Γ (α)∩ C 6= ∅}| (where α is a fixed vertex of Γ ), a multiple of m, and

the valency of the underlying simple graph of [B] is val([B])/m.

Lemma 2.2. Let (Γ ,B,G) be as in Lemma 2.1. Then M(B) is a G B-invariant partition of
ΓB(B) with block size m, and the induced action of G B onM(B) is permutationally equivalent
to the action of G B on the edge set of the underlying simple graph of [B] via the bijection
〈α, β〉 ↔ {α, β}. In particular, the following (a) and (b) hold.

(a) If [B] is simple (that is, m = 1), then the actions of G B on ΓB(B) and on the edge set of
[B] are permutationally equivalent.

(b) If [B] has multiple edges (that is, m ≥ 2) and |B| ≥ 3, then ΓB is G-locally imprimitive and
hence not (G, 2)-arc transitive.
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Note that for |B| = 2 the statement in Lemma 2.2(b) is invalid. In fact, a 2-fold cover Γ of
a (G, 2)-arc transitive graph Σ of valency at least 2 may be (G, 2)-arc transitive, and for the
natural partition B of V (Γ ) we have m = val(Σ ) ≥ 2,M(B) is a trivial partition, and ΓB ∼= Σ
is (G, 2)-arc transitive.

The following theorem contains most information on [B] that we will need to prove our main
results. Let G(B) and G[B] denote the kernels of the actions of G B on B and ΓB(B), respectively.

Theorem 2.3. Let Γ be a G-symmetric graph admitting a nontrivial G-invariant partition B
such that Γ [B,C] ∼= 2 · K2 or K2,2 for adjacent blocks B,C ∈ B, where G ≤ Aut(Γ ). Then the
underlying simple graph of [B] is G B-symmetric, and the components of [B] for B running over
B form a G-invariant partitionQ of V (Γ ). This partitionQ has block size |B|/ω, is a refinement
of B, and is such that G(B) = G(Q), val(ΓQ) = val(ΓB)/ω and Γ [P, Q] ∼= Γ [B,C]

for adjacent blocks P, Q ∈ Q, where ω is the number of components of [B]. Moreover, the
following (a) and (b) hold.
(a) In the case where the underlying simple graph of [B] is a perfect matching (hence |B| is even

and the perfect matching is (|B|/2) · K2), we have Q = {Γ (C) ∩ B : (B,C) ∈ Arc(ΓB)}
(ignoring the multiplicity of each Γ (C)∩ B), which has block size 2, and either Γ ∼= ΓQ[K 2]

or Γ is a 2-fold cover of ΓQ;
(b) In the case where the underlying simple graph of [B] is not a perfect matching, G is faithful

on both B and Q, and G[B] is a subgroup of G(B); moreover, G(B) = G[B] if in addition [B]

is simple, and G(B) = G[B] = 1 if [B] is simple and ΓB is a complete graph.

Proof. It can be easily verified that the induced action of G B on B preserves the adjacency of
[B] and hence the underlying simple graph of [B] admits G B as a group of automorphisms. Let
α ∈ B and β, γ ∈ [B](α) (the neighbourhood of α in [B]). Then there exist C, D ∈ ΓB(B) such
that Γ (C) ∩ B = {α, β} and Γ (D) ∩ B = {α, γ }. Hence α is adjacent to a vertex δ ∈ C and
a vertex ε ∈ D. Since Γ is G-symmetric, there exists g ∈ G such that (α, δ)g = (α, ε). Thus,
g ∈ Gα and Cg

= D. Consequently, (Γ (C) ∩ B)g = Γ (D) ∩ B, that is, {α, β}
g

= {α, γ } and
hence βg

= γ . This means that Gα is transitive on [B](α). Since G B is transitive on B, it follows
that the underlying simple graph of [B] is G B-symmetric. Therefore, the connected components
of [B] form a G B-invariant partition of B. From this it is straightforward to show that the set Q
of such components, for B running over B, is a G-invariant partition of V (Γ ). Clearly, Q is a
refinement of B with block size |B|/ω, val(ΓQ) = val(ΓB)/ω, and Γ [P, Q] ∼= Γ [B,C] for
adjacent blocks P, Q ∈ Q. Since B is G-invariant andQ refines B, it follows that G(Q) ≤ G(B).
On the other hand, if g ∈ G(B), then g fixes setwise each block of B and hence fixes Γ (C) ∩ B,
for all pairs B,C of adjacent blocks of B. In other words, g fixes each edge of [B], for all B ∈ B.
Thus, g fixes setwise each block of Q and so g ∈ G(Q). It follows that G(B) ≤ G(Q) and hence
G(B) = G(Q).

