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Abstract

Let I" be a G-symmetric graph, and let 3 be a nontrivial G-invariant partition of the vertex set of I". This
paper aims to characterize (', G) under the conditions that the quotient graph I'g is (G, 2)-arc transitive
and the induced subgraph between two adjacent blocks is 2 - K3 or K3 ». The results answer two questions
about the relationship between I" and I'i for this class of graphs.
© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to answer two questions [8] regarding 2-arc transitivity of quotient
graphs for a class of finite symmetric graphs.

Let I' = (V(I"), E(I")) be afinite graph. For an integer s > 1, an s-arc of I" is an (s+1)-tuple
(g, 1, ..., ot5) of vertices of I" such that «;, ;1 are adjacent fori = 0,...,s — 1 and o;_1
# a1 fori =1,...,5s—1. We will use Arcg (1) to denote the set of s-arcs of I', and Arc(I") in
place of Arc(I"). I' is said to admit a group G as a group of automorphisms if G acts on V(1)
and preserves the adjacency of I, that is, forany o, 8 € V(I') and g € G, @ and B are adjacent
in I' if and only if «® and $¢ are adjacent in I'. In the case where G is transitive on V (I") and,
under the induced action, transitive on Arc, ("), I" is said to be (G, s)-arc transitive. A (G, s)-arc
transitive graph I" is called (G, s)-arc regular if G is regular on Arcg(["), that is, only the
identity element of G can fix an s-arc of I'. A 1-arc is usually called an arc, and a (G, 1)-arc
transitive graph is called a G-symmetric graph. Since Tutte’s seminal paper [16], symmetric
graphs have been studied intensively; see [14,15] for a contemporary treatment of the subject.
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Often a G-symmetric graph I" admits a nontrivial G-invariant partition, that is, a partition B
of V(I') such that B8 .= {@8 :x € B} e Band 1 < |B| < |[V(I")|forany B € Band g € G.In
this case I is called an imprimitive G-symmetric graph. The quotient graph of I" with respect to
B, I'g, is then defined to have vertex set I3 such that B, C € B are adjacent if and only if there
exists at least one edge of I" between B and C. As usual we assume without mentioning explicitly
that I’z contains at least one edge, so that each block of  is an independent set of I" (e.g. [1,
Proposition 22.1]). For blocks B, C of B adjacent in I'g, let I'[ B, C] denote the induced bipartite
subgraph of I" with bipartition {I"(C) N B, I'(B) N C}. Here we define I'(D) := |, p I' () for
each D € B, where I'(«) is the neighbourhood of « in I'. I is called [1] a | B|-fold cover of I'g if
I'[B, C] Z |B|-K> is a perfect matching between B and C. Similarly, if I'[B, C] = (|B|—1)-K>,
then I is called [20] an almost cover of I'g. The reader is referred to [6,17-21] for recent results
on imprimitive symmetric graphs.

In this paper we focus on the case where |I'(C) N B| = 2 for adjacent B, C € B, that is,
I'[B, C] = 2 - K3 (two independent edges) or K> 2 (complete bipartite graph with two vertices
in each part). In this case we may associate a multigraph [B] with each B € B3, which is
defined [6, Section 6] to have vertex set B and an edge joining the two vertices of I'(C) N B
for all C € I'p(B), where I'g(B) is the neighbourhood of B in I'g. Denote by G p the setwise
stabilizer of B in G. A near n-gonal graph [13] is a connected graph X' of girth at least 4 together
with a set £ of n-cycles of X such that each 2-arc of X' is contained in a unique member of &;
we also say that X' is a near n-gonal graph with respect to £. The following theorem summarizes
the main results of this paper.

Theorem 1.1. Let I' = (V(I'), E(I")) be a G-symmetric graph. Suppose that V (I") admits a
G-invariant partition B of block size at least three such that I'p is connected, and for any two
adjacent blocks B,C € B, I'| B, C] = 2 - Ky or K> 5. Then I'g is (G, 2)-arc transitive if and
only if [B] = K3 or (|B|/2) - K2, and G p is 2-transitive on the edge set of [ B]. Moreover, if I'g
is (G, 2)-arc transitive, then one of the following holds:

@ I' =s-Cywiths,t > 3,and I'g = K4 or I'g is a trivalent near n-gonal graph for some
integer n > 4;

(b) I'[B,C] = Kz, I is trivalent (G, 3)-arc transitive, I' is 4-valent, connected and not
(G, 2)-arc transitive;

(c) I'=2q - Ky or q - Ky 5 for some integer g > 3.

Thus ' is not (G, 2)-arc transitive when val(l') > 5.

The research in this paper was motivated by the following questions [8] for an imprimitive
G-symmetric graph (I, B).

(1) Under what circumstances is I'g (G, 2)-arc transitive, and what information can we obtain
about [' if I'g is (G, 2)-arc transitive?

(2) Assuming that I" is (G, 2)-arc transitive, under what conditions is I’z also (G, 2)-arc
transitive?

