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a b s t r a c t

A Frobenius group is a permutation group which is transitive but
not regular such that only the identity element can fix two points.
It iswell known that such a group is a semidirect productG = KoH ,
where K is a nilpotent normal subgroup of G. A second-kind G-
Frobenius graph is a Cayley graph Γ = Cay(K , aH ∪ (a−1)H) for
some a ∈ K with order ≠ 2 and ⟨aH⟩ = K , where H is of odd order
and xH denotes the H-orbit containing x ∈ K . In the case when K
is abelian of odd order, we give the exact value of the minimum
gossiping time of Γ under the store-and-forward, all-port and full-
duplex model and prove that Γ admits optimal gossiping schemes
with the following properties: messages are always transmitted
along shortest paths; each arc is used exactly once at each time
step; at each step after the initial one the arcs carrying themessage
originated from a given vertex form a perfect matching. In the case
when K is abelian of even order, we give an upper bound on the
minimum gossiping time of Γ under the same model. When K
is abelian, we give an algorithm for producing all-to-all routings
which are optimal for both edge-forwarding and minimal edge-
forwarding indices of Γ , and prove that such routings are also
optimal for arc-forwarding and minimal arc-forwarding indices if
in addition K is of odd order. We give a family of second-kind
Frobenius graphs which contains all Paley graphs and connected
generalized Paley graphs of odd order as a proper subfamily. Based
on this and Dirichlet’s prime number theorem we show that, for
any even integer r ≥ 4, there exist infinitely many second-kind
Frobenius graphs with valency r and order greater than any given
integer such that the kernels of the underlying Frobenius groups
are abelian of odd order.
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1. Introduction

Cayley graphs play a significant role in the design of interconnection networks (see e.g.
[1,2,8,15,20]). A number of important network topologies such as rings, hypercubes, cube-connected
graphs, multi-loop networks, butterfly graphs, Knödel graphs, etc. are Cayley graphs [15,20]. In
[10,27] a large class of Cayley graphs on the kernels of Frobenius groups was studied. It is shown [10]
that such Frobenius graphs admit the best possible all-to-all routing and have the smallest possible
edge-forwarding index. There are two kinds of Frobenius graphs depending on the nature of their
Cayley sets. It is proved [31] that first-kind Frobenius graphs admit ‘perfect’ gossiping schemes in
a sense under the store-and-forward, all-port and full-duplex model. Meanwhile, an algorithm for
systematically producing such schemes (usually not unique) was given in [31]. The same paper
also gave an algorithm for producing all-to-all routings in a first-kind Frobenius graph which are
optimal for both edge- and arc-forwarding indices [16]. These results motivated studies of first-
kind Frobenius circulant graphs, leading to classification [29,28] of such graphs with valency 4
or 6 and investigation of related combinatorial problems [30]. In contrast to first-kind Frobenius
graphs, apart from the formulas [10,27] for the edge-forwarding index, no other result is known
on gossiping and routing in second-kind Frobenius graphs. The purpose of this paper is to improve
this situation. Since the Frobenius kernel of a finite Frobenius group is always abelian [7] except
when the Frobenius complement is a group of odd order all of whose Sylow subgroups are cyclic,
we will pay special attention to second-kind Frobenius graphs with abelian Frobenius kernels. The
main results, Theorems 3.1 and 4.3, indicate that such graphs also exhibit appealing gossiping and
routing properties. Moreover, some of them have small valency as we will see in Section 5.

Let us first introduce terminology and notation needed to present our results. Let K be a group
whose identity element is denoted by 1. An action ofK on a setV is amappingV×K → V , (v, x) → vx,
such that v1

= v and (vx)y = vxy for v ∈ V and x, y ∈ K . We use vK
:= {vx

: x ∈ K} to denote the
K -orbit containing v and Kv := {x ∈ K : vx

= v} the stabilizer of v in K . K is semiregular on V if Kv = 1
is the trivial subgroup of K for all v ∈ V , transitive on V if vK

= V for some (and hence all) v ∈ V , and
regular on V if it is both transitive and semiregular on V . If a group H acts on K such that (xy)h = xhyh
for any x, y ∈ K and h ∈ H , then H is said to act on K as a group. In this case we use K o H to denote
the semidirected product [9] of K by H with respect to the action.

An inverse-closed subset S of K \ {1} gives rise to a Cayley graph Γ = Cay(K , S), which is defined
to have vertex set K such that x, y ∈ K are adjacent if and only if xy−1

∈ S. Γ has valency (degree) |S|
and it is connected if and only if ⟨S⟩ = K . It is well known (see e.g. [5]) that (x, g) → xg, x, g ∈ K ,
defines a regular action of K on K (as a set) which preserves the adjacency of Γ . So we may view K
as a subgroup of the automorphism group Aut(Γ ) of Γ . The permutation x → xg, x ∈ K , induced
by g is called a translation. Let Aut(K , S) := {α ∈ Aut(K) : Sα

= S} be the setwise stabilizer of S in
Aut(K) under the natural action of Aut(K) on K , and Aut(Γ )1 the stabilizer of the vertex 1 in Aut(Γ ).
It is readily seen (e.g. [5, Proposition 16.2]) that Aut(K , S) ≤ Aut(Γ )1.

A Frobenius group G is a transitive group on a set V which is not regular on V , but has the property
that the only element of G which fixes two points of V is the identity of G. It is well known (see e.g.
[9, p. 86]) that a finite Frobenius group G has a nilpotent normal subgroup K , called the Frobenius
kernel, which is regular on V . Hence G = K o H , where H is the stabilizer of a point of V ; each
such group H is called a Frobenius complement of K in G. Since K is regular on V , we may identify
V with K in such a way that K acts on itself by right multiplication, and we may choose H to be the
stabilizer of 1 so that H acts on K by conjugation. Obviously, H is semiregular on K \{1}. A G-Frobenius
graph [10] is a connected graph with vertex set V and edge set {{x, y} : (x, y) ∈ O} for some G-orbit
O on {(x, y) : x, y ∈ V , x ≠ y}. It is proved [10, Theorem 1.4] that any G-Frobenius graph is a Cayley
graph Cay(K , S) on its Frobenius kernel K , where for some a ∈ K with ⟨aH⟩ = K and order |a|,

(i) S = aH if |H| is even or |a| = 2, or
(ii) S = aH ∪ (a−1)H if |H| is odd and |a| ≠ 2.

Hereinafter xH := {h−1xh : h ∈ H} is the H-orbit containing x ∈ K under the action of H on K (by
conjugation). Conversely, for any a ∈ K with ⟨aH⟩ = K , the Cayley graph Cay(K , S) with S as above is
a G-Frobenius graph [10, Theorem 1.4]. Since G is a Frobenius group, H can be regarded as a subgroup
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of Aut(K). Hence H ≤ Aut(K , S) ≤ Aut(Γ )1 and consequently G ≤ Aut(Γ ). We call Cay(K , S) a first-
or second-kind G-Frobenius graph according as whether S is given by (i) or (ii).