Assume that the underlying simple graph of [B] is a perfect matching, namely (|B|/2) · K2.
Then Q = {Γ (C) ∩ B : (B,C) ∈ Arc(ΓB)} and thus Q has block size 2. Since Γ [P, Q] ∼=

Γ [B,C], either Γ [P, Q] ∼= K2,2 or Γ [P, Q] ∼= 2 · K2. In the former case we have Γ ∼= ΓQ[K 2],
and in the latter case Γ is a 2-fold cover of ΓQ.

In the following we assume that the underlying simple graph of [B] is not a perfect matching.
Then |B| ≥ 3 and this simple graph has valency at least two. Moreover, in this case distinct
vertices of B are incident with distinct sets of edges of [B]; in other words, the vertices of B
are distinguishable. Let g ∈ G[B]. Then g fixes setwise each block of ΓB(B) and hence fixes
each edge of [B]. Since the vertices of B are distinguishable by different sets of edges of [B], it
follows that g fixes B pointwise. Therefore, G[B] is a subgroup of G(B). Similarly, any g ∈ G(B)
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fixes each edge of [B] for all B ∈ B. Since the vertices of B are distinguishable, it follows that g
fixes B pointwise for all B ∈ B; in other words, g fixes each vertex of Γ . Since G ≤ Aut(Γ ) is
faithful on V (Γ ), we conclude that g = 1, and hence G(B) = 1. Thus, G is faithful on B. Since
G(B) = G(Q), G is faithful on Q as well.

In the case where [B] is simple, by Lemma 2.2(a) the actions of G B on ΓB(B) and on the
edge set of [B] are permutationally equivalent. Thus, since any h ∈ G(B) fixes each edge of [B],
it follows that h fixes setwise each block of ΓB(B). That is, h ∈ G[B] and so G(B) ≤ G[B]. This
together with G[B] ≤ G(B) implies G(B) = G[B]. Finally, if [B] is simple and ΓB is a complete
graph, then we have ΓB(B) = B \ {B} and hence G(B) = G[B] = G(B). However, G is faithful
on B, so we have G(B) = G[B] = 1 and the proof is complete. �

Note that the condition G ≤ Aut(Γ ) was required only in part (b) of Theorem 2.3.

Remark 2.4. (a) That the underlying simple graph of [B] is G B-symmetric was known in
[6, Lemma 6.1] under the additional assumption that Γ is G-locally primitive. In this case, either
[B] is a simple graph, or the underlying simple graph of [B] is a perfect matching.

(b) In the case where the underlying simple graph of [B] is a perfect matching, the faithfulness
of G (≤Aut(Γ )) on B is not guaranteed. For example, let Γ = 2 · Cn be a 2-fold cover of Cn
(cycle of length n), and let G = Z2wrD2n . Then Γ is G-symmetric, and it admits the natural
G-invariant partition with quotient Cn such that the underlying simple graph of [B] is isomorphic
to K2. Clearly, the induced action of G on B is unfaithful.

Let us end this section by the following observations, which will be used in the next section.

Lemma 2.5. Let Γ be a G-symmetric graph admitting a nontrivial G-invariant partition B such
that Γ [B,C] ∼= 2 · K2 or K2,2 for adjacent blocks B,C ∈ B.

(a) If Γ [B,C] ∼= 2 · K2 and [B] is simple, then for α ∈ B the actions of Gα on Γ (α) and [B](α)

are permutationally equivalent, where [B](α) is the neighbourhood of α in [B].
(b) If Γ [B,C] ∼= K2,2 and val([B]) ≥ 2, then the subsets Γ (α) ∩ C of Γ (α), for C running

over all C ∈ B such that Γ (α) ∩ C 6= ∅, form a Gα-invariant partition of Γ (α) of block
size 2; in particular, Γ is G-locally imprimitive and hence not (G, 2)-arc transitive.

Proof. (a) Since [B] is simple and Γ [B,C] ∼= 2 · K2, from (a) and (c) of Lemma 2.1 we have
|Γ (α)| = |[B](α)| = |{C ∈ B : Γ (α) ∩ C 6= ∅}|. For each β ∈ Γ (α), say, β ∈ C , the unique
vertex γ of (Γ (C) ∩ B) \ {α} is a neighbour of α in [B](α). It can be easily verified that β ↔ γ

defines a bijection between Γ (α) and [B](α), and the actions of Gα on Γ (α) and [B](α) are
permutationally equivalent with respect to this bijection.

