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Constructing a Class of Symmetric Graphs

SANMING ZHOU

We find a natural construction of a large class of symmetric graphs from point- and block-transitive
1-designs. The graphs in this class can be characteriz&sygnmetric graphs whose vertex sets
admit aG-invariant partition3 of block size at least 3 such that, for any two blo&sC of 3, either
there is no edge betwedh andC, or there exists only one vertex B not adjacent to any vertex
in C. The special case where the quotient gr&ighof I' relative toB is a complete graph occurs if
and only if the 1-design needed in the construction@-doubly transitive ands-block-transitive 2-
design, and in this case we give an explicit classification whenG is a doubly transitive projective
group or an affine group containing the affine general group. Examples of such graphs include cross
ratio graphs studied recently by Gardiner, Praeger and Zhou and some other graphs with vertices the
(point, line)-flags of the projective or affine geometry.

(© 2002 Published by Elsevier Science Ltd.

1. INTRODUCTION

For a finite grapH”™ and an integes > 1, ans-arcof I is a sequencéxg, a1, ..., ag) of
vertices ofl" such thaty, «j 1 are adjacent in" andej_1 # «j1 for eachi. If T admits a
group G of automorphisms such th& is transitive on the vertex s&(I'") of I and, in its
induced action, is transitive on the set A() of s-arcs ofI", thenI is said to bg(G, s)-arc
transitive Often in the literature, a 1-arc is called arc and a(G, 1)-arc transitive graph
is called aG-symmetric graphin this paper we will give a method of constructing a large
class ofG-symmetric graphs fronG-point-transitive ands-block-transitive 1-designs. By
using this we then classify all such graphs in the case where the 1-design involved is either
a classical projective geometry, or a classical affine geometry, or a trivial doubly transitive
linear space.

Let " be a finiteG-symmetric graph. A partitiols of V (I") is said to beG-invariant if
BY9 € BforanyB € Bandg € G, whereB?Y := {«? : « € B}; and B is nontrivial if
1 < |B] < |[V(D)|. If V(I') admits a nontrivialG-invariant partitions3, thenT is said to
be animprimitive G-symmetric graphn this case thguotient graphl'z of T relative to3
is defined to be the graph with vertex ¢&in which B, C € B are adjacent if and only if
there exists an edge @f joining a vertex ofB to a vertex ofC. In introducing a geometric
approach to imprimitive symmetric graphs, Gardiner and Pra@jsufgested an analysis of
this quotient graph together with the 1-desiBiB) with point setB and blocks'(C) N B
(with possible repetitions) for alC € I'g(B), whereI'(C) := (J,cc I'(@) with T'(«) the
neighbourhoodf « in T (that is, the set of vertices adjacentddn I'), andI"'g(B) is the
neighbourhood oB in I'g. Sincerl is G-symmetric, up to isomorphisr)(B) is independent
of the choice of the blocB € 5. Thus the block sizk := |I"(C)NB| of D(B) and the number
of times each block oD(B) is repeated is independent of the choiceBowWe will call this
number themultiplicity of D(B) and denote it byn.

The graphs we are going to construct can be characterized as impri@Hsygnmetric
graphsl” satisfyingv = k+ 1 > 3, wherev := |B| is the block size of5. And this paper
forms part of our study on such graphs and is a sequélzdle-18]. The construction shows
that such a graph can be reconstructed from the qudtigmind the induced action & on 5.
Moreover, it unveils a strong connection between such graphs and certain kinds of 1-designs.
In fact, the construction requires a 1-desi@mwith block sizem+1 which admitsG as a point-
and block-transitive group of automorphisms, and a ‘feasiBlerbit 2 (see Definition2.3
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in Section2.2) on the flags ofD, where aflag is an incident point-block pair. For such an
Q, denote by FD, Q) the set of ordered pairgo, L), (r, N)) € Q x Q such thatr ¢ N,

T ¢ Lbuto € N,z € L’ for some(o, L'), (r, N') € Q. The construction also requires a
self-pairedG-orbit ¥ on KD, Q). Given these we define th@-flag graphl’ (D, @, ) of D
with respect ta(2, W) to be the graph with vertex s€t and arc setv. We prove that this
graph is aG-symmetric graph admitting a certa@invariant partition3 := B(S2) (see 8)

in Section2.2 for the definition) such that = k + 1 > 3. Conversely, we show that any
G-symmetric graph having this property is isomorphic t&dlag graphl’ (D, 2, ¥). The
main result of this paper is the following theorem.

THEOREM 1.1. Suppose thdrf is a G-symmetric graph admitting a nontrivial G-invariant
partition B such thatv = k + 1 > 3. ThenI’ = I'(D, 2, V) for a certain G-point-transitive
and G-block-transitivel-designD with point set3 and block size m+ 1, a certain feasible
G-orbit 2 on the flags oD, and a certain self-paired G-orbi¥ on F(D, 2), where m is the
multiplicity of D(B).

Conversely, for any G-point-transitive and G-block-transitivdesignD with block size
m + 1, any feasible G-orbif2 on the flags oD, and any self-paired G-orbW on F(D, 2),
the graphl’ = I'(D, @, V), group G and partition5 = B(2) satisfy all the conditions above.
Moreover, the multiplicity of th&-designD(B) (for B € B) is equal to m.

We will show further that, in both parts of this theore@js faithful on the vertices of if
and only if it is faithful on the points ob.

In particular, if D(B) contains no repeated blocks (thatns,= 1), then the construction
above gives rise to the 3-arc graphs introducedl®) (see Example.4 for details). In the
case where& = k+ 1 > 3 andI'z is a complete graph, th&-symmetry of["'z implies
that G is doubly transitive on3, and hence the desigh in Theorem1.1 is a G-doubly
transitive andG-block-transitive 2-design. (As usual in the literature, when we say that a
design isG-doubly transitive, we mean th& is doubly transitive on its points.) Since, as
a result of the classification of finite simple groups, all the finite doubly transitive groups
are known (see3, 11]), Theoreml.1 makes possible the classification of all such graphs
As a moderate goal, we will classify th&-flag graphs of the classical projective and affine
geometries foG a doubly transitive projective group or an affine group containing the affine
general group, respectively. Examples of such graphs include the cross ratio graphs studied
in [8, 10] and some othe6-flag graphs in which the adjacency is defined naturally in terms
of relative positions of lines involved. We prove that, for such groGpshese are the only
G-symmetric graph§’ such that = k + 1 > 3, 'g is complete ands is faithful onV (I").

(In general, if a grapit” is G-symmetric, then it is als&/K-symmetric under the induced
action of G/K on V (I"), whereK is the kernel of the action d& on V (I'). SinceG/K is
faithful on V (T"), this means that, in dealing witB-symmetric graph$” we may suppose
without loss of generality thas is faithful onV (I"). In this paper we require the faithfulness
of G only in several occasions for some technical reasons.)

THEOREM 1.2. Let d > 2 be an integer and q a prime power. Then, for any group G with
PSLd,q) < G < PrL(d,q) or AGL(d,q) < G < AT'L(d, q), all G-symmetric graph§
such that G is faithful on YI'), and that T") admits a nontrivial G-invariant partitior3
withv = k+ 1 > 3andI'g complete are known explicitly.

The reader is referred to Theore®$ and3.13for the explicit lists of such graphs and
the corresponding, m. We will also studyG-flag graphs of th&-doubly transitive complete
2-(v+1, 2, 1) designsD. In this caséD is G-flag transitive and we will show (see Examgld
and Corollary2.6) that suchG-flag graphs are precisely tlé&symmetric graph$ such that
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v = k+1 > 3, D(B) contains no repeated blocks alng is complete. A classification of such
graphsI” together with the corresponding grou@sfollows from the main theorem ofJ.
With the contribution of 10, Theorem 5.1] and Theorefin2 above, we will see that this can
be achieved via a (perhaps) more organic approach, and we will present such a classification
explicitly in Theorem3.19

The construction introduced in this paper fits into a more general approach to constructing
imprimitive symmetric graphs with the dual 1-desigrfafB) containing no repeated blocks,
see [L9 for details.