A process of disseminating a distinct message at every vertex in a network to all other vertices is
called gossiping. Motivated by practical applications, various gossiping models have been extensively
studied; see [17] for a survey of the state-of-the-art on gossiping and broadcasting. In linewith in [31],
in the present paper we will analyze efficiency of second-kind Frobenius graphs in terms of gossiping
under the store-and-forward, all-port and full-duplex model [4]: a vertex must receive a message
wholly before retransmitting it to other vertices; a vertex can exchange messages (which may be
different) with all of its neighbors at each time step; messages can traverse an edge in both directions
simultaneously; no twomessages can transmit over the same arc at the same time (an arc is an ordered
pair of adjacent vertices); and it takes one time step to transmit anymessage over an arc. A procedure
fulfilling the gossiping under this model is called a gossiping scheme for short. The minimum gossip
time [4] of a graph Γ , denoted by t(Γ ), is the minimum number of time steps required by a gossiping
scheme for Γ . Since a vertex of valency k can receive at most k messages at each time step, as noted
in [4, Proposition 7] any graph Γ of minimum valency δ(Γ ) satisfies

t(Γ ) ≥


|V (Γ )| − 1

δ(Γ )


. (1)

An all-to-all routing (or an routing for short) of Γ is a set of oriented paths, one for each ordered
pair of distinct vertices. The load of an edge is the number of times it is traversed by such paths in
either direction; the load of a routing is the maximum load on an edge; and the edge-forward index
π(Γ ) is [16] the minimum load over all possible routings of Γ . The arc-forwarding index −→π is defined
similarly by taking the direction into account when counting the number of times an arc is traversed.
A routing is a shortest-path routing if all paths used are shortest paths between their end-vertices.
Theminimal edge- and arc-forwarding indices [15], πm,−→π m, are defined by restricting to shortest-path
routings in the definitions of π and −→π respectively. Clearly,

πm(Γ ) ≥ π(Γ ) ≥


(u,v)∈V (Γ )×V (Γ )

d(u, v)

|E(Γ )|
(2)

−→π m(Γ ) ≥
−→π (Γ ) ≥


(u,v)∈V (Γ )×V (Γ )

d(u, v)

2|E(Γ )|
. (3)

The reader is referred to [12,24] for problems and results relating to various routing models.
In this paperwewill first prove that, for any second-kind K oH-Frobenius graphΓ , t(Γ ) is atmost

twice as big as the right-hand side of (1), the latter being (|K |−1)/2|H| in this case. As a consequence
the construction to be given to prove this bound implies a 2-factor approximation algorithm for
computing t(Γ ). In the case when K is abelian, we will prove that t(Γ ) is at most (|K | − 1)/2|H|

plus the ratio of the number of involutions of K to 2|H|. In particular, if K is abelian of odd order,
then t(Γ ) = (|K | − 1)/2|H|, which is exactly the lower bound (1) and hence is the best that one can
hope. Moreover, in this case we will prove that there exist optimal gossiping schemes for Γ with the
following properties: messages are always transmitted along shortest paths; each arc is used exactly
once at each time step; at each step after the initial one, the arcs carrying the message originated
from a given vertex form a perfect matching. We will give an algorithm for producing such optimal
gossiping schemes.

In [10,27] it is proved that, for any Frobenius graph (of either kind), the equalities in (2) hold. In
the present paper we will give an algorithm for producing routings which are optimal for π and πm
in a second-kind K oH-Frobenius graph with K abelian, and we will prove that such routings are also
optimal for−→π and−→π m when in addition K is of odd order. This algorithm and the one in the previous
paragraph are based on the same subgraph structures, and both algorithms rely on knowledge of
H-orbits on K . Given such H-orbits, both algorithms have complexity a polynomial of |K |. In some
typical cases such as when K is a cyclic group, both algorithms can be easily implemented using, say,
MAGMA [6].
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Table 1
Properties of second-kind Frobenius graphs on Frobenius groups K o H .

Properties Any K o H Kabelian Kabelian & |K | odd

Order |K | |K | |K |

Valency |H| |H| |H|

Hamiltonian? Maybe Yes [23] Yes [23]
Edge-forwarding index π Best possible [10] – –
Minimal e-f index πm Best possible [10] – –
Optimal routing for π and πm? Unknown Given in this paper Given in this paper
Arc-forwarding index −→π Unknown Unknown Best possible
Minimal a-f index −→π m Unknown Unknown Best possible
Optimal routing for −→π and −→π m? Unknown Unknown Given in this paper
Gossiping time ≤2 · (trivial bound) – Best possible
Gossiping algorithm 2-factor approximation – Exact algorithm with nice

properties given in this paper

The results above show that, although it is computationally difficult to determine t, πm, π,−→π and
−→π m for general graphs, for any second-kind K o H-Frobenius graph with K abelian of odd order we
know the exact values of these invariants and moreover we give algorithms for constructing optimal
gossiping and routing schemes. Furthermore, such graphs achieve the smallest possible gossiping
time (right-hand side of (1)) and forwarding indices (right-hand sides of (2)–(3)). They are thus very
efficient for gossiping and routing in terms of the models considered. In addition, when H has a
small order, the valency 2|H| of such a graph is small, meeting a key requirement in network design.
Furthermore, such a second-kind Frobenius graph when K is abelian is Hamiltonian, meeting another
desirable requirement in network design, because any Cayley graph on an abelian group of order at
least three is Hamiltonian [23].

We remark that all results above for abelian K are valid for second-kind G-Frobenius graphs with G
sharply 2-transitive, because in this case the kernel ofG is known to be abelian (e.g. [9, Theorem 3.4B]).

Table 1 summarizes properties of second-kind Frobenius graphs. As we see in the table, in the case
whenK is abelian of odd order, second-kindKoH-Frobenius graphs have smallest possible forwarding
indices and gossiping time; in this sense they are efficient for gossiping and routing from a theoretical
point of view.Moreover, they have small valencies if in addition |H| is small. Awell-known conjecture
(see e.g. [23]) asserts that any connected Cayley graph with at least three vertices is Hamiltonian. It
would be interesting to investigate this conjecture for second-kind Frobenius graphs with nonabelian
K . Another important remaining problem is to determine or estimate diameters of second-kind
Frobenius graphs. This will be a challenging task since the class of second-kind Frobenius graphs is
huge and different such graphs may behave significantly differently. It is believed that the diameter
of such a graph depends not only on its order |K | and valency |H|, but also on the structure of the
group K oH and the choice of the connection set S = aH ∪ (a−1)H . It seems hopeless to find a uniform
formula for diameters of all second-kind Frobenius graphs. Therefore, it may be more promising to
focus on some concrete second-kind Frobenius graphs such as the ones to be discussed in Section 5.

From a practical point of view it would be desirable to explicitly construct second-kind K o H-
Frobenius graphs of small valencywith K abelian of odd order. To this endwewill present in Section 5
a large family of second-kind K o H-Frobenius graphs with K abelian of odd order which contains all
Paley graphs and connected generalized Paley graphs of odd order [22]. As a consequence we will
see that, for any even integer r ≥ 4, there exist second-kind Frobenius graphs with fixed valency
r and order larger than any given number (Corollary 5.7). Thus when r is small we obtain large
networks with small valency, and they are efficient in terms of gossiping and routing by our main
results mentioned above.