(b) The proof is straightforward and hence omitted. �

3. Main results and proofs

Let (Γ ,B) be an imprimitive G-symmetric graph such that Γ [B,C] ∼= 2 · K2 or K2,2 for
adjacent B,C ∈ B. If |B| = 2, then either Γ is a 2-fold cover of ΓB, or Γ = ΓB[K 2]. In the
former case ΓB is (G, 2)-arc transitive if Γ is (G, 2)-arc transitive, whilst in the latter case Γ is
not (G, 2)-arc transitive unless Γ ∼= q · K2,2 and ΓB ∼= q · K2 for some q ≥ 1. Thus, we may
assume |B| ≥ 3 in the following. In answering Question (1), the case |B| = 3 invokes 3-arc
graphs of trivalent 2-arc transitive graphs, which were determined in [22]. For a regular graph Σ ,
a subset ∆ of Arc3(Σ ) is called self-paired if (τ, σ, σ ′, τ ′) ∈ ∆ implies (τ ′, σ ′, σ, τ ) ∈ ∆. For
such a ∆, the 3-arc graph of Σ with respect to ∆, denoted by Ξ (Σ ,∆), is defined [10,18]
to be the graph with vertex set Arc(Σ ) in which (σ, τ ), (σ ′, τ ′) are adjacent if and only if
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(τ, σ, σ ′, τ ′) ∈ ∆. In the case where Σ is G-symmetric and G is transitive on ∆ (under the
induced action of G on Arc3(Σ )), Γ := Ξ (Σ ,∆) is a G-symmetric graph [10, Section 6] which
admits

B(Σ ) := {B(σ ) : σ ∈ V (Σ )} (1)

as a G-invariant partition such that ΓB(Σ ) ∼= Σ with respect to the bijection σ ↔ B(σ ), where
B(σ ) := {(σ, τ ) : τ ∈ Σ (σ )}.

The following theorem is the full version of Theorem 1.1. In part (ii) of this theorem the graph
3 ·C4 in (3 ·C4,PGL(2, 3)) is the cross-ratio graph [7,17] CR(3; 2, 1), and in (3 ·C4,AGL(2, 2))
it should be interpreted as the affine flag graph [17] Γ=(A; 2, 2). It is well known that, for a
connected trivalent G-symmetric graph Σ , G is a homomorphic image of one of seven finitely
presented groups, G1,G1

2,G2
2, G3, G1

4,G2
4 or G5, with the subscript s indicating that Σ is (G, s)-

arc regular. The reader is referred to [3,4] for this result and the presentations of these groups.

Theorem 3.1. Let Γ be a G-symmetric graph admitting a nontrivial G-invariant partition B
such that |B| ≥ 3 and Γ [B,C] ∼= 2 · K2 or K2,2 for adjacent B,C ∈ B. Suppose that ΓB is
connected. Then ΓB is (G, 2)-arc transitive if and only if [B] is a simple graph and one of the
following (a) and (b) occurs:

(a) |B| = 3, and [B] ∼= K3 is (G B, 2)-arc transitive (that is, G B
B/G(B) ∼= S3);

(b) |B| ≥ 4 is even, [B] ∼= (|B|/2) · K2, and G B is 2-transitive on the edges of [B].

Moreover, in case (a) the following hold:

(i) Γ ∼= Ξ (ΓB,∆) for some self-paired G-orbit ∆ on Arc3(ΓB), ΓB is a trivalent (G, 2)-arc
transitive graph of type other than G2

2, and moreover any connected trivalent (G, 2)-arc
transitive graph Σ of type other than G2

2 can occur as ΓB;
(ii) one of the following (1)–(2) occurs: (1) Γ ∼= s · Ct for some s ≥ 3, t ≥ 3, Γ is (G, 2)-arc

transitive, Γ [B,C] ∼= 2 · K2, ΓB is (G, 2)-arc regular of type G1
2, and either ΓB ∼= K4 and

(Γ ,G) ∼= (4 · C3, S4), (3 · C4,PGL(2, 3)) or (3 · C4,AGL(2, 2)), or ΓB 6∼= K4 and ΓB is a
near n-gonal graph for some integer n ≥ 4; (2) Γ is 4-valent, connected and not (G, 2)-arc
transitive, ∆ = Arc3(ΓB), Γ [B,C] ∼= K2,2, and ΓB is (G, 3)-arc transitive.

In case (b), we have:

(iii) val(ΓB) = |B|/2, and |V (Γ )| = 4q for some integer q ≥ 3;
(iv) Γ is (G, 2)-arc transitive, and either Γ ∼= 2q · K2 and Γ [B,C] ∼= 2 · K2, or Γ ∼= q · K2,2

and Γ [B,C] ∼= K2,2;
(v) ΓQ ∼= q · K2, where Q = {Γ (C) ∩ B : (B,C) ∈ Arc(ΓB)} is as in Theorem 2.3(a).