2. FLAG GRAPHS AND THEPROOF OFTHEOREM 1.1

2.1. Preliminaries. The reader is referred td,[6] and [L5] for notation and terminology
on designs, permutation groups and finite geometries, respectively. For a group acting on two
setsA; and A, if there exists a bijectiop : A7 — Az such thatp(a9) = (p(a))? for
anyo € Aj andg € G, then the actions o on A1 and A are said to b@ermutationally
equivalentwith respect tq. Fora, 8 € A1, we useG,, to denote the stabilizer of in G, and
we setGqp = (G )g. For a positive integem, we useK,, to denote the complete graph on
vertices, anah - I the union ofn vertex disjoint copies of a given graph

Let I be aG-symmetric graph. Thel is regular; we denote by vdr) the valency ofl".
Instead of Arg(I"), we use Ar¢I") to denote the set of arcs bf For a nontrivialG-invariant
partition B of V(I'), we useB(«) to denote the block of containinga. Thus, sinces is G-
invariant, we haveB(«9) = (B(a))Y for anya € V(I') andg € G. We will assume without
mentioning explicitly that the quotient grafhs has at least one edge, so each block5of
is an independent set &f (see e.g.,4, Proposition 22.1] andlg, Lemma 1.1(c)]). In the
following we suppose the block size= |B| of B and the block siz& = |I'(C) N B| (where
C e I'p(B)) of the 1-desigrD(B) satisfyv = k+ 1 > 3. (The case where =k +1 =2
was studied in12, Section 3].) Then, for eaah € B, B\ {«} appearsn times as a block of
D(B), wheremis the multiplicity of D(B). Set

B):={CeB:T(C)nB =B\ {«}}

so that|B(«)| = m. If B(e) € B(B) andB(B) € B(x), then we say that and 8 aremates
and thatx is themateof 8 in B(«) (s08 is the mate ot in B(B) as well). Defind™ to be the
graph with the same vertices Bsin which two vertices are adjacent if and only if they are
mates. It was proved irlp, Proposition 3] that™ is aG-symmetric graph. FoB, C < B, we
denote byGg the setwise stabilizer d in G, and selGg,c = (Gg)c. Then one can check
thatB(B) := {B(«) : @ € B} is aGg-invariant partition ofl"'5(B), and hencé&sg induces
an action onB(B). As in [12], for adjacent blocksB, C of 13, we usel'[B, C] to denote
the induced bipartite subgraph Bfwith bipartition {I"(C) N B, I"(B) N C}. In particular, if
I'[B,C] = (v —1) - Ky, then following [L8] T is called aralmost covenf I'z. We illustrate
the notation introduced so far by the following diagram (see Figurehere the dashed lines
represent edges o7

We will introduce a natural 1-design associated with/3). For this purpose, we set

L(a) = {B(x)} U B(x)

foreacho € V(I'). Then(L(«))? = L(a?) for anyg € G. In the particular case whene = 1

(that is,D(B) contains no repeated blocks), we haier) = L£(B8) wheneverx and 8 are
mates of each other. In general, part (d) of the following lemma tells us Wlken= L(B)

happens for distinct verticas and 8. Parts (a) and (b) of this lemma were proved 12,
Theorem 5(a) and (d)].
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FIGURE 1. The setd3(«) and the adjacency dt’ in the case where = k+ 1 = 4 andm = 3. The
edges of” and the three other vertices in each of the outskirt blocks are not shown in the diagram.

LEMMA 2.1. Suppose thal is a G-symmetric graph admitting a nontrivial G-invariant

partition B such thatv = k + 1 > 3. Then the following statements hold.

(a) I'p has valencyal(I'g) = mv.

(b) If G is faithful on V(T"), then the induced action of G dhis faithful.

(c) For distinct verticesr, B in the same block B df, we havel(x) N L(B) = {B}; in
particular, L(«) # L(B).

(d) There exist distinct vertices 8 € V(I') such thatC(«) = £(B) if and only if the graph
" is a union of vertex disjoint copies ofyK1 (hence m+ 1 divides|V (T")). In this
caseL(x) = L(B) holds for any two vertices, 8 in the same component bf, and
hence eacl () is repeated exactly m- 1 times; moreover(«) induces a complete
subgraph K1 of 'z and the components &F constitute a G-invariant partition of
V (I') with block size mt 1.

PrROOF The truth of (c) follows from the definition of («). So we need to prove (d) only.
Supposel () = L(B) for some vertices # B, saya € Bandg € C. ThenB # C by (c).
Also, C € B(x) andB € B(g), and in particularB, C are adjacent blocks. Moreover, by
definitiona, B must be mates of each other. Siriceis G-symmetric, as mentioned above,
G, is transitive onl’(«). Thus, for anyy € I''(«), there existg € G, such thatg9 = y.
FromL(a) = L(B) we then havel () = L(a9) = (L(a))9 = (L(B))% = L(BY) = L(y).In
particular, this implies that each blo&($) € L(x) \ {B(y)} contains a maté’ of y, where
8 € I'(@)\{y}; and thus any two blocks ifi(«) are adjacent. Again, by tHe-symmetry ofl™’
there existh € G such that(e, §)" = (y, 8). Hence(L(a))" = L(y) and (L) = L£(8).
But L(a) = L(8) asé € I''(a), so we havel(8") = L(y) = L(a) = L(8), which implies
8’ = §. Thus,y and$ are mates of each other and any two vertice§'ifer) are adjacent
in I'’. Hence{a} U I''(«) induces the complete graghn 1, which must be a connected
component off’ sincel"” has valencym. Therefore I’ is a union of vertex disjoint copies
of Kmy1. From the proof above, in this cag®y) = L£(8) holds for any verticey, § in
the same component éf. Conversely, if[" is a union of vertex disjoint copies d€n.1,
then it is clear that(«) = L(B) for any verticesr, 8 in the same component &F. Thus,
L(x) is repeated exactlyn + 1 times andZ(«) induces a complete subgrapy+1 of I'z.
From [12, Proposition 6] it follows that the componentsitfconstitute &5-invariant partition
of V(I'). O
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Denote byl the set of allZ(«), @ € V(I'), with repeated ones identified. Then the action

of G on B induces a natural action dn defined by(£(«))? = L(a9), fora € V(I') and
g € G. The subset (B) := {L(x) : « € B} (for B € B) of L is Gg-invariant under this
action, and thu$sg induces an action oh(B). It is easily checked that the action Gfg
on B is permutationally equivalent to the actions@®g on B(B) andL (B) with respect to
the bijections defined by — B(x), « — L(«), for @ € B, respectively. Thus, we have
GB.B) = GB.L(@) = Gu, WhereGp 5(), GB () are the setwise stabilizers Bia), L(«)
in Gg, respectively. We define

DT, B) .= (B,L) Q)

to be the incidence structure with point ¢&and block set in which a ‘point’ B is incident
with a ‘block’ L(«) if and only if B € L(«). Note that the flags oD(I", B) of the form
(B(@), L(«)) are pairwise distinct. We define

Q, B) :={(B(x), L(a)) :axa e VI)} (2)
to be the set of all such flags.

LEMMA 2.2. Under the same assumptions as in Leniathe following statements hold
(where, in(c)and(d), B € B, € B and Ce B(w)).

(a) D(T", B) is al-design of block size #al which admits G as a point- and block-transitive
group of automorphisms.

(b) (T, B) is a G-orbit on the set of flags @ (", 13), and the actions of G on \I") and
Q (T, B) are permutationally equivalent with respect to the bijection (B(«), L(x)),
fora € V(D).

(€) GB.£(@) = Gy is transitive onB(«).
(d) Gg.c is transitive onL (B) \ {L(x)}.

PROOE It is clear thatG is transitive on3 and onL, and thatG preserves the incidence
relation of D(T", B). SoG induces a group of automorphisms®{rI’, 13), and eaclB € 5 is
incident with the same number of elementd.ofClearly,D(T", B) has block sizen + 1, and
thus (a) is proved. The assertions in (b) follow immediately from the definitioR @f, B)
and the action 06 onL. To prove (c), leB € B anda € B, and letC, D € B(«). Let8, y
be the unique mates ofin C andD, respectively. Sinc€”’ is G-symmetric [L2, Proposition
3], there existg) € G, such thaig9 = y. This impliesC? = D, and henc&g 1) = Gy is
transitive onB(«).

Finally, we prove (d). LeB € B, « € B andC € B(w). Lets be the mate of in C. Since
v = k+ 1 > 3, for distinct verticess, y € B\ {«} there existe,n € C \ {3} which are
adjacent inl" to B, y respectively £, n are not needed to be distinct). By tesymmetry of
I, there existgy € G such that 8, )¢ = (y, n). Sowe haveg € Gg c and(B(B))? = B(y),
and thusGpg ¢ is transitive orB(B) \ {B(«)}. Since the actions dég onB(B) andL (B) are
transitive, and are permutationally equivalent with respect to the bijeBioh — L(¢) for
¢ € B, this implies thaGg ¢ is transitive orlL (B) \ {£(«)}. O

Using the notation in the proof above, sirf€es B(«) andB(B) is aGg-invariant partition
of I'5(B), we haveGg c < Gp B(). SO Lemma2.2(d) implies thatGp sy is transitive on
B(B)\{B(«)}. SinceGg is transitive orB(B), it follows thatGpg is doubly transitive o8 (B),
and hence doubly transitive dhandL (B). This is a restatement 012, Theorem 5(b)].
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2.2. Flag graph constructionFor simplicity we assume that the 1-designs used in our con-
struction have no repeated blocks. [Ietbe such a 1-design with point sét As usual we
may identify each blocl. of D with the subset oV consisting of the points incident with
L. Let Q be a subset of flags dP, and let¥ € Q x Q. We say that¥ is self-pairedif
((o, L), (zr, N)) € ¥implies((r, N), (o, L)) € W. If U is self-paired, then we define tflag
graphof D with respect tq2, W), denoted by (D, 2, W), to be the graph with vertex sgt
in which two ‘vertices’(a, L), (r, N) € Q are adjacent if and only if(c, L), (z, N)) € W.
The self-parity of guarantees that this defines an undirected graph. For a givenspoint
D, we denote by (o) the set of flags of2 with point entryo. If Q is aG-orbit on the flags
of D, for some groups of automorphisms oD, thenQ (o) is a G, -orbit on the flags oD
with point entryo. In this casel’ (D, 2, V) is G-vertex-transitive and its vertex setadmits
a naturalG-invariant partition, namely,

B(Q):={Q(0):0 €V} (©)

If furthermore W is a G-orbit on Q@ x @ (under the induced action), thdhD, 2, V) is
G-symmetric. For a flago, L) of D, we useG,, | to denote the subgroup & fixing (o, L),
that is, the subgroup dB fixing o and L setwise. For our construction, we require some
additional properties to be met Iy.

