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Constructing a Class of Symmetric Graphs

SANMING ZHOU

We find a natural construction of a large class of symmetric graphs from point- and block-transitive
1-designs. The graphs in this class can be characterized asG-symmetric graphs whose vertex sets
admit aG-invariant partitionB of block size at least 3 such that, for any two blocksB,C of B, either
there is no edge betweenB andC, or there exists only one vertex inB not adjacent to any vertex
in C. The special case where the quotient graph0B of 0 relative toB is a complete graph occurs if
and only if the 1-design needed in the construction is aG-doubly transitive andG-block-transitive 2-
design, and in this case we give an explicit classification of0 whenG is a doubly transitive projective
group or an affine group containing the affine general group. Examples of such graphs include cross
ratio graphs studied recently by Gardiner, Praeger and Zhou and some other graphs with vertices the
(point, line)-flags of the projective or affine geometry.

c© 2002 Published by Elsevier Science Ltd.

1. INTRODUCTION

For a finite graph0 and an integers ≥ 1, ans-arcof 0 is a sequence(α0, α1, . . . , αs) of
vertices of0 such thatαi , αi +1 are adjacent in0 andαi −1 6= αi +1 for eachi . If 0 admits a
groupG of automorphisms such thatG is transitive on the vertex setV(0) of 0 and, in its
induced action, is transitive on the set Arcs(0) of s-arcs of0, then0 is said to be(G, s)-arc
transitive. Often in the literature, a 1-arc is called anarc and a(G,1)-arc transitive graph
is called aG-symmetric graph. In this paper we will give a method of constructing a large
class ofG-symmetric graphs fromG-point-transitive andG-block-transitive 1-designs. By
using this we then classify all such graphs in the case where the 1-design involved is either
a classical projective geometry, or a classical affine geometry, or a trivial doubly transitive
linear space.

Let 0 be a finiteG-symmetric graph. A partitionB of V(0) is said to beG-invariant if
Bg

∈ B for any B ∈ B and g ∈ G, whereBg
:= {αg

: α ∈ B}; andB is nontrivial if
1 < |B| < |V(0)|. If V(0) admits a nontrivialG-invariant partitionB, then0 is said to
be animprimitive G-symmetric graph. In this case thequotient graph0B of 0 relative toB
is defined to be the graph with vertex setB in which B,C ∈ B are adjacent if and only if
there exists an edge of0 joining a vertex ofB to a vertex ofC. In introducing a geometric
approach to imprimitive symmetric graphs, Gardiner and Praeger [8] suggested an analysis of
this quotient graph together with the 1-designD(B) with point setB and blocks0(C) ∩ B
(with possible repetitions) for allC ∈ 0B(B), where0(C) :=

⋃
α∈C 0(α) with 0(α) the

neighbourhoodof α in 0 (that is, the set of vertices adjacent toα in 0), and0B(B) is the
neighbourhood ofB in 0B. Since0 is G-symmetric, up to isomorphism,D(B) is independent
of the choice of the blockB ∈ B. Thus the block sizek := |0(C)∩B| ofD(B) and the number
of times each block ofD(B) is repeated is independent of the choice ofB. We will call this
number themultiplicity of D(B) and denote it bym.

The graphs we are going to construct can be characterized as imprimitiveG-symmetric
graphs0 satisfyingv = k + 1 ≥ 3, wherev := |B| is the block size ofB. And this paper
forms part of our study on such graphs and is a sequel to [12, 16–18]. The construction shows
that such a graph can be reconstructed from the quotient0B and the induced action ofG onB.
Moreover, it unveils a strong connection between such graphs and certain kinds of 1-designs.
In fact, the construction requires a 1-designD with block sizem+1 which admitsG as a point-
and block-transitive group of automorphisms, and a ‘feasible’G-orbit � (see Definition2.3
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in Section2.2) on the flags ofD, where aflag is an incident point-block pair. For such an
�, denote by F(D, �) the set of ordered pairs((σ, L), (τ, N)) ⊆ � × � such thatσ 6∈ N,
τ 6∈ L but σ ∈ N′, τ ∈ L ′ for some(σ, L ′), (τ, N′) ∈ �. The construction also requires a
self-pairedG-orbit9 on F(D, �). Given these we define theG-flag graph0(D, �,9) of D
with respect to(�,9) to be the graph with vertex set� and arc set9. We prove that this
graph is aG-symmetric graph admitting a certainG-invariant partitionB := B(�) (see (3)
in Section2.2 for the definition) such thatv = k + 1 ≥ 3. Conversely, we show that any
G-symmetric graph having this property is isomorphic to aG-flag graph0(D, �,9). The
main result of this paper is the following theorem.

THEOREM 1.1. Suppose that0 is a G-symmetric graph admitting a nontrivial G-invariant
partition B such thatv = k + 1 ≥ 3. Then0 ∼= 0(D, �,9) for a certain G-point-transitive
and G-block-transitive1-designD with point setB and block size m+ 1, a certain feasible
G-orbit� on the flags ofD, and a certain self-paired G-orbit9 on F(D, �), where m is the
multiplicity ofD(B).

Conversely, for any G-point-transitive and G-block-transitive1-designD with block size
m + 1, any feasible G-orbit� on the flags ofD, and any self-paired G-orbit9 on F(D, �),
the graph0 = 0(D, �,9), group G and partitionB = B(�) satisfy all the conditions above.
Moreover, the multiplicity of the1-designD(B) (for B ∈ B) is equal to m.

We will show further that, in both parts of this theorem,G is faithful on the vertices of0 if
and only if it is faithful on the points ofD.

In particular, ifD(B) contains no repeated blocks (that is,m = 1), then the construction
above gives rise to the 3-arc graphs introduced in [12] (see Example2.4 for details). In the
case wherev = k + 1 ≥ 3 and0B is a complete graph, theG-symmetry of0B implies
that G is doubly transitive onB, and hence the designD in Theorem1.1 is a G-doubly
transitive andG-block-transitive 2-design. (As usual in the literature, when we say that a
design isG-doubly transitive, we mean thatG is doubly transitive on its points.) Since, as
a result of the classification of finite simple groups, all the finite doubly transitive groups
are known (see [3, 11]), Theorem1.1 makes possible the classification of all such graphs0.
As a moderate goal, we will classify theG-flag graphs of the classical projective and affine
geometries forG a doubly transitive projective group or an affine group containing the affine
general group, respectively. Examples of such graphs include the cross ratio graphs studied
in [8, 10] and some otherG-flag graphs in which the adjacency is defined naturally in terms
of relative positions of lines involved. We prove that, for such groupsG, these are the only
G-symmetric graphs0 such thatv = k + 1 ≥ 3,0B is complete andG is faithful onV(0).
(In general, if a graph0 is G-symmetric, then it is alsoG/K -symmetric under the induced
action ofG/K on V(0), whereK is the kernel of the action ofG on V(0). SinceG/K is
faithful on V(0), this means that, in dealing withG-symmetric graphs0 we may suppose
without loss of generality thatG is faithful onV(0). In this paper we require the faithfulness
of G only in several occasions for some technical reasons.)

THEOREM 1.2. Let d ≥ 2 be an integer and q a prime power. Then, for any group G with
PSL(d,q) ≤ G ≤ P0L(d,q) or AGL(d,q) ≤ G ≤ A0L(d,q), all G-symmetric graphs0
such that G is faithful on V(0), and that V(0) admits a nontrivial G-invariant partitionB
with v = k + 1 ≥ 3 and0B complete are known explicitly.

The reader is referred to Theorems3.6 and3.13for the explicit lists of such graphs0 and
the correspondingv,m. We will also studyG-flag graphs of theG-doubly transitive complete
2-(v+1,2,1) designsD. In this caseD is G-flag transitive and we will show (see Example2.4
and Corollary2.6) that suchG-flag graphs are precisely theG-symmetric graphs0 such that
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v = k+1 ≥ 3,D(B) contains no repeated blocks and0B is complete. A classification of such
graphs0 together with the corresponding groupsG follows from the main theorem of [9].
With the contribution of [10, Theorem 5.1] and Theorem1.2above, we will see that this can
be achieved via a (perhaps) more organic approach, and we will present such a classification
explicitly in Theorem3.19.

The construction introduced in this paper fits into a more general approach to constructing
imprimitive symmetric graphs with the dual 1-design ofD(B) containing no repeated blocks,
see [19] for details.

2. FLAG GRAPHS AND THEPROOF OFTHEOREM 1.1

2.1. Preliminaries. The reader is referred to [1, 6] and [15] for notation and terminology
on designs, permutation groups and finite geometries, respectively. For a group acting on two
sets11 and12, if there exists a bijectionρ : 11 → 12 such thatρ(αg) = (ρ(α))g for
anyα ∈ 11 andg ∈ G, then the actions ofG on11 and12 are said to bepermutationally
equivalentwith respect toρ. Forα, β ∈ 11, we useGα to denote the stabilizer ofα in G, and
we setGαβ = (Gα)β . For a positive integern, we useKn to denote the complete graph onn
vertices, andn · 0 the union ofn vertex disjoint copies of a given graph0.

Let 0 be aG-symmetric graph. Then0 is regular; we denote by val(0) the valency of0.
Instead of Arc1(0), we use Arc(0) to denote the set of arcs of0. For a nontrivialG-invariant
partitionB of V(0), we useB(α) to denote the block ofB containingα. Thus, sinceB is G-
invariant, we haveB(αg) = (B(α))g for anyα ∈ V(0) andg ∈ G. We will assume without
mentioning explicitly that the quotient graph0B has at least one edge, so each block ofB
is an independent set of0 (see e.g., [2, Proposition 22.1] and [14, Lemma 1.1(c)]). In the
following we suppose the block sizev = |B| of B and the block sizek = |0(C) ∩ B| (where
C ∈ 0B(B)) of the 1-designD(B) satisfyv = k + 1 ≥ 3. (The case wherev = k + 1 = 2
was studied in [12, Section 3].) Then, for eachα ∈ B, B \ {α} appearsm times as a block of
D(B), wherem is the multiplicity ofD(B). Set

B(α) := {C ∈ B : 0(C) ∩ B = B \ {α}}

so that|B(α)| = m. If B(α) ∈ B(β) andB(β) ∈ B(α), then we say thatα andβ aremates,
and thatα is themateof β in B(α) (soβ is the mate ofα in B(β) as well). Define0′ to be the
graph with the same vertices as0 in which two vertices are adjacent if and only if they are
mates. It was proved in [12, Proposition 3] that0′ is aG-symmetric graph. ForB,C ∈ B, we
denote byGB the setwise stabilizer ofB in G, and setGB,C = (GB)C. Then one can check
thatB(B) := {B(α) : α ∈ B} is a GB-invariant partition of0B(B), and henceGB induces
an action onB(B). As in [12], for adjacent blocksB,C of B, we use0[B,C] to denote
the induced bipartite subgraph of0 with bipartition {0(C) ∩ B, 0(B) ∩ C}. In particular, if
0[B,C] = (v − 1) · K2, then following [18] 0 is called analmost coverof 0B. We illustrate
the notation introduced so far by the following diagram (see Figure1), where the dashed lines
represent edges of0′.