In the proof of Theorem 3.1 we will exploit the main results of [10,20] and a classification
result in [17]. We will also use the following lemma, which is a restatement of a result in [22].

Lemma 3.2 ([22]). A connected trivalent G-symmetric graph Σ has a self-paired G-orbit on
Arc3(Σ ) if and only if it is not of type G2

2. Moreover, when Σ is (G, 1)-arc regular, there are
exactly two self-paired G-orbits on Arc3(Σ ); when Σ 6= K4 is (G, 2)-arc regular of type G1

2,
there are exactly two self-paired G-orbits on Arc3(Σ ), namely ∆1 := (τ, σ, σ ′, τ ′)G and ∆2
:= (τ, σ, σ ′, δ′)G (where σ, σ ′ are adjacent vertices, Σ (σ ) = {σ ′, τ, δ} and Σ (σ ′) = {σ, τ ′, δ′}),
and Ξ (Σ ,∆1), Ξ (Σ ,∆2) are both almost covers of Σ with valency 2; when Σ is (G, s)-arc
regular, where 3 ≤ s ≤ 5, the only self-paired G-orbit is ∆ := Arc3(Σ ), and Ξ (Σ ,∆) is a
connected G-symmetric but not (G, 2)-arc transitive graph of valency 4.
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Fig. 1. Proof of part (ii)(2) of Theorem 3.1. In the 3-arc graph Ξ (ΓB,∆), where ∆ = Arc3(ΓB), the vertex (σ, τ ) is
adjacent to (σ1, ε1), (σ1, δ1), (σ2, ε2) and (σ2, δ2). Similarly, (σ, σ1) is adjacent to (σ2, ε2), (σ2, δ2), (τ, τ1) and (τ, τ2),
and (σ, σ2) is adjacent to (σ1, ε1), (σ1, δ1), (τ, τ1) and (τ, τ2).

Proof of Theorem 3.1 (⇒). Suppose ΓB is (G, 2)-arc transitive. Then [B] is a simple graph by
Lemma 2.2, and val([B]) = |{C ∈ B : Γ (α)∩C 6= ∅}| by Lemma 2.1(c). Since ΓB is (G, 2)-arc
transitive, G B is 2-transitive on ΓB(B), and hence 2-transitive on the set of edges of [B] by
Lemma 2.2(a). It follows that, whenever [B] contains adjacent edges, any two edges of [B] must
be adjacent. Thus, one of the following possibilities occurs:

(A) [B] contains at least two edges, and any two edges of [B] are adjacent;
(B) [B] consists of pairwise independent edges, that is, [B] is a perfect matching.

Case (A) In this case we must have |B| = 3 and hence [B] ∼= K3. Thus, val([B]) = 2
and hence val(ΓB) = 3 by Lemma 2.1. Hence ΓB is a trivalent (G, 2)-arc transitive graph. Let
B = {α, β, γ }, and let C, D, E ∈ ΓB(B) be such that Γ (C) ∩ B = {α, β}, Γ (D) ∩ B = {β, γ }

and Γ (E) ∩ B = {γ, α}. Since ΓB is (G, 2)-arc transitive, there exists g ∈ G B such that
(C, E)g = (E,C). Since g fixes B and interchanges C and E , it interchanges Γ (C) ∩ B and
Γ (E) ∩ B, that is, {α, β}

g
= {γ, α} and {γ, α}

g
= {α, β}. Thus, we must have αg

= α, βg
= γ

and γ g
= β. Now that g ∈ Gα and [B] is G B-symmetric, it follows that [B] is (G B, 2)-arc

transitive, or equivalently G B
B/G(B) ∼= S3. Since |Γ (C) ∩ B| = |B| − 1 = 2 and [B] is simple,

we have Γ (F) ∩ B 6= Γ (F ′) ∩ B for distinct F, F ′
∈ ΓB(B) and hence from [10, Theorem 1]

there exists a self-paired G-orbit ∆ on Arc3(ΓB) such that Γ ∼= Ξ (ΓB,∆). From Lemma 3.2 it
follows that ΓB is of type other than G2

2. (It is also of type other than G1 since it is (G, 2)-arc
transitive.) From [10, Theorem 2] the case Γ [B,C] ∼= K2,2 occurs if and only if ΓB is (G, 3)-arc
transitive, which in turn is true if and only if ∆ = Arc3(ΓB) in the 3-arc graph Ξ (ΓB,∆) above.
In this case ΓB is of type G3, G1

4,G2
4 or G5, and it is clear that Γ is 4-valent. (See Fig. 1 for an

illustration.) Moreover, since in this case ΓB is connected and Γ [B,C] ∼= K2,2, Γ is connected
and not (G, 2)-arc transitive.