We would like to emphasize that in this paper we only consider all-to-all routing and gossiping
under the store-and-forward, all-port and full-duplex model. It would be interesting to investigate
behavior of second-kind Frobenius graphs under other routing and gossiping models [14]. For
example, one may consider gossiping under the store-and-forward, 1-port and full-duplex model
[3,4,14]. (Here ‘‘1-port’’ means that a vertex can only communicate with one of its neighbors at any
time.) Comparison of second-kind Frobenius graphswith otherwell-known interconnection networks
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is another interesting topic. In particular, it would be interesting to compare themwith Knödel graphs
since the latter are popular topologies for interconnection networks. The reader is referred to [19] for
the original definition of Knödel graphs, [3] for their optimal gossiping (in the 1-port mode), [11] for
a survey on Knödel graphs, and [13] for a logarithmic time 2-approximation algorithm for shortest
paths in the Knödel graph on 2d vertices with valency d.

The reader is referred to [9,25,26] for undefined notation and terminology on groups.We use {u, v}

to denote the edge between u and v, (u, v) the arc from u to v, and A(Γ ) the set of arcs of a graph Γ .

2. Shortest-path spanning trees

In this preliminary section we prove the existence and give constructions of a family of shortest-
path spanning trees in a second-kind Frobenius graph which has properties needed in our later
construction of gossiping and routing schemes.
Notation. Throughout this section Γ = Cay(K , S) is a second-kind G-Frobenius graph, where G =

K o H is a Frobenius group such that |H| is odd and S = aH ∪ (a−1)H for some a ∈ K satisfying
|a| ≠ 2 and ⟨aH⟩ = K . Whenever we require K to be abelian, we will state this explicitly. Denote by
d(x, y) the distance in Γ between x and y, and d = d(Γ ) the diameter of Γ . Denote Γi(x) := {y ∈

V (Γ ) : d(x, y) = i}, i = 0, 1, . . . , d. In particular, Γ (x) := Γ1(x) is the neighborhood of x in Γ (that
is, the set of vertices adjacent to x). Since H ≤ Aut(Γ )1, each Γi(1) is H-invariant and hence is a union
of H-orbits on K . The number of H-orbits contained in Γi(1) is denoted by ni, and (n1, n2, . . . , nd) is
called [10] the type of Γ . For X ⊆ K , call (∪x∈X Γ (x)) \ X the neighborhood of X in Γ .

Lemma 2.1. For each i = 1, . . . , d and x ∈ K \ {1}, xH ⊆ Γi(1) if and only if (x−1)H ⊆ Γi(1). Moreover,
xH = (x−1)H if and only if |x| = 2.

Proof. Suppose d(x, 1) = i, so that x = si · · · s1 for some s1, . . . , si ∈ S. Then x−1
= s−1

1 · · · s−1
i and

so d(x−1, 1) ≤ d(x, 1). Similarly, d(x, 1) ≤ d(x−1, 1). Hence d(x−1, 1) = d(x, 1); that is, xH ⊆ Γi(1) if
and only if (x−1)H ⊆ Γi(1).

Clearly, if |x| = 2, then xH = (x−1)H . Conversely, if xH = (x−1)H for some x ∈ K \ {1}, then
x−1

= h−1xh = xh for some h ∈ H , and hence xh
2

= x. Since H is semiregular on K \ {1}, it follows
that h2

= 1. However, H has no involution since |H| is odd. Therefore, h = 1 and |x| = 2. �

Lemma 2.2. There are exactly two G-orbits on the arcs of Γ , namely A+ = (1, a)G and A− = (1, a−1)G.
Moreover, if K is abelian, then (x, y) ∈ A+ if and only if (y, x) ∈ A−, which in turn is true if and only if
(x−1, y−1) ∈ A−. In particular, Γ is G-edge-transitive when K is abelian.

Proof. Since Γ is G-vertex transitive, any G-orbit on the arcs of Γ is of the form (1, y)G for some arc
(1, y) of Γ , where y ∈ S. Since H fixes 1, all arcs (1, y) for y ∈ aH are in the same G-orbit, and all arcs
(1, y) for y ∈ (a−1)H are in the sameG-orbit.We claim that (1, a) and (1, a−1) are in differentG-orbits.
Suppose otherwise. Then there exists hx ∈ G (where x ∈ K and h ∈ H) such that (1, a)hx = (1, a−1).
So 1 = 1hx

= x and a−1
= ahx = ahx = ah. Similarly to the proof of Lemma 2.1, we obtain h = 1 and

so a−1
= a. This contradicts the assumption that |a| ≠ 2. Hence (1, a) and (1, a−1) are in different

G-orbits. Therefore there are precisely two G-orbits on the arcs of Γ , which are A+ = (1, a)G and
A− = (1, a−1)G.

Now suppose K is abelian. If (x, y) ∈ A+, then there exist g ∈ K and h ∈ H such that
(x, y) = (1, a)hg . Hence (y, x) = (a, 1)hg = (1, a−1)ahg ∈ A− and (x−1, y−1) = (g−1, g−1(a−1)h) =

(g−1, (a−1)hg−1) = (1, a−1)hg
−1

∈ A−. Similarly, if (y, x) ∈ A−, then (y, x) = (1, a−1)h1g1 for some
g1 ∈ K and h1 ∈ H and so (x, y) = (a−1, 1)h1g1 = (1, a)a

−1h1g1 ∈ A+. Finally, if (x−1, y−1) ∈ A−,
then (x−1, y−1) = (1, a−1)h2g2 = (g2, (a−1)h2g2) for some g2 ∈ K and h2 ∈ H , and hence
(x, y) = (g−1

2 , ah2g−1
2 ) = (1, a)h2g

−1
2 ∈ A+ by using the assumption that K is abelian. �

The next lemma is obvious.

Lemma 2.3. Suppose K is abelian. Then u, v ∈ K are adjacent in Γ if and only if u−1, v−1 are adjacent
in Γ .
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Note that, sinceH ≤ Aut(Γ ), if u, v are adjacent inΓ , then uh, vh are adjacent inΓ for every h ∈ H .
Note also that, since H is regular on K , |xH | = |H| for every x ∈ K .

Beginning with 1, one can conduct breadth first search on H-orbits on K to find the diameter d of
Γ and Γi(1) for i = 1, 2, . . . , d. (More precisely, starting with 1 one performs breadth first search
on the quotient graph of Γ with respect to the partition {{1}, xH : x ∈ K \ {1}} of K .) Based on this
and Lemma 2.3, in the case where K is abelian we give the following algorithm for constructing a
shortest-path subtree T1,1 of Γ with root 1 which contains exactly one vertex from each H-orbit on K .

Algorithm 2.4. Suppose K is abelian.
1. Initially, set V (T1,1) := {1, a, a−1

}, E(T1,1) := {{1, a}, {1, a−1
}} and i := 1.

2. If i = d, stop and output T1,1. Otherwise, do:
2.1. Set Y := ∅.
2.2. If Y = Γi(1), set i := i + 1 and go to Step 2. Otherwise, choose an arbitrary uH

⊆ Γi(1) \ Y
(without loss of generality we may assume u ∈ V (T1,1)) and consider all H-orbits vH

⊆

Γi+1(1)which contain a neighbor of u (without loss of generality wemay assume v is adjacent
to u). If |v| ≠ 2, set

V (T1,1) := V (T1,1) ∪ {v, v−1
}, E(T1,1) := E(T1,1) ∪ {{u, v}, {u−1, v−1

}}; (4)
if |v| = 2, set

V (T1,1) := V (T1,1) ∪ {v}, E(T1,1) := E(T1,1) ∪ {{u, v}}. (5)
2.3. Set Y := Y ∪ uH and go to Step 2.2.