We will introduce a natural 1-design associated with(0,B). For this purpose, we set

L(α) := {B(α)} ∪ B(α)

for eachα ∈ V(0). Then(L(α))g = L(αg) for anyg ∈ G. In the particular case wherem = 1
(that is,D(B) contains no repeated blocks), we haveL(α) = L(β) wheneverα andβ are
mates of each other. In general, part (d) of the following lemma tells us whenL(α) = L(β)
happens for distinct verticesα andβ. Parts (a) and (b) of this lemma were proved in [12,
Theorem 5(a) and (d)].
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FIGURE 1. The setsB(α) and the adjacency of0′ in the case wherev = k + 1 = 4 andm = 3. The
edges of0 and the three other vertices in each of the outskirt blocks are not shown in the diagram.

LEMMA 2.1. Suppose that0 is a G-symmetric graph admitting a nontrivial G-invariant
partitionB such thatv = k + 1 ≥ 3. Then the following statements hold.

(a) 0B has valencyval(0B) = mv.
(b) If G is faithful on V(0), then the induced action of G onB is faithful.
(c) For distinct verticesα, β in the same block B ofB, we haveL(α) ∩ L(β) = {B}; in

particular,L(α) 6= L(β).
(d) There exist distinct verticesα, β ∈ V(0) such thatL(α) = L(β) if and only if the graph

0′ is a union of vertex disjoint copies of Km+1 (hence m+ 1 divides|V(0)|). In this
caseL(α) = L(β) holds for any two verticesα, β in the same component of0′, and
hence eachL(α) is repeated exactly m+ 1 times; moreover,L(α) induces a complete
subgraph Km+1 of 0B and the components of0′ constitute a G-invariant partition of
V(0) with block size m+ 1.

PROOF. The truth of (c) follows from the definition ofL(α). So we need to prove (d) only.
SupposeL(α) = L(β) for some verticesα 6= β, sayα ∈ B andβ ∈ C. ThenB 6= C by (c).
Also, C ∈ B(α) and B ∈ B(β), and in particularB,C are adjacent blocks. Moreover, by
definitionα, β must be mates of each other. Since0′ is G-symmetric, as mentioned above,
Gα is transitive on0′(α). Thus, for anyγ ∈ 0′(α), there existsg ∈ Gα such thatβg

= γ .
FromL(α) = L(β) we then haveL(α) = L(αg) = (L(α))g = (L(β))g = L(βg) = L(γ ). In
particular, this implies that each blockB(δ) ∈ L(α) \ {B(γ )} contains a mateδ′ of γ , where
δ ∈ 0′(α)\{γ }; and thus any two blocks inL(α) are adjacent. Again, by theG-symmetry of0′

there existsh ∈ G such that(α, δ)h = (γ, δ′). Hence(L(α))h = L(γ ) and(L(δ))h = L(δ′).
But L(α) = L(δ) asδ ∈ 0′(α), so we haveL(δ′) = L(γ ) = L(α) = L(δ), which implies
δ′ = δ. Thus,γ andδ are mates of each other and any two vertices in0′(α) are adjacent
in 0′. Hence{α} ∪ 0′(α) induces the complete graphKm+1, which must be a connected
component of0′ since0′ has valencym. Therefore,0′ is a union of vertex disjoint copies
of Km+1. From the proof above, in this caseL(γ ) = L(δ) holds for any verticesγ, δ in
the same component of0′. Conversely, if0′ is a union of vertex disjoint copies ofKm+1,
then it is clear thatL(α) = L(β) for any verticesα, β in the same component of0′. Thus,
L(α) is repeated exactlym + 1 times andL(α) induces a complete subgraphKm+1 of 0B.
From [12, Proposition 6] it follows that the components of0′ constitute aG-invariant partition
of V(0). 2
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Denote byL the set of allL(α), α ∈ V(0), with repeated ones identified. Then the action
of G on B induces a natural action onL defined by(L(α))g = L(αg), for α ∈ V(0) and
g ∈ G. The subsetL(B) := {L(α) : α ∈ B} (for B ∈ B) of L is GB-invariant under this
action, and thusGB induces an action onL(B). It is easily checked that the action ofGB

on B is permutationally equivalent to the actions ofGB on B(B) andL(B) with respect to
the bijections defined byα 7→ B(α), α 7→ L(α), for α ∈ B, respectively. Thus, we have
GB,B(α) = GB,L(α) = Gα, whereGB,B(α),GB,L(α) are the setwise stabilizers ofB(α),L(α)
in GB, respectively. We define

D(0,B) := (B,L) (1)

to be the incidence structure with point setB and block setL in which a ‘point’ B is incident
with a ‘block’ L(α) if and only if B ∈ L(α). Note that the flags ofD(0,B) of the form
(B(α),L(α)) are pairwise distinct. We define

�(0,B) := {(B(α),L(α)) : α ∈ V(0)} (2)

to be the set of all such flags.

LEMMA 2.2. Under the same assumptions as in Lemma2.1, the following statements hold
(where, in(c) and(d), B ∈ B, α ∈ B and C∈ B(α)).

(a) D(0,B) is a1-design of block size m+1which admits G as a point- and block-transitive
group of automorphisms.

(b) �(0,B) is a G-orbit on the set of flags ofD(0,B), and the actions of G on V(0) and
�(0,B) are permutationally equivalent with respect to the bijectionα 7→ (B(α),L(α)),
for α ∈ V(0).

(c) GB,L(α) = Gα is transitive onB(α).
(d) GB,C is transitive onL(B) \ {L(α)}.

PROOF. It is clear thatG is transitive onB and onL , and thatG preserves the incidence
relation ofD(0,B). SoG induces a group of automorphisms ofD(0,B), and eachB ∈ B is
incident with the same number of elements ofL . Clearly,D(0,B) has block sizem + 1, and
thus (a) is proved. The assertions in (b) follow immediately from the definition ofD(0,B)
and the action ofG on L . To prove (c), letB ∈ B andα ∈ B, and letC, D ∈ B(α). Let β, γ
be the unique mates ofα in C andD, respectively. Since0′ is G-symmetric [12, Proposition
3], there existsg ∈ Gα such thatβg

= γ . This impliesCg
= D, and henceGB,L(α) = Gα is

transitive onB(α).
Finally, we prove (d). LetB ∈ B, α ∈ B andC ∈ B(α). Let δ be the mate ofα in C. Since

v = k + 1 ≥ 3, for distinct verticesβ, γ ∈ B \ {α} there existε, η ∈ C \ {δ} which are
adjacent in0 to β, γ respectively (ε, η are not needed to be distinct). By theG-symmetry of
0, there existsg ∈ G such that(β, ε)g = (γ, η). So we haveg ∈ GB,C and(B(β))g = B(γ ),
and thusGB,C is transitive onB(B) \ {B(α)}. Since the actions ofGB onB(B) andL(B) are
transitive, and are permutationally equivalent with respect to the bijectionB(ζ ) 7→ L(ζ ) for
ζ ∈ B, this implies thatGB,C is transitive onL(B) \ {L(α)}. 2

Using the notation in the proof above, sinceC ∈ B(α) andB(B) is aGB-invariant partition
of 0B(B), we haveGB,C ≤ GB,B(α). So Lemma2.2(d) implies thatGB,B(α) is transitive on
B(B)\{B(α)}. SinceGB is transitive onB(B), it follows thatGB is doubly transitive onB(B),
and hence doubly transitive onB andL(B). This is a restatement of [12, Theorem 5(b)].
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2.2. Flag graph construction.For simplicity we assume that the 1-designs used in our con-
struction have no repeated blocks. LetD be such a 1-design with point setV . As usual we
may identify each blockL of D with the subset ofV consisting of the points incident with
L. Let � be a subset of flags ofD, and let9 ⊆ � × �. We say that9 is self-pairedif
((σ, L), (τ, N)) ∈ 9 implies((τ, N), (σ, L)) ∈ 9. If 9 is self-paired, then we define theflag
graphof D with respect to(�,9), denoted by0(D, �,9), to be the graph with vertex set�
in which two ‘vertices’(σ, L), (τ, N) ∈ � are adjacent if and only if((σ, L), (τ, N)) ∈ 9.
The self-parity of9 guarantees that this defines an undirected graph. For a given pointσ of
D, we denote by�(σ) the set of flags of� with point entryσ . If � is aG-orbit on the flags
of D, for some groupG of automorphisms ofD, then�(σ) is a Gσ -orbit on the flags ofD
with point entryσ . In this case,0(D, �,9) is G-vertex-transitive and its vertex set� admits
a naturalG-invariant partition, namely,

B(�) := {�(σ) : σ ∈ V}. (3)

If furthermore9 is a G-orbit on� × � (under the induced action), then0(D, �,9) is
G-symmetric. For a flag(σ, L) of D, we useGσ,L to denote the subgroup ofG fixing (σ, L),
that is, the subgroup ofG fixing σ and L setwise. For our construction, we require some
additional properties to be met by�.