Theorem 1.1 answers Question (1) for the class of G-symmetric graphs (I, B) such that
I'[B, C] = 2-K3 or K3 2. We will also answer Question (2) for the same class (see Theorem 3.4).
The full version of Theorem 1.1 with more technical details will be given in Theorem 3.1. A study
of G-symmetric graphs (I", B) with |I'(C) N B| = 2 for adjacent B, C € B was conducted in
[6, Section 6] under the additional assumption that I" is G-locally primitive. In the present paper
we do not require I' to be G-locally primitive. (A G-symmetric graph [ is called G-locally

Please cite this article in press as: S. Zhou, On a class of finite symmetric graphs, European Journal of Combinatorics
(2007), doi:10.1016/j.jc.2007.04.020




S. Zhou / European Journal of Combinatorics | (1111) INI-111 3

primitive or G-locally imprimitive depending on whether G, is primitive or imprimitive on I (),
where G, is the stabilizer of « in G.)

The two questions above have been answered for the class [10] of imprimitive symmetric
graphs with |[I'(C) N B| = |B| — 1 > 2, and the one [8] with |[['(C) N B| = |B|—2 > 1.In[11]
symmetric graphs with 2-arc transitive quotients were studied and their connections with 2-point
transitive block designs were explored. Relationships between a symmetric graph and a quotient
graph of it in the context of Questions (1) and (2) often play an important role in studying 2-arc
transitive graphs; see [9,12,14,15] for example.

2. Preliminaries

We follow the notation and terminology in [5] for permutation groups. Let G be a group acting
on aset {2, and let X C (2. As usual we use Gx and G (x) to denote the setwise and pointwise
stabilizers of X in G, respectively. For a group G acting on two sets {2 and (2, if there exists a
bijection ¥ : {21 — (2 such that ¥ (a®) = (Y («))8 forall @ € 2| and g € G, then the actions
of G on (2] and (2 are said to be permutationally equivalent. By a graph we mean a simple
graph (i.e. without loops and multiple edges), whereas a multigraph means that multiple edges
may exist. We use val(l") to denote the valency of a graph I'. The union of n vertex-disjoint
copies of I" is denoted by n - I'. For two graphs I" and X, the lexicographic product of I' by X,
I'T Y], is the graph with vertex set V(I") x V(X)) such that («, §), (y, §) are adjacent if and only
if either «, y are adjacentin I', or « = y and B, § are adjacent in .

Let (I', B) be an imprimitive G-symmetric graph with |I'(C) N B| = 2 for adjacent blocks
B, C € B.Since I' is G-symmetric, the multigraph [ B] defined in the introduction is independent
of the choice of B up to isomorphism. For adjacent vertices «, 8 of [ B], define

(a, By ={C € I'g(B) : ['(C) N B = {«, B}}.

The cardinality m of (o, 8) is independent of the choice of adjacent o and 8, and is called the
multiplicity of [B]. Let

M(B) = {{a, B) : «, B € B are adjacent in [B]}.

The following two lemmas are straightforward, and hence we omit their proofs.

Lemma 2.1. Let I' be a G-symmetric graph admitting a nontrivial G-invariant partition B such

that I'|B, C] =2 - K5 or K2 for adjacent blocks B, C € B. Then

(a) val(I") = val([B]) or 2val([B]), accordingly,

(b) val(I'p) is equal to the number of edges of [B] and thus is a multiple of m;

(c) val([B]) = |{C € B : I'(e) NC # @}| (where « is a fixed vertex of I'), a multiple of m, and
the valency of the underlying simple graph of [B] is val([B])/m.

Lemma 2.2. Let (I', B, G) be as in Lemma 2.1. Then M(B) is a G g-invariant partition of

I's(B) with block size m, and the induced action of G g on M(B) is permutationally equivalent

to the action of Gp on the edge set of the underlying simple graph of [B] via the bijection

(o, B) <> {a, B}. In particular, the following (a) and (b) hold.

(a) If [B] is simple (that is, m = 1), then the actions of Gp on I'g(B) and on the edge set of
[B] are permutationally equivalent.

(b) If [B] has multiple edges (that is, m > 2) and |B| > 3, then I'p is G-locally imprimitive and
hence not (G, 2)-arc transitive.
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Note that for |B| = 2 the statement in Lemma 2.2(b) is invalid. In fact, a 2-fold cover I" of
a (G, 2)-arc transitive graph X' of valency at least 2 may be (G, 2)-arc transitive, and for the
natural partition B of V (I") we have m = val(X) > 2, M(B) is a trivial partition, and I'g = X
is (G, 2)-arc transitive.

The following theorem contains most information on [ B] that we will need to prove our main
results. Let G (p) and G| denote the kernels of the actions of G g on B and I'5(B), respectively.

