

Available online at www.sciencedirect.com

European Journal of Combinatorics

European Journal of Combinatorics I (IIII) III-III

www.elsevier.com/locate/ejc

On a class of finite symmetric graphs

Sanming Zhou¹

Department of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia

Received 15 March 2006; accepted 2 April 2007

Dedicated to Professor Yixun Lin with best wishes on the occasion of his 70th birthday

Abstract

Let Γ be a *G*-symmetric graph, and let \mathcal{B} be a nontrivial *G*-invariant partition of the vertex set of Γ . This paper aims to characterize (Γ , *G*) under the conditions that the quotient graph $\Gamma_{\mathcal{B}}$ is (*G*, 2)-arc transitive and the induced subgraph between two adjacent blocks is $2 \cdot K_2$ or $K_{2,2}$. The results answer two questions about the relationship between Γ and $\Gamma_{\mathcal{B}}$ for this class of graphs. (© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to answer two questions [8] regarding 2-arc transitivity of quotient graphs for a class of finite symmetric graphs.

Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a finite graph. For an integer $s \ge 1$, an *s*-arc of Γ is an (s+1)-tuple $(\alpha_0, \alpha_1, \ldots, \alpha_s)$ of vertices of Γ such that α_i, α_{i+1} are adjacent for $i = 0, \ldots, s - 1$ and $\alpha_{i-1} \ne \alpha_{i+1}$ for $i = 1, \ldots, s - 1$. We will use $\operatorname{Arc}_s(\Gamma)$ to denote the set of *s*-arcs of Γ , and $\operatorname{Arc}(\Gamma)$ in place of $\operatorname{Arc}_1(\Gamma)$. Γ is said to admit a group G as a group of automorphisms if G acts on $V(\Gamma)$ and preserves the adjacency of Γ , that is, for any $\alpha, \beta \in V(\Gamma)$ and $g \in G, \alpha$ and β are adjacent in Γ if and only if α^g and β^g are adjacent in Γ . In the case where G is transitive on $V(\Gamma)$ and, under the induced action, transitive on $\operatorname{Arc}_s(\Gamma)$, Γ is said to be (G, s)-arc transitive. A (G, s)-arc transitive graph Γ is called (G, s)-arc of Γ . A 1-arc is usually called an arc, and a (G, 1)-arc transitive graph is called a *G*-symmetric graph. Since Tutte's seminal paper [16], symmetric graphs have been studied intensively; see [14,15] for a contemporary treatment of the subject.

0195-6698/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.ejc.2007.04.020

Please cite this article in press as: S. Zhou, On a class of finite symmetric graphs, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.04.020

E-mail address: smzhou@ms.unimelb.edu.au.

¹ Tel.: +61 3 8344 3453; fax: +61 3 8344 4599.

S. Zhou / European Journal of Combinatorics & (*****)

Often a *G*-symmetric graph Γ admits a *nontrivial G-invariant partition*, that is, a partition \mathcal{B} of $V(\Gamma)$ such that $B^g := \{\alpha^g : \alpha \in B\} \in \mathcal{B}$ and $1 < |B| < |V(\Gamma)|$ for any $B \in \mathcal{B}$ and $g \in G$. In this case Γ is called an *imprimitive G-symmetric graph*. The *quotient graph* of Γ with respect to \mathcal{B} , $\Gamma_{\mathcal{B}}$, is then defined to have vertex set \mathcal{B} such that $B, C \in \mathcal{B}$ are adjacent if and only if there exists at least one edge of Γ between B and C. As usual we assume without mentioning explicitly that $\Gamma_{\mathcal{B}}$ contains at least one edge, so that each block of \mathcal{B} is an independent set of Γ (e.g. [1, Proposition 22.1]). For blocks B, C of \mathcal{B} adjacent in $\Gamma_{\mathcal{B}}$, let $\Gamma[B, C]$ denote the induced bipartite subgraph of Γ with bipartition $\{\Gamma(C) \cap B, \Gamma(B) \cap C\}$. Here we define $\Gamma(D) := \bigcup_{\alpha \in D} \Gamma(\alpha)$ for each $D \in \mathcal{B}$, where $\Gamma(\alpha)$ is the neighbourhood of α in Γ . Γ is called [1] a |B|-fold cover of $\Gamma_{\mathcal{B}}$ if $\Gamma[B, C] \cong |B| \cdot K_2$ is a perfect matching between B and C. Similarly, if $\Gamma[B, C] \cong (|B|-1) \cdot K_2$, then Γ is called [20] an *almost cover* of $\Gamma_{\mathcal{B}}$. The reader is referred to [6,17–21] for recent results on imprimitive symmetric graphs.

In this paper we focus on the case where $|\Gamma(C) \cap B| = 2$ for adjacent $B, C \in \mathcal{B}$, that is, $\Gamma[B, C] \cong 2 \cdot K_2$ (two independent edges) or $K_{2,2}$ (complete bipartite graph with two vertices in each part). In this case we may associate a multigraph [B] with each $B \in \mathcal{B}$, which is defined [6, Section 6] to have vertex set B and an edge joining the two vertices of $\Gamma(C) \cap B$ for all $C \in \Gamma_{\mathcal{B}}(B)$, where $\Gamma_{\mathcal{B}}(B)$ is the neighbourhood of B in $\Gamma_{\mathcal{B}}$. Denote by G_B the setwise stabilizer of B in G. A *near n-gonal graph* [13] is a connected graph Σ of girth at least 4 together with a set \mathcal{E} of *n*-cycles of Σ such that each 2-arc of Σ is contained in a unique member of \mathcal{E} ; we also say that Σ is a near *n*-gonal graph with respect to \mathcal{E} . The following theorem summarizes the main results of this paper.

Theorem 1.1. Let $\Gamma = (V(\Gamma), E(\Gamma))$ be a *G*-symmetric graph. Suppose that $V(\Gamma)$ admits a *G*-invariant partition \mathcal{B} of block size at least three such that $\Gamma_{\mathcal{B}}$ is connected, and for any two adjacent blocks $B, C \in \mathcal{B}, \Gamma[B, C] \cong 2 \cdot K_2$ or $K_{2,2}$. Then $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive if and only if $[B] \cong K_3$ or $(|B|/2) \cdot K_2$, and G_B is 2-transitive on the edge set of [B]. Moreover, if $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive, then one of the following holds:

- (a) $\Gamma \cong s \cdot C_t$ with $s, t \ge 3$, and $\Gamma_{\mathcal{B}} \cong K_4$ or $\Gamma_{\mathcal{B}}$ is a trivalent near n-gonal graph for some integer $n \ge 4$;
- (b) $\Gamma[B, C] \cong K_{2,2}$, $\Gamma_{\mathcal{B}}$ is trivalent (G, 3)-arc transitive, Γ is 4-valent, connected and not (G, 2)-arc transitive;
- (c) $\Gamma \cong 2q \cdot K_2 \text{ or } q \cdot K_{2,2} \text{ for some integer } q \ge 3.$

Thus $\Gamma_{\mathcal{B}}$ is not (G, 2)-arc transitive when $val(\Gamma) \geq 5$.

The research in this paper was motivated by the following questions [8] for an imprimitive G-symmetric graph (Γ , \mathcal{B}).

- (1) Under what circumstances is $\Gamma_{\mathcal{B}}(G, 2)$ -arc transitive, and what information can we obtain about Γ if $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive?
- (2) Assuming that Γ is (G, 2)-arc transitive, under what conditions is $\Gamma_{\mathcal{B}}$ also (G, 2)-arc transitive?