In Step 2.2 above as long as |v| ≠ 2 we add vertices v, v−1 and edges {u, v}, {u−1, v−1
} to the

current T1,1, regardless of the order of u.
Let T1,1 be the subtree of Γ with root 1 when Algorithm 2.4 terminates. For x ∈ K and h ∈ H , let

Tx,h be the graph with root x defined by

V (Tx,h) = {uhx : u ∈ V (T1,1)}, E(Tx,h) = {{uhx, vhx} : {u, v} ∈ E(T1,1)}. (6)
Define

Tx = ∪h∈H Tx,h (7)
to be the union of Tx,h and take it as rooted at x. That is, Tx has vertex set ∪h∈H V (Tx,h) and edge set
∪h∈H E(Tx,h). (Note that for a fixed x any two subtrees Tx,h have x as the unique commonvertex.) Denote

T = {Tx : x ∈ K}. (8)
Note that different choices of uH

⊆ Γi(1) \ Y in each call of Step 2.2 in Algorithm 2.4 may result in
different T1,1 and hence different families T .

A spanning tree T of Γ with root x is called a shortest-path spanning tree of Γ if the unique path in
T from x to any vertex is a shortest path in Γ . The following lemma shows that T above is a family of
shortest-path spanning trees of Γ as promised in the beginning of this section.

Lemma 2.5. Suppose K is abelian. Then the following statements hold for every x ∈ K and h ∈ H.
(a) Tx is a shortest-path spanning tree of Γ with root x, and Tx is the translation of T1 by x, namely

E(Tx) = {{ux, vx} : {u, v} ∈ E(T1)};
(b) x has valency 2 in each Tx,h and the children of x in Tx,h are ahx and (a−1)hx, and Tx,h contains exactly

one vertex from each Hx-orbit on K;
(c) for i = 1, 2, . . . , d − 1, each vertex of Γi+1(x) is adjacent to exactly one vertex of Γi(x) in Tx, and

whenever |i − j| ≥ 2 there is no edge of Tx between Γi(x) and Γj(x);
(d) for every edge {ux, vx} of Tx with d(x, vx) > d(x, ux) (or equivalently d(x, vx) = d(x, ux) + 1), the

neighborhood of vHx in Tx is precisely uHx and the edges of Tx between uHx and vHx are {uhx, vhx}, h ∈

H, which form a perfect matching between uHx and vHx. Moreover, when |x| ≠ 2 the edges of Tx
between (u−1)Hx and (v−1)Hx are {(u−1)hx, (v−1)hx}, h ∈ H.

Proof. We first prove (a)–(d) for x = 1.
Since each H-orbit on K \ {1} contained in Γi+1(1) is joined by edges of Γ to at least one H-orbit

on K \ {1} contained in Γi(1), when Y = Γi(1) in Step 2.2 of Algorithm 2.4, all H-orbits on K \ {1}
contained in Γi+1(1) have been examined and exactly one vertex in each of them has been added to
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the growing T1,1. Hence Algorithm 2.4 produces a subtree of Γ with root 1 which contains exactly one
vertex from each H-orbit on K . From the algorithm one can see that the vertex 1 has valency two in
T1,1 and the unique path between 1 and any vertex of T1,1 is a shortest path in Γ .

Since each h ∈ H fixes 1 ∈ V (T1,1), by (6) we have 1 ∈ V (T1,h). Since 1 is adjacent to a and a−1

in T1,1, and since H fixes 1 and is transitive on aH and (a−1)H , by (7) every vertex in S is adjacent to
1 in T1. For any vertex w ∈ K with d(1, w) = i + 1 ≥ 2, by the construction of T1,1, wH contains a
unique vertex v ∈ V (T1,1) which is adjacent to a vertex u ∈ Γi(1) ∩ V (T1,1) in T1,1. Assume v = wh

for some h ∈ H . Then w is adjacent to uh−1
∈ Γi(1) ∩ V (T1,h−1) in T1,h−1 . Since this is true for every

vertexw, it follows that there is a path in T1 from 1 to any other vertex and therefore T1 is a connected
spanning subgraph of Γ with root 1. Moreover, if u is adjacent to v in T1,1, then {uh, vh

}, h ∈ H are
edges of T1 between uH and vH . We claim that these are the only edges between these two H-orbits
on K \ {1}. In fact, if uh is adjacent to vg in T1, where g ∈ H , then since the edges of T1 between uH and
vH arc obtained from {u, v} by the action of H , we may suppose (uh, vg) = (uf , vf ) for some f ∈ H .
Then hf −1

∈ Hu and gf −1
∈ Hv . However, we have Hu = Hv = 1 since G is a Frobenius group with

Frobenius kernel H . Thus hf −1
= gf −1

= 1, which implies f = g = h. Hence vh is the only vertex of
vH adjacent to uh in T1. So {uh, vh

}, h ∈ H are the only edges of T1 between uH and vH , and they form
a perfect matching between the two H-orbits. This together with the statements above implies that
T1 is a spanning tree of Γ . Moreover, any two of T1,h, h ∈ H have 1 as the unique common vertex, and
each T1,h contains exactly one vertex from each H-orbit on K . Thus, by (7) and the fact that T1,1 is a
shortest-path tree, T1 must be a shortest-path spanning tree of Γ with root 1. One can easily verify
that (a)–(d) hold when x = 1 from the argument above and Algorithm 2.4.

From (7) it is evident that Tx is the translation of T1 by x. Since K ≤ Aut(Γ ) and T1 is a shortest-path
spanning tree of Γ with root 1, Tx is a shortest-path spanning tree of Γ with root x and thus (a) holds
for every x ∈ K . By the definition of Tx and noting that the Hx-orbits on K have the form uHx, u ∈ K ,
the truth of (b), (c) and (d) can be extended from T1 to Tx for every x ∈ K . �

Remark 2.6. In the general case where K is not necessarily abelian, the result in Lemma 2.3 may not
hold. In this casewemodify Algorithm2.4 in such away thatwe use rule (5) only in Step 2.2, regardless
of the order of v. Using this modified algorithm we can construct T1,1 and consequently Tx and T as
in (7) and (8). Similar to the proof of Lemma 2.5, one can verify that T has all the properties as in
Lemma 2.5 except the last statement in (d).

3. Gossiping in second-kind Frobenius graphs

A gossiping scheme is called a shortest-path gossiping scheme if the message originated from any
vertex is transmitted to any other vertex along a shortest path. Denote by I(K) the set of involutions
of K . Recall that t(Γ ) denotes the minimum gossiping time of Γ .

