

Available online at www.sciencedirect.com

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 28 (2007) 527-534

www.elsevier.com/locate/endm

Distance Labelling Problems for Hypercubes and Hamming Graphs – A Survey

Sanming Zhou^{1,2}

Department of Mathematics and Statistics The University of Melbourne Parkville, VIC 3010, Australia

Abstract

We survey recent results on a few distance labelling problems for hypercubes and Hamming graphs.

Keywords: channel assignment, L(j, k)-labelling, cyclic L(j, k)-labelling, no-hole L(j, k)-labelling, λ -number, hypercube, Hamming graph

1 Introduction

Let $\Gamma = (V, E)$ be a graph and $i_1, i_2, \ldots, i_k \geq 0$ integers. An $L(i_1, i_2, \ldots, i_k)$ labelling [7] of Γ is a mapping $\phi : V \to \{0, 1, 2, \ldots\}$ such that $|\phi(u) - \phi(v)| \geq i_t$ for any $u, v \in V$ with distance t apart, $t = 1, 2, \ldots, k$. Call $\phi(u)$ the label of u under ϕ . Assuming $\min_{v \in V} \phi(v) = 0$ w.l.o.g, we call $\operatorname{sp}(\Gamma; \phi) := \max_{v \in V} \phi(v)$ the span of ϕ and $\lambda_{i_1, i_2, \ldots, i_k}(\Gamma) := \min_{\phi} \operatorname{sp}(\Gamma; \phi)$ the $\lambda_{i_1, i_2, \ldots, i_k}$ number of Γ . An unused label between 0 and the largest label used is called a

² Email: smzhou@ms.unimelb.edu.au

 $^{^1~}$ Supported by a Discovery Project Grant (DP0558677) of the Australian Research Council. This survey is in its final version and will not be published elsewhere.

hole, and the meaning of a no-hole $L(i_1, i_2, \ldots, i_k)$ -labelling is self-evident. Define $\overline{\lambda}_{i_1, i_2, \ldots, i_k}(\Gamma)$ to be the minimum span of a no-hole $L(i_1, i_2, \ldots, i_k)$ -labelling of Γ if it exists and ∞ otherwise. A labelling $\phi: V \to \{0, 1, 2, \ldots\}$ such that $|\phi(u) - \phi(v)|_{\ell} \geq i_t$ for any $u, v \in V$ with distance t apart, $t = 1, 2, \ldots, k$, is called an ℓ -cyclic $L(i_1, i_2, \ldots, i_k)$ -labelling [9][13], where $|x|_{\ell} := \min\{|x|, \ell - |x|\}$. (The term 'circular' was used in [9][13].) Let $\sigma_{i_1, i_2, \ldots, i_k}(\Gamma)$ be the minimum integer $\ell - 1$ such that Γ admits such a labelling; and let $\overline{\sigma}_{i_1, i_2, \ldots, i_k}(\Gamma)$ be the minimum $\ell - 1$ such that Γ admits a no-hole ℓ -cyclic $L(i_1, i_2, \ldots, i_k)$ labelling, and ∞ if no such a labelling exists.

The notions above were originated from radio channel assignment [8]. A related problem [17] from optical networking seeks to colour the vertices of Γ such that any two vertices of distance at most k receive different colours. Let $\chi_{\bar{k}}(\Gamma)$ be the minimum number of colours required in such a colouring. One can check that, for any given $i_1, i_2, \ldots, i_k \geq 1$, $\chi_{\bar{k}}(\Gamma)$ is [21] the minimum number of labels needed in an $L(i_1, i_2, \ldots, i_k)$ -labelling of Γ . Thus, for example, $\chi_{\bar{2}}(\Gamma)$ is the chromatic number of the square graph of Γ . Another invariant [17] arising from optical networking is the minimum number $\chi_k(\Gamma)$ of labels in an $L(0, 0, \ldots, 0, 1)$ -labelling of Γ .

