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a b s t r a c t

Let h ≥ 1 be an integer. An L(h, 1, 1)-labelling of a (finite or
infinite) graph is an assignment of nonnegative integers (labels)
to its vertices such that adjacent vertices receive labels with dif-
ference at least h, and vertices distance 2 or 3 apart receive dis-
tinct labels. The span of such a labelling is the difference between
the maximum and minimum labels used, and the minimum span
over all L(h, 1, 1)-labellings is called the λh,1,1-number of the
graph. We prove that, for any integer h ≥ 1 and any finite tree
T of diameter at least 3 or infinite tree T of finite maximum de-
gree, max{maxuv∈E(T )min{d(u), d(v)} + h − 1,∆2(T ) − 1} ≤
λh,1,1(T ) ≤ ∆2(T ) + h − 1, and both lower and upper bounds are
attainable, where∆2(T ) is the maximum total degree of two adja-
cent vertices. Moreover, if h is less than or equal to the minimum
degree of a non-pendant vertex of T , then λh,1,1(T ) ≤ ∆2(T ) +
h − 2. In particular, ∆2(T ) − 1 ≤ λ2,1,1(T ) ≤ ∆2(T ). Further-
more, if T is a caterpillar and h ≥ 2, thenmax{maxuv∈E(T )min{d(u),
d(v)} + h− 1,∆2(T )− 1} ≤ λh,1,1(T ) ≤ ∆2(T )+ h− 2 with both
lower and upper bounds achievable.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Motivated by the problem [16] of assigning frequencies to transmitters in a radio communication
network, various channel assignment problems have received extensive attention in recent years.
Usually, such problems can be formulated as graph labelling problems, and a major concern is to
minimize the span of a channel assignment subject to a set of constraints involving pairs of vertices
within a given distance. Among others the followingmodel has been studiedwidely, especially for the
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case when d = 2. Given a finite or infinite graph G = (V (G), E(G)) and a sequence h1, h2, . . . , hd of
nonnegative integers, an L(h1, h2, . . . , hd)-labelling of G is a mapping φ : V (G)→ {0, 1, 2, . . .} such
that, for t = 1, 2, . . . , d and any u, v ∈ V (G)with d(u, v) = t ,

|φ(u)− φ(v)| ≥ ht
where d(u, v) is the distance in G between u and v. (In this paper an infinite graph means a graph
with countably infinitely many vertices.) In practical terms, the label of u under φ, φ(u), is the channel
assigned to the transmitter corresponding to u. Without loss of generality we will always assume
minv∈V (G) φ(v) = 0. Under this assumption the span of φ is defined as maxv∈V (G) φ(v). Define [15,16]

λh1,h2,...,hd(G) := min
φ
max
v∈V (G)

φ(v)

to be the λh1,h2,...,hd-number of G, where the minimum is taken over all L(h1, h2, . . . , hd)-labellings
of G. In practice [16] this parameter corresponds to the minimum bandwidth required by the radio
communication network under the constraints above.
The L(h1, h2, . . . , hd)-labelling problem above is interesting in both theory and practical

applications. For instance, when d = 1, it becomes the ordinary vertex-colouring problem since
λh(G) = h(χ(G) − 1), where χ(G) is the chromatic number of G. In the case when d = 2, many
interesting results (see e.g. [6–8,11,13,15,18,20,21]) have been obtained for various families of finite
graphs, especially when (h1, h2) = (2, 1). The reader is referred to [2] for an extensive bibliography
on the L(h1, h2)-labelling problem and [22] for a short survey on Hamming graphs and hypercubes.
In the following we just mention a few results for finite trees since they are more relevant to this
article. In [15] it was proved that, for any finite tree T , λ2,1(T ) is either∆(T )+ 1 or∆(T )+ 2, where
∆(T ) is the maximum degree of T . A polynomial time algorithm for determining λ2,1(T ) was given
in [6], and a modification of it gave a polynomial algorithm for λh1,h2(T ) when h2 divides h1. It was
conjectured [12] that the problem of determining λh1,h2 for finite trees is NP-complete when h2 does
not divide h1, and recently this was proved in [9]. In [10] it was proved that the L(2, 1)-labelling
problem is NP-complete for graphs of treewidth 2. In [5] it was proved that∆(T )+h−1 ≤ λh,1(T ) ≤
min{∆(T )+ 2h− 2, 2∆(T )+ h− 2}with both lower and upper bounds attainable. In [14] the λh1,h2-
numberwas derived for infinite regular trees when h1 ≥ h2, and for h1 < h2 the authors of [4] studied
the smallest integer λ such that every tree of maximum degree ∆ ≥ 2 admits an L(h1, h2)-labelling
of span at most λ.
More recently, researchers began to investigate the L(h1, h2, h3)-labelling problem. For example,

in [23] the third-named author studied the problem for hypercubes Qn by using a group-theoretic
approach, leading to upper bounds onλh1,h2,h3(Qn)which are tight in certain cases. In [3] the L(h, 1, 1)-
labelling problem (where h ≥ 1) for outerplanar graphs was investigated. Nevertheless, in contrast to
L(h1, h2)-labellings, we know only very little about L(h1, h2, h3)-labellings even for some basic graphs
such as trees.
In this paper we study the L(h, 1, 1)-labelling problem for finite and infinite trees, where h ≥ 1.

Define
∆2(G) := max

uv∈E(G)
(d(u)+ d(v))

for any graph G, where d(u) is the degree of u in G. Note that, if G is infinite, then ∆2(G) = ∞ if and
only if there exists no positive integer N such that d(u) ≤ N for all u ∈ V (G), and in this case we have
λh,1,1(G) = ∞. Thus, we consider only finite trees and infinite trees with finite maximum degree. We
obtain the following bounds on λh,1,1(T ) in terms of ∆2(T ), which will be proved in Section 2 along
with an algorithm for finding an L(h, 1, 1)-labelling of T with span ∆2(T ) + h − 1. When T is finite,
the running time of this algorithm is O(|V (T )|2).