Theorem 2.3. Let I' be a G-symmetric graph admitting a nontrivial G-invariant partition B
such that I'[B, C]1 = 2 - K3 or K> for adjacent blocks B, C € BB, where G < Aut(I"). Then the
underlying simple graph of [B] is G p-symmetric, and the components of [ B] for B running over
B form a G-invariant partition Q of V(I'). This partition Q has block size |B|/w, is a refinement
of B, and is such that Ggy = G(g), val(lg) = val(Ig)/w and I'[P, Q] = I'[B,C]
for adjacent blocks P, Q € Q, where w is the number of components of [B]. Moreover, the
following (a) and (b) hold.

(a) In the case where the underlying simple graph of [ B] is a perfect matching (hence |B| is even
and the perfect matching is (|1B|/2) - K2), we have Q = {['(C) N B : (B, C) € Arc(I'p)}
(ignoring the multiplicity of each I'(C) N B), which has block size 2, and either I' = I'g [K>]
or I' is a 2-fold cover of I'g;

(b) In the case where the underlying simple graph of [ B] is not a perfect matching, G is faithful
on both B and Q, and Gpy is a subgroup of G p); moreover, G gy = Gp) if in addition [ B]
is simple, and G gy = Gp) = 1 if [B] is simple and I'g is a complete graph.

Proof. It can be easily verified that the induced action of Gp on B preserves the adjacency of
[B] and hence the underlying simple graph of [ B] admits G p as a group of automorphisms. Let
o € Band B, y € [B](«) (the neighbourhood of « in [ B]). Then there exist C, D € I'g(B) such
that I'(C) N B = {«, B} and I'(D) N B = {«, y}. Hence « is adjacent to a vertex § € C and
a vertex ¢ € D. Since I' is G-symmetric, there exists g € G such that (¢, §)8 = («, €). Thus,
g € Gy and C& = D. Consequently, (I'(C) N B)S = I'(D) N B, thatis, {«, 8} = {«, y} and
hence 8¢ = y. This means that G, is transitive on [ B](«). Since G p is transitive on B, it follows
that the underlying simple graph of [B] is G p-symmetric. Therefore, the connected components
of [B] form a G g-invariant partition of B. From this it is straightforward to show that the set Q
of such components, for B running over B, is a G-invariant partition of V (I"). Clearly, Q is a
refinement of B with block size |B|/w, val(l'g) = val(Ip)/w, and I'[P, Q] = I'[B, C] for
adjacent blocks P, Q € Q. Since B is G-invariant and Q refines B, it follows that G(g) < G (5.
On the other hand, if g € G(5), then g fixes setwise each block of B and hence fixes I'(C) N B,
for all pairs B, C of adjacent blocks of B. In other words, g fixes each edge of [B], for all B € B.
Thus, g fixes setwise each block of Q and so g € G (o). It follows that G5y < G () and hence
G =G6-

Assume that the underlying simple graph of [B] is a perfect matching, namely (|B|/2) - K>.
Then Q@ = {I'(C) N B : (B,C) € Arc(I'g)} and thus Q has block size 2. Since '[P, Q] =
I'[B, C],either I'[P, Q] = Kz or I'[P, Q] = 2- K. In the former case we have I' = FQ[EZ],
and in the latter case I is a 2-fold cover of I'g.

In the following we assume that the underlying simple graph of [ B] is not a perfect matching.
Then |B| > 3 and this simple graph has valency at least two. Moreover, in this case distinct
vertices of B are incident with distinct sets of edges of [B]; in other words, the vertices of B
are distinguishable. Let g € G{p;. Then g fixes setwise each block of I'5(B) and hence fixes
each edge of [ B]. Since the vertices of B are distinguishable by different sets of edges of [B], it
follows that g fixes B pointwise. Therefore, G|p) is a subgroup of G (g). Similarly, any g € G ()
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fixes each edge of [ B] for all B € B. Since the vertices of B are distinguishable, it follows that g
fixes B pointwise for all B € B; in other words, g fixes each vertex of I'. Since G < Aut(I") is
faithful on V (I"), we conclude that g = 1, and hence G5y = 1. Thus, G is faithful on B. Since
Gy = G(g), G is faithful on Q as well.

In the case where [B] is simple, by Lemma 2.2(a) the actions of Gp on I'5(B) and on the
edge set of [ B] are permutationally equivalent. Thus, since any & € G (p) fixes each edge of [B],
it follows that & fixes setwise each block of I'g(B). Thatis, h € G and so Gy < Gpj. This
together with G[p] < G(p) implies G(py = Gpy. Finally, if [ B] is simple and I’ is a complete
graph, then we have I'3(B) = B\ {B} and hence G (3) = G[p] = G(5). However, G is faithful
on BB, so we have G(py = Gp] = 1 and the proof is complete. ]

Note that the condition G < Aut(I") was required only in part (b) of Theorem 2.3.

Remark 2.4. (a) That the underlying simple graph of [B] is G p-symmetric was known in
[6, Lemma 6.1] under the additional assumption that I' is G-locally primitive. In this case, either
[B] is a simple graph, or the underlying simple graph of [ B] is a perfect matching.