Theorem 3.1. Suppose that G = K o H is a Frobenius group and Γ = Cay(K , S) is a second-kind G-
Frobenius graph, where S = aH ∪ (a−1)H for some a ∈ K such that |a| ≠ 2, |H| is odd and ⟨aH⟩ = K.
Then

|K | − 1
2|H|

≤ t(Γ ) ≤
|K | − 1

|H|
. (9)

Moreover, if K is abelian, then

t(Γ ) ≤
|K | − 1 + |I(K)|

2|H|
. (10)

Furthermore, if K is abelian of odd order, then

t(Γ ) =
|K | − 1
2|H|

(11)

and there exists an optimal gossiping scheme for Γ which is a shortest-path gossiping scheme such that
the following hold at any time t = 1, 2, . . . , (|K | − 1)/2|H|:
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(a) each arc of Γ is used exactly once for data transmission;
(b) for every x ∈ K exactly |S| arcs are used to transmit messages with source x, and when t ≥ 2 the set

At(x) of such arcs form a matching of Γ ;
(c) K is transitive on the partition {At(x) : x ∈ K} of A(Γ ).

Note that the bounds in (9)–(11) are independent of the type of Γ .
Since H is a subgroup of Aut(K), if an H-orbit on K contains an involution then all of its elements

are involutions. Let ki be the number of H-orbits on K contained in Γi(1) and consisted of involutions,
i = 1, 2, . . . , d, where as before d is the diameter ofΓ . By Lemma 2.1, theH-orbits inΓi(1) containing
no involutions come up in pairs. Denote such H-orbits by

vH
i,1, (v

−1
i,1 )H , . . . , vH

i,mi
, (v−1

i,mi
)H ,

and denote the H-orbits in Γi(1) consisting of involutions by

vH
i,mi+1, . . . , v

H
i,mi+ki ,

where 2mi + ki = ni. In particular,m1 = 1, k1 = 0 and v1,1 = a.
In the following proof of Theorem 3.1 we first deal with the case where K is abelian. In this case let

T1,1 be obtained from Algorithm 2.4. Without loss of generality we may assume vi,j ∈ Γi(1) ∩ V (T1,1)
for each pair (i, j). By Algorithm 2.4 and Lemma 2.5(c), for j = 1, . . . ,mi + ki, vi,j is adjacent to a
vertex ui,j ∈ Γi−1(1) ∩ V (T1,1) in T1,1, and for j = 1, . . . ,mi, we also have that v−1

i,j is adjacent to
u−1
i,j ∈ Γi−1(1)∩V (T1,1) in T1,1. (Note that u1,1 = 1 by the construction of T1.) Moreover, by Lemma 2.5,

for j = 1, . . . ,mi + ki the edges of T1 between uH
i,j and vH

i,j are {uh
i,j, v

h
i,j}, h ∈ H , and for j = 1, . . . ,mi

the edges between (u−1
i,j )H and (v−1

i,j )H are {(u−1
i,j )h, (v−1

i,j )h}, h ∈ H . (It may happen that uH
i,j = uH

i,j′ for
j ≠ j′.) Note that for each x ∈ K the Hx-orbits contained in Γi(x) are

vH
i,1x, (v

−1
i,1 )Hx, . . . , vH

i,mi
x, (v−1

i,mi
)Hx, vH

i,mi+1x, . . . , v
H
i,mi+kix.

Denote by Mx the message originated from x. Using T as defined in (6)–(8), we give the following
d-phase algorithm such that the first phase consists of the first step only and in the ith phase (i ≥ 2)
Mx is transmitted along the arcs of Tx from Γi−1(x) to Γi(x) for all x ∈ K simultaneously.

Algorithm 3.2. Suppose K is abelian.

1. In the first time step, for all x ∈ K , sendMx from x to ahx and (a−1)hx simultaneously for all h ∈ H .
2. Do the following:

2.1. Set i := 2 initially.
2.2. If i = d, stop. Otherwise, do the following successively: for j = 1, 2, . . . ,mi, send Mx

from uh
i,jx to vh

i,jx and (u−1
i,j )hx to (v−1

i,j )hx simultaneously for all x ∈ K and h ∈ H; and for
j = mi + 1,mi + 2, . . . ,mi + ki, send Mx from uh

i,jx to vh
i,jx simultaneously for all x ∈ K and

h ∈ H;
2.3. Set i := i + 1 and return to Step 2.2.

Remark 3.3. In the general case when K is not necessarily abelian, we can use the modified
Algorithm 2.4 as described in Remark 2.6 to construct T1,1. For each i = 1, 2, . . . , d, let vH

i,j be the
H-orbits contained in Γi(1), j = 1, 2, . . . , ni. Assume that vi,j is adjacent to ui,j ∈ Γi−1(1) ∩ V (T1,1) in
T1,1 for eachpair i, j. SinceK is not necessarily abelian, itmaynot bepossible to chooseui,j in such away
that v−1

i,j is adjacent to u−1
i,j in T1,1 whenever |vi,j| ≠ 2. We can modify Algorithm 3.2 such that in Step

2.2 we do the following successively: for j = 1, 2, . . . , ni, send Mx from uh
i,jx to vh

i,jx simultaneously
for all x ∈ K and h ∈ H .

Proof of Theorem 3.1. Since Γ has order |K | and valency |S| = 2|H|, by (1) we have t(Γ ) ≥

(|K | − 1)/2|H|.
Suppose K is abelian first. We use the notation set up before Algorithm 3.2. We claim that

Algorithm 3.2 defines a gossiping scheme for Γ . In fact, by Lemma 2.5(d), it is clear that at the same
time step a vertex sends at most one message to each of its neighbors. If an arc (uh

i,jx, v
h
i,jx) is used



Author's personal copy

X.G. Fang, S. Zhou / European Journal of Combinatorics 33 (2012) 1001–1014 1009

to transmit Mx as well as another message My at the same time, where y ≠ x, then one of the
following occurs: (i) (uh

i,jx, v
h
i,jx) = (ug

i,jy, v
g
i,jy) for some g ∈ K ; (ii) (uh

i,jx, v
h
i,jx) = ((u−1

i,j )gy, (v−1
i,j )gy)

for some g ∈ K . In case (i), we have whg−1
= w, where w = ui,jv

−1
i,j . Since H is semiregular on

K \ {1}, it follows that hg−1
= 1 and so h = g . However, this and uh

i,jx = ug
i,jy imply y = x,

which is a contradiction. In case (ii), by noting that K is abelian, we obtain whg−1
= w−1, where

w = ui,jv
−1
i,j . Hence w(hg−1)2

= (w−1)hg
−1

= (whg−1
)−1

= w. Since H is semiregular on K \ {1}, it
follows that (hg−1)2 = 1. Thus, since |H| is odd, we have hg−1

= 1 and hence w is an involution.
On the other hand, since ui,j, vi,j are adjacent in Γ , we have w ∈ S. However, since |a| ≠ 2
and H ≤ Aut(K), S does not contain any involution. This contradiction shows that case (ii) cannot
occur as well. So we have proved that an arc of the form (uh

i,jx, v
h
i,jx) cannot be used to transmit two

messages at the same time. Similarly, one can show that an arc of the form ((u−1
i,j )hx, (v−1

i,j )hx) cannot
be used to transmit two messages simultaneously. Therefore, Algorithm 3.2 is a gossiping scheme.
Since

d
i=1 ki = |I(K)|/|H|, this scheme requires

d
i=1(mi + ki) =

d
i=1(ni + ki)/2 time steps. Thus

t(Γ ) ≤
d

i=1(ni + ki)/2 = (|K | − 1 + |I(K)|)/2|H| and (10) is proved.
Nowwe assume that K is abelian of odd order. Then I(K) = ∅ and ki = 0 for i = 1, 2, . . . , d. Hence