Theorem 1. Let h ≥ 1 be an integer. Let T be a finite tree with diameter at least 3 or an infinite tree with
finite maximum degree. Then

max
{
max
uv∈E(T )

min{d(u), d(v)} + h− 1,∆2(T )− 1
}
≤ λh,1,1(T ) ≤ ∆2(T )+ h− 1. (1)

Moreover, the lower bound is attainable for any h ≥ 1 and the upper bound is attainable for any h ≥ 3.
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The lower bound ∆2(T ) − 1 above is achieved by any tree T with diameter 3 and any h with
1 ≤ h ≤ min{d(u), d(v)}, where u, v are the two vertices of T with degree greater than 1. In fact, if
we assign 0 to u,∆2(T )−1 to v, d(v), d(v)+1, . . . ,∆2(T )−2 to the neighbors of u other than v, and
1, 2, . . . , d(v)−1 to the neighbors of v other than u, thenwe get an L(h, 1, 1)-labelling of T with span
∆2(T )−1, and hence λh,1,1(T ) = ∆2(T )−1. Let T ′ be the infinite tree obtained from T by attaching an
infinite path (with one closed end) to a neighbor of u. It is easy to check that λh,1,1(T ′) = ∆2(T ′)− 1.
The lower boundmaxuv∈E(T )min{d(u), d(v)}+h−1 in (1) is achieved by any tree T with diameter

3 such that d(u1) = d(v1) and any integer h ≥ d(u1), where u1, v1 are the two vertices of T with
degree greater than 1. In fact, if we assign 0 to u1, h + d(u1) − 1 to v1, h, h + 1, . . . , h + d(u1) − 2
to the neighbors of u1 other than v1, and 1, 2, . . . , d(u1) − 1 to the neighbors of v1 other than u1,
then we get an L(h, 1, 1)-labelling of T with span h+ d(u1)− 1. Hence λh,1,1(T ) = d(u1)+ h− 1 =
maxuv∈E(T )min{d(u), d(v)} + h− 1.
In the next section we will give for any h ≥ 3 a family of trees which achieve the upper bound in

(1). Our next result, to be proved in Section 3, implies that this upper bound can be improved when
h = 1, 2. Define

δ∗(T ) := min
u∈V (T ), d(u)≥2

d(u).

Theorem 2. Let T be a finite tree with diameter at least 3 or an infinite tree with finite maximum degree.
Then for any positive integer h ≤ δ∗(T ) we have

λh,1,1(T ) ≤ ∆2(T )+ h− 2. (2)

A tree is called a caterpillar if the removal of all vertices of degree 1 results in a path, called the
spine. Thus the spine of an infinite caterpillar is an infinite path with at least one open end. The next
result, to be proved in Section 3, shows that for caterpillars the upper bound in (1) can also be reduced
by 1 for any h ≥ 2.

Theorem 3. Let h ≥ 2 be an integer. Let T be a finite caterpillar of diameter at least 3 or an infinite
caterpillar of finite maximum degree. Then

max
{
max
uv∈E(T )

min{d(u), d(v)} + h− 1,∆2(T )− 1
}
≤ λh,1,1(T ) ≤ ∆2(T )+ h− 2

and both lower and upper bounds are achievable. Moreover, if there exists no vertex on the spine with
degree∆2(T )− 2, then λh,1,1(T ) ≤ ∆2(T )+ h− 3; if there exist consecutive vertices u, v, w on the spine
such that d(u) = d(w) = ∆2 − 2 and d(v) = 2, then λh,1,1(T ) = ∆2(T )+ h− 2.

Note that δ∗(T ) ≥ 2 for any tree T with diameter at least 3. Thus, in the case when h = 2,
Theorems 1 and 2 give the following corollary, which can be viewed as the counterpart of the result
∆(T )+ 1 ≤ λ2,1(T ) ≤ ∆(T )+ 2 mentioned above.

Corollary 4. Let T be a finite tree with diameter at least 3 or an infinite tree with finite maximum degree.
Then

∆2(T )− 1 ≤ λ2,1,1(T ) ≤ ∆2(T ).

The nth power of a graph G, Gn, is the graph with the same vertices as G such that two vertices are
adjacent if and only if the distance in G between them is at most n. From the definition of λ1,1,1 it is
evident that λ1,1,1(G) = χ(G3)− 1. Thus, when h = 1, Theorems 1 and 2 together give the following
corollary. (See, for example, [17,19,21] for related results on the chromatic number of power graphs.)

Corollary 5. Let T be a finite tree with diameter at least 3 or an infinite tree with finite maximum degree.
Then

χ(T 3) = λ1,1,1(G)+ 1 = ∆2(T ).
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In the case when T is finite, this result can also be deduced from the following facts: T 3 is chordal
with clique number ∆2(T ) and the chromatic number of any chordal graph is equal to its clique
number. (The nth power of a chordal graph is also chordal when n is odd. See [1] and also [24] for
an independent and shorter proof. Since a finite tree T is chordal, T 3 is chordal.)
The λh1,h2-number of a graph is often bounded by its maximum degree∆. For example, motivated

by the conjecture [15] that λ2,1(G) ≤ ∆(G)2 for any graph Gwith∆(G) ≥ 2, a number of results in the
literature relate λh1,h2(G) to∆(G) (see the survey paper [2]). Our results above suggest that labelling
problems of distance 3 (not necessarily for trees) are more related to∆2.
We will use the following notation: for a vertex v of a tree T ,

N(v) := {u ∈ V (T ) : uv ∈ E(T )}
N[v] := N(v) ∪ {v}
N3(v) := {u ∈ V (T ) : 1 ≤ d(u, v) ≤ 3}.

An edge uv of T is called heavy if it achieves∆2(T ), that is, d(u)+ d(v) = ∆2(T ).

2. Proof of Theorem 1

In this section we always assume that T is a finite tree with diameter at least 3 or an infinite tree
with finite maximum degree. For integers x < y, let

[x, y] := {x, x+ 1, . . . , y− 1, y}.

The following lemma gives the lower bound in Theorem 1.

Lemma 6. Let h ≥ 1 be an integer. Then

λh,1,1(T ) ≥ max
{
max
uv∈E(T )

min{d(u), d(v)} + h− 1,∆2(T )− 1
}
.

Proof. Let uv ∈ E(T ) be a heavy edge. ThenN(u)∪N(v) contains∆2(T ) verticeswithmutual distance
at most 3. Since these∆2(T ) vertices require∆2(T ) distinct labels in any L(h, 1, 1)-labelling, we have
λh,1,1(T ) ≥ ∆2(T )− 1 immediately.
To complete the proof it suffices to prove λh,1,1(T ) ≥ min{d(u), d(v)}+ h−1 for every uv ∈ E(T ).