(b) In the case where the underlying simple graph of [ B] is a perfect matching, the faithfulness
of G (<Aut(I")) on B is not guaranteed. For example, let I" = 2 - C,, be a 2-fold cover of C,
(cycle of length n), and let G = ZywrDy,. Then I' is G-symmetric, and it admits the natural
G-invariant partition with quotient C,, such that the underlying simple graph of [ B] is isomorphic
to K. Clearly, the induced action of G on B is unfaithful.

Let us end this section by the following observations, which will be used in the next section.

Lemma 2.5. Let I' be a G-symmetric graph admitting a nontrivial G-invariant partition B such

that I'[B, C] = 2 - K5 or K> » for adjacent blocks B, C € B.

(@) If I'|B, C] = 2- K5 and [ B] is simple, then for a € B the actions of G on I'(«) and [B](«)
are permutationally equivalent, where [ Bl(«) is the neighbourhood of o in [B].

(b) If I'[ B, C] = K22 and val([B]) > 2, then the subsets I'(a) N C of I'(x), for C running
over all C € B such that I'(a) N C # @, form a Gy-invariant partition of I'(a) of block
size 2; in particular, I' is G-locally imprimitive and hence not (G, 2)-arc transitive.

Proof. (a) Since [B] is simple and I'[B, C] = 2 - K3, from (a) and (c) of Lemma 2.1 we have
|l'(a)| = |[[Bl(@)| = |{C € B: I'(a) N C # @}|. For each B € I'(x), say, B € C, the unique
vertex y of (I'(C) N B) \ {«} is a neighbour of « in [ B](«). It can be easily verified that 8 <> y
defines a bijection between I'(«) and [B](«), and the actions of G, on ['(«) and [B](«) are
permutationally equivalent with respect to this bijection.

(b) The proof is straightforward and hence omitted. [

3. Main results and proofs

Let (I', B) be an imprimitive G-symmetric graph such that I'[B, C] = 2 - K, or K> 2 for
adjacent B, C € B. If |B| = 2, then either I is a 2-fold cover of I'g, or I' = I'g[K>]. In the
former case I'i is (G, 2)-arc transitive if I" is (G, 2)-arc transitive, whilst in the latter case I is
not (G, 2)-arc transitive unless I' = g - K27 and I'g = ¢q - K> for some ¢ > 1. Thus, we may
assume |B| > 3 in the following. In answering Question (1), the case |B| = 3 invokes 3-arc
graphs of trivalent 2-arc transitive graphs, which were determined in [22]. For a regular graph X,
a subset A of Arc3(Y) is called self-paired if (t,0,0’,1") € A implies (t/,0’, 0, t) € A. For
such a A, the 3-arc graph of X with respect to A, denoted by Z(X, A), is defined [10,18]
to be the graph with vertex set Arc(X) in which (o, t), (¢/, t/) are adjacent if and only if
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(1,0,0',7") € A.In the case where Y is G-symmetric and G is transitive on A (under the
induced action of G on Arc3(X)), I := Z' (X, A) is a G-symmetric graph [10, Section 6] which
admits

B(X):={B(o):0 € V(%) (1)

as a G-invariant partition such that I'g 5y = X' with respect to the bijection o <> B(c), where
B(o) :={(o,7) : T € XY(0)}.

The following theorem is the full version of Theorem 1.1. In part (ii) of this theorem the graph
3.C4in (3-Cy4, PGL(2, 3)) is the cross-ratio graph [7,17] CR(3; 2, 1), and in (3- C4, AGL(2, 2))
it should be interpreted as the affine flag graph [17] I'=(A; 2, 2). It is well known that, for a
connected trivalent G-symmetric graph Y, G is a homomorphic image of one of seven finitely
presented groups, G1, G%, G%, Gs, G}t, Gﬁ or G'5, with the subscript s indicating that Y is (G, s)-
arc regular. The reader is referred to [3,4] for this result and the presentations of these groups.

Theorem 3.1. Let I' be a G-symmetric graph admitting a nontrivial G-invariant partition B
such that |B| > 3 and I'|B,C] = 2 - K3 or K23 for adjacent B, C € B. Suppose that I'g is
connected. Then I'g is (G, 2)-arc transitive if and only if [B] is a simple graph and one of the
following (a) and (b) occurs:

(a) |B| = 3, and [B] = K3 is (G g, 2)-arc transitive (that is, Gg/G(B) = 83);
(b) |B| = 4 iseven, [B] = (|B|/2) - K2, and G p is 2-transitive on the edges of [B].

Moreover, in case (a) the following hold:

1) I' = =g, A) for some self-paired G-orbit A on Arc3(I'g), I'g is a trivalent (G, 2)-arc
transitive graph of type other than G3, and moreover any connected trivalent (G, 2)-arc
transitive graph X' of type other than G% can occur as I'g;

(i1) one of the following (1)—(2) occurs: (1) I' = 5 - C; for some s > 3,t > 3, I' is (G, 2)-arc
transitive, I'[B, C] = 2 - K», I'g is (G, 2)-arc regular of type G1, and either I's = K4 and
(I',G) = (4-C3,8), (3-C4,PGL(2,3)) or (3-C4,AGL(2,2)), or I3 % Ksand I'gis a
near n-gonal graph for some integer n > 4; (2) I' is 4-valent, connected and not (G, 2)-arc
transitive, A = Arc3(I'g), I'[B, C1 = K22, and I'g is (G, 3)-arc transitive.