DEFINITION 2.3. LetD be a 1-design which admits a point- and block-transitive groupG
of automorphisms. Letσ be a point ofD. A G-orbit� on the flags ofD is said to befeasible
if the following conditions are satisfied:

(a) |�(σ)| ≥ 3;
(b) L ∩ N = {σ }, for distinct(σ, L), (σ, N) ∈ �(σ);
(c) Gσ,L is transitive onL \ {σ }, for (σ, L) ∈ �; and
(d) Gστ is transitive on�(σ) \ {(σ, L)}, for (σ, L) ∈ � andτ ∈ L \ {σ }.

For such a feasible�, we say that((σ, L), (τ, N)) ∈ �× � is compatiblewith � if σ 6∈ N,
τ 6∈ L butσ ∈ N′, τ ∈ L ′ for some(σ, L ′), (τ, N′) ∈ �.

SinceG is transitive on the points ofD, the validity of (a)–(d) above does not depend
on the choice ofσ . Let � be a feasibleG-orbit on the flags ofD, and let((σ, L), (τ, N))
be compatible with�. Sinceσ ∈ L but τ 6∈ L, andσ ∈ L but σ 6∈ N, we haveσ 6= τ and
L 6= N. Similarly, L 6= L ′ andN 6= N′. (But it may happen thatL ′

= N′, see Remark2.7(a).)
Since{σ, τ } ⊆ L ′ and (σ, L ′) ∈ �(σ), the requirement (b) in Definition2.3 implies that
(σ, L ′) is unique; and similarly(τ, N′) is unique. Moreover, for any(σ, L1), (τ, N1) ∈ �

with L1 6= L ′ andN1 6= N′, the ordered pair((σ, L1), (τ, N1)) is also compatible with�. We
use F(D, �) to denote the set of all ordered pairs of flags ofD which are compatible with�.
Then F(D, �) is aG-invariant subset of�×�. In the following we will consider only those
flag graphs0(D, �,9) such thatD andG are as in Definition2.3,� is a feasibleG-orbit on
the flags ofD, and9 is a self-pairedG-orbit on F(D, �); and to be precise we will call such
graphsG-flag graphsof D.

Before proceeding to the proof of Theorem1.1, let us illustrate our construction by examin-
ing a simple but important special case. (This case is ‘simple’ only in the sense that the design
involved is degenerate with block size 2.) A 1-designD with block size 2 can be viewed as
a regular graph6, and vice versa, if we identify the blocks ofD with the edges of6. The
automorphism groups of the designD and the graph6 are the same. Moreover, under this
identification the flag(σ, L) of D, sayL = {σ, τ }, is the arc(σ, τ ) of 6. HenceD is G-flag-
transitive if and only if6 is G-symmetric, and in this caseD is alsoG-point-transitive and
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G-block-transitive. The following example shows that theG-flag graphs ofG-flag-transitive
1-designsD with block size 2 are precisely the 3-arc graphs of6 with respect to self-paired
G-orbits on Arc3(6), the set of 3-arcs of6. In general, for a regular graph6 and a self-
paired subset1 of Arc3(6), the 3-arc graph4(6,1) of 6 with respect to1, as defined
in [12, Section 6], is the graph with vertex set Arc(6) in which (σ, σ1), (τ, τ1) are adjacent if
and only if(σ1, σ, τ, τ1) ∈ 1.

EXAMPLE 2.4. Three-arc graphs.A G-flag-transitive 1-designD with block size 2 can be
viewed as aG-symmetric graph6, and vice versa. The valencyv of 6 is equal to the number
of blocks ofD incident with a given point. We assumev ≥ 3 in the following. SinceD is
G-flag-transitive, the onlyG-orbit on the flags ofD is the set� of all flags ofD, that is, the
arc set Arc(6) of 6. Clearly,� satisfies (a)–(c) in Definition2.3, and the requirement (d)
therein is equivalent to requiring that6 is (G,2)-arc transitive. Therefore,D has a feasible
G-orbit on its flags if and only if6 is (G,2)-arc transitive, and in this case the only such
feasibleG-orbit is the flag set� of D. TheG-invariant partitionB(�) of � (defined in (3))
can be identified with theG-invariant partition

B(6) := {Arc(6; σ) : σ ∈ V(6)} (4)

of Arc(6), where Arc(6; σ) := {(σ, η) : η ∈ 6(σ)} is the set of arcs of6 initiated atσ .
Moreover, an ordered pair((σ, L), (τ, N)) of flags ofD, sayL = {σ, σ1}, N = {τ, τ1}, is
compatible with� if and only if (σ1, σ, τ, τ1) is a 3-arc of6. In this case we may identify
((σ, L), (τ, N)) with (σ1, σ, τ, τ1), and thus identify F(D, �) with Arc3(6). Hence a self-
pairedG-orbit9 on F(D, �) can be identified with a self-pairedG-orbit1 on Arc3(6), and
vice versa. Therefore, for aG-flag-transitive 1-designD with block size 2, aG-flag graph of
D exists if and only if6 is (G,2)-arc transitive, and in this case0(D, �,9) is isomorphic to
the 3-arc graph4(6,1) of 6 with respect to1.

2.3. Proof of Theorem1.1. Now we are ready to prove Theorem1.1. Suppose that0, G and
B are as in the first part of Theorem1.1. By parts (a) and (b) of Lemma2.2,D := D(0,B) (as
defined in (1)) is aG-point-transitive andG-block-transitive 1-design with block sizem + 1,
and� := �(0,B) (as defined in (2)) is aG-orbit on the flags ofD, wherem is the multiplicity
of D(B). It follows from the definition that�(B) = {(B,L(α)) : α ∈ B} = {(B,L) : L ∈

L(B)}, for B ∈ B. So|�(B)| = v ≥ 3 andL∩N = {B} for distinct(B,L), (B,N ) ∈ �(B).
Thus� satisfies (a) and (b) in Definition2.3. For (B,L) ∈ �(B), sayL = L(α) for some
α ∈ B, we haveL \ {B} = B(α) and�(B) \ {(B,L)} = {(B,N ) : N ∈ L(B) \ {L}}. So
it follows from parts (c) and (d) of Lemma2.2 that� satisfies (c) and (d) in Definition2.3.
Therefore,� is a feasibleG-orbit on the flags ofD.

For an arc(α, β) of 0, the blocksB := B(α) andC := B(β) are adjacent in0B. So there
exist α′

∈ B andβ ′
∈ C such thatα′, β ′ are mates, that is,B ∈ B(β ′) andC ∈ B(α′).

Thus, we haveB ∈ L(β ′), C ∈ L(α′); and moreover(B,L(α′)) = (B(α′),L(α′)) ∈ �,
(C,L(β ′)) = (B(β ′),L(β ′)) ∈ �. It follows from the definition thatB 6∈ L(β) andC 6∈

L(α), and therefore we have((B,L(α)), (C,L(β))) ∈ F(D, �). Set

9 := {((B(α),L(α)), (B(β),L(β))) : (α, β) ∈ Arc(0)}.

Then clearly9 is self-paired, and the argument above shows that9 ⊆ F(D, �). By
Lemma2.2(b), the actions ofG onV(0) and� are permutationally equivalent with respect to
the bijectionρ : γ 7→ (B(γ ),L(γ )), for γ ∈ V(0). Since0 is G-symmetric, this implies that
9 is a (self-paired)G-orbit on F(D, �). It is easily checked thatρ defines an isomorphism
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from0 to theG-flag graph0(D, �,9), and hence the first part of Theorem1.1is proved. In
addition, from Lemma2.1(b), if G is faithful on the vertices of0, then it is also faithful on
the points ofD.

Suppose conversely thatD,G, �,9 andm are as in the second part of Theorem1.1. Let
0 := 0(D, �,9), and letB := B(�) be as defined in (3). Then by the discussion before
Definition 2.3, 0 is aG-symmetric graph with vertex set�, andB is a nontrivialG-invariant
partition of� with block sizev := |�(σ)| ≥ 3, whereσ is a point ofD. To complete the
proof, we need to show that the block sizek of the 1-designD(�(σ)) induced on the block
�(σ) of B satisfiesv = k + 1, and that the multiplicity ofD(�(σ)) is equal tom.

Let �(σ),�(τ) be adjacent blocks ofB. Then there exist(σ, L) ∈ �(σ) and (τ, N) ∈

�(τ) such that(σ, L), (τ, N) are adjacent in0, that is, ((σ, L), (τ, N)) ∈ 9. Since9
is a G-orbit on F(D, �), it follows that σ 6∈ N, τ 6∈ L and σ ∈ N′, τ ∈ L ′ for some
(σ, L ′), (τ, N′) ∈ �. For any(σ, L1) ∈ �(σ), sinceσ ∈ N′, we have((σ, L1), (τ, N′)) 6∈

F(D, �), and hence(τ, N′) is not adjacent in0 to any ‘vertex’ of�(σ). Similarly, (σ, L ′) is
not adjacent in0 to any ‘vertex’ of�(τ). On the other hand, since� is feasible andτ ∈ L ′

\

{σ }, it follows from Definition2.3(d) thatGστ is transitive on�(σ) \ {(σ, L ′)}. Thus, for any
(σ, L1) ∈ �(σ) \ {(σ, L ′)}, there existsg ∈ Gστ such that(σ, L)g = (σ, L1). Sinceg fixesσ
andσ 6∈ N, we haveσ 6∈ Ng. Butσ ∈ N′, so we have(τ, N1) := (τ, N)g ∈ �(τ)\ {(τ, N′)},
and(σ, L1), (τ, N1) are adjacent in0. Thus each ‘vertex’ of�(σ) \ {(σ, L ′)} is adjacent in0
to at least one ‘vertex’ of�(τ) \ {(τ, N′)}. That is,0(�(τ)) ∩�(σ) = �(σ) \ {(σ, L ′)} and
hencev = k + 1.