Since this is clearly true when min{d(u), d(v)} = 1, we consider edges uv with min{d(u), d(v)} ≥ 2
and denote λ = λh,1,1(T ). Let φ be an optimal L(h, 1, 1)-labelling of T , so all vertices of T receive
labels from [0, λ]. Since u and v are adjacent, λ ≥ max{φ(u), φ(v)} ≥ min{φ(u), φ(v)}+h and hence
min{φ(u), φ(v)} ≤ λ−h. Consider the caseφ(u) ≤ λ−h first. Ifφ(u) ≥ h, then the available labels for
the vertices inN(u) are [0, φ(u)−h]∪[φ(u)+h, λ]. Thus, d(u) ≤ (φ(u)−h+1)+(λ−φ(u)−h+1);
that is, λ ≥ d(u) + 2h − 2 ≥ d(u) + h − 1. If 0 ≤ φ(u) ≤ h − 1, then the available labels for the
vertices in N(u) are [φ(u)+ h, λ]. Hence d(u) ≤ λ− (φ(u)+ h)+ 1 ≤ λ− h+ 1. So we have proved
λ ≥ d(u) + h − 1 if φ(u) ≤ λ − h. Similarly, if φ(v) ≤ λ − h, then λ ≥ d(v) + h − 1. Therefore
λh,1,1(T ) ≥ min{d(u), d(v)} + h− 1 for every uv ∈ E(T ) and the proof is complete. �

In the following we abbreviate∆2(T ) to∆2 and fix a heavy edge uv of T . Let T − uv be the graph
obtained from T by deleting the edge uv. Denote by Tu, Tv the connected components of T − uv
containing u, v respectively. Let

lu := max
w∈V (Tu)

d(u, w), lv := max
w∈V (Tv)

d(v,w).

Note that, if T is infinite, then at least one of Tu, Tv must be infinite. Moreover, if Tu (resp., Tv) is infinite,
then we define lu = ∞ (resp., lv = ∞). Define

Li(u) := {w ∈ V (Tu) : d(u, w) = i}, i = 0, 1, . . . , lu
Li(v) := {w ∈ V (Tv) : d(v,w) = i}, i = 0, 1, . . . , lv.
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In particular, L0(u) = {u} and L0(v) = {v}. To facilitate our labelling we index the vertices of Li(u)
with sequences of positive integers of length i in the following way. First, we index the vertices in
L1(u) (= N(u) \ {v}) with 1, 2, . . . , d(u) − 1 (sequences of length 1) respectively in an arbitrary but
fixed order. Then for each vertex a1 ∈ {1, 2, . . . , d(u) − 1} we index its neighbors other than u with
a1a2 in an arbitrary order, where a2 = 1, 2, . . . , d(a1) − 1. Inductively, for a vertex a1a2 · · · ai−1ai in
level Li(u), if it is not a vertex of degree 1, then we index its neighbors other than a1a2 · · · ai−1 with
a1a2 · · · ai−1aiai+1 in an arbitrary order, where ai+1 = 1, 2, . . . , d(a1a2 · · · ai−1ai)−1. In this way each
vertex of Tu other than u is indexed with a unique sequence whose length is the distance between the
vertex and u. Moreover, the unique path between u and a vertex a1a2 · · · ai−1ai ∈ Li(u) is

u, a1, a1a2, a1a2a3, . . . , a1a2 · · · ai−1ai.

In the same fashion,we index the vertices of Tv other than vwith sequences, andwe use b1b2 · · · bi−1bi
to denote a typical vertex in level Li(v) in order to avoid confusionwith vertices of Tu. In the following,
if i = 1 then a1 · · · ai−1, b1 · · · bi−1 are interpreted as u, v respectively, and a1 · · · ai−2, b1 · · · bi−2 are
interpreted as v, u respectively. The following observations will be used without further explanation
in the proof of Lemma 8.

Lemma 7. (a) The following equalities (3)–(4) hold for i = 1, 2, . . . , lu − 1 and (5)–(6) for i = 1,
2, . . . , lv − 1:

Li+1(u) =
⋃

a1···ai∈Li(u)

(N(a1 · · · ai) \ {a1 · · · ai−1}) (3)

N3(a1 · · · aiai+1) ∩

(
i⋃
j=0

Lj(u)

)
= N[a1 · · · ai−1], ∀a1 · · · aiai+1 ∈ Li+1(u) (4)

Li+1(v) =
⋃

b1···bi∈Li(v)

(N(b1 · · · bi) \ {b1 · · · bi−1}) (5)

N3(b1 · · · bibi+1) ∩

(
i⋃
j=0

Lj(v)

)
= N[b1 · · · bi−1], ∀b1 · · · bibi+1 ∈ Li+1(v). (6)

(b) Any two vertices of T which are in the same level Li(u) (resp., Li(v)) but not adjacent to the same vertex
in level Li−1(u) (resp., Li−1(v)) are distance 4 apart.

The next lemma gives the upper bound in (1). For a labelling φ of T and a subset U of V (T ), define

φ(U) := {φ(u) : u ∈ U}.

Lemma 8. Let h ≥ 1 be an integer. Then

λh,1,1(T ) ≤ ∆2(T )+ h− 1.

Proof. We construct recursively an L(h, 1, 1)-labelling φ of T with span∆2(T )+ h− 1. Recall that uv
is a fixed heavy edge of T . If T is finite, then both lu and lv are finite; otherwise either lu or lv is∞.
Part 1 (Initialization): Define

φ(u) = 0, φ(v) = ∆2 + h− 1; (7)

φ(a1) = ∆2 + h− 1− a1, a1 = 1, 2, . . . , d(u)− 1; (8)
φ(b1) = b1, b1 = 1, 2, . . . , d(v)− 1. (9)