DEFINITION 2.3. Let D be a 1-design which admits a point- and block-transitive gi@up
of automorphisms. Let be a point ofD. A G-orbit Q2 on the flags oD is said to bdeasible
if the following conditions are satisfied:

(@) 120) = 3;

(b) L NN = {o}, for distinct(o, L), (o, N) € Q(0);

(c) G, istransitive onL \ {o}, for (o, L) € ©; and

(d) Gy; is transitive or2(o) \ {(o, L)}, for (o, L) € Qandtr € L \ {o}.

For such a feasibl, we say tha{(c, L), (z, N)) € Q x Q is compatiblewith Q if o & N,
T ¢ L bute € N, t € L' forsome(o, L), (z, N) € Q.

Since G is transitive on the points dP, the validity of (a)—(d) above does not depend
on the choice ob. Let Q be a feasibles-orbit on the flags ofD, and let((o, L), (z, N))
be compatible with2. Sincec € L butt ¢ L, ando € L buto ¢ N, we haves # r and
L # N. Similarly, L # L’ andN # N’. (But it may happen thdt’ = N’, see RemarR.7(a).)
Since{o, T} € L’ and (o, L") € Q(0o), the requirement (b) in DefinitioB.3 implies that
(o, L") is unique; and similarly(z, N) is unique. Moreover, for anyo, L1), (z, N1) € Q
with L1 # L andNjy # N/, the ordered paif(c, L1), (r, N1)) is also compatible witl®2. We
use KD, ) to denote the set of all ordered pairs of flaggoivhich are compatible witl®.
Then KD, Q) is aG-invariant subset of2 x Q. In the following we will consider only those
flag graphd™ (D, 2, W) such thatD andG are as in Definitior2.3, 2 is a feasible5-orbit on
the flags ofD, andV is a self-paireds-orbit on {D, 2); and to be precise we will call such
graphsG-flag graph=of D.

Before proceeding to the proof of Theordn, let us illustrate our construction by examin-
ing a simple but important special case. (This case is ‘simple’ only in the sense that the design
involved is degenerate with block size 2.) A 1-desigmwith block size 2 can be viewed as
a regular graplx, and vice versa, if we identify the blocks ®f with the edges of. The
automorphism groups of the desighand the grapte are the same. Moreover, under this
identification the flago, L) of D, sayL = {0, 7}, is the ard(o, 1) of . HenceD is G-flag-
transitive if and only ifZ is G-symmetric, and in this case is alsoG-point-transitive and
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G-block-transitive. The following example shows that tBeflag graphs ofG-flag-transitive

1-designsD with block size 2 are precisely the 3-arc graphsoivith respect to self-paired
G-orbits on Arg(X), the set of 3-arcs oE. In general, for a regular grapfi and a self-

paired subsen\ of Arcz(X), the 3arc graph E(X, A) of ¥ with respect toA, as defined

in [12, Section 6], is the graph with vertex set AR) in which (o, 01), (t, 71) are adjacent if
and only if (o1, 0, 7, 71) € A.

EXAMPLE 2.4. Three-arc graphsA G-flag-transitive 1-desigf® with block size 2 can be
viewed as &-symmetric graplt, and vice versa. The valeneyof X is equal to the number
of blocks of D incident with a given point. We assume> 3 in the following. SinceD is
G-flag-transitive, the onlys-orbit on the flags oD is the sef of all flags of D, that is, the
arc set Ar¢x) of ¥. Clearly, Q satisfies (a)—(c) in Definitio2.3, and the requirement (d)
therein is equivalent to requiring that is (G, 2)-arc transitive. Thereford) has a feasible
G-orbit on its flags if and only ifZ is (G, 2)-arc transitive, and in this case the only such
feasibleG-orbit is the flag sef2 of D. The G-invariant partition3(€2) of & (defined in 8))
can be identified with th&-invariant partition

B(Z) :={Arc(X;0) :0 e V(2)} 4

of Arc(X), where Arc¢X; o) := {(0,n) : n € (o)} is the set of arcs oE initiated ato.
Moreover, an ordered paifo, L), (r, N)) of flags of D, sayL = {0,01}, N = {r, 11}, IS
compatible withQ2 if and only if (o1, o, 7, 71) is a 3-arc ofx. In this case we may identify
((o, L), (z, N)) with (o1, 0, 7, 1), and thus identify ED, ) with Arc3(X). Hence a self-
pairedG-orbit ¥ on KD, Q) can be identified with a self-pairgd-orbit A on Arcz(X), and
vice versa. Therefore, for@-flag-transitive 1-desig® with block size 2, a&5-flag graph of
D exists if and only ifZ is (G, 2)-arc transitive, and in this cas&gD, 2, V) is isomorphic to
the 3-arc graplE(X, A) of X with respect taA.

2.3. Proof of Theorerh.. Now we are ready to prove Theorenil Suppose thdt, G and
B are as in the first part of Theorelil. By parts (a) and (b) of Lemna2, D := D(T’, B) (as
defined in ()) is aG-point-transitive ands-block-transitive 1-design with block size + 1,

andQ := Q (T, B) (as defined inZ)) is aG-orbit on the flags oD, wheremis the multiplicity
of D(B). It follows from the definition that2 (B) = {(B, L(«)) : @« € B} = {(B, L) : L €

L(B)}, for B € B.S0|Q2(B)| = v > 3andLNN = {B} for distinct(B, £), (B, N) € Q(B).

ThusQ satisfies (a) and (b) in DefinitioR.3. For (B, £) € Q(B), sayL = L(«) for some
a € B, we havel \ {B} = B(a) andQ(B) \ {(B,£)} = {(B,N) : N € L(B) \ {£}}. So
it follows from parts (c) and (d) of Lemm2.2 that Q2 satisfies (c) and (d) in Definitio®.3.

Therefore 2 is a feasible5-orbit on the flags oD.

For an ard«, B) of I', the blocksB := B(«) andC := B(B) are adjacent if"g. So there
exista’ € B andB’ € C such that', 8/ are mates, that i3 € B(8’) andC ¢ B(«)).
Thus, we haveB € L(B8'), C € L(a’); and moreove(B, L(a")) = (B(&'), L(a')) € Q,
(C, L(B)) = (BB, L(B)) € Q. It follows from the definition thaB ¢ L£(B) andC ¢
L(«), and therefore we hawéB, L(«)), (C, L(B))) € F(D, Q). Set

V= {((B(a), L(@)), (B(B), L(B))) : (a, B) € Arc(I)}.

Then clearly¥ is self-paired, and the argument above shows thatC F(D, Q). By
Lemma2.2(b), the actions o6 onV (I') and$2 are permutationally equivalent with respect to
the bijectionp : y > (B(y), L(y)), fory € V(T'). Sincel is G-symmetric, this implies that
U is a (self-paired)G-orbit on KD, Q). It is easily checked that defines an isomorphism
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from I" to theG-flag graphl" (D, 2, ¥), and hence the first part of Theordniis proved. In
addition, from Lemma.1(b), if G is faithful on the vertices of, then it is also faithful on
the points ofD.

Suppose conversely th@é, G, Q, ¥ andm are as in the second part of Theorém. Let
I :=T(D,Q,V), and letB := B(2) be as defined in3). Then by the discussion before
Definition 2.3 T is aG-symmetric graph with vertex s€&, andB is a nontrivialG-invariant
partition of Q with block sizev := |Q(0)| > 3, whereo is a point of D. To complete the
proof, we need to show that the block sizef the 1-desigrD(2(o)) induced on the block
Q (o) of B satisfiess = k + 1, and that the multiplicity oD (2 (¢)) is equal tom.

Let Q(0), Q(r) be adjacent blocks df. Then there existo, L) € Q(o) and(z, N) €
Q(t) such that(o, L), (r, N) are adjacent i, that is, ((o, L), (r, N)) € W¥. Sincew¥
is a G-orbit on KD, ), it follows thatc ¢ N,z ¢ L ando € N, € L’ for some
(o, L"), (z, N') € Q. For any(o, L1) € Q(0), sincec € N’, we have((o, L1), (t, N)) ¢
F(D, @), and hencér, N’) is not adjacent i to any ‘vertex’ of 2 (o). Similarly, (o, L) is
not adjacent i to any ‘vertex’ ofQ(z). On the other hand, sin€e is feasible and € L'\
{o}, it follows from Definition2.3(d) thatG, ; is transitive ore2 (o) \ {(o, L")}. Thus, for any
(0, L1) € Q(0)\ {(o, L)}, there existg € G, . such thaio, L)Y = (0, L1). Sinceg fixeso
ando ¢ N, we haves ¢ NY9. Buto € N/, so we havér, Np) := (7, N)9 € Q(7) \ {(z, N")},
and(o, L1), (r, Np) are adjacent ifr’. Thus each ‘vertex’ of2(o) \ {(o, L")} is adjacent i
to at least one ‘vertex’ of2(t) \ {(z, N))}. Thatis,['(Q2(z)) N (o) = Q(o) \ {(o, L")} and
hencev = k + 1.