There has been an extensive literature on the invariants above, and so far most studies have been focused on the case where k = 2 or 3. See [1] for a recent survey on L(j, k)-labellings. The present paper is intended to be a complementary survey with focus on hypercubes and Hamming graphs. Given $q_1, q_2, \ldots, q_d \ge 2$, the Hamming graph H_{q_1,q_2,\ldots,q_d} is defined to have vertex set $\mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2} \times \cdots \times \mathbb{Z}_{q_d}$ such that two vertices are adjacent if and only if they differ in exactly one coordinate. If $q_t = q$ for all t then we write H(d,q)in place of H_{q_1,q_2,\ldots,q_d} . Thus, H(d,2) is the hypercube Q_d of dimension d. A labelling/colouring of a graph is said to be homogeneous (or balanced) if each label/colour is used by the same number of vertices.

2 Hypercubes and beyond

Let G be a group and X a subset of $G \setminus \{1_G\}$ with $X^{-1} := \{x^{-1} : x \in X\} = X$. The Cayley graph $\Gamma(G, X)$ on G relative to X is defined to have vertex set G in which $x, y \in G$ are adjacent if and only if $xy^{-1} \in X$. In [21] the author introduced a group-theoretic approach to L(j, k)-labelling Cayley graphs over abelian groups. Using this approach we obtained the following result, where $n := 1 + \lfloor \log_2 d \rfloor, t := \min\{2^n - d - 1, n\}$ for given $d \ge 1$.

Theorem 2.1 (Zhou [21]) Let Γ be a connected graph whose automorphism

group contains a vertex-transitive abelian subgroup. Let d be the degree of vertices of Γ , and n,t be as above. Then, for any $j \geq k \geq 1$, we have $\lambda_{j,k}(\Gamma) \leq 2^n \max\{k, \lceil j/2 \rceil\} + 2^{n-t} \min\{j-k, \lfloor j/2 \rfloor\} - j$ and $d+1 \leq \chi_{\bar{2}}(\Gamma) \leq 2^n$.

Thus, if $2k \geq j$, then $\lambda_{j,k}(\Gamma) \leq 2^n k + 2^{n-t}(j-k) - j$. In particular, for L(2,1)-labellings, Theorem 2.1 implies

Corollary 2.2 (*Zhou* [21]) Let Γ and *d* be the same as in Theorem 2.1. Then $\lambda_{2,1}(\Gamma) \leq 2^n + 2^{n-t} - 2$ and $d + 1 \leq \chi_{\overline{2}}(\Gamma) \leq 2^n$.

Since $Q_d \cong \Gamma(\mathbb{Z}_2^d, X)$ and it admits \mathbb{Z}_2^d as a vertex-transitive group of automorphisms, where X is the set of elements of \mathbb{Z}_2^d with exactly one non-zero coordinate, Theorem 2.1 and Corollary 2.2 imply the following two corollaries for Q_d .

Corollary 2.3 (Zhou [21]) Let d, j and k be integers with $d \ge 1$ and $j \ge k \ge 1$. Then $\lambda_{j,k}(Q_d) \le 2^n \max\{k, \lceil j/2 \rceil\} + 2^{n-t} \min\{j-k, \lfloor j/2 \rfloor\} - j$ and $d+1 \le \chi_{\bar{2}}(Q_d) \le 2^n$.

The proof of Theorem 2.1 gives a systematic way of generating L(j, k)labellings of Q_d which use 2^n labels and have span the bound above. A specific L(2, 1)-labelling of Q_d was given in [17, Theorem 2] under different terminology. Again, if $2k \ge j$, then we get $\lambda_{j,k}(Q_d) \le 2^n k + 2^{n-t}(j-k) - j$. In particular, Corollary 2.3 implies the following upper bounds, which were the first results on $\lambda_{2,1}$ and $\chi_{\overline{2}}$ for hypercubes.

Corollary 2.4 We have $\lambda_{2,1}(Q_d) \leq 2^n + 2^{n-t} - 2$ (Whittlesey, Georges and Mauro [18, Theorem 3.7]) and $d + 1 \leq \chi_{\bar{2}}(Q_d) \leq 2^n$ (Wan [17, line 12, pp.185]).