Finally, we prove that the multiplicity ofD(�(σ)) is equal tom. From Definition2.3(c),
Gσ,L ′ is transitive onL ′

\ {σ }. So, for anyε ∈ L ′
\ {σ } there existsh ∈ Gσ,L ′ such that

τh
= ε. SetM ′

:= (N′)h. Then we have(ε,M ′) = (τ, N′)h ∈ �. Sinceh fixesσ , it fixes
�(σ) setwise; and moreoverσ ∈ N′ impliesσ ∈ M ′. Sinceh also fixes the flag(σ, L ′), it
must fix�(σ) \ {(σ, L ′)} setwise. SetL1 := Lh andN1 := Nh. Then(σ, L1) = (σ, L)h ∈

�(σ) \ {(σ, L ′)}, (ε, N1) = (τ, N)h ∈ �(ε) \ {(ε,M ′)}, and(σ, L1), (ε, N1) are adjacent in
0. By a similar discussion as in the previous paragraph, one can prove that0(�(ε))∩�(σ) =

�(σ) \ {(σ, L ′)}. Conversely, if0(�(ε)) ∩ �(σ) = �(σ) \ {(σ, L ′)} for some block�(ε)
of B, then�(σ) is adjacent to�(ε) in 0B, and(σ, L ′) is the unique ‘vertex’ of�(σ) not
adjacent to any ‘vertex’ of�(ε). Since�(σ) is adjacent to�(τ), by theG-symmetry of0B
there existsz ∈ G such that(�(σ),�(τ))z = (�(σ),�(ε)). This impliesτ z

= ε. Moreover,
since(σ, L ′) is the unique ‘vertex’ of�(σ) not adjacent to any ‘vertex’ of�(τ), as shown in
the previous paragraph, we must havez ∈ Gσ,L ′ . This together withτ ∈ L ′

\ {σ } implies that
ε = τ z

∈ L ′
\ {σ }. In summary, we have proved that0(�(ε)) ∩�(σ) = �(σ) \ {(σ, L ′)} if

and only ifε ∈ L ′
\ {σ }. Therefore, the multiplicity ofD(�(σ)) is equal to|L ′

\ {σ }| = m.
In addition, if an element ofG fixes each flag in�, then it must fix each point ofD. So, if G
is faithful on the points ofD, then it is faithful on the vertices of0. This completes the proof
of Theorem1.1, as well as that of the statement immediately following it.

2.4. Corollaries and remarks.From the proof above, one can see that the graph0′ defi-
ned in the second paragraph of Section2.1 is isomorphic to the flag graph0(D, �,9 ′),
whereD := D(0,B),� := �(0,B) and9 ′

:= {((B(α′),L(α′)), (B(β ′),L(β ′))) : (α′, β ′) ∈

Arc(0′)}. Note thatD has block size one larger than the multiplicity ofD(B) (Lemma2.2(a)).
SoD(B) contains no repeated blocks if and only ifD has block size 2. In this case we may
identify D with the quotient graph0B by identifying each block{B,C} of D with the edge
of 0B joining B and C. Thus Theorem1.1 and the discussion in Example2.4 imply the
following result.
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COROLLARY 2.5 ([12, THEOREM 1]). Let0 be a finite G-symmetric graph, andB a non-
trivial G-invariant partition of V(0) with block sizev ≥ 3 such thatD(B) has block size
v − 1. ThenD(B) contains no repeated blocks if and only if0B is (G,2)-arc transitive. In
this case0 ∼= 4(0B,1) for some self-paired G-orbit1 of 3-arcs of0B. Conversely, for
any self-paired G-orbit1 of 3-arcs of a(G,2)-arc transitive graph6 of valencyv ≥ 3, the
graph0 = 4(6,1), group G, and partitionB(6) (defined in Example2.4) satisfy all the
conditions above.

The case wherev = k + 1 ≥ 3 and0B is a complete graph is of particular interest. In this
case we have0B ∼= Kmv+1 as val(0B) = mv (Lemma2.1(a)). Since0B is G-symmetric,
this occurs precisely whenG is doubly transitive onB. So in this caseD(0,B) is aG-doubly
transitive andG-block-transitive 2-(mv + 1,m + 1, λ) design, for some integerλ ≥ 1. Con-
versely, ifD is aG-doubly transitive andG-block-transitive 2-(mv+1,m+1, λ) design, then
for anyG-flag graph0 = 0(D, �,9) of D, we have0B(�) ∼= Kmv+1. So Theorem1.1has
the following consequence.

COROLLARY 2.6. Let v ≥ 3 and m ≥ 1 be integers, and let G be a group. Then the
following statements are equivalent.

(a) 0 is a G-symmetric graph admitting a nontrivial G-invariant partitionB of block size
v such thatD(B) has block sizev − 1 and0B ∼= Kmv+1.

(b) 0 ∼= 0(D, �,9), for a G-doubly transitive and G-block-transitive2-(mv + 1,m +

1, λ) designD, a feasible G-orbit� on the flags ofD, and a self-paired G-orbit9 on
F(D, �).

Moreover, the integerm above is equal to the multiplicity ofD(B), andG is faithful on
V(0) if and only if it is faithful on the points ofD.

A linear space[1] is an incidence structure of points and blocks, calledlines, in which any
two distinct points are incident with exactly one line, any point is incident with at least two
lines, and any line with at least two points. We conclude this section by making the following
remarks.

REMARK 2.7. (a) A G-doubly transitive linear spaceD must beG-block-transitive and
G-flag-transitive, and hence the onlyG-orbit on the flags ofD is the flag set� of D. In
this case� satisfies (b) and (c) in Definition2.3 automatically. Hence� is feasible if and
only if any point is incident with at least three lines and, for distinct pointsσ, τ , Gστ is
transitive on the lines incident withσ but notτ . Note that in this case we have F(D, �) =

{((σ, L), (τ, N)) : (σ, L), (τ, N) ∈ �, σ 6∈ N, τ 6∈ L}. Also, for the members(σ, L ′), (τ, N′)

of� such thatσ ∈ N′, τ ∈ L ′, we haveL ′
= N′

= Lστ , whereLστ is the unique line incident
with bothσ andτ .

(b) Conversely, if the flag set of aG-flag-transitive 2-designD is feasible, thenD is forced
to be a linear space.

3. PROJECTIVE ANDAFFINE FLAG GRAPHS

As a result of the classification of finite simple groups, all doubly transitive linear spaces
are known [11, Theorem 1]. Thus, by using our flag graph construction, it seems possible
to classify theG-flag graphs0(D, �,9) appearing in Corollary2.6 for G-doubly transitive
linear spacesD, and this will contribute to the classification of all the graphs0 therein. As an
effort towards achieving this goal, we will classify in this section such graphs for the following
typical doubly transitive linear spaces:
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(i) the projective geometry PG(d − 1,q) (d ≥ 2);
(ii) the affine geometry AG(d,q) (d ≥ 2); and

(iii) thetrivial doubly transitive linear space, namely the complete 2-(v + 1,2,1) design.

For G a doubly transitive subgroup of P0L(d,q), we will characterize theG-flag graphs of
PG(d − 1,q) as the onlyG-flag graphs arising from any 2-design admittingG as a faith-
ful, doubly transitive and block-transitive group of automorphisms. For theG-flag graphs of
AG(d,q), where AGL(d,q) ≤ G ≤ A0L(d,q), we have a similar characterization. From
these and Corollary2.6, the result in Theorem1.2then follows.

From Example2.4, theG-flag graphs arising from (iii) above are precisely the 3-arc graphs
4(6,1) of complete(G,2)-arc transitive graphs6 := Kv+1. In this caseG is 3-transitive on
V(6), and is one of the groups that we will list at the beginning of Section3.3. In particular,
if 1 contains a 3-cycle of6, then1 is the set of all 3-cycles of6. Hence4(6,1) =

(v + 1) · Kv ([12, Theorem 8(b)]) and4(6,1) is an almost cover of6. So in the following
discussion for this case, we may suppose that each 3-arc in1 is proper in the sense that it is
not a 3-cycle.

3.1. Projective flag graphs.Let d ≥ 2 andq = pe with p a prime ande ≥ 1. As usual we
use the same notation for the projective geometry PG(d−1,q) and the (point, line)-incidence
structure of PG(d − 1,q). Let V(d,q) be thed-dimensional linear space of row vectors over
GF(q), andV the set of points of PG(d − 1,q). ThenV = {[x] : x ∈ V(d,q) \ {0}}, where
[x] is the point of PG(d − 1,q) representing nonzero multiples of the vectorx. Moreover,
|V | = (qd

− 1)/(q − 1), and any groupG with PSL(d,q) ≤ G ≤ P0L(d,q) acts doubly
transitively onV (see e.g., [6, p. 245]). By [11, Theorem 1], anyG-doubly transitive linear
spaceD with point setV (under the natural action) is either PG(d − 1,q) for d ≥ 3, or the
trivial G-doubly transitive linear space. As mentioned above, in the latter caseG is required
to be 3-transitive onV and thusd = 2 (see e.g., [3, p. 8]), and theG-flag graphs ofD are
the 3-arc graphs4(6,1) of 6 := Kq+1, where6 has vertex setV and1 is a self-paired
G-orbit on Arc3(6). These graphs4(6,1) were classified in [10], and for completeness we
describe them in the following.

Let d = 2 and let6 = Kq+1 be as above. Then we may identifyV with GF(q) ∪ {∞} and
thus we have

Arc(6) = {yz : y, z ∈ GF(q) ∪ {∞}, y 6= z}

where∞ satisfies the usual arithmetic rules such as 1/∞ = 0,∞ + y = ∞, ∞
p

= ∞, etc.
The projective group PGL(2,q) consists of all M̈obius transformations

ta,b,c,d : z 7→
az+ b

cz+ d
(a,b, c,d ∈ GF(q),ad − bc 6= 0)

of GF(q) ∪ {∞} (see e.g., [13, p. 20–21]), and P0L(2,q) is equal to the semidirect pro-
duct PGL(2,q) · 〈ψ〉, whereψ is the Frobenius mapping defined byψ : x 7→ xp, for x ∈

GF(q)∪{∞}. From [10, Theorem 2.1], the 3-transitive subgroups of P0L(2,q) are the groups
PGL(2,q) · 〈ψs

〉, for some divisors of e; and M(s,q) := 〈PSL(2,q), ψsta,0,0,1〉, wherep is
odd,e is even,s is a divisor ofe/2, anda is a primitive element of GF(q).