Finally, we prove that the multiplicity oD(Q2 (o)) is equal tom. From Definition2.3(c),
G, L’ Is transitive onL’ \ {o}. So, for anye € L'\ {o} there existh € G, - such that
h = ¢. SetM’ := (N)". Then we haves, M') = (¢, N)" € Q. Sinceh fixeso, it fixes
Q (o) setwise; and moreover € N’ implieso € M’. Sinceh also fixes the flago, L), it
must fixQ2 (o) \ {(o, L")} setwise. Set.1 := LN andN; := NP. Then(o, L1) = (o, L)" €
Qo) \ {(o, LN}, (e, Np) = (z, )" € Q(e) \ {(e, M)}, and (o, L1), (¢, N1) are adjacent in
I'. By a similar discussion as in the previous paragraph, one can prove(fat)) NQ (o) =
Qo) \ {(o, L")}. Conversely, ilT(R2(e)) N Q2(c) = Q(o) \ {(o, L")} for some block (s)
of B, thenQ (o) is adjacent ta2(¢) in 'z, and (o, L) is the unique ‘vertex’ of2 (o) not
adjacent to any ‘vertex’ of2 (¢). SinceQ2 (o) is adjacent ta2(7), by theG-symmetry ofl'g
there existz ¢ G such that(2 (o), Q(1))? = (Q(0), 2(¢)). This impliest? = ¢. Moreover,
since(o, L) is the unique ‘vertex’ of2 (o) not adjacent to any ‘vertex’ d2(z), as shown in
the previous paragraph, we must havwe G, | /. This together withr € L"\ {o'} implies that
& =1%€ L'\ {o}. In summary, we have proved thatQ2(¢)) N Q (o) = Q(o) \ {(o, L")} if
and only ife € L"\ {o}. Therefore, the multiplicity oD (2(0)) is equal to|lL" \ {o}| = m.
In addition, if an element o fixes each flag ir2, then it must fix each point @P. So, if G
is faithful on the points oD, then it is faithful on the vertices df. This completes the proof
of Theoreml..1, as well as that of the statement immediately following it.

2.4. Corollaries and remarksFrom the proof above, one can see that the giaptefi-
ned in the second paragraph of Secti is isomorphic to the flag graph(D, 2, ¥'),
whereD := D(T, B), Q := Q([, B) and¥’ := {((B(), L)), (B(B), L(B))): (', B) €
Arc(I')}. Note thatD has block size one larger than the multiplicityfB) (Lemma2.2(a)).
SoD(B) contains no repeated blocks if and onlyfifhas block size 2. In this case we may
identify D with the quotient graplr'z by identifying each blockB, C} of D with the edge
of ' joining B and C. Thus Theoreni.1 and the discussion in Examp®4 imply the
following result.
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COROLLARY 2.5 ([12, THEOREM1]). LetI" be a finite G-symmetric graph, arfla non-
trivial G-invariant partition of V(I') with block sizev > 3 such thatD(B) has block size
v — 1. ThenD(B) contains no repeated blocks if and onhyig is (G, 2)-arc transitive. In
this casel’ = E(I'g, A) for some self-paired G-orbit of 3-arcs of I'z. Conversely, for
any self-paired G-orbitA of 3-arcs of a(G, 2)-arc transitive graphX of valencyv > 3, the
graphT" = E(XZ, A), group G, and partition3(X) (defined in Exampl@.4) satisfy all the
conditions above.

The case where = k+ 1 > 3 andI' is a complete graph is of particular interest. In this
case we hav&'g = Kqy+1 as vall'g) = mv (LemmaZ2.1(a)). Sincel's is G-symmetric,
this occurs precisely whe@ is doubly transitive or8. So in this cas® (T, B) is aG-doubly
transitive ands-block-transitive 2¢mv + 1, m + 1, A) design, for some integer > 1. Con-
versely, if D is aG-doubly transitive anes-block-transitive 2¢mv + 1, m+1, 1) design, then
for any G-flag graphl" = I'(D, @, W) of D, we havel'sq) = Kmy+1. So Theoreni.1has
the following consequence.

COROLLARY 2.6. Letv > 3 and m > 1 be integers, and let G be a group. Then the
following statements are equivalent.

(a) T' is a G-symmetric graph admitting a nontrivial G-invariant partitighof block size
v such thatD(B) has block size — 1 andT'g = Kyy41-

(b) T = I'(D, 2, V), for a G-doubly transitive and G-block-transiti&(mv + 1, m +
1, ») designD, a feasible G-orbit2 on the flags oD, and a self-paired G-orbit’ on
F(D, Q).

Moreover, the integem above is equal to the multiplicity ab(B), and G is faithful on
V(T) if and only if it is faithful on the points oD.

A linear spacd1] is an incidence structure of points and blocks, calieds in which any
two distinct points are incident with exactly one line, any point is incident with at least two
lines, and any line with at least two points. We conclude this section by making the following
remarks.

REMARK 2.7. (a) A G-doubly transitive linear spacP must beG-block-transitive and
G-flag-transitive, and hence the onG-orbit on the flags ofD is the flag sef2 of D. In
this case satisfies (b) and (c) in DefinitioB.3 automatically. Hence2 is feasible if and
only if any point is incident with at least three lines and, for distinct points, G, is
transitive on the lines incident witth but notz. Note that in this case we havelF, Q) =
{((o, L), (z,N)) : (o, L), (r,N) € Q,0 & N, t & L}. Also, for the memberé&s, L), (z, N)
of @ suchthat € N, T ¢ L’,wehavel’ = N’ = L,,, whereL, is the unique line incident
with botho andz.

(b) Conversely, if the flag set of@-flag-transitive 2-desigt® is feasible, therD is forced
to be a linear space.

3. PROJECTIVE ANDAFFINE FLAG GRAPHS

As a result of the classification of finite simple groups, all doubly transitive linear spaces
are known L1, Theorem 1]. Thus, by using our flag graph construction, it seems possible
to classify theG-flag graphd™ (D, @, ¥) appearing in Corollar.6 for G-doubly transitive
linear space®, and this will contribute to the classification of all the graphtherein. As an
effort towards achieving this goal, we will classify in this section such graphs for the following
typical doubly transitive linear spaces:
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(i) the projective geometry R@ — 1, q) (d > 2);
(ii) the affine geometry AGl, q) (d > 2); and
(i) thetrivial doubly transitive linear space, namely the complete 2- 1, 2, 1) design.

For G a doubly transitive subgroup ofif2.(d, q), we will characterize th&-flag graphs of
PG — 1, q) as the onlyG-flag graphs arising from any 2-design admitti®gas a faith-
ful, doubly transitive and block-transitive group of automorphisms. Fo&Htag graphs of
AG(d, q), where AGL(d, q) < G < ATI'L(d, q), we have a similar characterization. From
these and Corollarg.6, the result in Theoreri.2 then follows.

From Example.4, the G-flag graphs arising from (iii) above are precisely the 3-arc graphs
E(Z, A) of complete(G, 2)-arc transitive graphs := K, ;1. In this cases is 3-transitive on
V(Z), and is one of the groups that we will list at the beginning of Se@i@nIn particular,
if A contains a 3-cycle o, then A is the set of all 3-cycles oE. Hence&(Z, A) =
(v+1) - Ky ([12 Theorem 8(b)]) anE (X, A) is an almost cover oE. So in the following
discussion for this case, we may suppose that each 3-axdsmproperin the sense that it is
not a 3-cycle.

3.1. Projective flag graphsLetd > 2 andq = p® with p a prime ance > 1. As usual we
use the same notation for the projective geometrydRGl, q) and the (point, line)-incidence
structure of P& — 1, q). LetV(d, q) be thed-dimensional linear space of row vectors over
GF(q), andV the set of points of P@ — 1, q). ThenV = {[x] : x € V(d, q) \ {0}}, where
[x] is the point of PGd — 1, q) representing nonzero multiples of the vectoiMoreover,
V| = (q9 — 1)/(q — 1), and any groufs with PSL(d, q) < G < PI'L(d, q) acts doubly
transitively onV (see e.g.,§, p. 245]). By [L1, Theorem 1], anyG-doubly transitive linear
spaceD with point setV (under the natural action) is either RG— 1, q) for d > 3, or the
trivial G-doubly transitive linear space. As mentioned above, in the latter@aseequired
to be 3-transitive oV and thusd = 2 (see e.g.,3, p. 8]), and theG-flag graphs ofD are
the 3-arc graph& (X, A) of ¥ := Kq41, whereX has vertex se¥ and A is a self-paired
G-orbit on Argz(X). These graph& (X, A) were classified in]0], and for completeness we
describe them in the following.

Letd = 2 and letX = Kq41 be as above. Then we may identifywith GF(q) U {oo} and
thus we have

Arc(T) = {yz:y.ze GR(@) U {oo}, y # 2}

whereoo satisfies the usual arithmetic rules such asol= 0, 0o + y = o0, coP = o0, etc.
The projective group PG(2, q) consists of all Mbius transformations
tabcd:ZH 222—1—3 (a,b,c,d e GF(),ad — bc # 0)

of GF(q) U {0} (see e.g., I3, p. 20-21]), and PL(2, q) is equal to the semidirect pro-
duct PGL(2, q) - (v), wherey is the Frobenius mapping defined fpy: x — xP, for x ¢
GF(q)U{oc}. From [LO, Theorem 2.1], the 3-transitive subgroups 6fLR2, q) are the groups
PGL(2,q) - (v®), for some divisoss of e; and M(s, q) := (PSL(2, q), ¥5ta.0,0,.1), Wherep is
odd,eis evensis a divisor ofe/2, anda is a primitive element of Gg).

