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for B, C € 8 connected by some edge of I", exactly two vertices of
B lie on no edge with a vertex of C; and as C runs over all parts of
B connected to B these vertex pairs (ignoring multiplicities) form
a cycle. We prove that this occurs if and only if v = 3 or 4, and
moreover we give three geometric or group theoretic constructions
of infinite families of such graphs.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

A graph I' = (V,E) is G-symmetric if G < Aut([") is transitive on the set Arc(I") of arcs of I',
where an arc is an ordered pair of adjacent vertices. For a G-symmetric graph I”, a partition 8 of V is
G-invariant if B € 8 implies B8 € B forall g € G, where B® = {«® : o € B}, and 8 is nontrivial if
1 < |B| < |V|.Such a vertex partition gives rise to a quotient graph I'g, namely the graph with vertex
set B8 in which B, C € 8 are adjacent if and only if there exists an edge of I" joining a vertex of B
to a vertex of C. Since I" is G-symmetric and 8 is G-invariant, I'g is G-symmetric under the induced
(not necessarily faithful) action of G on 8. Moreover, if I" is connected, then I'g is connected and in
particular all arcs join distinct parts of 8. For an arc (B, C) of I'g, the subgraph I'[B, C] of I" induced
on B U C with isolated vertices deleted is bipartite and, up to isomorphism, is independent of (B, C).
In some examples, such as the case where I" is a cover of I'g, all vertices of B and C occur in I'[B, C],
but many other possibilities also arise.

For an arc (B, C) of I'g, let I'(C) = |
toa in I, and set

v:=|Bl, k:=|(C)NB. (1)

wec I' (), where I' () denotes the set of vertices adjacent
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An approach to understanding general G-symmetric graphs I" in terms of I'g, I'[B, C] and a 1-design
induced on B was suggested in [3], and developed furtherin [5,8,9] in the case k = v— 1, where special
additional structure on the parts B can be defined and exploited.

If k = v — 2 it turns out that we may also define additional structure on the parts. Since I'"[B, C]
consists of k vertices from each of B and C, in particular v = k + 2 > 3, and the set B\ I"(C) contains
exactly two vertices. Thus we may define a multigraph "8 with vertex set B and an edge joining the
two vertices of B\ I'(C) for each C in the set I'g(B) of parts of 8 adjacent to B in I'g. Denote by
Simple(I'®) the underlying simple graph of I'5. It was proved [4, Theorem 2.1] that Simple(I"8) is
Gp-vertex-transitive and Gz-edge-transitive, and either I'? is connected or Simple(I"8) is a perfect
matching (v/2) - K, where G is the setwise stabiliser of Bin G. In the latter case detailed information
about I" was obtained in [4, Theorem 1.3] when I'® is simple. However, no information about I" was
obtained in the case where I'® is connected. Here we considered the simplest possibility, namely
Simple(I'®) has valency two. We find with surprise that the parts of 8 must have size 3 or 4 in
this case. Our main result is Theorem 1.1 below. It involves the multiplicity m of the edges of the
multigraph I'®, that is, for a pair {«, B} of adjacent vertices of I'5,

m = [{C € I'g(B) : B\ I'(C) = {a, B}}|.

Theorem 1.1. Suppose I' is a G-symmetric graph (where G < Aut(l")) whose vertex set admits a
nontrivial G-invariant partition 8 such that k = v — 2 > 1 with k, v as in (1), I'g is connected,
and Simple(I'®) has valency two. Then Simple(I'®) = C,, I's has valency mv, and one of the
following (a)-(c) occurs for an arc (B, C) of I's.

(a) v =3 and I" has valency m;
(b) v =4, I'[B, C] = Ky.5, and I' is connected of valency 4m;
(c) v=4TII[B,C]l=2- K, and I has valency 2m.

Remark 1.2. (1) In particular, if I"8 is simple, then in case (a) we have I' = (|V(I")|/2) - K;, and,
in case (c), I" has valency two and hence is a vertex-disjoint union of cycles of the same length. In
Section 3 we construct an infinite family of graphs for each of these cases, and an infinite family of
graphs for case (b) with ' simple by using the coset graph construction.