(11) follows from (10) and t(Γ ) ≥ (|K | − 1)/2|H|, and the gossiping scheme given by Algorithm 3.2
is optimal. Since by Lemma 2.5 each Tx is a shortest-path spanning tree of Γ , by our algorithm Mx
is transmitted along shortest paths to vertices in K \ {x}. In other words, Algorithm 3.2 gives a
shortest-path gossiping scheme. By Lemma 2.2, each arc of Γ is of the form (1, a)hx = (x, ahx) or
(1, a−1)hx = (x, (a−1)hx) for some x ∈ K and h ∈ H . Since these arcs are pairwise distinct, by
Algorithm 3.2, at time t = 1 each arc of Γ is used exactly once for data transmission. At a later
time t ≥ 2, say, in the jth step of the ith phase, the arcs exploited are (uh

i,jx, v
h
i,jx) = (ui,j, vi,j)

hx and
((u−1

i,j )hx, (v−1
i,j )hx) = (u−1

i,j , v−1
i,j )hx, x ∈ K , h ∈ H . From Lemma 2.2 one can see that these are all

arcs of Γ . Moreover, by a similar argument as in the previous paragraph, one can prove that these
arcs are pairwise distinct. Therefore, each arc of Γ is used exactly once for data transmission at any
time t ≥ 2. Hence (a) holds. By Algorithm 3.2 the set of arcs used to transmit Mx at time t ≥ 2 is
At(x) = {(uh

i,jx, v
h
i,jx), ((u

−1
i,j )hx, (v−1

i,j )hx) : h ∈ H}, and by Lemma 2.5, At(x) is a matching of Γ . From
(a) it follows that {At(x) : x ∈ K} is a partition of A(Γ ). It is clear that K is transitive on this partition.

Finally, in the general case where K is not necessarily abelian, one can verify that the modified
Algorithm 3.2 as described in Remark 3.3 gives a gossiping scheme for Γ . Since this scheme takesd

i=1 ni = (|K | − 1)/|H| time steps, the upper bound in (9) follows immediately. �

4. Routing in second-kind Frobenius graphs

A routing is edge-uniform (arc-uniform, respectively) if all edges (arcs, respectively) have the same
load. If a subgroupM of Aut(Γ ) leaves a routingP invariant (that is, Pg

∈ P for any P ∈ P and g ∈ M)
and is transitive on E(Γ ) (A(Γ ), respectively), then P is said [21] to be an M-edge transitive routing
(M-arc-transitive routing, respectively). The following lemma is extracted from [31, Lemma 6.2].

Lemma 4.1. If P is a shortest-path routing of a graph Γ and there exists a subgroup M of Aut(Γ ) such
that P is M-edge-transitive, then π(Γ ) = πm(Γ ) =


(x,y)∈V (Γ )×V (Γ ) d(x, y)/|E(Γ )| and P is edge-

uniform and optimal with respect to π and πm simultaneously.

The following result was proved in [10].

Theorem 4.2. Suppose that G = K o H is a Frobenius group and Γ is a G-Frobenius graph with type
(n1, n2, . . . , nd). Then

π(Γ ) = πm(Γ ) =


2

d
i=1

i ni, if Γ is of the first kind

d
i=1

i ni, if Γ is of the second kind.
(12)
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As a side remark, we notice that an immediate consequence of (12) is that theWiener index of Γ is
equal to |G|(

d
i=1 i ni)/2 in both cases. (TheWiener index of a graphΣ is defined as


x, y∈V (Σ) d(x, y).)

In [31] optimal routings with attractive features were given for first-kind Frobenius graphs. For
second-kind Frobenius graphs, we give the following result by exploiting the same family T = {Tx :

x ∈ K} of shortest-path spanning trees as defined in (6)–(8).

Theorem 4.3. Suppose that G = K o H is a Frobenius group such that K is abelian. Suppose further
that Γ = Cay(K , S) is a second-kind G-Frobenius graph, where S = aH ∪ (a−1)H for some a ∈ K
such that |a| ≠ 2, |H| is odd and ⟨aH⟩ = K . Then the routing P under which the path from x to y
is the unique path from x to y in Tx is a shortest-path routing of Γ . Moreover, P is G-edge-transitive,
edge-uniform and optimal for π and πm simultaneously. Furthermore, if in addition |K | is odd, then
−→π (Γ ) =

−→π m(Γ ) = π(Γ )/2 and P is arc-uniform and optimal for −→π and −→π m as well.

Proof. By Lemma 2.5, P is a shortest-path routing of Γ . Since K is normal in G, for any x ∈ K
and g ∈ H , there exists x′

∈ K such that xg = gx′. Since Tx = ∪h∈H Tx,h = ∪h∈H T hx
1,1, for any

y ∈ K , T gy
x = ∪h∈H(T hx

1,1)
gy

= ∪h∈H T hg(x′y)
1,1 = ∪h∈H T h(x′y)

1,1 = Tx′y. Therefore, T = {Tx : x ∈ K}

is G-invariant and hence P is G-invariant as well. Since G ≤ Aut(Γ ) and Γ is G-edge-transitive by
Lemma 2.2, from Lemma 4.1 we obtain (12) and that P is edge-uniform and optimal for π and πm
simultaneously.

Suppose |K | is odd in the sequel. Then ki = 0 and ni = 2mi for i = 1, 2, . . . , d. Since P
is G-invariant and by Lemma 2.2, G is transitive on A+ = (1, a)G, all arcs in A+ have the same
load under P . Similarly, all arcs in A− = (1, a−1)G = (a, 1)G have the same load under P . We
now prove that (1, a) and (a, 1) have the same load. Once this is achieved, then P is arc-uniform,
−→π (Γ ) =

−→π m(Γ ) = π(Γ )/2, and P is optimal for both −→π and −→π m.
The arcs of Tx are (uh

i,jx, v
h
i,jx), ((u

−1
i,j )hx, (v−1

i,j )hx), i = 1, 2, . . . , d, j = 1, 2, . . . ,mi, where u1,1 = 1
and v1,1 = a. If (1, a) = (uh

i,jx, v
h
i,jx), then x = (u−1

i,j )h, a = (vi,ju−1
i,j )h and so (a, 1) = ((u−1

i,j )hy,
(v−1

i,j )hy), where y = vh
i,j. Conversely, if (a, 1) = ((u−1

i,j )hy, (v−1
i,j )hy), then (1, a) = (uh

i,jx, v
h
i,jx), where

x = (u−1
i,j )h. Similarly, (1, a) = ((u−1

i,j )hx, (v−1
i,j )hx) if and only if (a, 1) = (uh

i,jy, v
h
i,jy), where it is

necessary to have x = uh
i,j and y = (v−1

i,j )h. Hence the number of times that (1, a) appears on paths of
P is equal to the number of times that (a, 1) appears on paths of P . Therefore, (1, a) and (a, 1) have
the same load under P and the proof is complete. �

5. Generalized Paley graphs

Theorems 3.1 and 4.3 suggest that second-kind K o H-Frobenius graphs with K abelian of odd
order are efficient in terms of gossiping and routing under the models considered. It is thus desirable
to construct such graphs with small valency. In this section we give a large family of second-
kind Frobenius graphs with K abelian of odd order which contains all Paley graphs and connected
generalized Paley graphs of odd order [22] as a proper subfamily. We will see that some graphs in our
family have small valency as desired (Example 5.5 and Corollary 5.7).