Theorem 1.1 answers Question (1) for the class of *G*-symmetric graphs (Γ , \mathcal{B}) such that $\Gamma[B, C] \cong 2 \cdot K_2$ or $K_{2,2}$. We will also answer Question (2) for the same class (see Theorem 3.4). The full version of Theorem 1.1 with more technical details will be given in Theorem 3.1. A study of *G*-symmetric graphs (Γ , \mathcal{B}) with $|\Gamma(C) \cap B| = 2$ for adjacent $B, C \in \mathcal{B}$ was conducted in [6, Section 6] under the additional assumption that Γ is *G*-locally primitive. In the present paper we do not require Γ to be *G*-locally primitive. (A *G*-symmetric graph Γ is called *G*-locally

primitive or *G*-locally imprimitive depending on whether G_{α} is primitive or imprimitive on $\Gamma(\alpha)$, where G_{α} is the stabilizer of α in *G*.)

The two questions above have been answered for the class [10] of imprimitive symmetric graphs with $|\Gamma(C) \cap B| = |B| - 1 \ge 2$, and the one [8] with $|\Gamma(C) \cap B| = |B| - 2 \ge 1$. In [11] symmetric graphs with 2-arc transitive quotients were studied and their connections with 2-point transitive block designs were explored. Relationships between a symmetric graph and a quotient graph of it in the context of Questions (1) and (2) often play an important role in studying 2-arc transitive graphs; see [9,12,14,15] for example.

2. Preliminaries

We follow the notation and terminology in [5] for permutation groups. Let G be a group acting on a set Ω , and let $X \subseteq \Omega$. As usual we use G_X and $G_{(X)}$ to denote the setwise and pointwise stabilizers of X in G, respectively. For a group G acting on two sets Ω_1 and Ω_2 , if there exists a bijection $\psi : \Omega_1 \to \Omega_2$ such that $\psi(\alpha^g) = (\psi(\alpha))^g$ for all $\alpha \in \Omega_1$ and $g \in G$, then the actions of G on Ω_1 and Ω_2 are said to be *permutationally equivalent*. By a graph we mean a *simple* graph (i.e. without loops and multiple edges), whereas a *multigraph* means that multiple edges may exist. We use $val(\Gamma)$ to denote the *valency* of a graph Γ . The union of n vertex-disjoint copies of Γ is denoted by $n \cdot \Gamma$. For two graphs Γ and Σ , the *lexicographic product* of Γ by Σ , $\Gamma[\Sigma]$, is the graph with vertex set $V(\Gamma) \times V(\Sigma)$ such that $(\alpha, \beta), (\gamma, \delta)$ are adjacent if and only if either α, γ are adjacent in Γ , or $\alpha = \gamma$ and β, δ are adjacent in Σ .

Let (Γ, \mathcal{B}) be an imprimitive *G*-symmetric graph with $|\Gamma(C) \cap B| = 2$ for adjacent blocks $B, C \in \mathcal{B}$. Since Γ is *G*-symmetric, the multigraph [*B*] defined in the introduction is independent of the choice of *B* up to isomorphism. For adjacent vertices α, β of [*B*], define

 $\langle \alpha, \beta \rangle := \{ C \in \Gamma_{\mathcal{B}}(B) : \Gamma(C) \cap B = \{ \alpha, \beta \} \}.$

The cardinality *m* of $\langle \alpha, \beta \rangle$ is independent of the choice of adjacent α and β , and is called the *multiplicity* of [*B*]. Let

 $\mathcal{M}(B) := \{ \langle \alpha, \beta \rangle : \alpha, \beta \in B \text{ are adjacent in } [B] \}.$

The following two lemmas are straightforward, and hence we omit their proofs.

Lemma 2.1. Let Γ be a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} such that $\Gamma[B, C] \cong 2 \cdot K_2$ or $K_{2,2}$ for adjacent blocks $B, C \in \mathcal{B}$. Then

(a) $val(\Gamma) = val([B])$ or 2val([B]), accordingly;

(b) $val(\Gamma_{\mathcal{B}})$ is equal to the number of edges of [B] and thus is a multiple of m;

(c) $val([B]) = |\{C \in \mathcal{B} : \Gamma(\alpha) \cap C \neq \emptyset\}|$ (where α is a fixed vertex of Γ), a multiple of m, and the valency of the underlying simple graph of [B] is val([B])/m.

Lemma 2.2. Let (Γ, \mathcal{B}, G) be as in Lemma 2.1. Then $\mathcal{M}(B)$ is a G_B -invariant partition of $\Gamma_{\mathcal{B}}(B)$ with block size m, and the induced action of G_B on $\mathcal{M}(B)$ is permutationally equivalent to the action of G_B on the edge set of the underlying simple graph of [B] via the bijection $\langle \alpha, \beta \rangle \leftrightarrow \{\alpha, \beta\}$. In particular, the following (a) and (b) hold.

- (a) If [B] is simple (that is, m = 1), then the actions of G_B on $\Gamma_{\mathcal{B}}(B)$ and on the edge set of [B] are permutationally equivalent.
- (b) If [B] has multiple edges (that is, m ≥ 2) and |B| ≥ 3, then Γ_B is G-locally imprimitive and hence not (G, 2)-arc transitive.

Please cite this article in press as: S. Zhou, On a class of finite symmetric graphs, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.04.020

Note that for |B| = 2 the statement in Lemma 2.2(b) is invalid. In fact, a 2-fold cover Γ of a (G, 2)-arc transitive graph Σ of valency at least 2 may be (G, 2)-arc transitive, and for the natural partition \mathcal{B} of $V(\Gamma)$ we have $m = \operatorname{val}(\Sigma) \ge 2$, $\mathcal{M}(B)$ is a trivial partition, and $\Gamma_{\mathcal{B}} \cong \Sigma$ is (G, 2)-arc transitive.

The following theorem contains most information on [B] that we will need to prove our main results. Let $G_{(B)}$ and $G_{[B]}$ denote the kernels of the actions of G_B on B and $\Gamma_{\mathcal{B}}(B)$, respectively.

Theorem 2.3. Let Γ be a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} such that $\Gamma[B, C] \cong 2 \cdot K_2$ or $K_{2,2}$ for adjacent blocks $B, C \in \mathcal{B}$, where $G \leq \operatorname{Aut}(\Gamma)$. Then the underlying simple graph of [B] is G_B -symmetric, and the components of [B] for B running over \mathcal{B} form a *G*-invariant partition \mathcal{Q} of $V(\Gamma)$. This partition \mathcal{Q} has block size $|B|/\omega$, is a refinement of \mathcal{B} , and is such that $G_{(\mathcal{B})} = G_{(\mathcal{Q})}$, $\operatorname{val}(\Gamma_{\mathcal{Q}}) = \operatorname{val}(\Gamma_{\mathcal{B}})/\omega$ and $\Gamma[P, Q] \cong \Gamma[B, C]$ for adjacent blocks $P, Q \in \mathcal{Q}$, where ω is the number of components of [B]. Moreover, the following (a) and (b) hold.