In the case where Γ [B,C] ∼= 2 · K2, which occurs if and only if ΓB is of type G1
2, we have

val(Γ ) = 2 and hence Γ is a union of vertex-disjoint cycles of the same length. In this case
the element g in the previous paragraph must interchange the two neighbours of α in Γ , and
hence Γ is (G, 2)-arc transitive. If ΓB ∼= K4, then (Γ ,G) ∼= (4 · C3, S4), (3 · C4,PGL(2, 3))
or (3 · C4,AGL(2, 2)) by [17, Theorem 3.19]. In the general case where ΓB 6∼= K4, since Γ
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is an almost cover of ΓB, by [20, Theorem 3.1] there exists an integer n ≥ 4 such that ΓB
is a near n-gonal graph with respect to a G-orbit E on n-cycles of ΓB. The cycles in E that
contain the 2-arcs (C, B, D), (C, B, E), (D, B, E) respectively must be pairwise distinct, and
so |E | ≥ 3. Moreover, since ∆ is the set of 3-arcs contained in cycles in E [20, Theorem 3.1], by
the definition of a 3-arc graph, each cycle in E gives rise to a cycle of Ξ (ΓB,∆) and vice versa.
Hence Γ ∼= Ξ (ΓB,∆) ∼= s · Ct , where s = |E | ≥ 3, and t ≥ 3 is the cycle length of E .

To complete the proof for case (A), we now justify that any connected trivalent (G, 2)-arc
transitive graph of type other than G2

2 can occur as ΓB. In fact, by Lemma 3.2, for such a
graph Σ there exists at least one self-paired G-orbit ∆ on Arc3(Σ ). Thus, by [10, Theorem 1]
the 3-arc graph Γ := Ξ (Σ ,∆) is a G-symmetric graph whose vertex set Arc(Σ ) admits B(Σ )
(defined in (1)) as a G-invariant partition such that ΓB(Σ ) ∼= Σ . Obviously, for such a graph
(Γ ,B(Σ )) we have |Γ (B(τ ))∩ B(σ )| = |B(σ )|−1 = 2 for (σ, τ ) ∈ Arc(Σ ) and [B(σ )] ∼= K3,
where B(η) := {(η, ε) : ε ∈ Σ (η)} for each η ∈ V (Σ ). Also, since Σ is (G, 2)-arc transitive,
Gστ is 2-transitive on Σ (σ ) \ {τ }. This is equivalent to saying that Gστ is 2-transitive on
{(σ, ε) : ε ∈ Σ (σ )\{τ }}, which is the neighbourhood of (σ, τ ) in [B(σ )]. Since Gστ ≤ G B(σ ), it
follows that [B(σ )] is (G B(σ ), 2)-arc transitive. From [10, Theorem 2], Γ [B(σ ), B(τ )] ∼= 2 · K2
if Σ is (G, 2)-arc regular, and Γ [B(σ ), B(τ )] ∼= K2,2 if Σ is (G, 3)-arc transitive.

Case (B) In this case we have |B| ≥ 4, |B| is even, and [B] ∼= (|B|/2) · K2. Hence
val(ΓB) = |B|/2 and each vertex of Γ has neighbour in exactly one block of B. Thus,
|B| ≥ val(ΓB) + 1 ≥ 3, |V (Γ )| = |B||B| = 2 val(ΓB)|B| = 4q ≥ 12, where q = |E(ΓB)|.
Clearly, if Γ [B,C] ∼= 2 · K2 then Γ ∼= 2q · K2; whilst if Γ [B,C] ∼= K2,2 then Γ ∼= q · K2,2.
In the first case Γ has no 2-arc and hence is (G, 2)-arc transitive automatically. In the second
possibility, since Gα is transitive on Γ (α) and |Γ (α)| = 2, Gα is 2-transitive on Γ (α), and
hence Γ is (G, 2)-arc transitive. Since G B is 2-transitive on ΓB(B), by Lemma 2.2(a), G B is
2-transitive on the edges of [B]. Evidently, for the G-invariant partition Q of V (Γ ), we have
ΓQ ∼= q · K2.