In case (b), we have:

(i) val(I'g) = |B|/2, and |V (I")| = 4q for some integer q > 3;

(iv) I is (G, 2)-arc transitive, and either I' = 2q - Ky and I'|B,C] =2 - Ky, or I' = q - K22
and I'[B, C] = K3 2;

v) I'g = q - Ko, where Q = {I'(C)N B : (B, C) € Arc(I'g)} is as in Theorem 2.3(a).

In the proof of Theorem 3.1 we will exploit the main results of [10,20] and a classification
result in [17]. We will also use the following lemma, which is a restatement of a result in [22].

Lemma 3.2 (/22]). A connected trivalent G-symmetric graph X' has a self-paired G-orbit on
Arc3 (X)) if and only if it is not of type G%. Moreover, when X is (G, 1)-arc regular, there are
exactly two self-paired G-orbits on Arc3(X); when X # K4 is (G, 2)-arc regular of type Gé,
there are exactly two self-paired G-orbits on Arcs(X), namely A) = (z,0,0’, t’)G and Ay
= (1,0,0",8)C (where o, o' are adjacent vertices, (o) = {0', T, 8} and £(¢") = {0, 7', 8'}),
and Z (X, Ay), Z(X, Ay) are both almost covers of X with valency 2; when X' is (G, s)-arc
regular, where 3 < s < 5, the only self-paired G-orbit is A = Arc3(X), and = (X, A) is a
connected G-symmetric but not (G, 2)-arc transitive graph of valency 4.
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Fig. 1. Proof of part (ii)(2) of Theorem 3.1. In the 3-arc graph ='(I'g, A), where A = Arc3(I'R), the vertex (o, 7) is
adjacent to (o1, €1), (01, 81), (02, €2) and (073, §;). Similarly, (o, o1) is adjacent to (o2, €2), (07, 82), (7, 1) and (7, 72),
and (o, 0p) is adjacent to (o1, €1), (01, 81), (7, T1) and (7, 12).

Proof of Theorem 3.1 (=). Suppose I’ is (G, 2)-arc transitive. Then [B] is a simple graph by
Lemma 2.2, and val([B]) = |{C € B : I'(a«)NC # @}| by Lemma 2.1(c). Since I'g is (G, 2)-arc
transitive, Gp is 2-transitive on I'g(B), and hence 2-transitive on the set of edges of [B] by
Lemma 2.2(a). It follows that, whenever [ B] contains adjacent edges, any two edges of [ B] must
be adjacent. Thus, one of the following possibilities occurs:

(A) [B] contains at least two edges, and any two edges of [ B] are adjacent;
(B) [B] consists of pairwise independent edges, that is, [ B] is a perfect matching.

Case (A) In this case we must have |B| = 3 and hence [B] = K3. Thus, val([B]) = 2
and hence val(/'g) = 3 by Lemma 2.1. Hence '3 is a trivalent (G, 2)-arc transitive graph. Let
B ={a,8,y},andletC, D, E € I's(B) be such that I'(C) N B = {«, B}, '(D) N B = {B, v}
and I'(E) N B = {y,a}. Since I'p is (G, 2)-arc transitive, there exists g € Gp such that
(C, E)S = (E, C). Since g fixes B and interchanges C and E, it interchanges I'(C) N B and
I'(E) N B, that is, {«, B} = {y, @} and {y, «}® = {«, B}. Thus, we must have a8 = o, 88 = y
and Y8 = B. Now that g € G4 and [B] is G g-symmetric, it follows that [B] is (G p, 2)-arc
transitive, or equivalently Gg/G(B) = §3. Since |[I'(C) N B| = |B| — 1 = 2 and [B] is simple,
we have I'(F) N B # I'(F') N B for distinct F, F' € I'g(B) and hence from [10, Theorem 1]
there exists a self-paired G-orbit A on Arc3(I'g) such that I' = = (I'g, A). From Lemma 3.2 it
follows that I'i is of type other than G%. (It is also of type other than G since it is (G, 2)-arc
transitive.) From [10, Theorem 2] the case I'[B, C] = K3 > occurs if and only if I’z is (G, 3)-arc
transitive, which in turn is true if and only if A = Arc3(I'g) in the 3-arc graph = (I'g, A) above.
In this case I3 is of type G3, G}P GZ or Gs, and it is clear that I" is 4-valent. (See Fig. 1 for an
illustration.) Moreover, since in this case g is connected and I'[B, C] = K32, I" is connected
and not (G, 2)-arc transitive.