- (a) In the case where the underlying simple graph of [B] is a perfect matching (hence |B| is even and the perfect matching is $(|B|/2) \cdot K_2$), we have $Q = \{\Gamma(C) \cap B : (B, C) \in \operatorname{Arc}(\Gamma_{\mathcal{B}})\}$ (ignoring the multiplicity of each $\Gamma(C) \cap B$), which has block size 2, and either $\Gamma \cong \Gamma_{Q}[\overline{K}_2]$ or Γ is a 2-fold cover of Γ_{Q} ;
- (b) In the case where the underlying simple graph of [B] is not a perfect matching, G is faithful on both \mathcal{B} and \mathcal{Q} , and $G_{[B]}$ is a subgroup of $G_{(B)}$; moreover, $G_{(B)} = G_{[B]}$ if in addition [B] is simple, and $G_{(B)} = G_{[B]} = 1$ if [B] is simple and $\Gamma_{\mathcal{B}}$ is a complete graph.

Proof. It can be easily verified that the induced action of G_B on B preserves the adjacency of [B] and hence the underlying simple graph of [B] admits G_B as a group of automorphisms. Let $\alpha \in B$ and $\beta, \gamma \in [B](\alpha)$ (the neighbourhood of α in [B]). Then there exist $C, D \in \Gamma_{\mathcal{B}}(B)$ such that $\Gamma(C) \cap B = \{\alpha, \beta\}$ and $\Gamma(D) \cap B = \{\alpha, \gamma\}$. Hence α is adjacent to a vertex $\delta \in C$ and a vertex $\varepsilon \in D$. Since Γ is G-symmetric, there exists $g \in G$ such that $(\alpha, \delta)^g = (\alpha, \varepsilon)$. Thus, $g \in G_{\alpha}$ and $C^g = D$. Consequently, $(\Gamma(C) \cap B)^g = \Gamma(D) \cap B$, that is, $\{\alpha, \beta\}^g = \{\alpha, \gamma\}$ and hence $\beta^g = \gamma$. This means that G_{α} is transitive on $[B](\alpha)$. Since G_B is transitive on B, it follows that the underlying simple graph of [B] is G_B -symmetric. Therefore, the connected components of [B] form a G_B -invariant partition of B. From this it is straightforward to show that the set Qof such components, for B running over \mathcal{B} , is a G-invariant partition of $V(\Gamma)$. Clearly, \mathcal{Q} is a refinement of \mathcal{B} with block size $|B|/\omega$, $\operatorname{val}(\Gamma_{\mathcal{O}}) = \operatorname{val}(\Gamma_{\mathcal{B}})/\omega$, and $\Gamma[P, Q] \cong \Gamma[B, C]$ for adjacent blocks $P, Q \in Q$. Since \mathcal{B} is G-invariant and Q refines \mathcal{B} , it follows that $G_{(Q)} \leq G_{(\mathcal{B})}$. On the other hand, if $g \in G_{(\mathcal{B})}$, then g fixes setwise each block of \mathcal{B} and hence fixes $\Gamma(C) \cap B$, for all pairs B, C of adjacent blocks of \mathcal{B} . In other words, g fixes each edge of [B], for all $B \in \mathcal{B}$. Thus, g fixes setwise each block of Q and so $g \in G_{(Q)}$. It follows that $G_{(B)} \leq G_{(Q)}$ and hence $G_{(\mathcal{B})} = G_{(\mathcal{Q})}.$

Assume that the underlying simple graph of [B] is a perfect matching, namely $(|B|/2) \cdot K_2$. Then $\mathcal{Q} = \{\Gamma(C) \cap B : (B, C) \in \operatorname{Arc}(\Gamma_{\mathcal{B}})\}$ and thus \mathcal{Q} has block size 2. Since $\Gamma[P, Q] \cong \Gamma[B, C]$, either $\Gamma[P, Q] \cong K_{2,2}$ or $\Gamma[P, Q] \cong 2 \cdot K_2$. In the former case we have $\Gamma \cong \Gamma_{\mathcal{Q}}[\overline{K}_2]$, and in the latter case Γ is a 2-fold cover of $\Gamma_{\mathcal{Q}}$.

In the following we assume that the underlying simple graph of [B] is not a perfect matching. Then $|B| \ge 3$ and this simple graph has valency at least two. Moreover, in this case distinct vertices of B are incident with distinct sets of edges of [B]; in other words, the vertices of Bare distinguishable. Let $g \in G_{[B]}$. Then g fixes setwise each block of $\Gamma_{\mathcal{B}}(B)$ and hence fixes each edge of [B]. Since the vertices of B are distinguishable by different sets of edges of [B], it follows that g fixes B pointwise. Therefore, $G_{[B]}$ is a subgroup of $G_{(B)}$. Similarly, any $g \in G_{(\mathcal{B})}$

fixes each edge of [B] for all $B \in \mathcal{B}$. Since the vertices of B are distinguishable, it follows that g fixes B pointwise for all $B \in \mathcal{B}$; in other words, g fixes each vertex of Γ . Since $G \leq \operatorname{Aut}(\Gamma)$ is faithful on $V(\Gamma)$, we conclude that g = 1, and hence $G_{(\mathcal{B})} = 1$. Thus, G is faithful on \mathcal{B} . Since $G_{(\mathcal{B})} = G_{(\mathcal{Q})}$, G is faithful on \mathcal{Q} as well.

In the case where [B] is simple, by Lemma 2.2(a) the actions of G_B on $\Gamma_{\mathcal{B}}(B)$ and on the edge set of [B] are permutationally equivalent. Thus, since any $h \in G_{(B)}$ fixes each edge of [B], it follows that h fixes setwise each block of $\Gamma_{\mathcal{B}}(B)$. That is, $h \in G_{[B]}$ and so $G_{(B)} \leq G_{[B]}$. This together with $G_{[B]} \leq G_{(B)}$ implies $G_{(B)} = G_{[B]}$. Finally, if [B] is simple and $\Gamma_{\mathcal{B}}$ is a complete graph, then we have $\Gamma_{\mathcal{B}}(B) = \mathcal{B} \setminus \{B\}$ and hence $G_{(B)} = G_{[B]} = G_{(\mathcal{B})}$. However, G is faithful on \mathcal{B} , so we have $G_{(B)} = G_{[B]} = 1$ and the proof is complete. \Box

Note that the condition $G \leq \operatorname{Aut}(\Gamma)$ was required only in part (b) of Theorem 2.3.

Remark 2.4. (a) That the underlying simple graph of [B] is G_B -symmetric was known in [6, Lemma 6.1] under the additional assumption that Γ is G-locally primitive. In this case, either [B] is a simple graph, or the underlying simple graph of [B] is a perfect matching.

(b) In the case where the underlying simple graph of [B] is a perfect matching, the faithfulness of $G (\leq \operatorname{Aut}(\Gamma))$ on \mathcal{B} is not guaranteed. For example, let $\Gamma = 2 \cdot C_n$ be a 2-fold cover of C_n (cycle of length *n*), and let $G = \mathbb{Z}_2 \operatorname{wr} D_{2n}$. Then Γ is *G*-symmetric, and it admits the natural *G*-invariant partition with quotient C_n such that the underlying simple graph of [B] is isomorphic to K_2 . Clearly, the induced action of *G* on \mathcal{B} is unfaithful.

Let us end this section by the following observations, which will be used in the next section.

Lemma 2.5. Let Γ be a *G*-symmetric graph admitting a nontrivial *G*-invariant partition \mathcal{B} such that $\Gamma[B, C] \cong 2 \cdot K_2$ or $K_{2,2}$ for adjacent blocks $B, C \in \mathcal{B}$.