(⇐) We need to prove that if [B] is simple and one of (a), (b) occurs then ΓB is (G, 2)-arc
transitive. Suppose first that (a) occurs. Since [B] ∼= K3 has three edges, ΓB is trivalent by
Lemma 2.1(b). Using the notation above, there exists g ∈ Gα such that g interchanges β and γ
since [B] ∼= K3 is (G B, 2)-arc transitive. Thus, g fixes D and interchanges C and E . Hence ΓB
is (G, 2)-arc transitive. Now suppose (b) occurs. Then [B] is simple and G B is 2-transitive on
the edges of [B]. From Lemma 2.2(a), this implies that G B is 2-transitive on ΓB(B), and hence
ΓB is (G, 2)-arc transitive. �

Remark 3.3. In the case where |B| = 4, we have |Γ (C) ∩ B| = |B| − 2 = 2 for adjacent
B,C ∈ B, and hence the results in [8] apply. In fact, in this case [B] agrees with the multigraph
Γ B introduced in [8], and moreover the underlying simple graph of [B] is 2 · K2, C4 or K4. (For a
G-symmetric graph (Γ ,B)with |Γ (C)∩B| = |B|−2 ≥ 1, Γ B is defined [8] to be the multigraph
with vertex set B and edges joining the two vertices of B \ (Γ (C) ∩ B) for C ∈ ΓB(B).) From
[8, Theorems 1.3], ΓB is (G, 2)-arc transitive if and only if [B] is simple and [B] ∼= 2 · K2, and
in this case ΓB ∼= s · Ct for some s ≥ 1 and t ≥ 3, and either Γ ∼= 2st · K2 or Γ ∼= st · C4,
agreeing with (b) and (iv) of Theorem 3.1.

The next theorem tells us what happens when (Γ ,B) is a (G, 2)-arc transitive graph with
|Γ (C) ∩ B| = 2 for adjacent B,C ∈ B. In particular, it answers Question (2) for such graphs.
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Theorem 3.4. Let Γ be a (G, 2)-arc transitive graph admitting a nontrivial G-invariant
partition B such that Γ [B,C] ∼= 2 · K2 or K2,2 for adjacent B,C ∈ B. Then one of the
following (a)–(c) holds.

(a) Γ [B,C] ∼= K2,2, |B| is even, [B] ∼= (|B|/2) · K2 is simple, and Γ ∼= q · K2,2 for some q ≥ 1;
(b) Γ [B,C] ∼= 2 · K2, [B] is simple and (G B, 2)-arc transitive;
(c) Γ [B,C] ∼= 2 · K2, m = val([B]) ≥ 2, |B| is even, the underlying simple graph of [B] is the

perfect matching (|B|/2) · K2, ΓQ is (G, 2)-arc transitive with valency m, and Γ is a 2-fold
cover of ΓQ, where Q = {Γ (C) ∩ B : (B,C) ∈ Arc(ΓB)} is as in Theorem 2.3(a).

Moreover, in case (a) ΓB is (G, 2)-arc transitive if and only if G B is 2-transitive on the
edges of [B]; in case (b) ΓB is (G, 2)-arc transitive if and only if (i) |B| = 3, [B] ∼= K3,
G B

B/G(B) ∼= S3 and Γ ∼= s · Ct for some s ≥ 3, t ≥ 3, or (ii) |B| is even, [B] ∼= (|B|/2) · K2,
Γ ∼= 2q · K2 for some q ≥ 1, and G B is 2-transitive on the edges of [B]; in case (c) ΓB is
(G, 2)-arc transitive if and only if |B| = 2.

Proof. We distinguish the following three cases.
Case (A) Γ [B,C] ∼= K2,2. In this case, since Γ is (G, 2)-arc transitive we have val([B]) = 1

by Lemma 2.5(b). Thus, m = 1 and |B| = 2 val(ΓB) by Lemma 2.1. Therefore, [B] is simple,
[B] ∼= (|B|/2) · K2, and Γ ∼= q · K2,2 for some integer q ≥ 1. Hence by Lemma 2.2(a) the actions
of G B on ΓB(B) and on the edges of [B] are permutationally equivalent. Thus, ΓB is (G, 2)-arc
transitive if and only if G B is 2-transitive on the edges of [B].

Case (B) Γ [B,C] ∼= 2 · K2 and [B] is simple. In this case the actions of Gα on [B](α) and
Γ (α) are permutationally equivalent by Lemma 2.5(a). But Gα is 2-transitive on Γ (α) since Γ is
(G, 2)-arc transitive by our assumption. Hence Gα is 2-transitive on [B](α) as well. Since [B] is
G B-symmetric by Theorem 2.3, it follows that [B] is (G B, 2)-arc transitive. From Lemma 2.2(a),
ΓB is (G, 2)-arc transitive if and only if G B is 2-transitive on the set of edges of [B]. This
occurs only if either (i) |B| = 3 and [B] ∼= K3; or (ii) |B| is even, [B] ∼= (|B|/2) · K2,
and G B is 2-transitive on the edges of [B]. In case (i), we have G B