For distinct elements, w, y, z € GF(q) U {0}, the cross ratio(see e.g., 13, p. 59)]) is
defined ag(u, w; y, 2) := (U—Yy)(w —2)/(U—2)(w — Y). The cross ratio can take all values
in GF(q) except 0 and 1, and is invariant under the action of EX3¢) on quadruples of
distinct elements of Gf§)) U {cc}. Moreover, PGI2, q) is transitive on such quadruples with
afixed cross ratio (see e.gL3 p. 59]). Under the action af, we havec(u?, w¥; y¥, z¥%) =
(c(u, w; y, 2)V.
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ExampPLE 3.1. Cross ratio graphs.For eachx € GF(q) \ {0, 1}, the subfield of GFq)
generated by has the form GFp3™), for some divisors(x) of e. For each divisors of
s(X), the (y5)-orbit on GR p*®) containingx is B(x, s) := {x¥* : 0 < i < s(x)/s}. The
untwisted cross ratio grap@R(q; X, s), as defined in10, Definition 3.2], is the graph with
vertex set Ar¢X) in which (u, w) and(y, z) are adjacent if and only ifi, w, y, z are distinct
elements of GFg) U {oo} andc(u, w; Y, 2) € B(X, S). Sincec(co, 0; 1, X) = X € B(X, S), by
the above-mentioned properties of cross ratip,w) and(y, z) are adjacent in CRJ; X, S)
if and only if (w,u,y,z) € (0,00,1,x)¢ for G := PGL(2,q) - (¢5). Thus CRQ; X, S)
can be defined equivalently as the 3-arc grajiix, A) of ¥ with respect to the self-paired
G-orbit A := (0, 00, 1, x)© on Arc(2). (The G-orbit A is self-paired sincé _x1-1€ G
interchangeso0 and X.)

Now let p be an odd prime anelan even integer, and Igte GF(q) \ {0, 1} be such thas(x)
is even andk — 1 is a square of Gff). Lets be an even divisor &f(x). Thetwisted cross ratio
graphTCR(q; x, s), as defined inJ0, Definition 3.4], is the graph with vertex set Aix) and
arc set(co0, 1x)MS/29 |n other words, TCRy; X, S) is the 3-arc graplE (2, A) of = with
respect to the self-paired (¢)/2, g)-orbit A := (0, oo, 1, x)ME/2D on Arcz(T). (Note that
x — 1 is a square implies that _x 1. -1 € PSL2,q) < M(s/2,q). So A is self-paired by
the same reason as in the last paragraph.) From the properties of cross ratio mentioned before
this example, one can see tligit z) is adjacent tgoo, 0) in TCR(Q; X, S) precisely whery €
GF)\{0} andz/y € B(x, s) orz/y € B(x, s)‘/’s/z, depending on whethgris a square or not.

From the discussion in Exampk4 we know that the untwisted and twisted cross ratio
graphs above admit tHe-invariant partition3(Z) := {B(y) : y € GF(q) U{oc}}, for suitable
3-transitive subgroup& of PI'L(2, q), whereB(y) := {(y,2) : z € GFQ) U {o0}, Yy # Z}.

It was proved in 10, Theorem 5.1] that they are the onfBrsymmetric graphs with vertex
set Arq’X) such that the block size @?(B(y)) is q — 1. Therefore, they are the only 3-arc
graphs ofx with respect to some self-pairgs-orbits on Arg(X). Moreover, for(I', G) =
(CR(q; X, 8), PGL(2, q) - (%)) or (TCR(Q; X, S), M(s/2, @)), the only 3-transitive subgroups
H of PI'L(2, q) such thatl" is H-symmetric are subgroups @& of the form PGI(2, q) -
(¥Y) or M(t/2, q) respectively, for some divisdrof e such that the greatest common divisor
gcd(s(x), t) is equal tos. (See the comment immediately followingd, Theorems 5.1].)
From the adjacency df, one can see that in both cagebkas valencyq — 1)s(x)/s and, for
distinct blocksB(u), B(y) of B(X), the bipartite subgraph[B(u), B(y)] has valencg(x)/s.

In particular,I" is an almost cover of if and only if s = s(x); and if this occurs then the
integert in H is a multiple ofs(x) as gcds(x), t) = s(X).

The reader is referred t@][for two other interesting graphs, also relating to(GFU {co},
which are connected 2-arc transitive 4-fold coversio&= Kq41. They were discovered by
Du, Marusic and Waller in their classification of a family of 2-arc transitive covers of com-
plete graphs.

Now let us turn to the case whede> 3. In this case P@ — 1, q) is a linear space with
mv+1:= (q% — 1)/(q — 1) points such that each line contaimst 1 := q + 1 points. So we
havev = (q9"1—1)/(q—1) andm = q. For1< s < d — 1, anys+ 1 points of PGd — 1, q)
are said to béndependenfl5, p. 72] if they do not lie on anys — 1)-flat of PGd — 1, ). In
particular, three points of P@ — 1, q) arenoncollinearif they are independent, amdllinear
otherwise. We will exploit the following basic result in projective geometry, a proof of which
can be derived from§, 1.4.24].

LEMMA 3.2. Supposé’SL(d, q) < G < PrL(d, q), where d> 3and q is a prime power.
Then, for any integer s with < s < d — 1, G is transitive on the set of orderég+ 1)-tuples
of independent points 6fG(d — 1, q).
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Let Q(P;d, q) denote the set of flags (that is, (point, line)-flags) of (@G- 1, Q). In
the following lemma we will show tha® (P; d, q) is feasible. Thus, setting(P; d, q) :=
F(PG —1,q), Q(P; d, q)), from Remark2.7(a) we have

F(P;d, ) ={((o. L), (z, N)) : (o, L), (z, N) € Q(P;d,q),0 ¢ N, 7 & L}.

We call two distinct linesL, N of PG(d — 1, q) intersectingif there exists a unique point
incident with bothL and N (that is, L, N lie on the same plane of R& — 1, q)), and
skewotherwise. We us&*(P; d, q) (respectively¥=(P; d, q)) to denote the set of ordered
pairs((o, L), (r, N)) € F(P; d, g) such thatL, N are intersecting (respectively, skew). Here
we use 4 and ‘>’ to symbolise relative positions df and N. Clearly, ¥*(P; d, q) and
Ww=(P; d, q) consist of a partition of @; d, q). Note that¢=(P; d, q) # @ if and only if
d > 4 (see e.g.,15, p.71]). So we have®; 3,q) = VT (P; 3, q).
LEMMA 3.3. Suppos#SL(d, q) < G < Pr'L(d, q), where d> 3 and q is a prime power.
(a) There exists a unique feasible G-orbit on the flage@fd — 1, q), namely2 (P; d, q).
(b) If d = 3, then G is transitive orF(P; 3,q); if d > 4, then G has two orbits on
F(P;d, q), namely¢+(P; d, q) and¥=(P; d, q).

PrRoOOF (@) Since P& — 1, q) is aG-doubly transitive linear space, it G-flag-transitive,
and henc& (P; d, q) is the only candidate for a feasibB orbit on the flags of PG — 1, q).

In PG(d — 1,q) each point is incident witiq®1 — 1)/(q — 1) > 3 lines (15, Theo-
rem 2.5(iii)]). For distinct pointss, r, let N1, N2 be two lines incident withy but not z,
and letsi € Nj \ {o},i =1, 2. Then(o, 1, 81), (0, T, 82) are triples of noncollinear points. So
by Lemma3.2there existg) € G such thato, 7, §1)¢ = (0, 1, §2), and hencg € G, .. Since
N; is the unique line incident with ands;, this impliestJ = Ng, and henc&2 (P; d, q) is
feasible by RemarR.7(a).

(b) Let ((o1, L1), (t1, N1)), ((02, L2), (12, N2)) € WT(P;d,q). Let §; be the common
point of L;j and N;, fori = 1,2. Then(o1, 11, 81), (02, T2, 82) are triples of noncollinear
points. By Lemma3.2 we have(o1, 11, 61)Y = (02, 12, §2) for someg € G. This im-
plies ((o1, L1), (11, N1))9 = ((02, L2), (12, N»)), and hencés is transitive ond*(P; d, ).
Similarly, for ((o1, L1), (t1, N1)), ((02, L2), (12, N2)) € ¥=(P: d, q), we can choose; ¢
Li \ {oi} andz/ € Ni \ {7j}, fori = 1,2. So(ay, 01, 11, 77), (05, 02, T2, Ty) are quadruples
of independent points of R@ — 1, ). Again by Lemma3.2 we have(oy, 01, 71, 77)¢ =
(0, 02, T2, ) for someg e G. This implies((o1, L1), (t1. N1))¢ = ((02, L2), (72, N2)),
and hencés is transitive o= (P; d, q). SinceG preserves relative positions between lines
and sincel ™ (P; d, q) andw=(P; d, q) consist of a partition of @P; d, g), the assertions in
(b) follow immediately. O

By definition bothw™*(P;d, q) and ¥=(P;d, q) are self-paired. Hence the following
graphs are well-defined.

DEFINITION 3.4. The flag graphs of P@E — 1, q) with respect to(Q(P;d, q), ¥*
(P;d,q)) and (2(P;d, q), ¥=(P;d,q)) are calledprojective flag graphsdenoted by
't (P; d,q) andI’=(P; d, q), respectively.

Note that we requirel > 4 in definingl=(P; d, q). From Lemma3.3, ' (P; d, q) and
'=(P;d, q) are the onlyG-flag graphs of P@ — 1, q). Moreover, we have the following
characterization of them.