Since∆2 + h− 1− (d(u)− 1) = d(v)+ h, we have

φ(N(u) \ {v}) = [d(v)+ h,∆2 + h− 2]
φ(N(v) \ {u}) = [1, d(v)− 1].
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Since d(u) ≥ 2 and d(v) ≥ 2, the labelling above satisfies the L(h, 1, 1)-conditions among the vertices
of N(u) ∪ N(v).
Part 2 (Labelling Tu): If lu = 1, then Tu has been labelled fully. Otherwise, for each a1 ∈ L1(u) we

label (in an arbitrarymanner) the vertices ofN(a1)\{u} ⊆ L2(u)with 1, 2, . . . , d(a1)−1 respectively,
so φ(N(a1) \ {u}) = [1, d(a1) − 1]. We do this for all vertices a1 ∈ L1(u) independently, and in this
way all vertices in L2(u) are labelled. Since d(a1) ≤ ∆2 − d(u) = d(v) by the definition of∆2, in view
of Lemma 7(b) the labelling so far satisfies the L(h, 1, 1)-conditions up to level L2(u).
If lu = 2 then Tu has been labelled; otherwise we label L3(u) as follows: If d(a1a2) ≥ a1+2 (that is,

φ(a1) > ∆2 − d(a1a2) + 1), then we label (in an arbitrary manner) the vertices of N(a1a2) \ {a1}
with ∆2 + h − d(a1a2), . . . ,∆2 + h − 2 − a1,∆2 + h − a1, . . . ,∆2 + h − 1 respectively, so
φ(N(a1a2) \ {a1}) = [∆2 + h − d(a1a2),∆2 + h − 1] \ {∆2 + h − 1 − a1}. If d(a1a2) ≤ a1 + 1,
then we label arbitrarily the vertices of N(a1a2) \ {a1} with ∆2 + h + 1 − d(a1a2), . . . ,∆2 + h − 1
respectively, so φ(N(a1a2)\{a1}) = [∆2+h+1−d(a1a2),∆2+h−1]. Since d(a1)+d(a1a2) ≤ ∆2 by
the definition of∆2 and φ(a1a2) ∈ [1, d(a1)−1] by the labelling above, in both cases these new labels
satisfy the L(h, 1, 1)-conditionswith existing labels up to level L2(u).Moreover, in viewof Lemma7(b),
we can label N(a1a2) \ {a1} for all vertices a1a2 ∈ L2(u) independently, and thus label all vertices in
L3(u)without violation of the L(h, 1, 1)-conditions.
If lu = 3 then Tu has been labelled; otherwise we label L4(u) as follows. Note that φ(a1) =

∆2+h−1−a1,φ(a1a2) ∈ [1, d(a1)−1] andφ(a1a2a3) ∈ [∆2+h−d(a1a2),∆2+h−1]\{∆2+h−1−a1}
or [∆2+ h+ 1− d(a1a2),∆2+ h− 1] by the labelling above. We distinguish the following two cases
for level L4(u).
We first consider the casewhere d(a1a2a3) ≥ φ(a1a2)+1. In this case, if d(a1a2a3) ≤ ∆2+h−1−a1,

then we label arbitrarily the vertices of N(a1a2a3) \ {a1a2} with 0, 1, . . . , φ(a1a2) − 1, φ(a1a2) +
1, . . . , d(a1a2a3)− 1 (that is, φ(N(a1a2a3) \ {a1a2}) = [0, d(a1a2a3)− 1] \ {φ(a1a2)}); if d(a1a2a3) ≥
∆2+h−a1, thenwe label these vertices arbitrarily with 0, 1, . . . , φ(a1a2)−1, φ(a1a2)+1, . . . ,∆2+
h−2−a1,∆2+h−a1, . . . , d(a1a2a3) (that is,φ(N(a1a2a3)\{a1a2}) = [0, d(a1a2a3)]\{φ(a1a2),∆2+
h−1−a1}). Since d(a1a2)+d(a1a2a3) ≤ ∆2, in each possibility these new labels satisfy the L(h, 1, 1)-
conditions with existing labels up to level L3(u).
Next we assume d(a1a2a3) ≤ φ(a1a2). In this case, we have d(a1a2a3) ≤ φ(a1a2) ≤ d(a1) −

1 ≤ d(v) − 1 < φ(a1) + 1 = ∆2 + h − a1. Thus, we label the vertices of N(a1a2a3) \ {a1a2}
with 0, 1, . . . , d(a1a2a3) − 2 (that is, φ(N(a1a2a3) \ {a1a2}) = [0, d(a1a2a3) − 2]). Again, since
d(a1a2) + d(a1a2a3) ≤ ∆2, these new labels satisfy the L(h, 1, 1)-conditions with the vertices up
to level L3(u).
By Lemma 7(b) we can label N(a1a2a3) \ {a1a2} for all a1a2a3 ∈ L3(u) independently in the above

way, and thus label L4(u), without violating the L(h, 1, 1)-conditions.
In general, we prove by induction that the following hold for i = 1, . . . , lu when T is finite and for

all integers i ≥ 1 when T is infinite:

(a) if i is odd, then for all a1 · · · ai−1 ∈ Li−1(u) we can label independently the vertices of N(a1 · · ·
ai−1) \ {a1 · · · ai−2} with the d(a1 · · · ai−1) − 1 largest available integers in [∆2 + h − 1 −
d(a1 · · · ai−1),∆2+h−1] such that the L(h, 1, 1)-conditions are satisfied among vertices of Tu up
to level Li(u);

(b) if i is even, then for all a1 · · · ai−1 ∈ Li−1(u) we can label independently the vertices of N(a1 · · ·
ai−1) \ {a1 · · · ai−2}with the d(a1 · · · ai−1)− 1 smallest available integers in [0, d(a1 · · · ai−1)] such
that the L(h, 1, 1)-conditions are satisfied among vertices of Tu up to level Li(u).

The discussion above established these statements for i = 1, 2, 3, 4. Suppose that (a) and (b) are
true for all levels up to i ≤ lu − 1, implying that we have labelled all vertices of Tu up to level Li(u)
without violating the L(h, 1, 1)-conditions. In the following we prove that they are true for level i+ 1
as well. We will repeatedly use the property that d(a1 · · · ai−1)+ d(a1 · · · ai) ≤ ∆2 (by the definition
of ∆2) without mentioning it explicitly. Since there is no danger of confusion, we use the following
simplified notation:

At := N(a1 · · · at−1) \ {a1 · · · at−2}, xt := φ(a1 · · · at), i− 3 ≤ t ≤ i.
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Case 1. i is even.
Since i is even, we have φ(Ai) ⊂ [0, d(a1 · · · ai−1)] by the induction hypothesis. Thus, xi ≤

d(a1 · · · ai−1) ≤ ∆2 − d(a1 · · · ai−2) ≤ xi−1, where the second inequality is from the definition of ∆2
and the last one is from (a) applied to i−1. Similarly, xi−1 ≥ ∆2−d(a1 · · · ai−2) ≥ d(a1 · · · ai−3) ≥ xi−2
and xi−3 ≥ ∆2 − d(a1 · · · ai−4) ≥ d(a1 · · · ai−3) ≥ xi−2. Thus, by the L(h, 1, 1)-conditions we have

xi−3 ≥ xi−2 + h, xi−1 ≥ xi−2 + h, xi−1 ≥ xi + h (10)

and xi−3, xi−2, xi−1, xi are pairwise distinct.
In the case where xi−1, xi−2 ≤ ∆2 + h − d(a1 · · · ai), we can label the vertices of Ai+1 with the

integers in [∆2+h+1−d(a1 · · · ai),∆2+h−1]without violating the L(h, 1, 1)-conditions. Henceforth
we assume that at least one of xi−1 and xi−2 is at least ∆2 + h + 1 − d(a1 · · · ai). Since xi−1 > xi−2
by (10), this implies that xi−1 ≥ ∆2 + h + 1 − d(a1 · · · ai). If xi−2 ≥ ∆2 + h − 1 − d(a1 · · · ai),
then xi−3 ≥ ∆2 + 2h − 1 − d(a1 · · · ai) by (10) and hence φ(Ai) = [0, d(a1 · · · ai−1) − 2] by
the induction hypothesis. In this case we can label the vertices of Ai+1 with the integers in [∆2 +
h − 1 − d(a1 · · · ai),∆2 + h − 1] \ {xi−1, xi−2} without violation of the L(h, 1, 1)-conditions. If
xi−2 ≤ ∆2 + h − 2 − d(a1 · · · ai), then since φ(Ai) ⊂ [0, d(a1 · · · ai−1)] we can label the vertices
of Ai+1 with the integers in [∆2 + h − d(a1 · · · ai),∆2 + h − 1] \ {xi−1} without violation of the
L(h, 1, 1)-conditions.
Case 2. i is odd.
Since i is odd, by the induction hypothesiswe haveφ(Ai) ⊂ [∆2+h−1−d(a1 · · · ai−1),∆2+h−1].

Applying the induction hypothesis to Li−3(u) and Li−1(u), we get xi−3 ≤ d(a1 · · · ai−4) ≤ ∆2 −

d(a1 · · · ai−3) ≤ xi−2, xi−1 ≤ d(a1 · · · ai−2) ≤ ∆2 − d(a1 · · · ai−3) ≤ xi−2 and xi−1 ≤ d(a1 · · · ai−2) ≤
∆2 − d(a1 · · · ai−1) ≤ xi. Hence

xi−2 ≥ xi−3 + h, xi−2 ≥ xi−1 + h, xi ≥ xi−1 + h (11)

and xi−3, xi−2, xi−1, xi are pairwise distinct.
In the case where xi−1, xi−2 ≥ d(a1 · · · ai) − 1, we label the vertices of Ai+1 with the integers in

[0, d(a1 · · · ai)−2]. So wemay assume that at least one of xi−1 and xi−2 is smaller than d(a1 · · · ai)−1,
which implies xi−1 ≤ d(a1 · · · ai)− 2 in view of (11). If xi−2 ≤ d(a1 · · · ai), then xi−3 ≤ d(a1 · · · ai)− h
by (11), and hence φ(Ai) = [∆2 + h + 1 − d(a1 · · · ai−1),∆2 + h − 1] by the induction hypothesis.
In this case we label Ai+1 with [0, d(a1 · · · ai)] \ {xi−1, xi−2}. If xi−2 ≥ d(a1 · · · ai) + 1, then since
φ(Ai) ⊂ [∆2+ h− 1− d(a1 · · · ai−1),∆2+ h− 1]we can label Ai+1 with [0, d(a1 · · · ai)− 1] \ {xi−1}.
In each possibility the L(h, 1, 1)-conditions are satisfied by the labels for Ai+1.
Up to now we have proved (a) and (b) by induction and thus finished labelling Tu.
Part 3 (Labelling Tv): We label Tv by using techniques similar to those above. Note first that

the vertices in L1(v) were labelled in the initialization. If lv ≥ 2, then for each b1 ∈ L1(v), we
label the vertices of N(b1) \ {v} ⊆ L2(v) with ∆2 + h − d(b1), . . . ,∆2 + h − 2 respectively, so
φ(N(b1) \ {v}) = [∆2 + h− d(b1),∆2 + h− 2]. We do this for all b1 ∈ L1(v) independently, and in
this way all vertices in L2(v) are labelled. Since∆2− d(b1) ≥ d(v) and φ(N(v) \ {u}) = [1, d(v)− 1],
by Lemma 7 this labelling satisfies the L(h, 1, 1)-conditions with vertices in {u, v} ∪ L1(v).
Note that for each vertex w ∈

⋃
i≥3 Li(v) we have N3(w) ⊆ V (Tv) and hence we can label w

without considering the labels used by Tu. Like for (a) and (b), by inductionwe can prove the following
for i = 1, 2, . . . , lv if T is finite and for all integers i ≥ 1 if T is infinite:

(c) if i is odd, then for all b1 · · · bi−1 ∈ Li−1(v) we can label independently the vertices of N(b1 · · ·
bi−1) \ {b1 · · · bi−2}with the d(b1 · · · bi−1)− 1 smallest available integers in [0, d(a1 · · · ai−1)] such
that the L(h, 1, 1)-conditions are satisfied among vertices of Tv up to level Li(v);

(d) if i is even, then for all b1 · · · bi−1 ∈ Li−1(v) we can label independently the vertices of N(b1 · · ·
bi−1) \ {b1 · · · bi−2} with the d(b1 · · · bi−1) − 1 largest available integers in [∆2 + h − 1 −
d(b1 · · · bi−1),∆2+h−1] such that the L(h, 1, 1)-conditions are satisfied among vertices of Tv up
to level Li(v).