In [20] the author studied χ_2 for Cayley graphs Γ over abelian groups. Among the findings are a connection [20, Theorem 1] between $\chi_2(\Gamma)$ and $\chi_2(\hat{\Gamma})$ for certain quotient graphs $\hat{\Gamma}$ of Γ , and an upper bound [20, Corollary 1] on $\chi_2(\Gamma)$. Using this bound together with techniques from linear algebra we established the following result.

Theorem 2.5 Let Γ be a connected triangle-free graph of degree d. Suppose the automorphism group of Γ contains a vertex-transitive abelian subgroup. Then $d \leq \chi_2(\Gamma) \leq 2^{\lceil \log_2 d \rceil}$. Moreover, we give explicitly homogeneous $L_{0,1}$ labellings (not unique) of Γ using $2^{\lceil \log_2 d \rceil}$ labels.

Theorem 2.5 implies the following known bounds for hypercubes.

Corollary 2.6 For $d \ge 2$, we have $d \le \chi_2(Q_d) \le 2^{\lceil \log_2 d \rceil}$ ([17]). Moreover, from any $d \times \lceil \log_2 d \rceil$ matrix over GF(2) with rank $\lceil \log_2 d \rceil$ and pairwise distinct rows we can construct explicitly a homogeneous L(0, 1)-labelling of Q_d which uses $2^{\lceil \log_2 d \rceil}$ labels.

Now let us move on to $\chi_{\bar{3}}$ and $L(i_1, i_2, i_3)$ -labellings for Q_d .

Theorem 2.7 (*Kim*, *Du* and *Pardalos* [11]) $2d \le \chi_{\bar{3}}(Q_d) \le 2^{\lceil \log_2 d \rceil + 1}$.

In [11] the same authors also obtained lower and upper bounds for $\chi_{\bar{k}}(Q_d)$, which were improved as follows by Ngo, Du and Graham.

Theorem 2.8 (Ngo, Du and Graham [15]) Let $t = \lfloor k/2 \rfloor$ and $\binom{d}{m}$ denote $\sum_{i=0}^{m} \binom{d}{i}$. Then, when k is even, we have

$$\left(\binom{d}{t}\right) + \frac{1}{\lfloor \frac{d}{t+1} \rfloor} \binom{d}{t} \left(\frac{d-t}{t+1} - \lfloor \frac{d-t}{t+1} \rfloor \right) \le \chi_{\bar{k}}(Q_d) \le 2^{\lfloor \log_2\left(\binom{d-1}{k-1}\right) \rfloor + 1};$$

and when k is odd, we have

$$2\left(\left(\binom{d-1}{t}\right) + \frac{\binom{d-1}{t}\left(\frac{d-1-t}{t+1} - \lfloor\frac{d-1-t}{t+1}\rfloor\right)}{\lfloor\frac{d-1}{t+1}\rfloor}\right) \le \chi_{\bar{k}}(Q_d) \le 2^{\lfloor\log_2\left(\binom{d-2}{k-2}\right)\rfloor+2}.$$

Note that, if $d = 2^n - 1$, then $\chi_{\bar{2}}(Q_d) = 2^n$ by Corollary 2.4. Wan conjectured [17] that $\chi_{\bar{2}}(Q_d) = 2^n$ for any d. This is disproved by $13 \leq \chi_{\bar{2}}(Q_8) \leq 14$, obtained independently by Hougardy [19] and Royle [10, Section 9.7]. In general, we have the following interesting asymptotic result.

Theorem 2.9 (*Östergård* [16]) $\lim_{d\to\infty} \chi_{\bar{2}}(Q_d)/d = 1$, $\lim_{d\to\infty} \chi_{\bar{3}}(Q_d)/d = 2$.