For distinct elementsu, w, y, z ∈ GF(q) ∪ {∞}, the cross ratio(see e.g., [13, p. 59]) is
defined asc(u, w; y, z) := (u− y)(w− z)/(u− z)(w− y). The cross ratio can take all values
in GF(q) except 0 and 1, and is invariant under the action of PGL(2,q) on quadruples of
distinct elements of GF(q)∪ {∞}. Moreover, PGL(2,q) is transitive on such quadruples with
a fixed cross ratio (see e.g., [13, p. 59]). Under the action ofψ , we havec(uψ , wψ ; yψ , zψ ) =

(c(u, w; y, z))ψ .
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EXAMPLE 3.1. Cross ratio graphs.For eachx ∈ GF(q) \ {0,1}, the subfield of GF(q)
generated byx has the form GF(ps(x)), for some divisors(x) of e. For each divisors of
s(x), the〈ψs

〉-orbit on GF(ps(x)) containingx is B(x, s) := {xψ
si

: 0 ≤ i < s(x)/s}. The
untwisted cross ratio graphCR(q; x, s), as defined in [10, Definition 3.2], is the graph with
vertex set Arc(6) in which (u, w) and(y, z) are adjacent if and only ifu, w, y, z are distinct
elements of GF(q)∪ {∞} andc(u, w; y, z) ∈ B(x, s). Sincec(∞,0; 1, x) = x ∈ B(x, s), by
the above-mentioned properties of cross ratio,(u, w) and(y, z) are adjacent in CR(q; x, s)
if and only if (w,u, y, z) ∈ (0,∞,1, x)G for G := PGL(2,q) · 〈ψs

〉. Thus CR(q; x, s)
can be defined equivalently as the 3-arc graph4(6,1) of 6 with respect to the self-paired
G-orbit1 := (0,∞,1, x)G on Arc3(6). (TheG-orbit1 is self-paired sincet1,−x,1,−1 ∈ G
interchanges∞0 and 1x.)

Now let p be an odd prime andean even integer, and letx ∈ GF(q)\{0,1} be such thats(x)
is even andx−1 is a square of GF(q). Lets be an even divisor ofs(x). Thetwisted cross ratio
graphTCR(q; x, s), as defined in [10, Definition 3.4], is the graph with vertex set Arc(6) and
arc set(∞0,1x)M(s/2,q). In other words, TCR(q; x, s) is the 3-arc graph4(6,1) of 6 with
respect to the self-paired M(s/2,q)-orbit 1 := (0,∞,1, x)M(s/2,q) on Arc3(6). (Note that
x − 1 is a square implies thatt1,−x,1,−1 ∈ PSL(2,q) ≤ M(s/2,q). So1 is self-paired by
the same reason as in the last paragraph.) From the properties of cross ratio mentioned before
this example, one can see that(y, z) is adjacent to(∞,0) in TCR(q; x, s) precisely wheny ∈

GF(q)\{0} andz/y ∈ B(x, s) or z/y ∈ B(x, s)ψ
s/2

, depending on whethery is a square or not.
From the discussion in Example2.4 we know that the untwisted and twisted cross ratio

graphs above admit theG-invariant partitionB(6) := {B(y) : y ∈ GF(q)∪{∞}}, for suitable
3-transitive subgroupsG of P0L(2,q), whereB(y) := {(y, z) : z ∈ GF(q) ∪ {∞}, y 6= z}.
It was proved in [10, Theorem 5.1] that they are the onlyG-symmetric graphs with vertex
set Arc(6) such that the block size ofD(B(y)) is q − 1. Therefore, they are the only 3-arc
graphs of6 with respect to some self-pairedG-orbits on Arc3(6). Moreover, for(0,G) =

(CR(q; x, s),PGL(2,q) · 〈ψs
〉) or (TCR(q; x, s),M(s/2,q)), the only 3-transitive subgroups

H of P0L(2,q) such that0 is H -symmetric are subgroups ofG of the form PGL(2,q) ·

〈ψ t
〉 or M(t/2,q) respectively, for some divisort of e such that the greatest common divisor

gcd(s(x), t) is equal tos. (See the comment immediately following [10, Theorems 5.1].)
From the adjacency of0, one can see that in both cases0 has valency(q − 1)s(x)/s and, for
distinct blocksB(u), B(y) of B(6), the bipartite subgraph0[B(u), B(y)] has valencys(x)/s.
In particular,0 is an almost cover of6 if and only if s = s(x); and if this occurs then the
integert in H is a multiple ofs(x) as gcd(s(x), t) = s(x).

The reader is referred to [7] for two other interesting graphs, also relating to GF(q) ∪ {∞},
which are connected 2-arc transitive 4-fold covers of6 = Kq+1. They were discovered by
Du, Marusic and Waller in their classification of a family of 2-arc transitive covers of com-
plete graphs.

Now let us turn to the case whered ≥ 3. In this case PG(d − 1,q) is a linear space with
mv+ 1 := (qd

− 1)/(q − 1) points such that each line containsm+ 1 := q + 1 points. So we
havev = (qd−1

−1)/(q−1) andm = q. For 1≤ s ≤ d−1, anys+1 points of PG(d−1,q)
are said to beindependent[15, p. 72] if they do not lie on any(s− 1)-flat of PG(d − 1,q). In
particular, three points of PG(d−1,q) arenoncollinearif they are independent, andcollinear
otherwise. We will exploit the following basic result in projective geometry, a proof of which
can be derived from [5, 1.4.24].

LEMMA 3.2. SupposePSL(d,q) ≤ G ≤ P0L(d,q), where d≥ 3 and q is a prime power.
Then, for any integer s with1 ≤ s ≤ d −1, G is transitive on the set of ordered(s+1)-tuples
of independent points ofPG(d − 1,q).
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Let �(P; d,q) denote the set of flags (that is, (point, line)-flags) of PG(d − 1,q). In
the following lemma we will show that�(P; d,q) is feasible. Thus, setting F(P; d,q) :=

F(PG(d − 1,q),�(P; d,q)), from Remark2.7(a) we have

F(P; d,q) = {((σ, L), (τ, N)) : (σ, L), (τ, N) ∈ �(P; d,q), σ 6∈ N, τ 6∈ L}.

We call two distinct linesL , N of PG(d − 1,q) intersectingif there exists a unique point
incident with bothL and N (that is, L , N lie on the same plane of PG(d − 1,q)), and
skewotherwise. We use9+(P; d,q) (respectively,9'(P; d,q)) to denote the set of ordered
pairs((σ, L), (τ, N)) ∈ F(P; d,q) such thatL , N are intersecting (respectively, skew). Here
we use ‘+’ and ‘'’ to symbolise relative positions ofL and N. Clearly,9+(P; d,q) and
9'(P; d,q) consist of a partition of F(P; d,q). Note that9'(P; d,q) 6= ∅ if and only if
d ≥ 4 (see e.g., [15, p.71]). So we have F(P; 3,q) = 9+(P; 3,q).

LEMMA 3.3. SupposePSL(d,q) ≤ G ≤ P0L(d,q), where d≥ 3 and q is a prime power.

(a) There exists a unique feasible G-orbit on the flags ofPG(d −1,q), namely�(P; d,q).
(b) If d = 3, then G is transitive onF(P; 3,q); if d ≥ 4, then G has two orbits on

F(P; d,q), namely9+(P; d,q) and9'(P; d,q).

PROOF. (a) Since PG(d −1,q) is aG-doubly transitive linear space, it isG-flag-transitive,
and hence�(P; d,q) is the only candidate for a feasibleG-orbit on the flags of PG(d−1,q).
In PG(d − 1,q) each point is incident with(qd−1

− 1)/(q − 1) ≥ 3 lines ([15, Theo-
rem 2.5(iii)]). For distinct pointsσ, τ , let N1, N2 be two lines incident withσ but not τ ,
and letδi ∈ Ni \ {σ }, i = 1,2. Then(σ, τ, δ1), (σ, τ, δ2) are triples of noncollinear points. So
by Lemma3.2there existsg ∈ G such that(σ, τ, δ1)g = (σ, τ, δ2), and henceg ∈ Gστ . Since
Ni is the unique line incident withσ andδi , this impliesNg

1 = N2, and hence�(P; d,q) is
feasible by Remark2.7(a).

(b) Let ((σ1, L1), (τ1, N1)), ((σ2, L2), (τ2, N2)) ∈ 9+(P; d,q). Let δi be the common
point of L i and Ni , for i = 1,2. Then(σ1, τ1, δ1), (σ2, τ2, δ2) are triples of noncollinear
points. By Lemma3.2 we have(σ1, τ1, δ1)

g
= (σ2, τ2, δ2) for someg ∈ G. This im-

plies((σ1, L1), (τ1, N1))
g

= ((σ2, L2), (τ2, N2)), and henceG is transitive on9+(P; d,q).
Similarly, for ((σ1, L1), (τ1, N1)), ((σ2, L2), (τ2, N2)) ∈ 9'(P; d,q), we can chooseσ ′

i ∈

L i \ {σi } andτ ′

i ∈ Ni \ {τi }, for i = 1,2. So(σ ′

1, σ1, τ1, τ
′

1), (σ
′

2, σ2, τ2, τ
′

2) are quadruples
of independent points of PG(d − 1,q). Again by Lemma3.2 we have(σ ′

1, σ1, τ1, τ
′

1)
g

=

(σ ′

2, σ2, τ2, τ
′

2) for someg ∈ G. This implies((σ1, L1), (τ1, N1))
g

= ((σ2, L2), (τ2, N2)),
and henceG is transitive on9'(P; d,q). SinceG preserves relative positions between lines
and since9+(P; d,q) and9'(P; d,q) consist of a partition of F(P; d,q), the assertions in
(b) follow immediately. 2

By definition both9+(P; d,q) and9'(P; d,q) are self-paired. Hence the following
graphs are well-defined.

DEFINITION 3.4. The flag graphs of PG(d − 1,q) with respect to(�(P; d,q),9+

(P; d,q)) and (�(P; d,q),9'(P; d,q)) are calledprojective flag graphs, denoted by
0+(P; d,q) and0'(P; d,q), respectively.

Note that we required ≥ 4 in defining0'(P; d,q). From Lemma3.3, 0+(P; d,q) and
0'(P; d,q) are the onlyG-flag graphs of PG(d − 1,q). Moreover, we have the following
characterization of them.