The proof of these statements is similar to that of (a) and (b) and hence is omitted.
In summary, we have proved that T admits an L(h, 1, 1)-labelling with span∆2+h−1. Therefore,

λh,1,1(T ) ≤ ∆2 + h− 1. �
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The proof of Lemma 8 is valid for both finite and infinite cases. Clearly, it gives an algorithm for
constructing an L(h, 1, 1)-labelling of T with span∆2+h−1. In the casewhen T is finite, this algorithm
takes O(n) time (where n = |V (T )|) for vertex indexing and initialization, and O(n) time for each of
the O(n) rounds of labelling as described in (a)–(d). Therefore, the algorithm runs in O(n2) time for
finite trees.
The truth of (1) follows from Lemmas 6 and 8 immediately. In the introduction we have shown

that the lower bound in (1) is achievable. To complete the proof of Theorem 1 we now prove that the
upper bound in (1) is attainable as well when h ≥ 3. Let T ∗ be the tree defined by

V (T ∗) = {w} ∪ {wi, ui, vi : 1 ≤ i ≤ h+ 2} ∪ {vi,j, zi,j : 1 ≤ i ≤ h+ 2, 1 ≤ j ≤ h+ 1}
E(T ∗) = {wwi, wiui, uivi : 1 ≤ i ≤ h+ 2} ∪ {vivi,j, vi,jzi,j : 1 ≤ i ≤ h+ 2, 1 ≤ j ≤ h+ 1}.

Lemma 9. Let h ≥ 3 be an integer. Let T be a finite tree or an infinite tree of finite maximum degree such
that ∆(T ) = ∆(T ∗) (= h+ 2),∆2(T ) = ∆2(T ∗) (= h+ 4) and T contains T ∗ as a subtree. Then

λh,1,1(T ) = ∆2(T )+ h− 1 = 2h+ 3.

Proof. Since λh,1,1(T ∗) ≤ λh,1,1(T ) ≤ ∆2(T ) + h − 1 by Lemma 8, it suffices to prove λh,1,1(T ∗) ≥
2h+ 3.
Suppose to the contrary that λh,1,1(T ∗) ≤ 2h + 2 and let φ be an L(h, 1, 1)-labelling of T ∗ with

span 2h+ 2. We first prove:

Claim. If v is a maximum degree vertex of T ∗, then φ(v) ∈ {0, 1, 2h+ 1, 2h+ 2}.

Suppose otherwise (that is,φ(v) ∈ [2, 2h]) and letA be the set of available labels for the neighbours
of v. If 2 ≤ φ(v) < h, then A ⊆ {φ(v) + h, . . . , 2h + 2} and so |A| ≤ h + 3 − φ(v) ≤ h + 1. If
h ≤ φ(v) ≤ h+ 2, then A ⊆ {0, . . . , φ(v)− h} ∪ {φ(v)+ h, . . . , 2h+ 2} and hence |A| ≤ 4 ≤ h+ 1.
If h + 2 < φ(v) ≤ 2h, then A ⊆ {0, . . . , φ(v) − h} and hence |A| ≤ φ(v) − h + 1 ≤ h + 1.
Since |N(v)| = h+ 2, in each of these cases there are not enough labels for the vertices in N(v). This
contradiction establishes the claim.
Since w is a maximum degree vertex, by using the dual labelling λh,1,1(T ∗) − φ(z) instead of

φ(z) (z ∈ V (T ∗)) when necessary, by the claim above we may assume without loss of generality
that φ(w) ∈ {0, 1}. Assume first that φ(w) = 1. Then φ({w1, . . . , wh+2}) = {h + 1, . . . , 2h + 2}.
Suppose without loss of generality that φ(w1) = h+ 1. Then the only label available for u1 is 0, that
is, φ(u1) = 0. Now v1 is a maximum degree vertex so φ(v1) ∈ {2h + 1, 2h + 2} by the claim above.
If φ(v1) = 2h + 1, then φ({v1,1, . . . , v1,h+1}) ⊆ {0, . . . , h + 1} \ {0, h + 1} = {1, . . . , h}. This is a
contradiction because we need at least h+1 labels for v1,1, . . . , v1,h+1. Therefore, φ(v1) = 2h+2 and
so we must have φ({v1,1, . . . , v1,h+1}) = {1, . . . , h, h + 2}. Assume without loss of generality that
φ(v1,1) = h+ 2. Then φ(z1,1) ∈ {0, 1, 2, 2h+ 2}. But this is a contradiction since 0, 2h+ 2, 1, 2 have
been used by u1, v1 and two vertices in {v1,1, . . . , v1,h+1} respectively.
Assume next that φ(w) = 0. Then φ({w1, . . . , wh+2}) ⊆ {h, . . . , 2h + 2} and exactly one label

in this set is not used by these vertices. Suppose that h + 1 is not used and assume without loss of
generality that φ(w1) = h. Then there is no label available for u1, a contradiction. Therefore, h+ 1 is
used and without loss of generality we may assume φ(w1) = h + 1. The labels available for u1 are
1, 2h + 1 and 2h + 2, except possibly at most one of these labels. We consider the case φ(u1) = 1
only since the other two cases are similar. Since v1 is a maximum degree vertex, by our claim it must
be labelled 2h + 1 or 2h + 2. If φ(v1) = 2h + 1, then the available label set for v1,1, . . . , v1,h+1 is
{0, . . . , h+ 1} \ {1, h+ 1}, which contains less than h+ 1 labels, a contradiction. If φ(v1) = 2h+ 2,
then the available label set for v1,1, . . . , v1,h+1 is {0, . . . , h + 2} \ {1, h + 1}, which has cardinality
h+ 1. So we may assume without loss of generality that φ(v1,1) = h+ 2. However, there is no label
available for z1,1, again a contradiction.
So far we have completed the proof of Theorem 1. �



Author's personal copy

D. King et al. / European Journal of Combinatorics 31 (2010) 1295–1306 1303

3. Proofs of Theorems 2 and 3

As beforewe abbreviate∆(T ),∆2(T ) to∆,∆2 respectively. For a setX of integers, denote bymax X
(min X) the maximum (minimum) integer in X .

Proof of Theorem 2. Let T be a finite tree with diameter at least 3 or an infinite tree of finite
maximum degree. Let h ≤ δ∗(T ). Choose a maximum degree vertexw as the root of T and set

Li := {v ∈ V (T ) : d(w, v) = i}, i = 0, 1, . . .

For any v ∈ V (T )we use p(v) to denote the parent of v, and c1(v), . . . , cd(v)−1(v) the children of v.