Let $n = 1 + \lfloor \log_2 d \rfloor$ and $q = \max\{d + 1 + \lceil \log_2(d+1) \rceil - 2^{\lceil \log_2(d+1) \rceil}, 0\}.$

Theorem 2.10 (Zhou [22]) Let $d \ge 3$ and n, q be as above. Then for any integers $i_1 \ge i_2 \ge i_3 \ge 1$ we have

$$i_2(d-1) + i_1 \le \lambda_{i_1, i_2, i_3}(Q_d) \le \begin{cases} 2^n(i_3+r) + 2^q(i_1-r) - i_1, \ 2^{n-1} < d \le 2^n - 1\\ (2^n - 2)r + i_1, \qquad d = 2^{n-1} \end{cases}$$

where $r := \max\{i_2, \lceil i_1/2 \rceil\}$, and we can give explicitly homogeneous $L(i_1, i_2, i_3)$ labellings of Q_d which use $2^{\lceil \log_2 d \rceil + 1}$ labels and have span the upper bound above. In addition, if $i_1 \leq 2$, then $\lambda_{i_1, i_2, i_3}(Q_d) \geq 2(d-1) + i_1$. Theorem 2.10 gives the same upper bound $\chi_{\bar{3}}(Q_d) \leq 2^{\lceil \log_2 d \rceil + 1}$ as in Theorem 2.7, and it implies the following result in the special case where $(i_1, i_2, i_3) = (2, 1, 1)$.

Corollary 2.11 (Zhou [22]) Let $d \ge 3$ and n, q be as above. If $2^{n-1} < d \le 2^n - 1$, then $2d \le \lambda_{2,1,1}(Q_d) \le 2^{n+1} + 2^q - 2$; if $d = 2^{n-1}$, then $\lambda_{2,1,1}(Q_d) = 2d$ and Q_d admits a homogeneous L(2, 1, 1)-labelling with span 2d and exactly one hole.

3 Hamming graphs

We assume $q_1 \ge q_2 \ge \cdots \ge q_d \ge 2$ throughout this section. Again by using the group-theoretic approach developed in [21], the author obtained the following results.

Theorem 3.1 (Zhou [21]) Suppose $q_1 > d \ge 2$, q_2 divides q_1 and each prime factor of q_1 is no less than d. Then for any $j \ge k \ge 1$ and q_3, \ldots, q_d we have $\lambda_{j,k}(H_{q_1,q_2,\ldots,q_d}) \le (q_1q_2 - 1) \max\{k, \lceil j/2 \rceil\}, \chi_{\bar{2}}(H_{q_1,q_2,\ldots,q_d}) = q_1q_2$, and we can give an L(j,k)-labelling of H_{q_1,q_2,\ldots,q_d} which is optimal for $\chi_{\bar{2}}$ and has span $(q_1q_2 - 1) \max\{k, \lceil j/2 \rceil\}$. If in addition $2k \ge j$, then $\lambda_{j,k}(H_{q_1,q_2,\ldots,q_d}) =$ $(q_1q_2 - 1)k$ and this L(j,k)-labelling is optimal for $\lambda_{j,k}$ and $\chi_{\bar{2}}$ simultaneously.

Thus, if $2k \geq j$, then the trivial lower bounds $\lambda_{j,k}(H_{q_1,q_2,\ldots,q_d}) \geq (q_1q_2-1)k$ and $\chi_{\bar{2}}(H_{q_1,q_2,\ldots,q_d}) \geq q_1q_2$ are attained simultaneously. Interestingly, both $\lambda_{j,k}$ and $\chi_{\bar{2}}$ are irrelevant to j in this case.

Corollary 3.2 (Zhou [21]) Let q_1, q_2, \ldots, q_d and $d \ge 2$ be as in Theorem 3.1. Then $\lambda_{2,1}(H_{q_1,q_2,\ldots,q_d}) = q_1q_2 - 1$ and $\chi_{\overline{2}}(H_{q_1,q_2,\ldots,q_d}) = q_1q_2$. Moreover, we can give a no-hole L(2,1)-labelling of H_{q_1,q_2,\ldots,q_d} which is optimal for $\lambda_{2,1}$ and $\chi_{\overline{2}}$ simultaneously.