Given a prime power q ≡ 1 (mod 4), the Paley graph P(q) is the Cayley graph on the additive group
of the finite field Fq with respect to the set of non-zero squares in Fq. In other words, P(q) has vertex
set Fq such that x, y ∈ Fq are adjacent if and only if x − y is a non-zero square in Fq. Paley graphs are
self-complementary, distance-transitive and strongly regular [5], and they arewell studied overmany
years. It is known [10,27] that Paley graphs are second-kind Frobenius graphs of type (2, 2). Hence (11)
in Theorem3.1 and Algorithm3.2 can be applied to obtain t(P(q)) = 2 and optimal gossiping schemes
for P(q). Thus Paley graphs are efficient for gossiping and routing in some sense. However, they are
not attractive candidates for interconnection networks because of their large valency (q − 1)/2. It
would be helpful if we could construct graphs with similar structure which are efficient for gossiping
and routing but have small valency. We will show that this is possible and such graphs exist in our
family of ‘generalized Paley graphs’.

A near field (see e.g. [9]) is a set F with at least two elements 0 and 1 which is equipped with two
binary operations + and · such that (F , +) is an abelian group with identity 0; (F∗, ·) is a group with
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identity 1 (where F∗
= F \ {0}) and α · 0 = 0 · α = 0 for all α ∈ F ; and (α + β) · γ = α · γ + β · γ for

all α, β, γ ∈ F . As usual we abbreviate α · β to αβ and denote the additive inverse of α ∈ F by −α
and the multiplicative inverse of α ∈ F∗ by α−1. It is known (see e.g. [26, 10.6.3]) that for any near
field F , (F , +) is an elementary abelian group Zn

p . Obviously, any field is a near field.
The following theorem defines the family of graphs mentioned above.

Theorem 5.1. Let (F , +, ·) be a finite near field of odd order. Let β ∈ F∗ and let Ĥ ≠ 1 be a subgroup
of (F∗, ·) of odd order. If the left coset βĤ of Ĥ in (F∗, ·) is a generating set of (F , +), then the Cayley
graph Cay(F , βĤ ∪ (−βĤ)) on the additive group of F is isomorphic to a second-kind G-Frobenius graph
for some Frobenius group G whose kernel is abelian of odd order.

The Frobenius group in this theorem is

G =


α 0
β 1


: α ∈ Ĥ, β ∈ F


,

where the operation is the usual matrix multiplication. Let

K =


1 0
β 1


: β ∈ F


, H =


α 0
0 1


: α ∈ Ĥ


.

Then K ∼= (F , +) and H ∼= (Ĥ, ·) are subgroups of G. The following lemma can be easily proved; see
[9, Example 3.4.1] in the case when F is a field.

Lemma 5.2. The group G = K o H above is a Frobenius group with Frobenius kernel K and Frobenius
complement H.

The action of G on K is such that K acts on K by rightmultiplication andH acts on K by conjugation.
More explicitly, for u =


1 0
β 1


∈ Kand x =


α 0
γ 1


∈ G, ux

=


1 0

βα + γ 1


.In the case when F is a

field of order q,G is isomorphic to the subgroup of AGL(1, d) formed by those affine transformations
β → βα + γ , β ∈ F such that α ∈ Ĥ and γ ∈ F .

Lemma 5.3. Let (F , +, ·) be a finite near field with |F | = pn for an odd prime p and an integer n ≥ 1. Let
Ĥ ≠ 1 be a subgroup of (F∗, ·) and let G = KoH be as above. Then there exists a second-kind G-Frobenius
graph if and only if both p and |H| are odd and there exists β ∈ F∗ such that the left coset βĤ in (F∗, ·) is a
generating set of (F , +). Moreover, all second-kind G-Frobenius graphs are of the form Cay(K , Ŝ), where

Ŝ =


1 0
γ 1


: γ ∈ βĤ ∪ (−βĤ)


for some β ∈ F∗ such that βĤ is a generating set of (F , +).

Proof. Let

a =


1 0
β 1


(13)

where β ∈ F . Suppose Cay(K , aH ∪ (a−1)H) is a second-kind G-Frobenius graph. Then |H| is odd, a is
not an involution of G, and

aH =


1 0

βα 1


: α ∈ Ĥ


=


1 0
γ 1


: γ ∈ βĤ


is a generating set of K . Thus β is not an involution of (F , +) (and so p is odd), and βĤ is a generating
set of (F , +) (and so β ∈ F∗).

Suppose conversely that both p and |H| are odd, and β ∈ F∗ is such that βĤ is a generating set
of (F , +). Since (F , +) ∼= Zn

p and p is odd, (F , +) has no involution and in particular β is not an
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involution of (F , +). Thus a as defined in (13) is not an involution of G and aH is a generating set of K .
Hence Cay(K , Ŝ) is a second-kind G-Frobenius graph of valency 2|H|, where

Ŝ = aH ∪ (a−1)H =


1 0
γ 1


: γ ∈ βĤ ∪ (−βĤ)


.

It is evident that all second-kind G-Frobenius graphs are of the form Cay(K , Ŝ). �

Proof of Theorem 5.1. Using the notation above, it is easily seen that Cay(K , Ŝ) is isomorphic to the
Cayley graph Cay(F , βĤ ∪ (−βĤ)) on (F , +) ∼= Zn

p via the bijection F → K , δ →


1 0
δ 1


. Hence

Theorem 5.1 follows from Lemma 5.3 immediately. �

The following example shows that the family of graphs defined in Theorem 5.1 contains all
connected generalized Paley graphs of odd order [22] as a proper subfamily (which then contains all
Paley graphs). There are graphs in our family but not in this subfamily as we will see in Examples 5.5
and 5.8.

Example 5.4 (Paley Graphs and Generalized Paley Graphs [22]). Let q = pn be a prime power and
k ≥ 2 a divisor of q − 1 such that either q or (q − 1)/k is even. Let A be the subgroup of (F∗

q, ·)
of order (q − 1)/k. The generalized Paley graph GPaley(q, (q − 1)/k) is defined [22] as the Cayley
graph Cay(Fq, A) on (Fq, +). Note that if ω is a primitive element of Fq, then A = ⟨ωk

⟩. Since
ω(q−2)(q−1)/2

= −1 and either q or (q − 1)/k is even, we have −A = A and hence GPaley(q, (q −

1)/k) is an undirected graph. Such graphs and their automorphism groups are studied in [22] with
motivations from homogeneous factorizations of complete graphs and links to symmetric cyclotomic
association schemes. In particular, GPaley(q, (q − 1)/k) is connected if and only if k is not a multiple
of (q − 1)/(pm − 1) for any proper divisor m of n [22, Theorem 2.2]. In this case, if q is odd, then
GPaley(q, (q − 1)/k) is the second-kind Frobenius graph Cay(Fq, 1A ∪ (−1A)) as in Theorem 5.1.