(2) In cases (b) and (c) we prove that Gg = Dg, and for an arc (B, C) of I'g, we prove that
GB2C = 7, x Z, in case (b), and Z, in case (c).

(3)Incase (a), I" can be (G, 2)-arc-transitive even when m > 1; see [4, Example 4.6] for an infinite
family of such graphs. In case (b) it is clear that I is not (G, 2)-arc-transitive. In case (¢), if m > 1, then
the stabiliser G, of & in G is imprimitive on I" (o) and hence I" is not (G, 2)-arc-transitive. An example
for case (c) such that I is (G, 2)-arc-transitive (hence m = 1) can be found in [4, Example 4.7].

Our construction for case (b) leads to an infinite family of connected 4-valent symmetric graphs I”
which have a 4-valent quotient not covered by I". To the best of our knowledge this is the first infinite
family of symmetric graphs with these properties.

Corollary 1.3. There exists an infinite family of connected symmetric graphs I" of valency 4 which have a
quotient graph I'g of valency 4 such that I' is not a cover of I'g.

In the light of Theorem 1.1 we ask, for other connected graphs Simple(I"®):

Question 1.4. In the case where k = v — 2 and I'® is connected, is v bounded by some function of the
valency of Simple(I"?)?

We may also ask the following question.

Question 1.5. Can I" in Theorem 1.1 be determined for small values of m?

The proof of Theorem 1.1 is given in Section 2 and the examples are constructed in Section 3. The
reader is referred to [ 1] for group theoretic terminology used in the paper.
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2. Proof of Theorem 1.1

Two parts B, C € 8 are called adjacent if they are adjacent in the quotient graph I'g, and if B, C are
adjacent we write Ggc = (Gg)c¢ and let e(B, C) be the edge of Simple(I"®) joining the two vertices of
B\ I'(C).

Proof of Theorem 1.1. Let (I", G, 8) satisfy the conditions of Theorem 1.1, and let B, C be adjacent
parts. Then Simple(I"8) # (v/2)-K; since it is of valency two by our assumption. Thus "8, and hence
also Simple(I"®), is connected [4, Theorem 2.1] and so Simple(I"®) = C,. Thus, by the definition of
I'B, the valency of I'g is mv.

Case 1: v odd. Since v is odd, there exists a unique vertex « € B which is ‘antipodal’ to the edge
e(B, C) of Simple(I'®), that is, « is the unique vertex equi-distant in Simple(I"®) from the two
vertices of e(B, C). Now each element of Gpc fixes B \ I'(C) setwise and hence fixes «. (In the case
where m > 1, an element of Ggc may permute the m edges of I'® joining the two vertices of B\ I"(C).)
Thus, Ggc < G,.Since o & B\ I'(C), there exists € C adjacent to « in I". Suppose v > 5. Then there
exists avertex y € Bsuchthaty ¢ {«}U (B\ I'(C)) and so y is adjacent to a vertex § € C. Since I" is
G-symmetric, there exists g € G such that («, 8)® = (y, ). Sinceg maps«a € Btoy € Band g € C
to s € C, it fixes B and C setwise. Thus, g € Gpc < G4, which is a contradiction since «® = y # a.
Therefore, v = 3 and consequently I" has valency m.

Case 2: v even. Since v is even, there exists a unique edge of Simple(I'®), say, e = {«, B}, which
is ‘antipodal’ to e(B, C) in Simple(I'®), thatis, o and B are both at maximum distance v/2 from some
vertex of e(B, C). Note that «, B € BN I'(C). Each vertex y € BN I'(C) is adjacent to some vertex
8, € C.Since I' is G-symmetric, for each such y there exists g, € G such that («, 6,)%” = (y,§,).
Since g, mapsa € Btoy € Band §, € Ctod, € C,we haveg, € Gpc. Thus foreach y € BN I"'(C),
g, fixes e(B, C) setwise and hence fixes e = {«, B} setwise also. Thus ¥ = y € {«, B} and in
particular v = 4and BN I'(C) = {«, B}. Since gg fixes e setwise, it interchanges « and . Since
G5 is transitive on B, it follows that G§ = Dg. Therefore, 1 # Gh© < (x%) x (x©), where X is the
reflection of I"2 in e(B, C) and x© is the reflection of I"® in e(C, B). Note that x® interchanges « and
B since it interchanges the two vertices of e(B, C). Thus gg = x8. Similarly, x¢ interchanges the two