In the case where I'[B, C] = 2 - K5, which occurs if and only if I3 is of type Gl we have
val(l") = 2 and hence I is a union of vertex-disjoint cycles of the same length. In this case
the element g in the previous paragraph must interchange the two neighbours of « in I', and
hence I' is (G, 2)-arc transitive. If I's = Ky, then (I',G) = (4 - C3, S4), (3 - C4,PGL(2, 3))
or (3 - Cs4, AGL(2, 2)) by [17, Theorem 3.19]. In the general case where I' % K4, since [’
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is an almost cover of I'g, by [20, Theorem 3.1] there exists an integer n > 4 such that I'g
is a near n-gonal graph with respect to a G-orbit £ on n-cycles of I'g. The cycles in £ that
contain the 2-arcs (C, B, D), (C, B, E), (D, B, E) respectively must be pairwise distinct, and
so |€] = 3. Moreover, since A is the set of 3-arcs contained in cycles in £ [20, Theorem 3.1], by
the definition of a 3-arc graph, each cycle in £ gives rise to a cycle of = (I'5, A) and vice versa.
Hence I' = =Z(I'g, A) =5 - C;, where s = |£] > 3, and ¢ > 3 is the cycle length of £.

To complete the proof for case (A), we now justify that any connected trivalent (G, 2)-arc
transitive graph of type other than G% can occur as I'g. In fact, by Lemma 3.2, for such a
graph X' there exists at least one self-paired G-orbit A on Arc3(X). Thus, by [10, Theorem 1]
the 3-arc graph I' := =(X, A) is a G-symmetric graph whose vertex set Arc(X') admits B(JX)
(defined in (1)) as a G-invariant partition such that I'zyx;y = . Obviously, for such a graph
(', B(X)) we have |I'(B(t))NB(o)| = |B(o)| — 1 = 2 for (0, 1) € Arc(X) and [B(0)] = K3,
where B(n) = {(n,¢) : ¢ € X (n)} for each n € V(JX). Also, since X is (G, 2)-arc transitive,
Gy is 2-transitive on Y'(o) \ {r}. This is equivalent to saying that G, is 2-transitive on
{(0,¢) : € € Y(0)\{r}}, which is the neighbourhood of (o, ) in [B(0)]. Since Gor < Gp(g), it
follows that [B(o)] is (G p(s). 2)-arc transitive. From [10, Theorem 2], I'[ B(c'), B(t)] =2 - K»
if X is (G, 2)-arc regular, and I'[B(0), B(r)] = K32 if X' is (G, 3)-arc transitive.

Case (B) In this case we have |B| > 4, |B]| is even, and [B] = (|B|/2) - K». Hence
val(I's) = |B]|/2 and each vertex of I' has neighbour in exactly one block of B. Thus,
|IB| > val(Ig) +1 > 3,|V(I")| = |B||B] =2val(IB)|B| = 4g > 12, where ¢ = |E(I'B)|.
Clearly, if I'[B,C] = 2- Ky then I' = 2q - Kp; whilstif I'[B, C] = Kz then I' = g - K2 5.
In the first case I" has no 2-arc and hence is (G, 2)-arc transitive automatically. In the second
possibility, since G, is transitive on I'(«) and |I'(¢)] = 2, G4 is 2-transitive on I'(«), and
hence I' is (G, 2)-arc transitive. Since G p is 2-transitive on ['5(B), by Lemma 2.2(a), Gp is
2-transitive on the edges of [B]. Evidently, for the G-invariant partition Q of V(I"), we have
I'g=gq-K>.

(<) We need to prove that if [B] is simple and one of (a), (b) occurs then I'gz is (G, 2)-arc
transitive. Suppose first that (a) occurs. Since [B] = K3 has three edges, [’z is trivalent by
Lemma 2.1(b). Using the notation above, there exists g € G, such that g interchanges 8 and y
since [B] = K3 is (G p, 2)-arc transitive. Thus, g fixes D and interchanges C and E. Hence I3
is (G, 2)-arc transitive. Now suppose (b) occurs. Then [B] is simple and G p is 2-transitive on
the edges of [B]. From Lemma 2.2(a), this implies that G p is 2-transitive on I g(B), and hence
I'gis (G, 2)-arc transitive. [

Remark 3.3. In the case where |B| = 4, we have |I'(C) N B| = |B| — 2 = 2 for adjacent
B, C € B, and hence the results in [8] apply. In fact, in this case [ B] agrees with the multigraph
I'B introduced in [8], and moreover the underlying simple graph of [B]is2- K3, C4 or K4. (For a
G-symmetric graph (I", B) with |[I'(C)NB| = |B|—2 > 1, I'B is defined [8] to be the multigraph
with vertex set B and edges joining the two vertices of B \ (I'(C) N B) for C € I'g(B).) From
[8, Theorems 1.3], I's is (G, 2)-arc transitive if and only if [B] is simple and [B] = 2 - K3, and
in this case I'g = 5 - C; for some s > 1 and ¢ > 3, and either I" = 2st - Ky or I' = st - Cy,
agreeing with (b) and (iv) of Theorem 3.1.