B/G(B) ∼= S3 since [B]

is (G B, 2)-arc transitive, and moreover Γ has valency 2 and thus is a union of vertex-disjoint
cycles. Furthermore, in case (i), since |Γ (C) ∩ B| = |B| − 1 = 2 for adjacent B,C ∈ B, by
[10, Theorem 1] Γ is a 3-arc graph of ΓB with respect to a self-paired G-orbit on Arc3(ΓB), and
an argument similar to the third paragraph in the proof of Theorem 3.1 ensures that Γ ∼= s ·Ct for
some s ≥ 3, t ≥ 3. In case (ii) we have Γ ∼= 2q · K2 for some integer q. Clearly, if the conditions
in (ii) are satisfied, then ΓB is (G, 2)-arc transitive. If the conditions in (i) are satisfied, then since
|B| = 3 the (G B, 2)-arc transitivity of [B] implies that G B is 2-transitive on the edges of [B],
and hence ΓB is (G, 2)-arc transitive by Lemma 2.2(a).

Case (C) Γ [B,C] ∼= 2 · K2 and m ≥ 2. In this case, for α ∈ B there exist distinct
C, D ∈ ΓB(B) such that α ∈ Γ (C) ∩ B = Γ (D) ∩ B. (Hence C, D are in the same block
of M(B).) Let β ∈ C, γ ∈ D be adjacent to α in Γ . We first show that the underlying simple
graph of [B] is a perfect matching. Suppose otherwise, then there exists E ∈ ΓB(B) such that
α ∈ Γ (E) ∩ B 6= Γ (D) ∩ B. Thus, α is adjacent to a vertex δ in E , and E, D belong to
distinct blocks ofM(B). Since Γ is (G, 2)-arc transitive, there exists g ∈ Gαβ such that γ g

= δ.
Then g ∈ G BC and Dg

= E . However, since M(B) is a G B-invariant partition of ΓB(B) by
Lemma 2.2, g ∈ G BC implies that g fixes the block of M(B) containing C and D, and on the
other hand Dg

= E implies that g permutes the block of M(B) containing D to the block of
M(B) containing E . This contradiction shows that the underlying simple graph of [B] must
be the perfect matching (|B|/2) · K2 and hence |B| is even. Thus, m = val([B]) ≥ 2. Since
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the underlying simple graph of [B] is a perfect matching, from Theorem 2.3(a) it follows that
Q = {Γ (C) ∩ B : (B,C) ∈ Arc(ΓB)} (ignoring the multiplicity of each Γ (C) ∩ B) is a
G-invariant partition of V (Γ ). It is readily seen that Γ is a 2-fold cover of ΓQ. Thus, both ΓQ
and Γ have valency m, and moreover ΓQ is (G, 2)-arc transitive since Γ is (G, 2)-arc transitive.
Hence, if |B| = 2, then Q coincides with B and hence ΓB is (G, 2)-arc transitive. On the other
hand, if |B| ≥ 4, then since [B] is not simple, ΓB is not (G, 2)-arc transitive by Theorem 3.1.
Therefore, ΓB is (G, 2)-arc transitive if and only if |B| = 2. �

Remark 3.5. From Theorem 3.4, for a (G, 2)-arc transitive graph (Γ ,B) with Γ [B,C] ∼= 2 · K2
or K2,2 for adjacent B,C ∈ B, ΓB is (G, 2)-arc transitive if and only if one of the following (a)-
(c) holds: (a) |B| is even, [B] ∼= (|B|/2)·K2 is simple, and G B is 2-transitive on the edges of [B];
(b) |B| = 3, [B] ∼= K3 is simple, and Γ [B,C] ∼= 2 · K2; (c) |B| = 2 and Γ is a 2-fold cover of
ΓB. Moreover, in case (a) we have either Γ [B,C] ∼= K2,2 and Γ ∼= q · K2,2, or Γ [B,C] ∼= 2 · K2
and Γ ∼= 2q · K2, and in case (b) we have G B

B/G(B) ∼= S3 and Γ ∼= s · Ct for some s ≥ 3, t ≥ 3.
In case (c), [B] is not necessarily simple since it may happen that m = val([B]) ≥ 2. Note that
cases (a) and (c) overlap when |B| = 2 and Γ [B,C] ∼= 2 · K2.

The reader is referred to [8, Examples 4.7 and 4.8] for examples with |Γ (C)∩B| = |B|−2 = 2
for adjacent B,C ∈ B such that Γ is (G, 2)-arc transitive but ΓB is not (G, 2)-arc transitive.

In part (c) of Theorem 3.4, ΓQ is (G, 2)-arc transitive while ΓB is not when |B| ≥ 4. These
two quotient graphs of Γ are connected by (ΓQ)B ∼= ΓB, where B := {{Γ (C) ∩ B : C ∈

ΓB(B)} : B ∈ B} (ignoring the multiplicity of Γ (C)∩ B), which is a G-invariant partition ofQ.