Corollary 3.3 (Zhou [21]) Let $q = p_1^{r_1} p_2^{r_2} \cdots p_t^{r_t}$, where p_i is a prime and $r_i \geq 1$ for each *i*. Let *d* be such that $2 \leq d \leq p_i$ for all *i* and $\sum_{i=1}^t (p_i - d + r_i) \geq 2$. Then for any $j \geq k \geq 1$ we have $\lambda_{j,k}(H(d,q)) \leq (q^2 - 1) \max\{k, \lceil j/2 \rceil\}$ and $\chi_{\bar{2}}(H(d,q)) = q^2$. If in addition $2k \geq j$, then $\lambda_{j,k}(H(d,q)) = (q^2 - 1)k$.

Corollaries 3.2 and 3.3 imply the following result of Georges, Mauro and Stein [6]: for any prime p and integers $d, r \ge 1$ such that $3 \le d \le p$ and $(p-d)+r \ge 2$, we have $\lambda_{2,1}(H(d, p^r)) = p^{2r} - 1$. The following theorem of the same authors suggests that the bound $(q_1q_2 - 1)\max\{k, \lceil j/2\rceil\}$ in Theorem 3.1 may be far away from the actually value of $\lambda_{j,k}(H_{q_1,q_2})$ when j/k is large. **Theorem 3.4** (Georges, Mauro and Stein [6]) Let $j \ge k$, $q_1 > q_2 \ge 2$ and $q \ge 2$. Then $\lambda_{j,k}(H_{q_1,q_2}) = (q_1 - 1)j + (q_2 - 1)k$ if $j/k > q_2$ and $(q_1q_2 - 1)k$ if $j/k \le q_2$, and $\lambda_{j,k}(H(2,q)) = (q-1)j + (2q-2)k$ if j/k > q-1 and $(q^2 - 1)k$ if $j/k \le q-1$.

Theorem 3.5 (Erwin, Georges and Mauro [4]) Let $q_1 > q_2 > \cdots > q_d$ be relatively prime and $d \ge 3$. Then $\lambda_{j,k}(H_{q_1,q_2,\ldots,q_d}) = (q_1q_2 - 1)k$ if $j/k \le q_2$ and $(q_1 - 1)j + (q_2 - 1)k$ if $j/k > q_2$.

Theorem 3.1 inspired the following questions. (Note that in [21] the necessary condition $j/k \leq q_1q_2 - \sum_{i=1}^d q_i + d$ was missed.)

Problem 3.6 (Zhou [21]) Let $2k \ge j \ge k \ge 1$. Is $\lambda_{j,k}(H_{q_1,q_2,...,q_d}) = (q_1q_2 - 1)k$ true for any $H_{q_1,q_2,...,q_d} \ne Q_d$ such that $j/k \le q_1q_2 - \sum_{i=1}^d q_i + d$?

Theorem 3.7 (Chang, Lu and Zhou [2]) $H_{q_1,q_2,...,q_d}$ admits a no-hole L(2, 1)labelling $\Leftrightarrow H_{q_1,q_2,...,q_d}$ admits a no-hole cyclic L(2, 1)-labelling $\Leftrightarrow H_{q_1,q_2,...,q_d} \neq Q_2$. Moreover, if $q_1 \geq d + n - 1 + \sum_{2 \leq l < m \leq d} \max\{0, q_l + q_m - q_2 - 1\}$ (where n is the largest integer such that $q_2 = q_n$), then $\lambda_{2,1}(H_{q_1,q_2,...,q_d}) = \overline{\lambda}_{2,1}(H_{q_1,q_2,...,q_d}) = \overline{\sigma}_{2,1}(H_{q_1,q_2,...,q_d}) = \sigma_{2,1}(H_{q_1,q_2,...,q_d}) = q_1q_2 - 1$ and we give a labelling of $H_{q_1,q_2,...,q_d}$ which is optimal for $\lambda_{2,1}, \overline{\lambda}_{2,1}, \overline{\sigma}_{2,1}, \sigma_{2,1}$ simultaneously.