The next theorem tells us what happens when (I", B) is a (G, 2)-arc transitive graph with
|I'(C) N B| = 2 for adjacent B, C € B. In particular, it answers Question (2) for such graphs.
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Theorem 3.4. Let I' be a (G, 2)-arc transitive graph admitting a nontrivial G-invariant
partition B such that I'|B,C] = 2 - Ky or K» for adjacent B,C € B. Then one of the
following (a)—(c) holds.

(a) I'[B,C] = K2, |B|iseven, [B] = (|B|/2)- Ky is simple, and I' = q - K3 2 for some g > 1;

(b) I'[B, C] = 2 - K», [B] is simple and (G g, 2)-arc transitive;

(©) I'[ B, C] = 2- Ky, m =val([B]) = 2, | B| is even, the underlying simple graph of [B] is the
perfect matching (|B|/2) - K2, I'g is (G, 2)-arc transitive with valency m, and I’ is a 2-fold
cover of I'g, where Q ={I'(C) N\ B : (B, C) € Arc(I'g)} is as in Theorem 2.3(a).

Moreover, in case (a) I'p is (G, 2)-arc transitive if and only if Gp is 2-transitive on the
edges of [B]; in case (b) I'g is (G, 2)-arc transitive if and only if (1) |B| = 3, [B] = K3,
Gg/G(B) ESyand I' = s - Cy for some s > 3,t > 3, or (ii) |B| is even, [B] = (|B|/2) - K2,
I' = 2q - Kj for some g > 1, and Gp is 2-transitive on the edges of [B]; in case (c) I'g is
(G, 2)-arc transitive if and only if |B| = 2.

Proof. We distinguish the following three cases.

Case (A) I'[ B, C] = K7 . In this case, since I' is (G, 2)-arc transitive we have val([B]) = 1
by Lemma 2.5(b). Thus, m = 1 and |B| = 2val(I'g) by Lemma 2.1. Therefore, [ B] is simple,
[B] = (|B]/2)-K2,and I' = q - K> > for some integer g > 1. Hence by Lemma 2.2(a) the actions
of Gp on I'g(B) and on the edges of [ B] are permutationally equivalent. Thus, I'g is (G, 2)-arc
transitive if and only if G p is 2-transitive on the edges of [ B].

Case (B) I'[ B, C] = 2 - K7 and [B] is simple. In this case the actions of G, on [B](«) and
I'(«) are permutationally equivalent by Lemma 2.5(a). But G is 2-transitive on I'(«) since [ is
(G, 2)-arc transitive by our assumption. Hence G, is 2-transitive on [ B](«) as well. Since [B] is
G p-symmetric by Theorem 2.3, it follows that [ B] is (G g, 2)-arc transitive. From Lemma 2.2(a),
I'p is (G, 2)-arc transitive if and only if Gp is 2-transitive on the set of edges of [B]. This
occurs only if either (i) |[B] = 3 and [B] = Kj3; or (ii) |B] is even, [B] = (|B|/2) - K>,
and Gp is 2-transitive on the edges of [B]. In case (i), we have Gg/G(B) = 83 since [B]
is (G, 2)-arc transitive, and moreover ' has valency 2 and thus is a union of vertex-disjoint
cycles. Furthermore, in case (i), since |I'(C) N B| = |B| — 1 = 2 for adjacent B, C € B, by
[10, Theorem 1] I is a 3-arc graph of I'p with respect to a self-paired G-orbit on Arc3(/'g), and
an argument similar to the third paragraph in the proof of Theorem 3.1 ensures that I' = s - C; for
some s > 3,¢ > 3.1In case (ii) we have I' = 2q - K, for some integer ¢g. Clearly, if the conditions
in (ii) are satisfied, then I'g is (G, 2)-arc transitive. If the conditions in (i) are satisfied, then since
|B| = 3 the (G p, 2)-arc transitivity of [B] implies that G p is 2-transitive on the edges of [B],
and hence I'g is (G, 2)-arc transitive by Lemma 2.2(a).

Case (C) I'[B,C] = 2 - Ky and m > 2. In this case, for « € B there exist distinct
C,D € I'p(B) suchthat € I'(C)N B = I'(D) N B. (Hence C, D are in the same block
of M(B).) Let 8 € C,y € D be adjacent to « in I". We first show that the underlying simple
graph of [B] is a perfect matching. Suppose otherwise, then there exists E € I'g(B) such that
o € I'(E)N B # I'(D) N B. Thus, « is adjacent to a vertex § in E, and E, D belong to
distinct blocks of M(B). Since I' is (G, 2)-arc transitive, there exists g € Gq4g such that y& = 4.
Then g € Gpc and D& = E. However, since M(B) is a G g-invariant partition of I'z(B) by
Lemma 2.2, g € G pc implies that g fixes the block of M (B) containing C and D, and on the
other hand D8 = E implies that g permutes the block of M(B) containing D to the block of
M(B) containing E. This contradiction shows that the underlying simple graph of [B] must
be the perfect matching (|B|/2) - K> and hence |B| is even. Thus, m = val([B]) > 2. Since