LEMMA 3.5. SupposéSL(d, q) < G < Pr'L(d, q), where d> 3and q is a prime power.
Suppose further thab is a 2-design, other than the trivial linear space, which admits G as
a faithful, doubly transitive, and block-transitive group of automorphisms. Then any G-flag
graph of D is isomorphic ta"*(P; d, q) or '=(P; d, q).
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PrROOF The groupG has only two faithful permutation representations, namely the nat-
ural actions on the points and the hyperplanes ofd®G 1, q). Such representations are
interchangable by an outer automorphism btRd, g). So in the following it suffices to con-
sider the usual action @ on the point seV of PG(d — 1, q). Thus we may suppose that
has point seV/ .

SinceD is G-doubly transitive and is not the trivial linear space, its block size is at least
three. Suppos& is a feasibleG-orbit on the flags ofD, and let(o, L) € Q. The double
transitivity of G on V implies that, for anyg € V \ {o}, there exists a flagr, N) € € such
thate € N. This, together with the requirement (b) in Definitidr8 and the fact tha® (o) is
a G, -orbit on the flags o with point entryo, implies the following claim:

(i) {N\{o}: (o, N) € Q}is aG,-invariant partition ofV \ {o}.
We claim further that:
(i) Foranyr, s € L\ {0}, the pointss, 7, § must be collinear in P@& — 1, q).

Suppose otherwise, and kebe a point in a blociN of D with (o, N) € Q (o) andN # L.
Thenin PGd—1, q) eithero, 1, ¢ are noncollinear, ar, §, ¢ are noncollinear, since otherwise
o, 7,8 would be collinear, which contradicts our assumption. Without loss of generality we
may suppose that, 7, ¢ are noncollinear in PG — 1, g). Then by LemmaB.2 there exists
g € G such thato, 7, §)9 = (o, 7, ¢). So we have € G, .. Sinceg fixest, by (i) it must fix
L setwise. On the other hand, singenapss to ¢, again from (i),g must mapL to N. This
is a contradiction and hence (ii) is proved. From this it follows that, for g€ach) € <, the
block L of D consists of some collinear points of RG- 1, q). Moreover, we have:

(i) Foreach(o, L) € 2, the blockL of D is aline of PGd — 1, ).

Suppose otherwise, then from (i), (ii) there exigtsN1) € Q such that the points df and
N; lie on the same line, say*, of PG(d — 1, q). Sinced > 3, we can takéo, N2) € © such
that the points irL and those i\, do not lie on the same line of R&— 1, ). Take a point
7 € L\ {o}. SinceQ is feasible, by the requirement (d) in Definitiar8, there existg € G,
such thale = Np. Sinceg fixeso andz, it must fix the lineL* of PG(d — 1, q). Hence the
points inN1 are mapped bg to some points o *. That is, the points ilN, must lie onL*.
This is a contradiction and hence (iii) is proved.

The claims (i) and (iii) together imply th&2 (o) = Q(P; d, q)(o) for eacho € V. So we
haveQ = Q(P; d, q). In particular each line of P@ — 1, q) is a block ofD. Thus it follows
from the definition that ED, ) = F(P; d, q). From Lemma3.3(b), the result in Lemma&.5
follows. |

Applying Corollary2.6, the discussion above leads to the following classification theorem,
which is the main result in this subsection.

THEOREM 3.6. Supposé®Sl(d, q) < G < PIr'L(d, q), where d> 2 and q = p® with p
a prime and e> 1. Then, if and only if either &> 3, or d = 2 and G is3-transitive, there
exists a G-symmetric graghwith G faithful on (T") which admits a nontrivial G-invariant
partition 5 such thatv = k + 1 > 3andI'g = K11, where m is the multiplicity aP(B).
Moreover, all the possibilities of sudh, G and the corresponding ne can be classified as
follows.

(@ I'=(+1-Kg, GisPGL2, q) - (¥°) (where s is a divisor of)eor M(s, q) (where
g is odd, e is even and s is a divisor gRg, and(m, v) = (1, q).

(b) (T, G) = (CR(; X, ), PGL(2,q) - (¢')) and (m, v) = (1, q), where xe GF(q) \
{0, 1}, s is a divisor of §x), and t is a divisor of e witlycd(s(x), t) = s.



754 S. Zhou

(c) (I',G) = (TCR(q; X,8), M(t/2,q)) and (m,v) = (1, q), where p is odd, e~ 2is
even, xe GK(Q) \ {0, 1} with s(x) even and x- 1 a square ofGF(q), s is an even
divisor of gx), and t is a divisor of e witlgcd(s(x), t) = s.

(d) T is eitherr*(P; d, ) or I=(P; d, q), where d> 3, G is any doubly transitive sub-
group ofPL'L(d, g), and(m, v) = (4. (q%~1 - 1)/(q — 1)).

Note that the grapt=(P; d, q) in (d) above appears only wheh> 4. We conclude this
subsection by proving the following properties of the projective flag graphs. As before, we
denote byl the unique line of P@ — 1, q) through two distinct points andz.

THEOREM3.7. Letd > 3and g a prime power. L&2 = Q(P; d, q) andB(Q) = {Q(0) :
o a point of PGd — 1, )} as in(3). Then the following statements hold.

(@) ' (P; d, g) andI'=(P; d, q) are connected graphs with diameter two and girth three,
and with valenciesq®t1—qg3)/(q—1) and (@ 1—g%)(q9—q?)/(q—1)2, respectively.

(b) For distinct blocksR2 (o), 2(t) of B(£2), each vertex of2(o) other than(o, L,¢) is
adjacent to exactly q vertices 6f(t) in 't (P: d, g), and adjacent to exactlggd—1 —
q2)/(q — 1) vertices ofQ () in I~ (P; d, ). In particular, forI" := I't(P; 3, q) we
havel'[Q (o), Q(7)] = Kq,q-

(c) For PSL(d,q) < G < Pr'L(d, q), any G-symmetric graph with vertex set(under
the induced action of G of) is isomorphic to eithel"*(P; d, q), or '=(P; d, q),
or (@4 = 1)/(q - 1) - Kqd-1-1)/q-1) with connected components the sets of flags
incident with a common point, axq®* — 1)(@ — 1)/(q — 1)(g%> — 1)) - Kg4+1 with
connected components the sets of flags incident with a common line.

PROOF Let (o, L), (z, N) € Q be distinct flags of PGl — 1, q). If L # N then, since each
line of PGd—1, q) containgy+1 > 3 points, we cantakée L\{o, t},¢ € N\{o, t}andy €
Lse \ {8, €}. One can check that the sequeligel ), (1, Ls.), (r, N) is a path o' *(P; d, q)
with length two. In particular, ifo, L), (z, N) are adjacent i (P; d, q), then the sequence
(o, L), (n, Lse), (r, N), (o, L) is a triangle. Similarly, ifb # t butL = N, then we can take
8 € L\ {o, t} and a points not incident withL. Thus the sequende, L), (e, Ls.), (7, L)
is a path of"™(P; d, g) with length two. Hencd *(P; d, q) is connected with diameter
two and girth three. The definition af=(P; d, q) requires thad > 4. So for any distinct
(o, L), (z, N) € , we can choose a ling which is skew with both. andN. For anys € M,
the sequencéo, L), (8, M), (z, N) is a path ofT=(P; d, q) with length two. Moreover, if
(0, L), (z, N) are adjacent im=(P; d, q), then the sequenge, L), (8, M), (t, N), (o, L) is
a triangle. Henc&=(P; d, q) is connected with diameter two and girth three as well.

For any flag(o, L) and any point not incident withL, there are exactly lines which are
incident witht and intersect with. at a point other thas, namely those lines joining and
one of the points i \ {o}. Hence there are exactly— q — 1 lines which are incident with
and skew withL_ (note thatl, is not skew withL), wherev = (q4~1—1)/(q — 1) as before.
From these the assertions in (b) follow immediately. Note that, for a paimtident withL,
(o, L) is not adjacent to any vertex 6f(z) in either['*(P; d, q) or '=(P; d, g). SincelL
containsq + 1 points and PGl — 1, q) has(q — 1)/(q — 1) points in total, from (b) the
assertion in (a) concerning the valencies'of(P; d, q) andI'~(P; d, q) follows.

Now let us prove (c). Suppogeis a graph with vertex se® which is G-symmetric under
the induced action o6 on Q. Let ((o, L), (z, N)) be an arc of". If 0 = 7, thenL # N,
and two flagqo1, L1), (tr1, N1) are adjacent i if and only if o1 = 1 andL1 # Nj. Since
PG(d—1, q) has(q¥—1)/(g—1) points, and since each point is incident with exacy— —
1)/(q — 1) lines, in this case we hade = ((qd —-1/@-1) Kgd-1_1)/g-1)- Similarly, if
L = N, then we havé = ((q%~* - 1)(q% — 1)/(q — 1)(9? — 1)) - Kg+1. In the following we
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suppose that # v andL # N. Then theG-symmetry ofl" implies that there existg € G
which interchangeso, L) and (z, N). So we haves ¢ N for otherwise we would have
o € LN N andthust =09 € (LN N)9 = L N N, which impliessc = t and so contradicts
our assumption. Similarly, we hawe ¢ L and hencé(o, L), (r, N)) € F(P;d, q). Thus,
sincel” is G-symmetric, its arc set A(€") is a self-paireds-orbit on K P; d, q). Therefore,
from Lemma3.3, T is isomorphic to eitheF (P; d, g) or '=(P; d, q). O

3.2. Affine flag graphs.For an integed > 2 and a prime poweqy, we use the same notation
AG(d, q) for the (point, line)-incidence structure of the affine geometry(@&@). Thus, for
any groupG with AGL(d, q) < G < AT'L(d, ), AG(d, q) is aG-doubly transitive linear
space. The aim of this subsection is to classify and characterigzflag graphs of AGd, q).
For this purpose we need the following basic result in affine geometry.