- (a) If $\Gamma[B, C] \cong 2 \cdot K_2$ and [B] is simple, then for $\alpha \in B$ the actions of G_{α} on $\Gamma(\alpha)$ and [B](α) are permutationally equivalent, where [B](α) is the neighbourhood of α in [B].
- (b) If $\Gamma[B, C] \cong K_{2,2}$ and $\operatorname{val}([B]) \ge 2$, then the subsets $\Gamma(\alpha) \cap C$ of $\Gamma(\alpha)$, for C running over all $C \in \mathcal{B}$ such that $\Gamma(\alpha) \cap C \neq \emptyset$, form a G_{α} -invariant partition of $\Gamma(\alpha)$ of block size 2; in particular, Γ is G-locally imprimitive and hence not (G, 2)-arc transitive.

Proof. (a) Since [B] is simple and $\Gamma[B, C] \cong 2 \cdot K_2$, from (a) and (c) of Lemma 2.1 we have $|\Gamma(\alpha)| = |[B](\alpha)| = |\{C \in \mathcal{B} : \Gamma(\alpha) \cap C \neq \emptyset\}|$. For each $\beta \in \Gamma(\alpha)$, say, $\beta \in C$, the unique vertex γ of $(\Gamma(C) \cap B) \setminus \{\alpha\}$ is a neighbour of α in $[B](\alpha)$. It can be easily verified that $\beta \leftrightarrow \gamma$ defines a bijection between $\Gamma(\alpha)$ and $[B](\alpha)$, and the actions of G_{α} on $\Gamma(\alpha)$ and $[B](\alpha)$ are permutationally equivalent with respect to this bijection.

(b) The proof is straightforward and hence omitted. \Box

3. Main results and proofs

Let (Γ, \mathcal{B}) be an imprimitive *G*-symmetric graph such that $\Gamma[B, C] \cong 2 \cdot K_2$ or $K_{2,2}$ for adjacent $B, C \in \mathcal{B}$. If |B| = 2, then either Γ is a 2-fold cover of $\Gamma_{\mathcal{B}}$, or $\Gamma = \Gamma_{\mathcal{B}}[\overline{K}_2]$. In the former case $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive if Γ is (G, 2)-arc transitive, whilst in the latter case Γ is not (G, 2)-arc transitive unless $\Gamma \cong q \cdot K_{2,2}$ and $\Gamma_{\mathcal{B}} \cong q \cdot K_2$ for some $q \ge 1$. Thus, we may assume $|B| \ge 3$ in the following. In answering Question (1), the case |B| = 3 invokes 3-arc graphs of trivalent 2-arc transitive graphs, which were determined in [22]. For a regular graph Σ , a subset Δ of $\operatorname{Arc}_3(\Sigma)$ is called *self-paired* if $(\tau, \sigma, \sigma', \tau') \in \Delta$ implies $(\tau', \sigma', \sigma, \tau) \in \Delta$. For such a Δ , the 3-*arc graph* of Σ with respect to Δ , denoted by $\Xi(\Sigma, \Delta)$, is defined [10,18] to be the graph with vertex set $\operatorname{Arc}(\Sigma)$ in which $(\sigma, \tau), (\sigma', \tau')$ are adjacent if and only if

S. Zhou / European Journal of Combinatorics ((1111) 111-111

 $(\tau, \sigma, \sigma', \tau') \in \Delta$. In the case where Σ is *G*-symmetric and *G* is transitive on Δ (under the induced action of *G* on Arc₃(Σ)), $\Gamma := \Xi(\Sigma, \Delta)$ is a *G*-symmetric graph [10, Section 6] which admits

$$\mathcal{B}(\varSigma) := \{B(\sigma) : \sigma \in V(\varSigma)\}$$
⁽¹⁾

as a *G*-invariant partition such that $\Gamma_{\mathcal{B}(\Sigma)} \cong \Sigma$ with respect to the bijection $\sigma \leftrightarrow B(\sigma)$, where $B(\sigma) := \{(\sigma, \tau) : \tau \in \Sigma(\sigma)\}.$

The following theorem is the full version of Theorem 1.1. In part (ii) of this theorem the graph $3 \cdot C_4$ in $(3 \cdot C_4, \text{PGL}(2, 3))$ is the cross-ratio graph [7,17] CR(3; 2, 1), and in $(3 \cdot C_4, \text{AGL}(2, 2))$ it should be interpreted as the affine flag graph [17] $\Gamma^{=}(A; 2, 2)$. It is well known that, for a connected trivalent *G*-symmetric graph Σ , *G* is a homomorphic image of one of seven finitely presented groups, $G_1, G_2^1, G_2^2, G_3, G_4^1, G_4^2$ or G_5 , with the subscript *s* indicating that Σ is (G, s)-arc regular. The reader is referred to [3,4] for this result and the presentations of these groups.

Theorem 3.1. Let Γ be a G-symmetric graph admitting a nontrivial G-invariant partition \mathcal{B} such that $|B| \ge 3$ and $\Gamma[B, C] \cong 2 \cdot K_2$ or $K_{2,2}$ for adjacent $B, C \in \mathcal{B}$. Suppose that $\Gamma_{\mathcal{B}}$ is connected. Then $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive if and only if [B] is a simple graph and one of the following (a) and (b) occurs:

(a) |B| = 3, and $[B] \cong K_3$ is $(G_B, 2)$ -arc transitive (that is, $G_B^B/G_{(B)} \cong S_3$);

(b) $|B| \ge 4$ is even, $[B] \cong (|B|/2) \cdot K_2$, and G_B is 2-transitive on the edges of [B].

Moreover, in case (a) the following hold:

- (i) Γ ≅ Ξ(Γ_B, Δ) for some self-paired G-orbit Δ on Arc₃(Γ_B), Γ_B is a trivalent (G, 2)-arc transitive graph of type other than G²₂, and moreover any connected trivalent (G, 2)-arc transitive graph Σ of type other than G²₂ can occur as Γ_B;
- (ii) one of the following (1)–(2) occurs: (1) Γ ≃ s · C_t for some s ≥ 3, t ≥ 3, Γ is (G, 2)-arc transitive, Γ[B, C] ≃ 2 · K₂, Γ_B is (G, 2)-arc regular of type G¹₂, and either Γ_B ≃ K₄ and (Γ, G) ≃ (4 · C₃, S₄), (3 · C₄, PGL(2, 3)) or (3 · C₄, AGL(2, 2)), or Γ_B ≇ K₄ and Γ_B is a near n-gonal graph for some integer n ≥ 4; (2) Γ is 4-valent, connected and not (G, 2)-arc transitive, Δ = Arc₃(Γ_B), Γ[B, C] ≃ K_{2,2}, and Γ_B is (G, 3)-arc transitive.

In case (b), we have:

- (iii) $\operatorname{val}(\Gamma_{\mathcal{B}}) = |B|/2$, and $|V(\Gamma)| = 4q$ for some integer $q \ge 3$;
- (iv) Γ is (G, 2)-arc transitive, and either $\Gamma \cong 2q \cdot K_2$ and $\Gamma[B, C] \cong 2 \cdot K_2$, or $\Gamma \cong q \cdot K_{2,2}$ and $\Gamma[B, C] \cong K_{2,2}$;
- (v) $\Gamma_{\mathcal{Q}} \cong q \cdot K_2$, where $\mathcal{Q} = \{\Gamma(C) \cap B : (B, C) \in \operatorname{Arc}(\Gamma_{\mathcal{B}})\}$ is as in Theorem 2.3(a).

In the proof of Theorem 3.1 we will exploit the main results of [10,20] and a classification result in [17]. We will also use the following lemma, which is a restatement of a result in [22].