Claim. There exists an L(h, 1, 1)-labelling φ of T such that, for any k ≥ 2 and v ∈ Lk,

φ({p(p(v)), c1(p(v)), . . . , cd(p(v))−1(p(v))})

= {a mod (∆2 + h− 1), . . . , (a+ d(p(v))− 1) mod (∆2 + h− 1)} (12)

for some a ∈ [0,∆2 + h− 2].
We prove this claim by constructing φ inductively. To begin with we define

φ(w) = 0
φ(ci(w)) = ∆2 + h− i− 1, i = 1, . . . ,∆.

For each i such that ci(w) has at least one child, define

φ(cj(ci(w))) = j, j = 1, . . . , d(ci(w))− 1.

Clearly, (12) holds for k = 2 and v ∈ L2 (with a = 0). Observe that the smallest label used by a child
of w is ∆2 + h − ∆ − 1 ≥ ∆ + 2 + h − ∆ − 1 = h + 1. Note also that φ(ci(w)) − φ(cj(ci(w))) =
(∆2+ h− i− 1)− j ≥ (∆2+ h−∆− 1)− (d(ci(w))− 1) ≥ (∆2+ h−∆− 1)− (∆2−∆− 1) = h.
Thus φ satisfies the L(h, 1, 1)-conditions among vertices in L0 ∪ L1 ∪ L2.
Assume that we have labelled the vertices of T up to some level k ≥ 2 such that (12) holds for k

and v ∈ Lk and the L(h, 1, 1)-conditions are satisfied among vertices up to Lk. We extend φ to level
Lk+1 in the following way.
For any u ∈ Lk, let C := φ({p(p(u)), c1(p(u)), . . . , cj(p(u))}), where j = d(p(u))− 1. Then, by our

inductionhypothesis,C = {a1 mod (∆2+h−1), . . . , (a1+j) mod (∆2+h−1)} for some a1 ∈ [0,∆2+
h−2]. Let A := [0,∆2+h−2]\C . Then A = {a2 mod (∆2+h−1), . . . , (a2+b1) mod (∆2+h−1)},
where a2 = (a1 + j+ 1) mod (∆2 + h− 1) and b1 = ∆2 + h− j− 3. All labels in A \ {φ(p(u))} are
available for the children of u, except the ones in B := [φ(u)−h+1, φ(u)−1]∪[φ(u)+1, φ(u)+h−1].
Since φ(u) ∈ C and h ≤ δ∗(T ) ≤ d(p(u)) = j+ 1 = |C |, there are at least

(φ(u)−min C)+min{h− 1, min C + j− φ(u)} ≥ h− 1

labels in Bwhich are either in C or not in [0,∆2 + h− 2] at all. So |B ∩ A| ≤ h− 1 as |B| = 2(h− 1).
Therefore, the label set available for the children of u is (A\{φ(p(u))})\Bwhich has cardinality at least
(∆2+ h− j−3)− (h−1) = ∆2− j−2. Since d(u)+ d(p(u)) ≤ ∆2, u has at most∆2− j−2 children
and so there are enough labels in (A \ {φ(p(u))}) \ B to label them without violating the L(h, 1, 1)-
conditions. Note that A \ B has the form {a3 mod (∆2 + h − 1), . . . , (a3 + b2) mod (∆2 + h − 1)}
for some a3 ∈ [0,∆2 + h − 2] and b2 ≥ ∆2 − j − 2. Because of this we may select legal labels in
{a3 mod (∆2 + h − 1), . . . , (a3 + b2) mod (∆2 + h − 1)} around φ(p(u)) to label the children of u
such that (12) holds for each child v of u. (Note that p(p(v)) = p(u).) In this way, we have extended φ
to level Lk+1 and hence completed the proof of the claim. (If T is finite then we stop in a finite number
of inductive steps. If T is infinite then we continue the labelling process indefinitely.)
Since φ has span∆2 + h− 2, we have λh,1,1(T ) ≤ ∆2 + h− 2. �
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Proof of Theorem 3. Because of Lemma 6 it suffices to prove the upper bounds.
We first consider the case where T is a finite caterpillar. Let v1, v2, . . . , vn be the spine of T , where

n ≥ 2. Then∆2 ≥ 4 and 2 ≤ d(vi) ≤ ∆2− 2 for i = 1, 2, . . . , n. Let v0 be a fixed neighbor of v1 other
than v2, and vn+1 a fixed neighbor of vn other than vn−1. Let

Vi := N(vi) \ {vi−1, vi+1}, i = 1, 2, . . . , n.

In the casewhen n = 2, assigning 0 to v1,∆2+h−3 to v2, d(v2)+h−2, d(v2)+h−1, . . . ,∆2+h−4
to the neighbors of v1 other than v2, and 1, 2, . . . , d(v2)− 1 to the neighbors of v2 other than v1, we
get an L(h, 1, 1)-labelling of T with span∆2 + h− 3. Hence λh,1,1(T ) ≤ ∆2 + h− 3. Thus we assume
n ≥ 3 in the following.
Case 1. There exists no vi on the spine such that d(vi) = ∆2 − 2.
In this case∆2 − d(vi) ≥ 3 for i = 1, 2, . . . , n and so∆2 ≥ 5. If∆2 = 5, then there exists a heavy

edge on the spine whose end-vertices have degrees 2 and 3 (= ∆2 − 2) respectively, a contradiction.
Hence∆2 ≥ 6. We first define, for i = 0, 1, . . . , n+ 1,

φ(vi) =


0, i ≡ 0 (mod 4)
∆2 + h− 3, i ≡ 1 (mod 4)
1, i ≡ 2 (mod 4)
∆2 + h− 4, i ≡ 3 (mod 4).