LEMMA 3.5. SupposePSL(d,q) ≤ G ≤ P0L(d,q), where d≥ 3 and q is a prime power.
Suppose further thatD is a 2-design, other than the trivial linear space, which admits G as
a faithful, doubly transitive, and block-transitive group of automorphisms. Then any G-flag
graph ofD is isomorphic to0+(P; d,q) or 0'(P; d,q).
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PROOF. The groupG has only two faithful permutation representations, namely the nat-
ural actions on the points and the hyperplanes of PG(d − 1,q). Such representations are
interchangable by an outer automorphism of P0L(d,q). So in the following it suffices to con-
sider the usual action ofG on the point setV of PG(d − 1,q). Thus we may suppose thatD
has point setV .

SinceD is G-doubly transitive and is not the trivial linear space, its block size is at least
three. Suppose� is a feasibleG-orbit on the flags ofD, and let(σ, L) ∈ �. The double
transitivity of G on V implies that, for anyε ∈ V \ {σ }, there exists a flag(σ, N) ∈ � such
thatε ∈ N. This, together with the requirement (b) in Definition2.3and the fact that�(σ) is
a Gσ -orbit on the flags ofD with point entryσ , implies the following claim:

(i) {N \ {σ } : (σ, N) ∈ �} is aGσ -invariant partition ofV \ {σ }.

We claim further that:

(ii) For anyτ, δ ∈ L \ {σ }, the pointsσ, τ, δ must be collinear in PG(d − 1,q).

Suppose otherwise, and letε be a point in a blockN of D with (σ, N) ∈ �(σ) andN 6= L.
Then in PG(d−1,q) eitherσ, τ, ε are noncollinear, orσ, δ, ε are noncollinear, since otherwise
σ, τ, δ would be collinear, which contradicts our assumption. Without loss of generality we
may suppose thatσ, τ, ε are noncollinear in PG(d − 1,q). Then by Lemma3.2 there exists
g ∈ G such that(σ, τ, δ)g = (σ, τ, ε). So we haveg ∈ Gστ . Sinceg fixesτ , by (i) it must fix
L setwise. On the other hand, sinceg mapsδ to ε, again from (i),g must mapL to N. This
is a contradiction and hence (ii) is proved. From this it follows that, for each(σ, L) ∈ �, the
block L of D consists of some collinear points of PG(d − 1,q). Moreover, we have:

(iii) For each(σ, L) ∈ �, the blockL of D is a line of PG(d − 1,q).

Suppose otherwise, then from (i), (ii) there exists(σ, N1) ∈ � such that the points ofL and
N1 lie on the same line, sayL∗, of PG(d − 1,q). Sinced ≥ 3, we can take(σ, N2) ∈ � such
that the points inL and those inN2 do not lie on the same line of PG(d − 1,q). Take a point
τ ∈ L \{σ }. Since� is feasible, by the requirement (d) in Definition2.3, there existsg ∈ Gστ

such thatNg
1 = N2. Sinceg fixesσ andτ , it must fix the lineL∗ of PG(d − 1,q). Hence the

points inN1 are mapped byg to some points onL∗. That is, the points inN2 must lie onL∗.
This is a contradiction and hence (iii) is proved.

The claims (i) and (iii) together imply that�(σ) = �(P; d,q)(σ ) for eachσ ∈ V . So we
have� = �(P; d,q). In particular each line of PG(d − 1,q) is a block ofD. Thus it follows
from the definition that F(D, �) = F(P; d,q). From Lemma3.3(b), the result in Lemma3.5
follows. 2

Applying Corollary2.6, the discussion above leads to the following classification theorem,
which is the main result in this subsection.

THEOREM 3.6. SupposePSL(d,q) ≤ G ≤ P0L(d,q), where d≥ 2 and q = pe with p
a prime and e≥ 1. Then, if and only if either d≥ 3, or d = 2 and G is3-transitive, there
exists a G-symmetric graph0 with G faithful on V(0) which admits a nontrivial G-invariant
partition B such thatv = k + 1 ≥ 3 and0B ∼= Kmv+1, where m is the multiplicity ofD(B).
Moreover, all the possibilities of such0,G and the corresponding m, v can be classified as
follows.

(a) 0 = (q + 1) · Kq, G isPGL(2,q) · 〈ψs
〉 (where s is a divisor of e) or M(s,q) (where

q is odd, e is even and s is a divisor of e/2), and(m, v) = (1,q).
(b) (0,G) = (CR(q; x, s),PGL(2,q) · 〈ψ t

〉) and (m, v) = (1,q), where x ∈ GF(q) \

{0,1}, s is a divisor of s(x), and t is a divisor of e withgcd(s(x), t) = s.
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(c) (0,G) = (TCR(q; x, s),M(t/2,q)) and (m, v) = (1,q), where p is odd, e≥ 2 is
even, x∈ GF(q) \ {0,1} with s(x) even and x− 1 a square ofGF(q), s is an even
divisor of s(x), and t is a divisor of e withgcd(s(x), t) = s.

(d) 0 is either0+(P; d,q) or 0'(P; d,q), where d≥ 3, G is any doubly transitive sub-
group ofP0L(d,q), and(m, v) = (q, (qd−1

− 1)/(q − 1)).

Note that the graph0'(P; d,q) in (d) above appears only whend ≥ 4. We conclude this
subsection by proving the following properties of the projective flag graphs. As before, we
denote byLστ the unique line of PG(d − 1,q) through two distinct pointsσ andτ .

THEOREM 3.7. Let d ≥ 3 and q a prime power. Let� = �(P; d,q) andB(�) = {�(σ) :

σ a point of PG(d − 1,q)} as in(3). Then the following statements hold.

(a) 0+(P; d,q) and0'(P; d,q) are connected graphs with diameter two and girth three,
and with valencies(qd+1

−q3)/(q−1) and(qd−1
−q2)(qd

−q2)/(q−1)2, respectively.
(b) For distinct blocks�(σ),�(τ) of B(�), each vertex of�(σ) other than(σ, Lστ ) is

adjacent to exactly q vertices of�(τ) in 0+(P; d,q), and adjacent to exactly(qd−1
−

q2)/(q − 1) vertices of�(τ) in 0'(P; d,q). In particular, for0 := 0+(P; 3,q) we
have0[�(σ),�(τ)] ∼= Kq,q.

(c) For PSL(d,q) ≤ G ≤ P0L(d,q), any G-symmetric graph with vertex set� (under
the induced action of G on�) is isomorphic to either0+(P; d,q), or 0'(P; d,q),
or ((qd

− 1)/(q − 1)) · K(qd−1−1)/(q−1) with connected components the sets of flags
incident with a common point, or((qd−1

− 1)(qd
− 1)/(q − 1)(q2

− 1)) · Kq+1 with
connected components the sets of flags incident with a common line.

PROOF. Let (σ, L), (τ, N) ∈ � be distinct flags of PG(d−1,q). If L 6= N then, since each
line of PG(d−1,q) containsq+1 ≥ 3 points, we can takeδ ∈ L\{σ, τ }, ε ∈ N\{σ, τ } andη ∈

Lδε \ {δ, ε}. One can check that the sequence(σ, L), (η, Lδε), (τ, N) is a path of0+(P; d,q)
with length two. In particular, if(σ, L), (τ, N) are adjacent in0+(P; d,q), then the sequence
(σ, L), (η, Lδε), (τ, N), (σ, L) is a triangle. Similarly, ifσ 6= τ but L = N, then we can take
δ ∈ L \ {σ, τ } and a pointε not incident withL. Thus the sequence(σ, L), (ε, Lδε), (τ, L)
is a path of0+(P; d,q) with length two. Hence0+(P; d,q) is connected with diameter
two and girth three. The definition of0'(P; d,q) requires thatd ≥ 4. So for any distinct
(σ, L), (τ, N) ∈ �, we can choose a lineM which is skew with bothL andN. For anyδ ∈ M ,
the sequence(σ, L), (δ,M), (τ, N) is a path of0'(P; d,q) with length two. Moreover, if
(σ, L), (τ, N) are adjacent in0'(P; d,q), then the sequence(σ, L), (δ,M), (τ, N), (σ, L) is
a triangle. Hence0'(P; d,q) is connected with diameter two and girth three as well.

For any flag(σ, L) and any pointτ not incident withL, there are exactlyq lines which are
incident withτ and intersect withL at a point other thanσ , namely those lines joiningτ and
one of the points inL \ {σ }. Hence there are exactlyv− q − 1 lines which are incident withτ
and skew withL (note thatLστ is not skew withL), wherev = (qd−1

−1)/(q −1) as before.
From these the assertions in (b) follow immediately. Note that, for a pointτ incident withL,
(σ, L) is not adjacent to any vertex of�(τ) in either0+(P; d,q) or 0'(P; d,q). SinceL
containsq + 1 points and PG(d − 1,q) has(qd

− 1)/(q − 1) points in total, from (b) the
assertion in (a) concerning the valencies of0+(P; d,q) and0'(P; d,q) follows.

Now let us prove (c). Suppose0 is a graph with vertex set� which isG-symmetric under
the induced action ofG on�. Let ((σ, L), (τ, N)) be an arc of0. If σ = τ , thenL 6= N,
and two flags(σ1, L1), (τ1, N1) are adjacent in0 if and only if σ1 = τ1 andL1 6= N1. Since
PG(d−1,q) has(qd

−1)/(q−1) points, and since each point is incident with exactly(qd−1
−

1)/(q − 1) lines, in this case we have0 ∼= ((qd
− 1)/(q − 1)) · K(qd−1−1)/(q−1). Similarly, if

L = N, then we have0 ∼= ((qd−1
− 1)(qd

− 1)/(q − 1)(q2
− 1)) · Kq+1. In the following we
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suppose thatσ 6= τ andL 6= N. Then theG-symmetry of0 implies that there existsg ∈ G
which interchanges(σ, L) and (τ, N). So we haveσ 6∈ N for otherwise we would have
σ ∈ L ∩ N and thusτ = σ g

∈ (L ∩ N)g = L ∩ N, which impliesσ = τ and so contradicts
our assumption. Similarly, we haveτ 6∈ L and hence((σ, L), (τ, N)) ∈ F(P; d,q). Thus,
since0 is G-symmetric, its arc set Arc(0) is a self-pairedG-orbit on F(P; d,q). Therefore,
from Lemma3.3, 0 is isomorphic to either0+(P; d,q) or 0'(P; d,q). 2

3.2. Affine flag graphs.For an integerd ≥ 2 and a prime powerq, we use the same notation
AG(d,q) for the (point, line)-incidence structure of the affine geometry AG(d,q). Thus, for
any groupG with AGL(d,q) ≤ G ≤ A0L(d,q), AG(d,q) is a G-doubly transitive linear
space. The aim of this subsection is to classify and characterize theG-flag graphs of AG(d,q).
For this purpose we need the following basic result in affine geometry.