Please cite this article in press as: S. Zhou, On a class of finite symmetric graphs, European Journal of Combinatorics
(2007), doi:10.1016/j.ejc.2007.04.020




10 S. Zhou / European Journal of Combinatorics 1 (1111) II1-111

the underlying simple graph of [B] is a perfect matching, from Theorem 2.3(a) it follows that
Q ={I'(C)NB : (B,C) € Arc(IB)} (ignoring the multiplicity of each I'(C) N B) is a
G-invariant partition of V (I'). It is readily seen that I" is a 2-fold cover of I'g. Thus, both I'g
and I" have valency m, and moreover I'g is (G, 2)-arc transitive since I" is (G, 2)-arc transitive.
Hence, if |B] = 2, then Q coincides with B and hence I'g is (G, 2)-arc transitive. On the other
hand, if |B| > 4, then since [B] is not simple, I’ is not (G, 2)-arc transitive by Theorem 3.1.
Therefore, I'g is (G, 2)-arc transitive if and only if |[B| =2. O

Remark 3.5. From Theorem 3.4, for a (G, 2)-arc transitive graph (I", B) with I'[B, C]1 = 2- K,
or K> ; for adjacent B, C € B, I'g is (G, 2)-arc transitive if and only if one of the following (a)-
(c) holds: (a) |B] is even, [B] = (|B|/2)- K5 is simple, and G p is 2-transitive on the edges of [ B];
(b) |B| = 3,[B] = K3 is simple, and I'[B,C] = 2 - K3; (c) |B] = 2 and [ is a 2-fold cover of
I'p. Moreover, in case (a) we have either I'[B, C] = Kz and I' = ¢q-Kyp,0r ['[B,C] =2-K»
and I' = 2¢q - K», and in case (b) we have Gg/G(B) =S3and ' =5 -C; forsomes > 3,t > 3.
In case (c), [B] is not necessarily simple since it may happen that m = val([B]) > 2. Note that
cases (a) and (c) overlap when |B| =2 and I'[B,C] =2 - K>.

The reader is referred to [8, Examples 4.7 and 4.8] for examples with |I'(C)NB| = |[B|—-2 =2
for adjacent B, C € B such that I" is (G, 2)-arc transitive but I’z is not (G, 2)-arc transitive.

In part (c) of Theorem 3.4, I'g is (G, 2)-arc transitive while I'5 is not when |B| > 4. These
two quotient graphs of I' are connected by (I'g)p = Iz, where B := {{I(C)NB : C €
I'y(B)} : B € B} (ignoring the multiplicity of I'(C) N B), which is a G-invariant partition of Q.

4. Concluding remarks

A scheme for constructing G-symmetric graphs with I'[ B, C] = 2- K for adjacent B, C € B
was described in [6, Section 6]. In view of Theorem 3.4 and Lemma 2.5, to construct a 2-arc
transitive graph (I", B) with I'[B,C] = 2 - K, and m = 1 by using this scheme, we may
start with a G-symmetric graph 'z and mutually isomorphic (G p, 2)-arc transitive graphs [B]
(where B € V(I'g)) on v vertices such that v val([B]) = 2 val(/'g). The action of G on V(I'5)
induces an action on such graphs [B]. To construct I" we need to develop a rule [6] of labelling
each edge of [B] by an edge “BC” of I'g, where C € I's(B), such that the actions of Gp on
such labels and on the edges of [ B] are permutationally equivalent. We also need a “G-invariant
joining rule” [6] to specify how to join the end-vertices of “BC” and the end-vertices of “C B”
by two independent edges. If we can find such a rule such that, for each « € B, the actions of
G, on I'(«¢) and [B](«) are permutationally equivalent, then by the (G g, 2)-arc transitivity of
[B] the graph I" thus constructed is (G, 2)-arc transitive. Theorem 3.4 suggests that we should
choose 'z to be G-symmetric but not (G, 2)-arc transitive in order to obtain interesting (G, 2)-
arc transitive graphs I' by using this construction. The reader is referred to [6, Section 6] for a
few examples of this construction. One of them is Conder’s trivalent 5-arc transitive graph [2] on
75 600 vertices which can be obtained by taking [B] as Tutte’s 8-cage [1].

Finally, for a G-symmetric graph (I, B) with [I'(C) N B| = 2 for adjacent B, C € B, by
Theorem 2.3 the underlying simple graph of [B] is isomorphic to K)p| if and only if Gp is
2-transitive on B, and in this case we have val([B]) = m(|B| — 1) and val(I'g) = m|B|
(|B| — 1)/2. Under the assumption that I" is G-locally primitive, G g is 3-transitive on B and I'p
is a complete graph, it was shown in [6, Theorem 6.11] that I'[B, C] = 2- K> and either I or the
graph obtained from I' by consistently swapping edges and non-edges of I'[B, C] is isomorphic
to (val(Ig) + 1) - K|p.
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