(13)

Then for each i = 1, . . . , nwith d(vi) > 2 we assign |Vi| distinct labels to the vertices in Vi, one label
for each vertex but in an arbitrary manner, such that

φ(Vi) =
{
[∆2 + h− 2− d(vi),∆2 + h− 5], i ≡ 0 (mod 2)
[2, d(vi)− 1], i ≡ 1 (mod 2). (14)

Since ∆2 ≥ 6, it is clear that the vertices on the spine satisfy the L(h, 1, 1)-conditions. For ui ∈
Vi, uj ∈ Vj, d(ui, uj) is 2 if i = j, 3 if |i − j| = 1, and at least 4 if |i − j| ≥ 2. From the definition
of φ it follows that |φ(ui) − φ(ui+1)| ≥ ∆2 + h − 1 − (d(vi) + d(vi+1)) ≥ h − 1 ≥ 1 for
i = 1, 2, . . . , n− 1. For i ≡ 1 (mod 4), φ(vi)−maxφ(Vi) = (∆2+ h− 3)− (d(vi)− 1) ≥ h+ 1 since
∆2 − d(vi) ≥ 3. For i ≡ 2 (mod 4), minφ(Vi) − φ(vi) = ∆2 + h − 3 − d(vi) ≥ h. Similarly,
for i ≡ 3 (mod 4), φ(vi) − maxφ(Vi) = ∆2 + h − 3 − d(vi) ≥ h, and for i ≡ 0 (mod 4),
minφ(Vi)−φ(vi) = ∆2+ h− 2− d(vi) ≥ h+ 1. Since h ≥ 2, by the definition of φ for any i between
0 and n + 1 and any vertex u not on the spine such that d(u, vi) = 2 or 3, we have φ(u) 6= φ(vi).
Therefore, φ is an L(h, 1, 1)-labelling of T with span∆2 + h− 3, and hence λh,1,1(T ) ≤ ∆2 + h− 3.
Case 2. There exists vi∗ on the spine such that d(vi∗) = ∆2 − 2, where 1 ≤ i∗ ≤ n.
In this case we have d(vi∗−1) = 2 (if i∗ > 1) and d(vi∗+1) = 2 (if i∗ < n) by the definition of ∆2.

Define, for i = 0, 1, . . . , n+ 1,

φ(vi) =


0, i− i∗ ≡ 0 (mod 4)
∆2 + h− 2, i− i∗ ≡ 1 (mod 4)
1, i− i∗ ≡ 2 (mod 4)
∆2 + h− 3, i− i∗ ≡ 3 (mod 4).

(15)

Then for each i = 1, . . . , nwith d(vi) > 2 assign |Vi| distinct labels to the vertices in Vi, one label per
vertex, such that

φ(Vi) =
{
[∆2 + h− 1− d(vi),∆2 + h− 4], i− i∗ ≡ 0 (mod 2)
[2, d(vi)− 1], i− i∗ ≡ 1 (mod 2). (16)

Like for Case 1, one can verify that φ is an L(h, 1, 1)-labelling of T with span ∆2 + h − 2. Hence
λh,1,1(T ) ≤ ∆2 + h− 2.
Under any L(h, 1, 1)-labelling φ of T , the vertices in Vi∗ ∪ {vi∗−1, vi∗ , vi∗+1} receive distinct labels,

and moreover the label of vi∗ must differ by at least h from the labels of the other ∆2 − 2 vertices
in this set. This is possible only when the span is at least ∆2 + h − 3. Moreover, if the span of φ is
∆2 + h− 3, then we must have φ(vi∗) = 0 or∆2 + h− 3, and both φ(vi∗−2) (if i∗ > 1) and φ(vi∗+2)
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(if i∗ < n) are at least 1 or at most ∆2 + h − 4, respectively. Thus, if the span of φ is ∆2 + h − 3, we
must have d(vi∗−2) < ∆2 − 2 and d(vi∗+2) < ∆2 − 2, for otherwise φ(vi∗−2) and φ(vi∗+2) are 0 or
∆2+h−3 by the previous sentence, a contradiction. In otherwords, if there exist consecutive vertices
u, v, w on the spine such that d(u) = d(w) = ∆2 − 2 and d(v) = 2, then λh,1,1(T ) ≥ ∆2 + h− 2 and
hence λh,1,1(T ) = ∆2 + h− 2 by the upper bound in the previous paragraph.
Now we assume that T is an infinite caterpillar with finite maximum degree. Then either (i)

the spine of T has one open end, or (ii) it has two open ends. In the former case let the spine
be v1, v2, . . . and let v0 be a neighbor of v1 other than v2, and in the latter case let the spine be
. . . , v−2, v−1, v0, v1, v2, . . .. In both cases we extend the rules (13) and (15) to all vertices vi, where
i ≥ 0 in case (i) and i = · · · ,−2,−1, 0, 1, 2, . . . in case (ii). Then we apply (14) and (16) to all Vi,
where i ≥ 1 in (i) and i = · · · ,−2,−1, 0, 1, 2, . . . in (ii). The results follow from the same argument
as in the finite case. �

4. Remarks and questions

If all vertices on the spine of a finite caterpillar T have maximum degree ∆, then λh,1,1(T ) =
max{h,∆− 1} +∆ = max{h+∆2(T )/2,∆2(T )− 1} as shown by Jinjiang Yuan. (We are grateful to
Jinjiang for informing us of this result.) This indicates that the upper bound in Theorem 3 is far away
from the actual value of λh,1,1 in certain cases, although it is attainable in some other cases.
The condition h ≤ δ∗(T ) is sufficient but not necessary to guarantee (2). In fact, if a finite tree

T of diameter at least 3 has only one heavy edge, then we can prove λh,1,1(T ) ≤ ∆2(T ) + h − 2
by modifying the proof of Lemma 8. To achieve this we simply decrease the labels of the vertices
in Li(u) (i ≥ 1 is odd) and Li(v) (i ≥ 0 is even) by 1. Since T has only one heavy edge, we have
d(a1 · · · ai)+d(a1 · · · ai−1) < ∆2 and d(b1 · · · bi)+d(b1 · · · bi−1) < ∆2 for i ≥ 1, and these inequalities
ensure the validity of modified statements (a)–(d).
In view of Theorem 1 and Corollaries 4 and 5, we may ask the following questions naturally.

Question 10. (a)Given h ≥ 3, characterize those finite trees T with diameter at least 3 such that λh,1,1(T )
= ∆2(T )+ h− 1.
(b) Characterize finite trees T with diameter at least 3 such that λ2,1,1(T ) = ∆2(T ).

Similar questions may be asked for infinite trees with finite maximum degree.
We speculate that ‘most’ finite trees of diameter at least 3 would have λ2,1,1-number ∆2 − 1.

To make this precise let N(n) be the number of pairwise non-isomorphic trees with n vertices and
diameter at least 3, and let N1(n) be the number of such trees with λ2,1,1 = ∆2 − 1.

Conjecture 11. limn→∞ N1(n)
N(n) = 1.

We finish this article by asking the following question.

Question 12. For a fixed integer h ≥ 2, is the problem of determining λh,1,1 for finite trees solvable in
polynomial time?
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