vertices of C \ e(C, B) = {n, ¢}, say, and Gg¢ contains an element h such that h® = x°. Thus either
GBS = (¥B) x (x©) or Gp© = (xBx“) = 7,. Since Gpc preserves the adjacency of I', the first possibility
occurs if and only if « is adjacent to both of the vertices of C\ e(C, B) and hence I'[B, C] = K3, is the 4-
cycle (a, n, B, ¢, a). Since Simple(I"®) = (4, in this case « is at distance 2 in I” from f and from one
of the vertices ofe(B, C), and at distance 3 or 4 from the other vertex of e(B, C). Since I'g is connected, it
follows that I" is connected of valency 4m in this case. Suppose now that Go.© = (x®x®) = Z,.Then the
bipartite graph I"[B, C] consists of two edges only, namely, {«, §, } and {8, dg}. Hence I'[B, C] = 2-K;
and " hasvalency 2m. 0O

3. Constructions

In this section we present several constructions of infinite families of graphs that satisfy the
conditions of Theorem 1.1 in the case where the multigraph I"8 is simple, that is I'® = Simple(I'8)
or equivalently m = 1. The first two constructions involve regular maps on surfaces. Here and in
what follows our use of the term ‘regular map’ agrees with that of [2], that is, a regular map is a 2-
cell embedding of a connected (multi)graph on a closed surface such that its automorphism group is
regular on incident vertex-edge-face triples.

3.1. Truncations of trivalent symmetric graphs
The construction below produces all graphs that arise in case (a) of Theorem 1.1 withm = 1.
Construction 3.1. Let X' be a trivalent G-symmetric graph with n edges. Define I"(X) to be the

graph with vertex set Arc(X) and edges {(o, 1), (t,0)} for (o, 7) € Arc(X) [4, Example 2.4].
Then I'(X) = n - Ky, I'(X) is G-symmetric, and its vertex set admits the G-invariant partition



C.H. Li et al. / European Journal of Combinatorics 31 (2010) 362-367 365

13 12

Fig. 1. Obtaining I" = 6 - K, (heavy edges in (b)) by truncating the tetrahedron as in (a).

B(X) = {B(o) : o € V(X)} with parts of size v = 3, where B(o) is the set of arcs of X' with
first vertex o. For this partition we have k = v — 2 = 1, I'(X)?) is the simple graph (3, and ¥ is
isomorphic to the quotient graph I"(X') g(x) via the bijection o + B(o).

As explained in [4, Example 2.4] this construction produces all imprimitive G-symmetric graphs
(I', B) suchthatk = v — 2 = 1and I'® = G5 is simple.

In case (a) of Theorem 1.1, if m = 1, then G5 = Z; or Dg. From [2, Theorem 1.1] the former occurs
if and only if I'g admits an embedding as an orientably-regular (rotary) map M on a closed orientable
surface. In fact, I's admits' two such embeddings which are mirror images of each other such that
their automorphism groups are isomorphic to G. In this case we may view I" as obtained from M by
truncation: cutting off each corner and then removing the edges in the triangles thus produced. In
particular, let M be the tetrahedron and let G = A4 act on the vertices of M in its natural action. Then
Construction 3.1 applied with X the underlying graph of M gives rise to I'(X) = 6 - K, as shown in
Fig. 1.

3.2. Flag graphs of 4-valent regular maps

Next we construct four infinite families of graphs that arise in case (c) of Theorem 1.1 withm = 1.
The constructions take as input a 4-valent regular map M with automorphism group G = Aut(M) so
that the underlying graph X of M is G-symmetric and, foro € V(X), G, = G* @) = Dg. The output of
Construction 3.2 involves incident vertex-face pairs of M of the form (o, h) where ¢ is a vertex and h
is a face incident with o.