In particular, this answers Problem 3.6 for (j, k) = (2, 1) and sufficiently large q_1 . Theorem 3.7 implies [2] $\lambda_{1,1} = \overline{\lambda}_{1,1} = \overline{\sigma}_{1,1} = \sigma_{1,1} = q_1q_2 - 1$ for H_{q_1,q_2,\ldots,q_d} under the same conditions.

Problem 3.8 (Chang, Lu and Zhou [2]) Is it true that $\lambda_{2,1}(H_{q_1,q_2,...,q_d}) = \overline{\lambda}_{2,1}(H_{q_1,q_2,...,q_d}) = \overline{\sigma}_{2,1}(H_{q_1,q_2,...,q_d}) = \sigma_{2,1}(H_{q_1,q_2,...,q_d}) = q_1q_2 - 1$ for any $H_{q_1,q_2,...,q_d} \neq Q_d$ with $\sum_{t=1}^d q_t \leq q_1q_2 + d - 2$?

An affirmative answer follows [2] if we can prove $\overline{\sigma}_{2,1}(H_{q_1,q_2,\ldots,q_d}) \leq q_1q_2 - 1$.

Theorem 3.9 (Chang, Lu and Zhou [2]) We have $\lambda_{2,0}(H_{q_1,q_2,\ldots,q_d}) = 2q_1 - 2$ and $\sigma_{2,0}(H_{q_1,q_2,\ldots,q_d}) = 2q_1 - 1$. Moreover, H_{q_1,q_2,\ldots,q_d} admits a no-hole L(2,0)-labelling $\Leftrightarrow H_{q_1,q_2,\ldots,q_d}$ admits a no-hole cyclic L(2,0)-labelling $\Leftrightarrow H_{q_1,q_2,\ldots,q_d} \neq Q_2$, and in this case the following (a)-(c) hold:

- (a) if q_1, q_2, \ldots, q_d are not all the same, then $\overline{\lambda}_{2,0}(H_{q_1, q_2, \ldots, q_d}) = \overline{\sigma}_{2,0}(H_{q_1, q_2, \ldots, q_d})$ = $2q_1 - 1$;
- (b) if $d \ge 3$ and $q \ge 2$, then $\overline{\lambda}_{2,0}(H(d,q)) = 2q 1$ and $\overline{\sigma}_{2,0}(H(d,q)) = 2q$;
- (c) if d = 2 and $q \ge 3$, then $\overline{\lambda}_{2,0}(H(2,q)) = 2q, \overline{\sigma}_{2,0}(H(2,3)) = 8$ and $\overline{\sigma}_{2,0}(H(2,q)) = 2q$ or 2q + 1 $(q \ge 4)$.

Furthermore, we construct explicitly an optimal labelling in each case with the exception of $\overline{\sigma}_{2,0}(H(2,q)), q \ge 4$.

In [2] Chang, Lu and the author conjectured that $\overline{\sigma}_{2,0}(H(2,q)) = 2q+1$ if $q \geq 4$, and they confirmed this for q = 4, 5, 6.

4 A brief discussion on Cayley graphs

Theorems 2.1 and 3.1, and Corollaries 2.2, 2.3, 3.2 and 3.3 are all based on a general approach [21] to L(j,k)-labelling Cayley graphs $\Gamma(G,X)$ over abelian groups G. Among other results it was proved [21] that, for any subgroup H of G such that $H \cap X = \emptyset$ and $H \cap X^2 = \{1\}$ (where $X^2 := \{xx' : x, x' \in X\}$), we have $\lambda_{j,k}(\Gamma(G,X)) \leq |G:H| \max\{k, \lceil j/2 \rceil\} + |G: \langle G - HX \rangle | \min\{j - k, \lfloor j/2 \rfloor\} - j$ and $\chi_{\bar{2}}(\Gamma(G,X)) \leq |G:H|$. The key and the most difficult part in using this generic approach is to find a suitable subgroup H so that the bound above for $\lambda_{j,k}$ is as small as possible.