In particular, if q ≡ 1 (mod 4), then GPaley(q, (q − 1)/2) is the Paley graph P(q). Alternatively,
P(q) is given by Cay(Fq, βĤ ∪ (−βĤ)), where Ĥ is the subgroup of (F∗

q, ·) with order (q− 1)/4 and β
is a square in F∗

q . �

Example 5.5. It is known that f (x) = x2 + x + 7 is a primitive polynomial over F11. So we may
take F121 as F11[x]/(f ), and f has a root ω in F121 which is a primitive element of F121. The unique
subgroup of F∗

121 with order 3 is Ĥ = ⟨ω40
⟩ = {1, ω40

= 4ω + 7, ω80
= 7ω + 3}. Since 1 ∈ Ĥ

and ω = 2(4ω + 7) − (7ω + 3), Ĥ is a generating set of (F121, +). Set S1 = 1Ĥ ∪ (−1Ĥ) =

{1, 4ω + 7, 7ω + 3, 10, 7ω + 4, 4ω + 8} and S∗

1 = {(0, 1), (4, 7), (7, 3), (0, 10), (7, 4), (4, 8)}. By
Theorem 5.1, Cay(F121, S1) ∼= Cay(Z2

11, S
∗

1 ) is a second-kind Z2
11 o Z3-Frobenius graph.

Consider another coset (ω + 1)Ĥ = {ω + 1, 6ω + 5, 3ω + 9}. Since 1 = 6(ω + 1) − (6ω + 5) and
ω = (ω+1)−1, (ω+1)Ĥ is a generating set of (F121, +). Let S2 = (ω+1)Ĥ ∪ (−(ω+1)Ĥ) = {ω+

1, 6ω+5, 3ω+9, 10ω+10, 5ω+6, 8ω+2} and S∗

2 = {(1, 1), (6, 5), (3, 9), (10, 10), (5, 6), (8, 2)}.
By Theorem 5.1, Cay(F121, S2) ∼= Cay(Z2

11, S
∗

2 ) is a second-kind Z2
11 o Z3-Frobenius graph.

The two graphs above are not generalized Paley graphs in the sense of [22] (Example 5.4) since
both q = 121 and (q−1)/k = 3 are odd. They have valency 6 which is much smaller than the valency
of the Paley graph P(121) of the same order. �

The following is an immediate consequence of Theorems 3.1 and 5.1.

Corollary 5.6. Let Γ = Cay(F , βĤ ∪ (−βĤ)) be the graph in Theorem 5.1. Then the minimum gossiping
time of Γ is given by

t(Γ ) = (pn − 1)/2|Ĥ|

and there exist optimal gossiping schemes for Γ such that (a) at any time t each arc of Γ is used exactly
once for data transmission; (b) for each x ∈ K exactly 2|Ĥ| arcs are used to transmit messages with source
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Fig. 1. A routing and gossiping tree for Cay(Z19, {2, 14, 3, 17, 5, 16}) rooted at the identity element of (F19, +).

x, and when t ≥ 2 the set At(x) of such arcs form a matching of Γ ; (c) the group of translations induced
by the additive group of F is transitive on the partition {At(x) : x ∈ K} of A(Γ ).

In particular, for a connected generalized Paley graph GPaley(q, (q− 1)/k) as in Example 5.4, we have

t(GPaley(q, (q − 1)/k)) = k

and there exists an optimal gossiping scheme for GPaley(q, (q−1)/k)which has properties (a)–(c) above.

The valency 2|Ĥ| of the second-kind Frobenius graph Cay(F , βĤ ∪ (−βĤ)) in Theorem 5.1 is small
when Ĥ has a small order. This is possible as we saw in Example 5.5. In fact, it is possible even
when restricted to connected generalized Paley graphs as exemplified by the following corollary of
Example 5.4, Theorem 5.1 and Dirichlet’s Theorem on primes in an arithmetic progression.

Corollary 5.7. For any even integer r ≥ 4, there exist infinitely many odd primes p such that there is a
second-kind Frobenius graph (connected generalized Paley graph) of order p2 and valency r with the kernel
of the underlying Frobenius group abelian.

Proof. By the well-known Dirichlet prime number theorem (see e.g. [18]), there are infinitely many
odd primes in the arithmetic progression −1+ r, −1+ 2r, −1+ 3r, . . . . Let p = −1+ tr be such an
odd prime, where t ≥ 1 is an integer. Let k = t(p − 1) and q = p2. Then r = (q − 1)/k and r is not
a divisor of p − 1. Thus p + 1 = (q − 1)/(p − 1) is not a divisor of k. By Example 5.4, GPaley(p2, r)
is a second-kind Frobenius graph of order p2 and valency r whose underlying Frobenius group has an
abelian kernel. �

Of course the even integer r ≥ 4 in Corollary 5.7 is meant to be small for the purpose of network
design. We remark that other connected generalized Paley graphs of small valency may be found by
choosing appropriate p, n, k in Example 5.4.

Finally, by applying Algorithm 3.2 we can obtain optimal gossiping schemes for Cay(F , βĤ ∪

(−βĤ)) and GPaley(q, (q−1)/k). These graphs have forwarding indices given by (12) and they admit
a routing optimal for the four forwarding indices simultaneously. We illustrate these by the following
example.

Example 5.8. One can see that 3 is a primitive element of F19. The unique subgroup of F∗

19 with order
3 is Ĥ = ⟨36

⟩ = {36
= 7, 312

= 11, 318
= 1}. The coset of Ĥ in F∗

19 containing 3, namely 3Ĥ = {7 ·3 =

2, 11 · 3 = 14, 3}, is a generating set of (F19, +) since 2, 3 ∈ 3Ĥ and 3 − 2 = 1 generates (F19, +).
Since 3Ĥ ∪ (−3Ĥ) = {2, 14, 3, 17, 5, 16}, by Theorem 5.1, Γ = Cay(Z19, {2, 14, 3, 17, 5, 16}) is a
second-kind Z19 o Z3-Frobenius graph (which is not a generalized Paley graph in the sense of [22]).

Fig. 1 depicts a spanning tree T0 of Γ rooted at 0 constructed by using Algorithm 2.4. The spanning
tree Tx of Γ rooted at x ∈ Z19 is obtained from T0 by translation by x, namely, γ , δ are adjacent in T0 if
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and only if γ + x, δ + x are adjacent in Tx. By Theorem 4.3, π(Γ ) = 2−→π (Γ ) = 2−→π m(Γ ) = πm(Γ ) =

1 · 2 + 2 · 4 = 10 and the routing whose (x, y)-path (x, y ∈ Zn) is the unique path in Tx from x to y is
optimal for these four indices simultaneously. By Theorem 3.1, t(Γ ) = (2 + 4)/2 = 3.

Algorithm 3.2 gives the following optimal gossiping scheme for Γ : In the first step, send the
message Mx at x from x to x + 2, x + 14, x + 3, x + 17, x + 5, x + 16 simultaneously for all
x ∈ Z19. (M0 is transmitted along the six heavy edges in Fig. 1.) In step 2, send Mx along the arcs
(x + 2, x + 4), (x + 14, x + 9), (x + 3, x + 6), (x + 17, x + 15), (x + 5, x + 10), (x + 16, x + 13)
(dashed arcs in Fig. 1 when x = 0) simultaneously for all x. In step 3, send Mx along the arcs
(x+2, x+7), (x+14, x+11), (x+3, x+1), (x+17, x+12), (x+5, x+8), (x+16, x+18) (dotted
arcs in Fig. 1 when x = 0) simultaneously for all x. �
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