Construction 3.2. Let M be a regular map on a closed surface such that its underlying graph X' has
valency four, and let G = Aut(M). For each edge {0, o'} of X, let f, f” denote the faces of M such
that {0, 0’} is on the boundary of both f and f’. Let opp,, (f) and opp,, (f') be the other two faces of
M incident with o and opposite to f and f’ respectively, and define opp, (f) and opp,(f’) similarly.
Define four graphs I'y (M), I, (M), I'5(M), I4(M) with vertices the incident vertex—face pairs of M and
adjacency defined as follows (where ~ means adjacency): for each edge {o, o'} of X, (o, f) ~ (¢/,f)
and (o, f") ~ (o',f") in IT(M); (o,f) ~ (o',f") and (o, f") ~ (o', f) in I2(M); (o, opp, (f)) ~
(0, 0pp,(f)) and (o, 0pp, (f)) ~ (o', 0pp,(f')) in I3(M); (o, 0pp, (f)) ~ (o, 0pp,(f)) and
(0, 0pp, (f")) ~ (07, 0ppy/(f)) in Iy(M).

Let B(M) = {B(0) : 0 € V(X)},whereB(o) = {(o, f) : o incident with f}. The following lemma
shows that the graphs produced by Construction 3.2 have the required properties.

Lemma 3.3. Let M, X, G be as in Construction 3.2 and let I" = I;(M) be as defined there, where
1 <i < 4.Then I' is a G-symmetric graph of valency two whose vertex set admits 8 (M) as a G-invariant

T Details may be obtained from the authors.
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partition such that k = v — 2 = 2, 'y = X, and I'®®) = C, is simple. Moreover, for adjacent blocks
B(o), B(tr) € 8(M), I'[B(0), B(1)] = 2 - Ks.

Proof. Since M is a regular map, G = Aut(M) is transitive on the vertices of I" and 8(M) is a G-
invariant partition of the vertex set of I". Since the underlying graph X of M is of valency four, the
parts of B(M) have size v = 4 and a typical part is of the form B(o) = {(o,f) : 1 < i < 4},
where f1, f>, f3, f4 are the faces of M surrounding o. Let 7;, 1 < i < 4 be the vertices of M adjacent
to o such that t;_; and t; are incident with the face f;, where subscripts are taken modulo 4. If
I' = I''(M) then (o, f;) is adjacent to (t_1, f;) and (7;, f;) only, and hence I has valency two. Similarly
if ' = (M) then (o, f;) is adjacent to (t;_1, fi—1) and (7, fi+1) only, and again I" has valency two.
In either case I"[B(o), B(t1)] consists of two edges, namely {(c, f1), (71, f1)} and {(o, f,), (71, f2)} for
(M), and {(o, f), (11, f1)} and {(o, f1), (11, f>)} for I3 (M), and hence k = 2 and I'[B(0), B(t7)] =
2 - K>. Moreover, '8 is a cycle C4, namely ((o, f1), (o, f2), (o, f3), (o, f1), (o, f1)) in both cases, and
I's = X via the mapping B(o) + o. Since M is a regular map, there exists g € G, which fixes fi,
interchanges 7, and 74, and interchanges f, and f4. Thus g interchanges the two vertices adjacent to
(o, f1) in both cases, so I" is G-symmetric.
Similarly one can verify that all statements hold for I' = I'35(M) or I4(M). O

Eachof I'' (M), I, (M), I'3(M) and I'4(M) in Construction 3.2 is a union of cycles since it has valency
two. For example, I'1(M) = s - C; and each face of M gives rise to a cycle of I'; (M), where ¢ is the face
length and s the number of faces of M. For the octahedron M one can check that I'7(M) = 8 - G,
Fz(M) ;4C6,F3(M) %6C4ancl1“4(M) 24(:6