In [3], Chang, Lu and the author studied the no-hole L(2, 0)-labelling problem for Cayley graphs $\Gamma(G, X)$ over finitely generated abelian groups G, where |X| is finite. Sufficient conditions for the existence of a no-hole L(2, 0)-labelling and upper bounds on $\overline{\lambda}_{2,0}(\Gamma(G, X))$ were obtained in [3]. In particular, for a finite abelian group G, by using the hamiltonicity [14] of $\Gamma(G, X)$ it was shown [3] that $\Gamma(G, X)$ admits a no-hole L(2, 0)-labelling if and only if $\langle G - X \rangle = G$. Finally, a forthcoming paper [12] investigates the L(2, 1)-labelling problem for cubic Cayley graphs on dihedral groups.

References

- [1] Calamoneri, T., The L(h,k)-labelling problem: a survey and annotated bibliography, The Computer Journal, 2006.
- [2] Chang, G. J., C. H. Lu and S. Zhou, Minimum spans of Hamming graphs under distance-two labellings, submitted.
- [3] Chang, G. J., C. H. Lu and S. Zhou, No-hole 2-distant colorings for Cayley graphs on finitely generated abelian groups, Discrete Math., to appear.
- [4] Erwin, D. J., J. P. Georges and D. W. Mauro, On labelling the vertices of products of complete graphs with distance constraints, J. Naval Res. and Logist. 52 (2005), 138-141.
- [5] Georges, J. P., and D. W. Mauro, Some results on λ_k^j -numbers of the products of complete graphs, Congr. Numer. **140** (1999), 141-160.

- [6] Georges, J. P., D. W. Mauro and M. I. Stein, Labelling products of complete graphs with a condition at distance two, SIAM J. Discrete Math. 14 (2000), 28-35.
- [7] Griggs, J. R., and R. K. Yeh, Labelling graphs with a condition at distance two, SIAM J. Discrete Math. 5 (1992), 586-595.
- [8] Hale, W. K., Frequency assignment: theory and applications, Proc. IEEE 68 (1980), 1497-1514.
- [9] van den Heuvel, J., R. A. Leese and M. A. Shepherd, Graph labeling and radio channel, J.Graph Theory 29 (1998), 263-283.
- [10] Jensen, T. R., and B. Toft, "Graph Coloring Problems," Wiley, New York, 1995.
- [11] Kim, D. S., D.-Z. Du and P. M. Pardalos, A colouring problem on the n-cube, Discrete Applied Math. 103 (2000), 307-311.
- [12] Li, X. W., V. Mak and S. Zhou, L(2, 1)-labellings of cubic Cayley graphs on dihedral groups (tentative title), in preparation.
- [13] Liu, D. D-F., Hamiltonicity and circular distance two labellings, Discrete Math. 232 (2001), 163-169.
- [14] Marŭsič, D., Hamiltonian circuits in Cayley graphs, Discrete Math. 46 (1983), 49-54.
- [15] Ngo, H. Q., D.-Z. Du and R. L. Graham, New bounds on a hypercube colouing problem, Information Processing Letters 84 (2002), 265-269.
- [16] Ostergård, P. R. J., On a hypercube coloring problem, J. Combin. Theory (A) 108 (2004), 199-204.
- [17] Wan, P.-J., Near-optimal conflict-free channel set assignments for an optical cluster-based hypercube network, J. Combin. Optim. 1 (1997), 179–186.
- [18] Whittlesey, M. A., J. P. Georges and D. W. Mauro, On the λ -number of Q_n and related graphs, SIAM J. Discrete Math. 8 (1995), 499-506.
- [19] Ziegler, G. M., Coloring Hamming graphs, optimal binary codes, and the 0/1-Borsuk problem in low dimensions, in: H. Alt (ed.), "Computational Discrete Mathematics," Springer, Berlin, 2001, pp.159-171.
- [20] Zhou, S., A channel assignment problem for optical networks modelled by Cayley graphs, Theoretical Computer Science 310 (2004), 501-511.
- [21] Zhou, S., Labelling Cayley graphs on Abelian groups, SIAM J. Discrete Math. 19 (2006), 985-1003.
- [22] Zhou, S., A distance labelling problem on hypercubes, submitted.