LEMMA 3.8. SupposeAGL(d,q) < G < ATL(d,q), where d> 2 and q is a prime
power. Then, fol < s < d, G is transitive on ordere@s + 1)-tuples of points oAG(d, q)
not lying on any(s — 1)-flat of AG(d, q).

From this and RemarR.7(a), it is easily verified that the flag s€t(A; d, q) of AG(d, q) is
feasible. Thus, setting(R; d, q) := F(AG(d, q), 2(A; d, q)), we have

F(A;d,a) ={((o, L), (t,N)) : (0, L), (r,N) e Q(A;d,q),0 ¢ N, 7 & L}

We call two distinct lines of A&, q) intersectingf they share a uniqgue common poipgra-

llel if they lie on the same plane but have no point in common skedin the remaining case.
We use¥t(A;d, q) (¥=(A; d,q), ¥=(A; d, q), respectively) to denote the set of ordered
pairs ((o, L), (z, N)) in F(A; d, ) such thatL, N are intersecting (parallel, skew, respec-
tively). ThenW+(A; d, ), ¥=(A; d, q) and¥=(A; d, q) consist of a partition of FA; d, ).
(Note thatw=(A;d,q) # ¢ if and only if d > 3, see 15 Theorem 1.15(i)].) Using
Lemma3.8 and by a similar argument as in the proof of Lemf& one can prove the
following lemma.

LEMMA 3.9. SupposeAGL(d,q) < G < ATL(d,q), where d> 2 and q is a prime
power.

(a) There exists a unique feasible G-orbit on the flaga@fd, q), namelyQ (A; d, q).

(b) Ifd = 2, then G has two orbits oR(A; d, ), namelyW ™ (A; 2, q) and W=(A; 2, q);
ifd > 3, then G has three orbits dA(A; d, q), namelyd*(A; d, q), ¥=(A; d, q) and
VU=(A;d, Q).

Clearly, W (A; d, q), ¥=(A;d,q) and¥=(A; d, q) are all self-paired. So the following
graphs are well-defined.

DEFINITION 3.10. The flag graphs of A@l, q) with respect taQ2(A; d, q), W), for ¥ =
W (A;d,q), ¥=(A; d,g) and¥=(A; d, q), are calledhffine flag graphsand are denoted by
I't(A;d,q), I'=(A;d, g) and'=(A; d, q), respectively.

From Lemma3.9, these are the onlg-flag graphs of AG&d, q), for AGL(d,q) < G <
AT'L(d, ). Moreover, the following lemma shows that they are the dailag graphs of
any G-doubly transitive ands-block-transitive 2-design. The proof of this result is similar to
that of Lemma3.5and hence is omitted. In the proof we exploit the following fact: the only
faithful permutation representation Gfis its natural action ov (d, q).
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LEMMA 3.11. SupposeAGL(d,q) < G < AI'L(d,qg), where d> 2 and q is a prime
power. Suppose further th@ is a 2-design which admits G as a faithful, doubly transitive,
and block-transitive group of automorphisms. Then any G-flag grafgh isfisomorphic to
I't(A;d,q),orI'=(A;d,q), orI'=(A; d, q).

REMARK 3.12. The affine geometry AGl, q) hasmv +1 := q¢ points, and each line of it
containgm+1 := q points. So we have = (q9—1)/(q—1) andm = q—1. Thus, AGd, q) is
the trivial linear space if and only ¢ = 2, which in turn is true if and only if AGLd, q) is 3-
transitive onV (d, g). Hence, from Exampl@.4, 't (A; d, 2), T=(A; d, 2) andI'=(A; d, 2)
are all 3-arc graphs of the complete graph= K,u with vertex setV (d, 2). The vertices
of these three graphs are ordered painsof distinct vectors oV (d, 2). Since each plane
of AG(d, 2) contains exactly four points Xp, Theorem 1.17]), one can see that, yz are
adjacent inC*(A; d, 2) if and only if w = z. SoI't(A; d, 2) is isomorphic to 9 - Ky 4
and is the 3-arc graph af with respect to the set of all 3-cycles Bf Similarly, uw, yz are
adjacent inC=(A; d, 2) if and only if u, w, y, z are distinct andi — w = y — z, and they are
adjacent inf=(A; d, 2) if and only if u, w, y, z do not lie on the same plane of AG 2).
From this it follows that"=(A; d, 2) is, and'=(A; d, 2) is not, an almost cover Gt.

From Corollary2.6 and the discussion above we get the following theorem, which together
with Theorem3.6 gives the proof of Theorerh.2in the introduction.

THEOREM3.13. SupposeAGL(d,q) < G < ATL(d, ), where d> 2 and q is a prime
power. Then there exists a G-symmetric grdphvith G faithful on MT") which admits a
nontrivial G-invariant partition3 such thatv = k+ 1 > 3andI'g = Kpy,+1. Moreover, any
such graphl’ is isomorphic toI' ™ (A; d, q), I=(A; d, q), or I=(A; d, g). In each case we
havev = (q¥4 — 1)/(q — 1) and the multiplicity m o (B) (for B € B) is equal to g— 1.

In this theorem the graph=(A; d, q) appears only whed > 3. By a similar argument as
in the proof of Theoren3.7, one can prove the following properties of the affine flag graphs.

THEOREM3.14. Letd > 2 and q > 2 be a prime power. LeR2 := Q(A;d,q) and
B(2) = {Q(o) : o apoint of AGd, q)}. Then the following statements hold.

(a) "M (A; d, q) andI’=(A; d, q) are connected graphs with diameter two and girth three,
and with valenciesq — 1)é|qd —q)and(q? — g (q? — g)/(q — 1), respectively.

(b) T=(A; d, q) has valency §— q and containgq® — 1) /(q — 1) connected components,
each of which is a completélg!-partite graph with g vertices in each part. Moreover,

I'=(A; d, q) is an almost cover of k.

(c) Fordistinct blocks2 (o), 2(t) of B(£2), each vertexo, L) of Q (o) otherthan(o, L)
is adjacent to exactly g 1 vertices ofQ(z) in ' (A; d, ), and adjacent to exactly
(q%—q?)/(q—1) vertices ok (1) in '~ (A; d, q). In particular, forI" := ' (A; 2, q),
I'[Q(0), Q(7)] is isomorphic to K 4 minus a perfect matching.

(d) For AGL(d, q) < G < AT'L(d, g), any G-symmetric graph with vertex set(under
the induced action of G o®) is isomorphic toI't(A; d, q), or I'~(A;d, q), or
I'=(A:d,q), or g9 - K(gd-1)/(q—1 With connected components the sets of flags inci-
dent with a common point, ag®—1(q% — 1)/(q — 1)) - Kq with connected components
the sets of flags incident with a common line.

3.3. A classification theoremFrom the discussion at the beginning of this section, the
G-flag graphs of a trivialG-doubly transitive linear space are precisely 3-arc graphs of the
(G, 2)-arc transitive graplt := K, 1. In this case is 3-transitive orV (X). In the follow-

ing we suppose this is the case and furthern@®ie faithful onV (X). By the classification of
highly transitive permutation groups (sex 11]), G is one of the following groups of degree

v + 1 with the natural 3-transitive permutation representatiol’ B ):
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() S+1(v=3);
(i) A1 (v > 4);
(i) AGL(,2) (v=29—-1=>23);
(v) Z3- A7 (v = 15);
(v) Mathieu groups My1 (v = 10, 11, 21, 22, 23) and M (v = 11); and
(vi) 3-transitive group$ satisfying PGl(2, v) < G < PI'L(2,v) (v > 3is a prime power,
note that PGI2, 4) = As).

By Corollary2.5the 3-arc graphk := E(X, A) of X, for self-pairedG-orbits A on Arcz (%),
are G-symmetric graph$’ such thatt = k+ 1 > 3 andI'g = K41 (and thusD(B) con-
tains no repeated blocks). In this case the actiorG®bn B andI"z(B) are permutationally
equivalent and doubly transitivel@®, Theorem 5(b)], see also the comments at the end of
Section2.1). So such 3-arc grapHs are precisely those graphs studied 3hWith the addi-
tional properties that vél'z) = v andv = k + 1 > 3. Thus, a classification of these 3-arc
graphs follows from the main result d3][ Mainly for the integrity and convenience of later
reference we give such a classification explicitly in this subsection along a different route.
As mentioned earlier, we suppose in the following that each 3-afcignot a 3-cycle for
otherwise we would havEé = (v+1)-K,, " is an almost cover of, andG can be any group
listed above. The 3-arc graphs arising from the groGps (vi) are (twisted and untwisted)
cross ratio graphs, as shown in Exampl& The following example determines all the 3-arc
graphs (other thatw + 1) - K,) of X arising from 4-transitive groups. For integers with
2 < 2¢ < n, theKneser graph Kn, ¢) is the graph whose vertices are &lsubsets of a
givenn-set and where two sudhsubsets are adjacent if and only if they have no element in
common. For two graphB1, I'2, the lexicographic produdis[T"2] of I'1 by I'; is the graph
with vertex setV (I'1) x V(I'2) such that(ws, «2), (81, B2) are adjacent if and only if either
a1, f1 are adjacent i'y, orag = B1 andag, B2 are adjacent ifs.