Lemma 3.2 ([22]). A connected trivalent G-symmetric graph Σ has a self-paired G-orbit on $\operatorname{Arc}_3(\Sigma)$ if and only if it is not of type G_2^2 . Moreover, when Σ is (G, 1)-arc regular, there are exactly two self-paired G-orbits on $\operatorname{Arc}_3(\Sigma)$; when $\Sigma \neq K_4$ is (G, 2)-arc regular of type G_2^1 , there are exactly two self-paired G-orbits on $\operatorname{Arc}_3(\Sigma)$, namely $\Delta_1 := (\tau, \sigma, \sigma', \tau')^G$ and Δ_2 $:= (\tau, \sigma, \sigma', \delta')^G$ (where σ, σ' are adjacent vertices, $\Sigma(\sigma) = \{\sigma', \tau, \delta\}$ and $\Sigma(\sigma') = \{\sigma, \tau', \delta'\}$), and $\Xi(\Sigma, \Delta_1), \Xi(\Sigma, \Delta_2)$ are both almost covers of Σ with valency 2; when Σ is (G, s)-arc regular, where $3 \le s \le 5$, the only self-paired G-orbit is $\Delta := \operatorname{Arc}_3(\Sigma)$, and $\Xi(\Sigma, \Delta)$ is a connected G-symmetric but not (G, 2)-arc transitive graph of valency 4.

6

Please cite this article in press as: S. Zhou, On a class of finite symmetric graphs, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.04.020

S. Zhou / European Journal of Combinatorics I (IIII) III-III

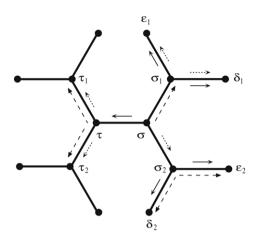


Fig. 1. Proof of part (ii)(2) of Theorem 3.1. In the 3-arc graph $\mathcal{E}(\Gamma_{\mathcal{B}}, \Delta)$, where $\Delta = \operatorname{Arc}_3(\Gamma_{\mathcal{B}})$, the vertex (σ, τ) is adjacent to $(\sigma_1, \varepsilon_1), (\sigma_1, \delta_1), (\sigma_2, \varepsilon_2)$ and (σ_2, δ_2) . Similarly, (σ, σ_1) is adjacent to $(\sigma_2, \varepsilon_2), (\sigma_2, \delta_2), (\tau, \tau_1)$ and (τ, τ_2) , and (σ, σ_2) is adjacent to $(\sigma_1, \varepsilon_1), (\sigma_1, \delta_1), (\tau, \tau_1)$ and (τ, τ_2) .

Proof of Theorem 3.1 (\Rightarrow). Suppose $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive. Then [B] is a simple graph by Lemma 2.2, and val $([B]) = |\{C \in \mathcal{B} : \Gamma(\alpha) \cap C \neq \emptyset\}|$ by Lemma 2.1(c). Since $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive, G_B is 2-transitive on $\Gamma_{\mathcal{B}}(B)$, and hence 2-transitive on the set of edges of [B] by Lemma 2.2(a). It follows that, whenever [B] contains adjacent edges, any two edges of [B] must be adjacent. Thus, one of the following possibilities occurs:

- (A) [B] contains at least two edges, and any two edges of [B] are adjacent;
- (B) [B] consists of pairwise independent edges, that is, [B] is a perfect matching.

Case (A) In this case we must have |B| = 3 and hence $[B] \cong K_3$. Thus, val([B]) = 2and hence $val(\Gamma_{\mathcal{B}}) = 3$ by Lemma 2.1. Hence $\Gamma_{\mathcal{B}}$ is a trivalent (G, 2)-arc transitive graph. Let $B = \{\alpha, \beta, \gamma\}$, and let $C, D, E \in \Gamma_{\mathcal{B}}(B)$ be such that $\Gamma(C) \cap B = \{\alpha, \beta\}, \Gamma(D) \cap B = \{\beta, \gamma\}$ and $\Gamma(E) \cap B = \{\gamma, \alpha\}$. Since $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive, there exists $g \in G_B$ such that $(C, E)^g = (E, C)$. Since g fixes B and interchanges C and E, it interchanges $\Gamma(C) \cap B$ and $\Gamma(E) \cap B$, that is, $\{\alpha, \beta\}^g = \{\gamma, \alpha\}$ and $\{\gamma, \alpha\}^g = \{\alpha, \beta\}$. Thus, we must have $\alpha^g = \alpha, \beta^g = \gamma$ and $\gamma^g = \beta$. Now that $g \in G_{\alpha}$ and [B] is G_B -symmetric, it follows that [B] is $(G_B, 2)$ -arc transitive, or equivalently $G_B^B/G_{(B)} \cong S_3$. Since $|\Gamma(C) \cap B| = |B| - 1 = 2$ and [B] is simple, we have $\Gamma(F) \cap B \neq \Gamma(F') \cap B$ for distinct $F, F' \in \Gamma_{\mathcal{B}}(B)$ and hence from [10, Theorem 1] there exists a self-paired G-orbit Δ on $\operatorname{Arc}_3(\Gamma_{\mathcal{B}})$ such that $\Gamma \cong \Xi(\Gamma_{\mathcal{B}}, \Delta)$. From Lemma 3.2 it follows that $\Gamma_{\mathcal{B}}$ is of type other than G_2^2 . (It is also of type other than G_1 since it is (G, 2)-arc transitive.) From [10, Theorem 2] the case $\Gamma[B, C] \cong K_{2,2}$ occurs if and only if Γ_B is (G, 3)-arc transitive, which in turn is true if and only if $\Delta = \operatorname{Arc}_3(\Gamma_{\mathcal{B}})$ in the 3-arc graph $\Xi(\Gamma_{\mathcal{B}}, \Delta)$ above. In this case $\Gamma_{\mathcal{B}}$ is of type G_3 , G_4^1 , G_4^2 or G_5 , and it is clear that Γ is 4-valent. (See Fig. 1 for an illustration.) Moreover, since in this case $\Gamma_{\mathcal{B}}$ is connected and $\Gamma[B, C] \cong K_{2,2}$, Γ is connected and not (G, 2)-arc transitive.

In the case where $\Gamma[B, C] \cong 2 \cdot K_2$, which occurs if and only if Γ_B is of type G_2^1 , we have $\operatorname{val}(\Gamma) = 2$ and hence Γ is a union of vertex-disjoint cycles of the same length. In this case the element g in the previous paragraph must interchange the two neighbours of α in Γ , and hence Γ is (G, 2)-arc transitive. If $\Gamma_B \cong K_4$, then $(\Gamma, G) \cong (4 \cdot C_3, S_4)$, $(3 \cdot C_4, \operatorname{PGL}(2, 3))$ or $(3 \cdot C_4, \operatorname{AGL}(2, 2))$ by [17, Theorem 3.19]. In the general case where $\Gamma_B \cong K_4$, since Γ

8

ARTICLE IN PRESS

is an almost cover of $\Gamma_{\mathcal{B}}$, by [20, Theorem 3.1] there exists an integer $n \ge 4$ such that $\Gamma_{\mathcal{B}}$ is a near *n*-gonal graph with respect to a *G*-orbit \mathcal{E} on *n*-cycles of $\Gamma_{\mathcal{B}}$. The cycles in \mathcal{E} that contain the 2-arcs (C, B, D), (C, B, E), (D, B, E) respectively must be pairwise distinct, and so $|\mathcal{E}| \ge 3$. Moreover, since Δ is the set of 3-arcs contained in cycles in \mathcal{E} [20, Theorem 3.1], by the definition of a 3-arc graph, each cycle in \mathcal{E} gives rise to a cycle of $\Xi(\Gamma_{\mathcal{B}}, \Delta)$ and vice versa. Hence $\Gamma \cong \Xi(\Gamma_{\mathcal{B}}, \Delta) \cong s \cdot C_t$, where $s = |\mathcal{E}| \ge 3$, and $t \ge 3$ is the cycle length of \mathcal{E} .