LEMMA 3.8. SupposeAGL(d,q) ≤ G ≤ A0L(d,q), where d ≥ 2 and q is a prime
power. Then, for1 ≤ s ≤ d, G is transitive on ordered(s + 1)-tuples of points ofAG(d,q)
not lying on any(s − 1)-flat ofAG(d,q).

From this and Remark2.7(a), it is easily verified that the flag set�(A; d,q) of AG(d,q) is
feasible. Thus, setting F(A; d,q) := F(AG(d,q),�(A; d,q)), we have

F(A; d,q) = {((σ, L), (τ, N)) : (σ, L), (τ, N) ∈ �(A; d,q), σ 6∈ N, τ 6∈ L}.

We call two distinct lines of AG(d,q) intersectingif they share a unique common point,para-
llel if they lie on the same plane but have no point in common, andskewin the remaining case.
We use9+(A; d,q) (9=(A; d,q), 9'(A; d,q), respectively) to denote the set of ordered
pairs ((σ, L), (τ, N)) in F(A; d,q) such thatL , N are intersecting (parallel, skew, respec-
tively). Then9+(A; d,q),9=(A; d,q) and9'(A; d,q) consist of a partition of F(A; d,q).
(Note that9'(A; d,q) 6= ∅ if and only if d ≥ 3, see [15, Theorem 1.15(i)].) Using
Lemma3.8 and by a similar argument as in the proof of Lemma3.3, one can prove the
following lemma.

LEMMA 3.9. SupposeAGL(d,q) ≤ G ≤ A0L(d,q), where d ≥ 2 and q is a prime
power.

(a) There exists a unique feasible G-orbit on the flags ofAG(d,q), namely�(A; d,q).
(b) If d = 2, then G has two orbits onF(A; d,q), namely9+(A; 2,q) and9=(A; 2,q);

if d ≥ 3, then G has three orbits onF(A; d,q), namely9+(A; d,q),9=(A; d,q) and
9'(A; d,q).

Clearly,9+(A; d,q), 9=(A; d,q) and9'(A; d,q) are all self-paired. So the following
graphs are well-defined.

DEFINITION 3.10. The flag graphs of AG(d,q) with respect to(�(A; d,q),9), for9 =

9+(A; d,q),9=(A; d,q) and9'(A; d,q), are calledaffine flag graphs, and are denoted by
0+(A; d,q), 0=(A; d,q) and0'(A; d,q), respectively.

From Lemma3.9, these are the onlyG-flag graphs of AG(d,q), for AGL(d,q) ≤ G ≤

A0L(d,q). Moreover, the following lemma shows that they are the onlyG-flag graphs of
anyG-doubly transitive andG-block-transitive 2-design. The proof of this result is similar to
that of Lemma3.5 and hence is omitted. In the proof we exploit the following fact: the only
faithful permutation representation ofG is its natural action onV(d,q).
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LEMMA 3.11. SupposeAGL(d,q) ≤ G ≤ A0L(d,q), where d ≥ 2 and q is a prime
power. Suppose further thatD is a 2-design which admits G as a faithful, doubly transitive,
and block-transitive group of automorphisms. Then any G-flag graph ofD is isomorphic to
0+(A; d,q), or 0=(A; d,q), or 0'(A; d,q).

REMARK 3.12. The affine geometry AG(d,q) hasmv+1 := qd points, and each line of it
containsm+1 := q points. So we havev = (qd

−1)/(q−1) andm = q−1. Thus, AG(d,q) is
the trivial linear space if and only ifq = 2, which in turn is true if and only if AGL(d,q) is 3-
transitive onV(d,q). Hence, from Example2.4, 0+(A; d,2), 0=(A; d,2) and0'(A; d,2)
are all 3-arc graphs of the complete graph6 = K2d with vertex setV(d,2). The vertices
of these three graphs are ordered pairsuw of distinct vectors ofV(d,2). Since each plane
of AG(d,2) contains exactly four points ([15, Theorem 1.17]), one can see thatuw, yz are
adjacent in0+(A; d,2) if and only if w = z. So0+(A; d,2) is isomorphic to 2d · K2d−1
and is the 3-arc graph of6 with respect to the set of all 3-cycles of6. Similarly, uw, yz are
adjacent in0=(A; d,2) if and only if u,w, y, z are distinct andu − w = y − z, and they are
adjacent in0'(A; d,2) if and only if u,w, y, z do not lie on the same plane of AG(d,2).
From this it follows that0=(A; d,2) is, and0'(A; d,2) is not, an almost cover of6.

From Corollary2.6and the discussion above we get the following theorem, which together
with Theorem3.6gives the proof of Theorem1.2 in the introduction.

THEOREM 3.13. SupposeAGL(d,q) ≤ G ≤ A0L(d,q), where d≥ 2 and q is a prime
power. Then there exists a G-symmetric graph0 with G faithful on V(0) which admits a
nontrivial G-invariant partitionB such thatv = k + 1 ≥ 3 and0B ∼= Kmv+1. Moreover, any
such graph0 is isomorphic to0+(A; d,q), 0=(A; d,q), or 0'(A; d,q). In each case we
havev = (qd

− 1)/(q − 1) and the multiplicity m ofD(B) (for B ∈ B) is equal to q− 1.

In this theorem the graph0'(A; d,q) appears only whend ≥ 3. By a similar argument as
in the proof of Theorem3.7, one can prove the following properties of the affine flag graphs.

THEOREM 3.14. Let d ≥ 2 and q ≥ 2 be a prime power. Let� := �(A; d,q) and
B(�) = {�(σ) : σ a point of AG(d,q)}. Then the following statements hold.

(a) 0+(A; d,q) and0'(A; d,q) are connected graphs with diameter two and girth three,
and with valencies(q − 1)(qd

− q) and(qd
− q2)(qd

− q)/(q − 1), respectively.
(b) 0=(A; d,q) has valency qd −q and contains(qd

−1)/(q −1) connected components,
each of which is a complete qd−1-partite graph with q vertices in each part. Moreover,
0=(A; d,q) is an almost cover of Kqd .

(c) For distinct blocks�(σ),�(τ) ofB(�), each vertex(σ, L) of�(σ) other than(σ, Lστ )
is adjacent to exactly q− 1 vertices of�(τ) in 0+(A; d,q), and adjacent to exactly
(qd

−q2)/(q−1) vertices of�(τ) in 0'(A; d,q). In particular, for0 := 0+(A; 2,q),
0[�(σ),�(τ)] is isomorphic to Kq,q minus a perfect matching.

(d) For AGL(d,q) ≤ G ≤ A0L(d,q), any G-symmetric graph with vertex set� (under
the induced action of G on�) is isomorphic to0+(A; d,q), or 0'(A; d,q), or
0=(A; d,q), or qd

· K(qd−1)/(q−1) with connected components the sets of flags inci-
dent with a common point, or(qd−1(qd

− 1)/(q − 1)) · Kq with connected components
the sets of flags incident with a common line.

3.3. A classification theorem.From the discussion at the beginning of this section, the
G-flag graphs of a trivialG-doubly transitive linear space are precisely 3-arc graphs of the
(G,2)-arc transitive graph6 := Kv+1. In this case,G is 3-transitive onV(6). In the follow-
ing we suppose this is the case and furthermoreG is faithful onV(6). By the classification of
highly transitive permutation groups (see [3, 11]), G is one of the following groups of degree
v + 1 with the natural 3-transitive permutation representation onV(6):
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(i) Sv+1 (v ≥ 3);
(ii) Av+1 (v ≥ 4);

(iii) AGL(d,2) (v = 2d
− 1 ≥ 3);

(iv) Z4
2 · A7 (v = 15);

(v) Mathieu groups Mv+1 (v = 10,11,21,22,23) and M11 (v = 11); and
(vi) 3-transitive groupsG satisfying PGL(2, v) ≤ G ≤ P0L(2, v) (v ≥ 3 is a prime power,

note that PGL(2,4) ∼= A5).

By Corollary2.5the 3-arc graphs0 := 4(6,1) of6, for self-pairedG-orbits1 on Arc3(6),
areG-symmetric graphs0 such thatv = k + 1 ≥ 3 and0B ∼= Kv+1 (and thusD(B) con-
tains no repeated blocks). In this case the actions ofGB on B and0B(B) are permutationally
equivalent and doubly transitive ([12, Theorem 5(b)], see also the comments at the end of
Section2.1). So such 3-arc graphs0 are precisely those graphs studied in [9] with the addi-
tional properties that val(0B) = v andv = k + 1 ≥ 3. Thus, a classification of these 3-arc
graphs follows from the main result of [9]. Mainly for the integrity and convenience of later
reference we give such a classification explicitly in this subsection along a different route.

As mentioned earlier, we suppose in the following that each 3-arc in1 is not a 3-cycle for
otherwise we would have0 = (v+1) · Kv,0 is an almost cover of6, andG can be any group
listed above. The 3-arc graphs arising from the groupsG in (vi) are (twisted and untwisted)
cross ratio graphs, as shown in Example3.1. The following example determines all the 3-arc
graphs (other than(v + 1) · Kv) of 6 arising from 4-transitive groups. For integers`,n with
2 ≤ 2` < n, the Kneser graph K(n, `) is the graph whose vertices are all`-subsets of a
givenn-set and where two such̀-subsets are adjacent if and only if they have no element in
common. For two graphs01, 02, the lexicographic product01[02] of 01 by 02 is the graph
with vertex setV(01) × V(02) such that(α1, α2), (β1, β2) are adjacent if and only if either
α1, β1 are adjacent in01, orα1 = β1 andα2, β2 are adjacent in02.