ExAMPLE 3.15. Lexicographic productslIf G is 4-transitive onV (%), then eitheltG =
S+1(w>3),0rG = A1 (v >5),0rG =M,y1 (v =10,11 22 23). In each cas&; is
transitive on the seh of proper 3-arcs ok, and hence\ is the unique self-paire@-orbit on
such 3-arcs. Clearlyp, 1), (8, ¢) are adjacent itE (X2, A) ifand only if {0, t} N {8, e} = @.
Thus this 3-arc graph is isomorphic ¢& (v + 1, 2))[K 2], the lexicographic product of the
Kneser graptK (v + 1, 2) and the empty grapK, on two vertices. One can see that, for
distinct blocksB, C of B(X) (defined in 4)), I'[B, C] is isomorphic toK,_1 ,—1 minus a
perfect matching. This is the graph defined9nProposition 5.1(a)].

ExampLE 3.16. Special affine flag graphsThe groupG := Z‘Z‘ - A7 is a subgroup of
AGL4, 2), WhereZ‘z1 acts onV (%) := V(4, 2) by translations and, for := 0, G; = A7 is
a subgroup of Gl4, 2) = Ag acting 2-transitively oV (4, 2) \ {z} in its natural action. Let
o, o’ be distinct points o¥/ (4, 2)\ {r}. Then from B, p. 10] we haves, ; = PSL(2, 7), which
is transitive onV (4, 2) \ {o, T}, and each involution i\ and also each element of order 3 in
PSL(2, 7) fixes exactly three nonzero vectors\iti4, 2). Hence in the action 0B, = A4
onV4,2)\{o,0', 7,0 + o’ + t} the stabilizer of any vector is trivial, that i§,,; has an
orbit of length 12. Apart from this orbiG, ./, has another orbit o¥ (4, 2)\{o, ¢’, T}, namely
{0 + 0o’ + 1}. SinceG is 3-transitive orV (X), there are twds-orbits on proper 3-arcs dt.
It is clear that these twé-orbits correspond t&=(A; 4, 2) and W= (A; 4, 2) respectively.
Therefore, we have exactly two 3-arc graphshfnamelyl’=(A; 4, 2) andT"'=(A; 4, 2). As
mentioned in RemarR.12 I'=(A; 4, 2) is, and'=(A; 4, 2) is not, an almost cover Gt.

ExXAMPLE 3.17. Mathieu graphsg1(M11) and E2(M11). The Mathieu group Ny with
degreev + 1 = 12 is the automorphism group of the uniqu&l® 6, 2) designD. We
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assume that the point set @f is the same as the vertex set Bf := Kj,. For a 2-arc
(o/,0, 1) of X, let X(¢/, o, T) denote the union of the two blocks &f containingo’, o, .
Then(M11),76: = S5 has two orbits oV () \ {0/, 0, 7} (see B, pp. 231-232]), namely
V() \ X(0o',0,7) and X(¢',0,7) \ {0/,0,7}. Let ' € V() \ {0/, 0, t}. By the 3-
transitivity of M1, there existgy € M11 such that(o, 7, t)% = (t, 0,0"). Set(c")9 = §,
so(o',0,7,7)9 = (8, 1,0,0'). Sinceg is an automorphism ob, the pointso’, o, T, T’
lie in the same block of> if and only if 8, 7, o, o’ lie in the same block of>. This im-
plies that,r’ € V(X) \ X(¢/,0,7) (' € X(0/,0,7)\ {0/, 0, T}, respectively) if and only
if § € V(2)\ X(0/,0,7) (6 € X(0/,0,7) \ {0/, 0, 1}, respectively). That isj andt’ are
in the samgM11),74.-0rbit onV (%) \ {0/, o, T}. So there existh € (M11)y/5; Such that
8" = ¢/, This implies thaigh reversegs’, o, 7, t') and henceA is self-paired. So there are
exactly two self-paired Iy-orbits on proper 3-arcs of, namelyA; := (¢o/, 0, 7, T/)M12
for t/ € V(2)\ X(¢/,0, 1), andAs := (¢, 0,7, T )Mifor ¢/ € X(¢/,0,7) \ {0/, 0, T}.
Thus we get two 3-arc graphs, namely(M11) = E(X, Aj) for i = 1,2. Note that
IV(Z)\ X(¢/,0,7)] = 3and|X(c¢',0,7) \ {06/, 0, T}| = 6. From these it follows that, for
blocksB = Arc(X; o) andC = Arc(X; ) of B(X) (defined in 4)), each vertex oB other
than(o, 7) is adjacent to three vertices 6fin E1(M11), and adjacent to six vertices Gfin
E2(M11). HenceZ1(M11) and E2(M11) have valencies@ — 1) = 30 and &v — 1) = 60,
respectively, and none of them is an almost coveofOne can see that, o), (8, 8)
are adjacent irE1(M11) (E2(M11), respectively) if and only it’, o, 8, 8’ are distinct and
B e V() \ X, a,B) (B € X(,a, B)\ {¢, a, B}, respectively). ThusZ1(M11) and
E2(M11) are the graphs defined in Proposition 5.1(e), (1) and (9]pfé¢spectively.

EXAMPLE 3.18. Mathieu graphsZ1(M22) and E2(M22). The Mathieu group M, of
degreev + 1 = 22 is the automorphism group of the(32, 6, 1) Steiner systenD. We
assume that the point set Dfis the same as the vertex setXf.= Kys. As in Example3.17
above, we get two 3-arc graphs Bf, namely the graptE1(M22) in which (a, o), (8, 8)
are adjacent if and only i&’, o, 8, B/ are distinct andg’ € V() \ X(¢/, a, B), and the
graph E2(My») in which (a, '), (B, /) are adjacent if and only i&’, «, 8, B’ are distinct
andpg’ € X', a, B)\ {&,a, B}, where X(a', «, B) denotes the unique block @ con-
taining o, o, B. These two graphs are the graphs defined in Proposition 5.1(d), (1) and (2)
of [9], respectively. Based on the same reason as in ExaBapl®ne can see that, for blocks
B = Arc(X; @) andC = Arc(X; B) of B(X), each vertex oB other than«, ) is adjacent to
16 vertices ofC in E1(M2»), and adjacent to three vertices@fin E2(M22). Thus,E1(M22)
and Z2(M2») have valencies 16 — 1) = 320 and 8v — 1) = 60, respectively. Moreover,
none of them is an almost cover Bf.

Combining the discussion in this subsection with Theoreh&b) and (c),3.13 and
Remark3.12 we get the following classification theorem, which is attributed to Gardiner
and Praeger9]. This theorem also gives an explicit list of all almost covers of(Be2)-arc
transitive complete grapK,1. For a study of almost covers of 2-arc transitive noncomplete
graphs, the reader is referred 8.

THEOREM3.19. Suppose thar is a G-symmetric graph with G faithful on(Y') which
admits a nontrivial G-invariant partitior3 such thatv = k + 1 > 3, D(B) contains no
repeated blocks antiz is complete. Thelrz = K11, G is 3-transitive and faithful o3,
and eitherl’ = (v + 1) - K, with G an arbitrary 3-transitive permutation group of degree
v + 1, or one of the followinga)—(f) holds.

@ T = K@+ 12)[Kz], and G is either $.1 (v > 3), or A,11 (v = 5), or My41
(v =10, 11, 22, 23).
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(b) (', G) = (CR(v; X, s), PGL(2, v) - (y!)), wherev = p® with p a prime and e> 1,
x € GF() \ {0, 1}, s is a divisor of $x), and t is a divisor of e witlycd(s(x),t) = s.

(c) (I', G) = (TCR(v; X, S), M(t/2, v)), wherev = p® with p an odd prime and & 2 an
even integer, xc GF(v) \ {0, 1} with s(x) even and x- 1 a square ofGF(v), s is an
even divisor of &), and t is a divisor of e witlygcd(s(x), t) = s.

(d) T =T=(A;d,2) or'¥(A;d, 2),v = 29— 1, where d> 2, and either G= AGL(d, 2)
ord=4and G=Zj3 As.

(e) (I', G) = (E1(M11), M1p) or (E2(M11), M11), andv = 11

(f) (I', G) = (E1(M22), M2) or (E2(M22), M22), andv = 21

Moreover, if in addition” is an almost cover of g, then eithel” = (v + 1) - K, with G
an arbitrary 3-transitive permutation group of degreet 1, or (I", G) is as in(b) or (c) with
s = s(x) and t a multiple of s, ol = I'=(A;d,2) and G = AGL(d, 2) withd > 2, or
I=T=(A;4,2) and G=Z3 - A;.

In possibility (b) above, ifv = 3 then PGI2, 3) = S, and we get only one cross ratio
graph CR3; 2, 1) = 3. Cy; if v = 4, then PGI2, 4) = As and we also have a unique cross
ratio graph CR4; t,2) = CR(4; t2, 2), which is isomorphic to the dodecahedron (s8g [
Example 2.4(a)]), where we set GF = {0, 1, t,t2 = 1+ t}.
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