To complete the proof for case (A), we now justify that any connected trivalent (G, 2)-arc transitive graph of type other than G_2^2 can occur as $\Gamma_{\mathcal{B}}$. In fact, by Lemma 3.2, for such a graph Σ there exists at least one self-paired *G*-orbit Δ on $\operatorname{Arc}_3(\Sigma)$. Thus, by [10, Theorem 1] the 3-arc graph $\Gamma := \Xi(\Sigma, \Delta)$ is a *G*-symmetric graph whose vertex set $\operatorname{Arc}(\Sigma)$ admits $\mathcal{B}(\Sigma)$ (defined in (1)) as a *G*-invariant partition such that $\Gamma_{\mathcal{B}(\Sigma)} \cong \Sigma$. Obviously, for such a graph $(\Gamma, \mathcal{B}(\Sigma))$ we have $|\Gamma(\mathcal{B}(\tau)) \cap \mathcal{B}(\sigma)| = |\mathcal{B}(\sigma)| - 1 = 2$ for $(\sigma, \tau) \in \operatorname{Arc}(\Sigma)$ and $[\mathcal{B}(\sigma)] \cong K_3$, where $\mathcal{B}(\eta) := \{(\eta, \varepsilon) : \varepsilon \in \Sigma(\eta)\}$ for each $\eta \in V(\Sigma)$. Also, since Σ is (G, 2)-arc transitive, $G_{\sigma\tau}$ is 2-transitive on $\Sigma(\sigma) \setminus \{\tau\}$. This is equivalent to saying that $G_{\sigma\tau}$ is 2-transitive on $\{(\sigma, \varepsilon) : \varepsilon \in \Sigma(\sigma) \setminus \{\tau\}\}$, which is the neighbourhood of (σ, τ) in $[\mathcal{B}(\sigma)]$. Since $G_{\sigma\tau} \leq G_{\mathcal{B}(\sigma)}$, it follows that $[\mathcal{B}(\sigma)]$ is $(G_{\mathcal{B}(\sigma)}, 2)$ -arc transitive. From [10, Theorem 2], $\Gamma[\mathcal{B}(\sigma), \mathcal{B}(\tau)] \cong 2 \cdot K_2$ if Σ is (G, 2)-arc regular, and $\Gamma[\mathcal{B}(\sigma), \mathcal{B}(\tau)] \cong K_{2,2}$ if Σ is (G, 3)-arc transitive.

Case (B) In this case we have $|B| \ge 4$, |B| is even, and $[B] \cong (|B|/2) \cdot K_2$. Hence $\operatorname{val}(\Gamma_{\mathcal{B}}) = |B|/2$ and each vertex of Γ has neighbour in exactly one block of \mathcal{B} . Thus, $|\mathcal{B}| \ge \operatorname{val}(\Gamma_{\mathcal{B}}) + 1 \ge 3$, $|V(\Gamma)| = |B||\mathcal{B}| = 2\operatorname{val}(\Gamma_{\mathcal{B}})|\mathcal{B}| = 4q \ge 12$, where $q = |E(\Gamma_{\mathcal{B}})|$. Clearly, if $\Gamma[B, C] \cong 2 \cdot K_2$ then $\Gamma \cong 2q \cdot K_2$; whilst if $\Gamma[B, C] \cong K_{2,2}$ then $\Gamma \cong q \cdot K_{2,2}$. In the first case Γ has no 2-arc and hence is (G, 2)-arc transitive automatically. In the second possibility, since G_{α} is transitive on $\Gamma(\alpha)$ and $|\Gamma(\alpha)| = 2$, G_{α} is 2-transitive on $\Gamma(\alpha)$, and hence Γ is (G, 2)-arc transitive. Since G_B is 2-transitive on $\Gamma_{\mathcal{B}}(B)$, by Lemma 2.2(a), G_B is 2-transitive on the edges of [B]. Evidently, for the G-invariant partition \mathcal{Q} of $V(\Gamma)$, we have $\Gamma_{\mathcal{Q}} \cong q \cdot K_2$.

(\Leftarrow) We need to prove that if [B] is simple and one of (a), (b) occurs then $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive. Suppose first that (a) occurs. Since $[B] \cong K_3$ has three edges, $\Gamma_{\mathcal{B}}$ is trivalent by Lemma 2.1(b). Using the notation above, there exists $g \in G_{\alpha}$ such that g interchanges β and γ since $[B] \cong K_3$ is (G_B , 2)-arc transitive. Thus, g fixes D and interchanges C and E. Hence $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive. Now suppose (b) occurs. Then [B] is simple and G_B is 2-transitive on the edges of [B]. From Lemma 2.2(a), this implies that G_B is 2-transitive on $\Gamma_{\mathcal{B}}(B)$, and hence $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive. \Box

Remark 3.3. In the case where |B| = 4, we have $|\Gamma(C) \cap B| = |B| - 2 = 2$ for adjacent $B, C \in \mathcal{B}$, and hence the results in [8] apply. In fact, in this case [B] agrees with the multigraph Γ^B introduced in [8], and moreover the underlying simple graph of [B] is $2 \cdot K_2$, C_4 or K_4 . (For a *G*-symmetric graph (Γ, \mathcal{B}) with $|\Gamma(C) \cap B| = |B| - 2 \ge 1$, Γ^B is defined [8] to be the multigraph with vertex set *B* and edges joining the two vertices of $B \setminus (\Gamma(C) \cap B)$ for $C \in \Gamma_B(B)$.) From [8, Theorems 1.3], Γ_B is (G, 2)-arc transitive if and only if [B] is simple and $[B] \cong 2 \cdot K_2$, and in this case $\Gamma_B \cong s \cdot C_t$ for some $s \ge 1$ and $t \ge 3$, and either $\Gamma \cong 2st \cdot K_2$ or $\Gamma \cong st \cdot C_4$, agreeing with (b) and (iv) of Theorem 3.1.

The next theorem tells us what happens when (Γ, \mathcal{B}) is a (G, 2)-arc transitive graph with $|\Gamma(C) \cap B| = 2$ for adjacent $B, C \in \mathcal{B}$. In particular, it answers Question (2) for such graphs.

Theorem 3.4. Let Γ be a (G, 2)-arc transitive graph admitting a nontrivial G-invariant partition \mathcal{B} such that $\Gamma[B, C] \cong 2 \cdot K_2$ or $K_{2,2}$ for adjacent $B, C \in \mathcal{B}$. Then one of the following (a)–(c) holds.

- (a) $\Gamma[B, C] \cong K_{2,2}$, |B| is even, $[B] \cong (|B|/2) \cdot K_2$ is simple, and $\Gamma \cong q \cdot K_{2,2}$ for some $q \ge 1$;
- (b) $\Gamma[B, C] \cong 2 \cdot K_2$, [B] is simple and $(G_B, 2)$ -arc transitive;
- (c) $\Gamma[B, C] \cong 2 \cdot K_2$, $m = val([B]) \ge 2$, |B| is even, the underlying simple graph of [B] is the perfect matching $(|B|/2) \cdot K_2$, Γ_Q is (G, 2)-arc transitive with valency m, and Γ is a 2-fold cover of Γ_Q , where $Q = \{\Gamma(C) \cap B : (B, C) \in Arc(\Gamma_B)\}$ is as in Theorem 2.3(a).