EXAMPLE 3.15. Lexicographic products.If G is 4-transitive onV(6), then eitherG =

Sv+1 (v ≥ 3), or G = Av+1 (v ≥ 5), or G = Mv+1 (v = 10,11,22,23). In each case,G is
transitive on the set1 of proper 3-arcs of6, and hence1 is the unique self-pairedG-orbit on
such 3-arcs. Clearly,(σ, τ ), (δ, ε) are adjacent in4(6,1) if and only if {σ, τ } ∩ {δ, ε} = ∅.
Thus this 3-arc graph is isomorphic to(K (v + 1,2))[K 2], the lexicographic product of the
Kneser graphK (v + 1,2) and the empty graphK 2 on two vertices. One can see that, for
distinct blocksB,C of B(6) (defined in (4)), 0[B,C] is isomorphic toKv−1,v−1 minus a
perfect matching. This is the graph defined in [9, Proposition 5.1(a)].

EXAMPLE 3.16. Special affine flag graphs.The groupG := Z4
2 · A7 is a subgroup of

AGL(4,2), whereZ4
2 acts onV(6) := V(4,2) by translations and, forτ := 0, Gτ

∼= A7 is
a subgroup of GL(4,2) ∼= A8 acting 2-transitively onV(4,2) \ {τ } in its natural action. Let
σ, σ ′ be distinct points ofV(4,2)\{τ }. Then from [4, p. 10] we haveGστ

∼= PSL(2,7), which
is transitive onV(4,2) \ {σ, τ }, and each involution inA7 and also each element of order 3 in
PSL(2,7) fixes exactly three nonzero vectors inV(4,2). Hence in the action ofGσσ ′τ

∼= A4
on V(4,2) \ {σ, σ ′, τ, σ + σ ′

+ τ } the stabilizer of any vector is trivial, that is,Gσσ ′τ has an
orbit of length 12. Apart from this orbit,Gσσ ′τ has another orbit onV(4,2)\{σ, σ ′, τ }, namely
{σ + σ ′

+ τ }. SinceG is 3-transitive onV(6), there are twoG-orbits on proper 3-arcs of6.
It is clear that these twoG-orbits correspond to9=(A; 4,2) and9'(A; 4,2) respectively.
Therefore, we have exactly two 3-arc graphs of6, namely0=(A; 4,2) and0'(A; 4,2). As
mentioned in Remark3.12, 0=(A; 4,2) is, and0'(A; 4,2) is not, an almost cover of6.

EXAMPLE 3.17. Mathieu graphs41(M11) and42(M11). The Mathieu group M11 with
degreev + 1 = 12 is the automorphism group of the unique 3-(12,6,2) designD. We
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assume that the point set ofD is the same as the vertex set of6 := K12. For a 2-arc
(σ ′, σ, τ ) of 6, let X(σ ′, σ, τ ) denote the union of the two blocks ofD containingσ ′, σ, τ .
Then (M11)σ ′στ

∼= S3 has two orbits onV(6) \ {σ ′, σ, τ } (see [6, pp. 231–232]), namely
V(6) \ X(σ ′, σ, τ ) and X(σ ′, σ, τ ) \ {σ ′, σ, τ }. Let τ ′

∈ V(6) \ {σ ′, σ, τ }. By the 3-
transitivity of M11, there existsg ∈ M11 such that(σ, τ, τ ′)g = (τ, σ, σ ′). Set(σ ′)g = δ,
so (σ ′, σ, τ, τ ′)g = (δ, τ, σ, σ ′). Sinceg is an automorphism ofD, the pointsσ ′, σ, τ, τ ′

lie in the same block ofD if and only if δ, τ, σ, σ ′ lie in the same block ofD. This im-
plies that,τ ′

∈ V(6) \ X(σ ′, σ, τ ) (τ ′
∈ X(σ ′, σ, τ ) \ {σ ′, σ, τ }, respectively) if and only

if δ ∈ V(6) \ X(σ ′, σ, τ ) (δ ∈ X(σ ′, σ, τ ) \ {σ ′, σ, τ }, respectively). That is,δ andτ ′ are
in the same(M11)σ ′στ -orbit on V(6) \ {σ ′, σ, τ }. So there existsh ∈ (M11)σ ′στ such that
δh

= τ ′. This implies thatgh reverses(σ ′, σ, τ, τ ′) and hence1 is self-paired. So there are
exactly two self-paired M11-orbits on proper 3-arcs of6, namely11 := (σ ′, σ, τ, τ ′)M11

for τ ′
∈ V(6) \ X(σ ′, σ, τ ), and12 := (σ ′, σ, τ, τ ′)M11 for τ ′

∈ X(σ ′, σ, τ ) \ {σ ′, σ, τ }.
Thus we get two 3-arc graphs, namely4i (M11) := 4(6,1i ) for i = 1,2. Note that
|V(6) \ X(σ ′, σ, τ )| = 3 and|X(σ ′, σ, τ ) \ {σ ′, σ, τ }| = 6. From these it follows that, for
blocksB = Arc(6; σ) andC = Arc(6; τ) of B(6) (defined in (4)), each vertex ofB other
than(σ, τ ) is adjacent to three vertices ofC in 41(M11), and adjacent to six vertices ofC in
42(M11). Hence41(M11) and42(M11) have valencies 3(v − 1) = 30 and 6(v − 1) = 60,
respectively, and none of them is an almost cover of6. One can see that(α, α′), (β, β ′)

are adjacent in41(M11) (42(M11), respectively) if and only ifα′, α, β, β ′ are distinct and
β ′

∈ V(6) \ X(α′, α, β) (β ′
∈ X(α′, α, β) \ {α′, α, β}, respectively). Thus,41(M11) and

42(M11) are the graphs defined in Proposition 5.1(e), (1) and (2) of [9], respectively.

EXAMPLE 3.18. Mathieu graphs41(M22) and 42(M22). The Mathieu group M22 of
degreev + 1 = 22 is the automorphism group of the 3-(22,6,1) Steiner systemD. We
assume that the point set ofD is the same as the vertex set of6 := K22. As in Example3.17
above, we get two 3-arc graphs of6, namely the graph41(M22) in which (α, α′), (β, β ′)

are adjacent if and only ifα′, α, β, β ′ are distinct andβ ′
∈ V(6) \ X(α′, α, β), and the

graph42(M22) in which (α, α′), (β, β ′) are adjacent if and only ifα′, α, β, β ′ are distinct
andβ ′

∈ X(α′, α, β) \ {α′, α, β}, where X(α′, α, β) denotes the unique block ofD con-
tainingα′, α, β. These two graphs are the graphs defined in Proposition 5.1(d), (1) and (2)
of [9], respectively. Based on the same reason as in Example3.17one can see that, for blocks
B = Arc(6;α) andC = Arc(6;β) of B(6), each vertex ofB other than(α, β) is adjacent to
16 vertices ofC in 41(M22), and adjacent to three vertices ofC in 42(M22). Thus,41(M22)

and42(M22) have valencies 16(v − 1) = 320 and 3(v − 1) = 60, respectively. Moreover,
none of them is an almost cover of6.

Combining the discussion in this subsection with Theorems3.6(b) and (c),3.13 and
Remark3.12, we get the following classification theorem, which is attributed to Gardiner
and Praeger [9]. This theorem also gives an explicit list of all almost covers of the(G,2)-arc
transitive complete graphKv+1. For a study of almost covers of 2-arc transitive noncomplete
graphs, the reader is referred to [18].

THEOREM 3.19. Suppose that0 is a G-symmetric graph with G faithful on V(0) which
admits a nontrivial G-invariant partitionB such thatv = k + 1 ≥ 3, D(B) contains no
repeated blocks and0B is complete. Then0B ∼= Kv+1, G is 3-transitive and faithful onB,
and either0 = (v + 1) · Kv with G an arbitrary3-transitive permutation group of degree
v + 1, or one of the following(a)–(f)holds.

(a) 0 = (K (v + 1,2))[K 2], and G is either Sv+1 (v ≥ 3), or Av+1 (v ≥ 5), or Mv+1
(v = 10,11,22,23).
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(b) (0,G) = (CR(v; x, s),PGL(2, v) · 〈ψ t
〉), wherev = pe with p a prime and e≥ 1,

x ∈ GF(v) \ {0,1}, s is a divisor of s(x), and t is a divisor of e withgcd(s(x), t) = s.
(c) (0,G) = (TCR(v; x, s),M(t/2, v)), wherev = pe with p an odd prime and e≥ 2 an

even integer, x∈ GF(v) \ {0,1} with s(x) even and x− 1 a square ofGF(v), s is an
even divisor of s(x), and t is a divisor of e withgcd(s(x), t) = s.

(d) 0 = 0=(A; d,2) or 0'(A; d,2), v = 2d
−1, where d≥ 2, and either G= AGL(d,2)

or d = 4 and G= Z4
2 · A7.

(e) (0,G) = (41(M11),M11) or (42(M11),M11), andv = 11.
(f) (0,G) = (41(M22),M22) or (42(M22),M22), andv = 21.

Moreover, if in addition0 is an almost cover of0B, then either0 = (v + 1) · Kv with G
an arbitrary3-transitive permutation group of degreev + 1, or (0,G) is as in(b) or (c) with
s = s(x) and t a multiple of s, or0 = 0=(A; d,2) and G = AGL(d,2) with d ≥ 2, or
0 = 0=(A; 4,2) and G= Z4

2 · A7.

In possibility (b) above, ifv = 3 then PGL(2,3) ∼= S4 and we get only one cross ratio
graph CR(3; 2,1) ∼= 3 · C4; if v = 4, then PGL(2,4) ∼= A5 and we also have a unique cross
ratio graph CR(4; t,2) ∼= CR(4; t2,2), which is isomorphic to the dodecahedron (see [8,
Example 2.4(a)]), where we set GF(4) = {0,1, t, t2

= 1 + t}.
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