3.3. An explicit group theoretic construction

Finally, we give a Sabidussi coset graph construction (see e.g. [6]) for an infinite family of graphs
that satisfy part (b) of Theorem 1.1 with m = 1. Given a group G, a core-free subgroup H of G and a
2-element g such that g & Ng(H) and g2 € H N HE, the coset graph Cos(G, H, HgH) is defined to have
vertex set [G : H] = {Hx : x € G} such that Hx, Hy are adjacent if and only if xy~! € HgH. It is known,
see for example [6], that Cos(G, H, HgH) is G-symmetric and is connected if and only if (H, g) = G.
For a subgroup L < H,letB = [H : L] = {Lh | h € H}. Forx € G, let B = {Lhx | h € H}, and let
B = {B* | x € G}. Then B is a G-invariant partition of [G : L]. Further, we have the following link
between the two coset graphs.

Lemma 3.4. Let I’ = Cos(G, L, LgL) and ¥ = Cos(G, H, HgH). Then X = I'g.
Proof. Define a one-to-one correspondence between [G : H] and 8B by:
¢ :Hx— B*, xeG.

We claim that ¢ induces an isomorphism between X and I'z. For any x, y € G, we have (where ~
means adjacency):

Hx ~ Hy

5
™M
l

yx~ ! e HgH

yx~! = high, forsomehy, h, € H
h'y(hax)™' =g e LgL

Lhyx ~ Lh{'y inT

B*~B in .

Lhix ~ Lhyy in I, for some h{, h, € H
hyy(hix)~! e LgL

yx~' € hy'LgLh, C HgH

Hx ~Hy inX.

Thus ¥ = I'g, asclaimed. O

B*~B inlg

I

Now we construct examples satisfying part (b) of Theorem 1.1.
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Construction 3.5. Let p be a prime such that p = 1 (mod 16), and let G = PSL(2, p). Let H be a Sylow
2-subgroup of G. Then H = (a) : (b) = Dy, (a*, b) = 72, and Ng((a*, b)) = Ss. There exists an
involution g € Ng({a*, b)) \ (a?, b) such that g interchanges a* and b. Let L = (a*, ba) = 73, and
define

X = Cos(G, H, HgH), I' = Cos(G, L, LgL).

Lemma 3.6. Using the notation defined above, the following all hold:

(a) both I' and X' are G-symmetric, connected and of valency 4;
(b) B is a G-invariant partition of V(I') suchthat k =v —2 =2, I8 = Cyand ¥ = I'g;
(c) for B=[H : L] and C = B% € I'g(B), the induced subgraph I'[B, C] = K5 5.

Proof. It follows from the classification of the subgroups of G, see for example [7, pp. 417], that (H, g)
is contained in no maximal subgroup of G. Thus (H, g) = G, and so X' is connected. Moreover, since
(a*)® = b, it follows that b, a € (a*, ba, g). Thus (L, g) = G, and so I" is connected.

By the definition, (a*, b, g) = Dg, and H N H¢ = (a*, b) = Z3. Hence X has valency 4. Since L
is abelian, L N ¥ < L. Also L N L% is normalised by the involution g, and hence L N ¢ is normal in
(L,g) = G.As Gis simple,LNL® = 1, and so I" is of valency 4. Part (a) now follows by Lemma 3.4.

As above B is a G-invariant partition of V (I") with parts of size v = |H : L| = 4. The stabiliser
Gs = H, and for C = B8, we have Ggc = Gg N Gc = H N H® = (a*, b). Label the vertex L of I" as «.
Thenwa € B, G, = L = (a*, ba), and G, N Gyc = (a*). The vertex B = a® = Lg liesin C N I"(«), and so

,3“4 e CNI'(x)and {B, ,8a4} C CNTI'(«).Also,since Gyg = LNIE =1, a* does not fix 8 and hence

B £ ,Ba4, Counting the numbers of edge of X' and I", we conclude that there are exactly 4 edges of I"
between B and C. It follows that I"'[B, C] = K, and k = 2. This together with the fact that both I”
and ¥ have valency 4 forces I'® to be simple and isomorphic to Cy4. Finally by Lemma 3.4, ¥ = Ig.
This completes the proof of parts (b) and (¢). O

Corollary 1.3 follows from Lemma 3.6 immediately.
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