Moreover, in case (a) $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive if and only if G_B is 2-transitive on the edges of [B]; in case (b) $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive if and only if (i) |B| = 3, $[B] \cong K_3$, $G_B^B/G_{(B)} \cong S_3$ and $\Gamma \cong s \cdot C_t$ for some $s \ge 3, t \ge 3$, or (ii) |B| is even, $[B] \cong (|B|/2) \cdot K_2$, $\Gamma \cong 2q \cdot K_2$ for some $q \ge 1$, and G_B is 2-transitive on the edges of [B]; in case (c) Γ_B is (G, 2)-arc transitive if and only if |B| = 2.

Proof. We distinguish the following three cases.

Case (A) $\Gamma[B, C] \cong K_{2,2}$. In this case, since Γ is (G, 2)-arc transitive we have val([B]) = 1 by Lemma 2.5(b). Thus, m = 1 and $|B| = 2 val(\Gamma_{\mathcal{B}})$ by Lemma 2.1. Therefore, [B] is simple, $[B] \cong (|B|/2) \cdot K_2$, and $\Gamma \cong q \cdot K_{2,2}$ for some integer $q \ge 1$. Hence by Lemma 2.2(a) the actions of G_B on $\Gamma_{\mathcal{B}}(B)$ and on the edges of [B] are permutationally equivalent. Thus, $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive if and only if G_B is 2-transitive on the edges of [B].

Case (B) $\Gamma[B, C] \cong 2 \cdot K_2$ and [B] is simple. In this case the actions of G_{α} on $[B](\alpha)$ and $\Gamma(\alpha)$ are permutationally equivalent by Lemma 2.5(a). But G_{α} is 2-transitive on $\Gamma(\alpha)$ since Γ is (G, 2)-arc transitive by our assumption. Hence G_{α} is 2-transitive on $[B](\alpha)$ as well. Since [B] is G_B -symmetric by Theorem 2.3, it follows that [B] is $(G_B, 2)$ -arc transitive. From Lemma 2.2(a), Γ_B is (G, 2)-arc transitive if and only if G_B is 2-transitive on the set of edges of [B]. This occurs only if either (i) |B| = 3 and $[B] \cong K_3$; or (ii) |B| is even, $[B] \cong (|B|/2) \cdot K_2$, and G_B is 2-transitive on the edges of [B]. In case (i), we have $G_B^B/G_{(B)} \cong S_3$ since [B] is $(G_B, 2)$ -arc transitive, and moreover Γ has valency 2 and thus is a union of vertex-disjoint cycles. Furthermore, in case (i), since $|\Gamma(C) \cap B| = |B| - 1 = 2$ for adjacent $B, C \in \mathcal{B}$, by [10, Theorem 1] Γ is a 3-arc graph of Γ_B with respect to a self-paired G-orbit on $\operatorname{Arc}_3(\Gamma_B)$, and an argument similar to the third paragraph in the proof of Theorem 3.1 ensures that $\Gamma \cong s \cdot C_t$ for some $s \ge 3, t \ge 3$. In case (ii) we have $\Gamma \cong 2q \cdot K_2$ for some integer q. Clearly, if the conditions in (ii) are satisfied, then Γ_B is (G, 2)-arc transitive of [B] implies that G_B is 2-transitive on the edges of [B], and hence Γ_B is (G, 2)-arc transitive by Lemma 2.2(a).

Case (C) $\Gamma[B, C] \cong 2 \cdot K_2$ and $m \ge 2$. In this case, for $\alpha \in B$ there exist distinct $C, D \in \Gamma_{\mathcal{B}}(B)$ such that $\alpha \in \Gamma(C) \cap B = \Gamma(D) \cap B$. (Hence C, D are in the same block of $\mathcal{M}(B)$.) Let $\beta \in C, \gamma \in D$ be adjacent to α in Γ . We first show that the underlying simple graph of [B] is a perfect matching. Suppose otherwise, then there exists $E \in \Gamma_{\mathcal{B}}(B)$ such that $\alpha \in \Gamma(E) \cap B \neq \Gamma(D) \cap B$. Thus, α is adjacent to a vertex δ in E, and E, D belong to distinct blocks of $\mathcal{M}(B)$. Since Γ is (G, 2)-arc transitive, there exists $g \in G_{\alpha\beta}$ such that $\gamma^g = \delta$. Then $g \in G_{BC}$ and $D^g = E$. However, since $\mathcal{M}(B)$ is a G_B -invariant partition of $\Gamma_{\mathcal{B}}(B)$ by Lemma 2.2, $g \in G_{BC}$ implies that g fixes the block of $\mathcal{M}(B)$ containing D to the block of $\mathcal{M}(B)$ containing E. This contradiction shows that the underlying simple graph of [B] must be the perfect matching $(|B|/2) \cdot K_2$ and hence |B| is even. Thus, $m = \operatorname{val}([B]) \ge 2$. Since

the underlying simple graph of [B] is a perfect matching, from Theorem 2.3(a) it follows that $Q = \{\Gamma(C) \cap B : (B, C) \in \operatorname{Arc}(\Gamma_{\mathcal{B}})\}$ (ignoring the multiplicity of each $\Gamma(C) \cap B$) is a *G*-invariant partition of $V(\Gamma)$. It is readily seen that Γ is a 2-fold cover of Γ_Q . Thus, both Γ_Q and Γ have valency *m*, and moreover Γ_Q is (G, 2)-arc transitive since Γ is (G, 2)-arc transitive. Hence, if |B| = 2, then Q coincides with \mathcal{B} and hence $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive. On the other hand, if $|B| \ge 4$, then since [B] is not simple, $\Gamma_{\mathcal{B}}$ is not (G, 2)-arc transitive by Theorem 3.1. Therefore, $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive if and only if |B| = 2. \Box

Remark 3.5. From Theorem 3.4, for a (G, 2)-arc transitive graph (Γ, \mathcal{B}) with $\Gamma[B, C] \cong 2 \cdot K_2$ or $K_{2,2}$ for adjacent $B, C \in \mathcal{B}, \Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive if and only if one of the following (a)-(c) holds: (a) |B| is even, $[B] \cong (|B|/2) \cdot K_2$ is simple, and G_B is 2-transitive on the edges of [B]; (b) $|B| = 3, [B] \cong K_3$ is simple, and $\Gamma[B, C] \cong 2 \cdot K_2$; (c) |B| = 2 and Γ is a 2-fold cover of $\Gamma_{\mathcal{B}}$. Moreover, in case (a) we have either $\Gamma[B, C] \cong K_{2,2}$ and $\Gamma \cong q \cdot K_{2,2}$, or $\Gamma[B, C] \cong 2 \cdot K_2$ and $\Gamma \cong 2q \cdot K_2$, and in case (b) we have $G_B^B/G_{(B)} \cong S_3$ and $\Gamma \cong s \cdot C_t$ for some $s \ge 3, t \ge 3$. In case (c), [B] is not necessarily simple since it may happen that $m = \operatorname{val}([B]) \ge 2$. Note that cases (a) and (c) overlap when |B| = 2 and $\Gamma[B, C] \cong 2 \cdot K_2$.

The reader is referred to [8, Examples 4.7 and 4.8] for examples with $|\Gamma(C) \cap B| = |B| - 2 = 2$ for adjacent $B, C \in \mathcal{B}$ such that Γ is (G, 2)-arc transitive but $\Gamma_{\mathcal{B}}$ is not (G, 2)-arc transitive.