4. Concluding remarks

A scheme for constructing G-symmetric graphs with Γ [B,C] ∼= 2 · K2 for adjacent B,C ∈ B
was described in [6, Section 6]. In view of Theorem 3.4 and Lemma 2.5, to construct a 2-arc
transitive graph (Γ ,B) with Γ [B,C] ∼= 2 · K2 and m = 1 by using this scheme, we may
start with a G-symmetric graph ΓB and mutually isomorphic (G B, 2)-arc transitive graphs [B]

(where B ∈ V (ΓB)) on v vertices such that v val([B]) = 2 val(ΓB). The action of G on V (ΓB)
induces an action on such graphs [B]. To construct Γ we need to develop a rule [6] of labelling
each edge of [B] by an edge “BC” of ΓB, where C ∈ ΓB(B), such that the actions of G B on
such labels and on the edges of [B] are permutationally equivalent. We also need a “G-invariant
joining rule” [6] to specify how to join the end-vertices of “BC” and the end-vertices of “C B”
by two independent edges. If we can find such a rule such that, for each α ∈ B, the actions of
Gα on Γ (α) and [B](α) are permutationally equivalent, then by the (G B, 2)-arc transitivity of
[B] the graph Γ thus constructed is (G, 2)-arc transitive. Theorem 3.4 suggests that we should
choose ΓB to be G-symmetric but not (G, 2)-arc transitive in order to obtain interesting (G, 2)-
arc transitive graphs Γ by using this construction. The reader is referred to [6, Section 6] for a
few examples of this construction. One of them is Conder’s trivalent 5-arc transitive graph [2] on
75 600 vertices which can be obtained by taking [B] as Tutte’s 8-cage [1].

Finally, for a G-symmetric graph (Γ ,B) with |Γ (C) ∩ B| = 2 for adjacent B,C ∈ B, by
Theorem 2.3 the underlying simple graph of [B] is isomorphic to K|B| if and only if G B is
2-transitive on B, and in this case we have val([B]) = m(|B| − 1) and val(ΓB) = m|B|

(|B| − 1)/2. Under the assumption that Γ is G-locally primitive, G B is 3-transitive on B and ΓB
is a complete graph, it was shown in [6, Theorem 6.11] that Γ [B,C] ∼= 2 · K2 and either Γ or the
graph obtained from Γ by consistently swapping edges and non-edges of Γ [B,C] is isomorphic
to (val(ΓB)+ 1) · K|B|.

Please cite this article in press as: S. Zhou, On a class of finite symmetric graphs, European Journal of Combinatorics
(2007), doi:10.1016/j.ejc.2007.04.020



ARTICLE  IN  PRESS
S. Zhou / European Journal of Combinatorics ( ) – 11

Acknowledgments

The author thanks the anonymous referees for their valuable comments and suggestions.
The author is supported by a Discovery Project Grant (DP0558677) of the Australian Research
Council and an Early Career Researcher Grant of The University of Melbourne.

References

[1] N.L. Biggs, Algebraic Graph Theory, second ed., Cambridge University Press, Cambridge, 1993. Cambridge
Mathematical Library.

[2] M. Conder, A new 5-arc transitive cubic graph, J. Graph Theory 11 (1987) 303–307.
[3] M. Conder, P. Lorimer, Automorphism groups of symmetric graphs of valency 3, J. Combin. Theory Ser. B

47 (1989) 61–72.
[4] D.Z. Djokovic, G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29 (1980)

195–230.
[5] J.D. Dixon, B. Mortimer, Permutation Groups, Springer, New York, 1996.
[6] A. Gardiner, C.E. Praeger, A geometrical approach to imprimitive graphs, Proc. London Math. Soc. 3 (71) (1995)

524–546.
[7] A. Gardiner, C.E. Praeger, S. Zhou, Cross-ratio graphs, J. London Math. Soc. 2 (64) (2001) 257–272.
[8] M.A. Iranmanesh, C.E. Praeger, S. Zhou, Finite symmetric graphs with two-arc transitive quotients, J. Combin.

Theory Ser. B 94 (2005) 79–99.
[9] C.H. Li, The finite primitive permutation groups containing an abelian regular subgroup, Proc. London Math. Soc.

87 (2003) 162–196.
[10] C.H. Li, C.E. Praeger, S. Zhou, A class of finite symmetric graphs with 2-arc transitive quotients, Math. Proc.

Cambridge Philos. Soc. 129 (2000) 19–34.
[11] Z. Lu, S. Zhou, Finite symmetric graphs with 2-arc transitive quotients (II), J. Graph Theory (in press).
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