In part (c) of Theorem 3.4, Γ_Q is (G, 2)-arc transitive while Γ_B is not when $|B| \ge 4$. These two quotient graphs of Γ are connected by $(\Gamma_Q)_{\mathbf{B}} \cong \Gamma_B$, where $\mathbf{B} := \{\{\Gamma(C) \cap B : C \in \Gamma_B(B)\}: B \in B\}$ (ignoring the multiplicity of $\Gamma(C) \cap B$), which is a *G*-invariant partition of Q.

4. Concluding remarks

A scheme for constructing G-symmetric graphs with $\Gamma[B, C] \cong 2 \cdot K_2$ for adjacent $B, C \in \mathcal{B}$ was described in [6, Section 6]. In view of Theorem 3.4 and Lemma 2.5, to construct a 2-arc transitive graph (Γ, \mathcal{B}) with $\Gamma[B, C] \cong 2 \cdot K_2$ and m = 1 by using this scheme, we may start with a G-symmetric graph $\Gamma_{\mathcal{B}}$ and mutually isomorphic (G_B, 2)-arc transitive graphs [B] (where $B \in V(\Gamma_{\mathcal{B}})$) on v vertices such that $v \operatorname{val}([B]) = 2 \operatorname{val}(\Gamma_{\mathcal{B}})$. The action of G on $V(\Gamma_{\mathcal{B}})$ induces an action on such graphs [B]. To construct Γ we need to develop a rule [6] of labelling each edge of [B] by an edge "BC" of $\Gamma_{\mathcal{B}}$, where $C \in \Gamma_{\mathcal{B}}(B)$, such that the actions of G_B on such labels and on the edges of [B] are permutationally equivalent. We also need a "G-invariant joining rule" [6] to specify how to join the end-vertices of "BC" and the end-vertices of "CB" by two independent edges. If we can find such a rule such that, for each $\alpha \in B$, the actions of G_{α} on $\Gamma(\alpha)$ and $[B](\alpha)$ are permutationally equivalent, then by the $(G_B, 2)$ -arc transitivity of [B] the graph Γ thus constructed is (G, 2)-arc transitive. Theorem 3.4 suggests that we should choose $\Gamma_{\mathcal{B}}$ to be G-symmetric but not (G, 2)-arc transitive in order to obtain interesting (G, 2)arc transitive graphs Γ by using this construction. The reader is referred to [6, Section 6] for a few examples of this construction. One of them is Conder's trivalent 5-arc transitive graph [2] on 75 600 vertices which can be obtained by taking [B] as Tutte's 8-cage [1].

Finally, for a *G*-symmetric graph (Γ, \mathcal{B}) with $|\Gamma(C) \cap B| = 2$ for adjacent $B, C \in \mathcal{B}$, by Theorem 2.3 the underlying simple graph of [B] is isomorphic to $K_{|B|}$ if and only if G_B is 2-transitive on B, and in this case we have val([B]) = m(|B| - 1) and $val(\Gamma_{\mathcal{B}}) = m|B|$ (|B| - 1)/2. Under the assumption that Γ is *G*-locally primitive, G_B is 3-transitive on B and $\Gamma_{\mathcal{B}}$ is a complete graph, it was shown in [6, Theorem 6.11] that $\Gamma[B, C] \cong 2 \cdot K_2$ and either Γ or the graph obtained from Γ by consistently swapping edges and non-edges of $\Gamma[B, C]$ is isomorphic to $(val(\Gamma_{\mathcal{B}}) + 1) \cdot K_{|B|}$.

Please cite this article in press as: S. Zhou, On a class of finite symmetric graphs, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.04.020

Acknowledgments

The author thanks the anonymous referees for their valuable comments and suggestions. The author is supported by a Discovery Project Grant (DP0558677) of the Australian Research Council and an Early Career Researcher Grant of The University of Melbourne.

References

- N.L. Biggs, Algebraic Graph Theory, second ed., Cambridge University Press, Cambridge, 1993. Cambridge Mathematical Library.
- [2] M. Conder, A new 5-arc transitive cubic graph, J. Graph Theory 11 (1987) 303-307.
- [3] M. Conder, P. Lorimer, Automorphism groups of symmetric graphs of valency 3, J. Combin. Theory Ser. B 47 (1989) 61–72.
- [4] D.Z. Djokovic, G.L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory Ser. B 29 (1980) 195–230.
- [5] J.D. Dixon, B. Mortimer, Permutation Groups, Springer, New York, 1996.
- [6] A. Gardiner, C.E. Praeger, A geometrical approach to imprimitive graphs, Proc. London Math. Soc. 3 (71) (1995) 524–546.
- [7] A. Gardiner, C.E. Praeger, S. Zhou, Cross-ratio graphs, J. London Math. Soc. 2 (64) (2001) 257–272.
- [8] M.A. Iranmanesh, C.E. Praeger, S. Zhou, Finite symmetric graphs with two-arc transitive quotients, J. Combin. Theory Ser. B 94 (2005) 79–99.
- [9] C.H. Li, The finite primitive permutation groups containing an abelian regular subgroup, Proc. London Math. Soc. 87 (2003) 162–196.
- [10] C.H. Li, C.E. Praeger, S. Zhou, A class of finite symmetric graphs with 2-arc transitive quotients, Math. Proc. Cambridge Philos. Soc. 129 (2000) 19–34.
- [11] Z. Lu, S. Zhou, Finite symmetric graphs with 2-arc transitive quotients (II), J. Graph Theory (in press).
- [12] D. Marušič, On 2-arc-transitivity of Cayley graphs, J. Combin. Theory Ser. B 87 (2003) 162–196.
- [13] M. Perkel, Near-polygonal graphs, Ars Combin. 26(A) (1988) 149-170.
- [14] C.E. Praeger, Finite transitive permutation groups and finite vertex transitive graphs, in: G. Hahn, G. Sabidussi (Eds.), Graph Symmetry (Montreal, 1996), in: NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci., vol. 497, Kluwer Academic Publishing, Dordrecht, 1997, pp. 277–318.
- [15] C.E. Praeger, Finite symmetric graphs, in: L.W. Beineke, R.J. Wilson (Eds.), Algebraic Graph Theory, in: Encyclopedia of Mathematics and its Applications, vol. 102, Cambridge University Press, Cambridge, pp. 179–202 (Chapter 7).
- [16] W.T. Tutte, A family of cubical graphs, Proc. Cambridge Philos. Soc. 43 (1947) 459-474.
- [17] S. Zhou, Constructing a class of symmetric graphs, Eur. J. Combin. 23 (2002) 741–760.
- [18] S. Zhou, Imprimitive symmetric graphs, 3-arc graphs and 1-designs, Discrete Math. 244 (2002) 521–537.
- [19] S. Zhou, Symmetric graphs and flag graphs, Monatsh. Math. 139 (2003) 69-81.
- [20] S. Zhou, Almost covers of 2-arc transitive graphs, Combinatorica 24 (2004) 731-745.
- [21] S. Zhou, A local analysis of imprimitive symmetric graphs, J. Algebraic Combin. 22 (2005) 435-449.
- [22] S. Zhou, Trivalent 2-arc transitive graphs of type G_2^1 are near polygonal, Preprint.

Please cite this article in press as: S. Zhou, On a class of finite symmetric graphs, European Journal of Combinatorics (2007), doi:10.1016/j.ejc.2007.04.020