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Abstract. For an integer m ≥ 3, a near m-gonal graph is a pair (Σ,E) con-
sisting of a connected graph Σ and a set E of m-cycles of Σ such that each
2-arc of Σ is contained in exactly one member of E, where a 2-arc of Σ is an
ordered triple (σ, τ, ε) of distinct vertices such that τ is adjacent to both σ
and ε. The graph Σ is call (G, 2)-arc transitive, where G ≤ Aut(Σ), if G is
transitive on the vertex set and on the set of 2-arcs of Σ. From a previous
study it arises the question of when a (G, 2)-arc transitive graph is a near
m-gonal graph with respect to a G-orbit on m-cycles. In this paper we answer
this question by providing necessary and sufficient conditions in terms of the
stabiliser of a 2-arc.
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1. Introduction

We consider finite, undirected and simple graphs only. For a graph Σ = (V (Σ),
E(Σ)) and an integer s ≥ 1, an s-arc of Σ is a sequence (σ0, σ1, . . . , σs) of s + 1
vertices of Σ such that σi−1 and σi are adjacent for 1 ≤ i ≤ s and σi−1 6= σi+1 for
1 ≤ i ≤ s − 1. For an integer m ≥ 3, a near m-gonal graph [13] is a pair (Σ,E),
where Σ is a connected graph and E is a set of m-cycles of Σ, such that each
2-arc of Σ is contained in a unique member of E. Here and in the following by an
m-cycle we mean an undirected cycle of length m. In this case we also say that
Σ is a near m-gonal graph with respect to E, and we call cycles in E basic cycles
of (Σ,E). From the definition it follows that near m-gonal graphs are associated
with the Buekenhout geometries [3, 13] of the following diagram:

Supported by a Discovery Project Grant (DP0558677) from the Australian Research Council and
a Melbourne Early Career Researcher Grant from The University of Melbourne.



2 Sanming Zhou

s m s c s
In such a geometry associated with (Σ,E), the maximal flags are those triples
(σ, e, C) such that σ ∈ V (Σ), e ∈ E(Σ) is incident with σ in Σ, and C is a member
of E containing e. A near m-gonal graph with girth m is called an m-gonal graph
[7]. (The girth of a graph Σ is the length of a shortest cycle of Σ if Σ contains
cycles, and is defined to be ∞ otherwise.) In fact, the concept of a near-polygonal
graph was introduced [13] as a generalisation of that of a polygonal graph. As
a simple example, the (3-dimensional) cube together with its faces (taking as 4-
cycles) is a 4-gonal graph. There are exactly four 6-cycles in the cube with the
property that no three consecutive edges on the cycle belong to the same face; the
cube together with these four 6-cycles is a near 6-gonal graph. Another example
is the well-known embedding of the Petersen graph on the projective plane as
the dual of K6, which together with the six faces (taking as 5-cycles) is a near
5-gonal graph. The reader is referred to [7, 8, 9, 10, 11, 12, 16, 17] and [13, 14]
respectively for results, constructions and more examples on polygonal graphs and
near-polygonal graphs. For group-theoretic notation and terminology used in the
paper, the reader may consult [1, 2].

This paper was motivated by a recent study [19] where the author found
an intimate connection between near-polygonal graphs and a class of imprimitive
symmetric graphs with 2-arc transitive quotients. Let Γ be a graph and G a group.
If G acts on V (Γ) as a group of automorphisms of Γ such that G is transitive on
V (Γ) and, in its induced action, transitive on the set of s-arcs of Γ, then Γ is said
[1, 18] to be (G, s)-arc transitive. Usually, a 1-arc is called an arc and a (G, 1)-arc
transitive graph is called a G-symmetric graph. A G-symmetric graph Γ is said
to be imprimitive if G is imprimitive on V (Γ), that is, V (Γ) admits a partition
B such that 1 < |B| < |V (Γ)| and Bg ∈ B for any block B ∈ B and element
g ∈ G, where Bg := {σg : σ ∈ B}. In this case the quotient graph ΓB of Γ with
respect to this G-invariant partition B is defined to be the graph with vertex set
B such that two blocks B,C ∈ B are adjacent if and only if there exists at least
one edge of Γ between B and C. Denote by Γ(B) the set of vertices of Γ adjacent
to at least one vertex in B. In [19, Theorem 1.1] we proved that, if (Γ,B) is an
imprimitive G-symmetric graph with connected but non-complete ΓB such that
the subgraph (without including isolated vertices) induced by two adjacent blocks
B,C of B is a matching of |B| − 1 ≥ 2 edges and that Γ(C) ∩ B 6= Γ(D) ∩ B for
different blocks C,D of B adjacent to B, then ΓB must be a (G, 2)-arc transitive
near m-gonal graph with respect to a certain G-orbit on m-cycles of ΓB, where
m ≥ 4 is an even integer. Moreover, any (G, 2)-arc transitive near m-gonal graph
(where m ≥ 4 is even) with respect to a G-orbit on m-cycles can occur as such
a quotient ΓB. Furthermore, the graph Γ can be reconstructed from ΓB by using
the 3-arc graph construction introduced in [6] by Li, Praeger and the author. For
more about this construction, its extension and applications, see [6, 20], [21, 22]
and [4, 5, 19, 21], respectively.
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The result above motivated us to ask when a (G, 2)-arc transitive graph is a
near m-gonal graph with respect to a G-orbit on m-cycles. In this paper we answer
this question by giving necessary and sufficient conditions in terms of the stabiliser
of a 2-arc.

2. Main Result

For a G-symmetric graph Σ and σ, τ, ε ∈ V (Σ), denote by Gστε the pointwise
stabiliser of {σ, τ, ε} in G, that is, the subgroup of G consisting of those elements
of G which fix each of σ, τ and ε. Denote by Σ(σ) the subset of vertices of Σ which
are adjacent to σ in Σ. For a subgroup H of G, let NG(H) denote the normalizer of
H in G. For a near m-gonal graph (Σ,E), define [13] Aut(Σ,E) to be the subgroup
of Aut(Σ) consisting of those elements g of Aut(Σ) which leave E invariant, that is,
Eg = E under the induced action of Aut(Σ) on the set of m-cycles of Σ. Note that,
for a near m-gonal graph (Σ,E) such that Σ is (G, 2)-arc transitive, G ≤ Aut(Σ,E)
holds if and only if E is a G-orbit on m-cycles of Σ [19, Lemma 2.6].

Theorem 1. Suppose that Σ is a connected (G, 2)-arc transitive graph, where G ≤
Aut(Σ). Let (σ, τ, ε) be a 2-arc of Σ and set H = Gστε. Then the following condi-
tions (a)-(c) are equivalent:

(a) there exist an integer m ≥ 3 and a G-orbit E on m-cycles of Σ such that
(Σ,E) is a near m-gonal graph;

(b) H fixes at least one vertex in Σ(ε) \ {τ};
(c) there exists g ∈ NG(H) such that (σ, τ)g = (τ, ε).

Moreover, if one of these condition is satisfied, then G ≤ Aut(Σ,E) and G is
transitive on the maximal flags of the Buekenhout geometry associated with (Σ,E).

Proof (a) ⇒ (b) Suppose that (Σ,E) is a near m-gonal graph for a G-orbit E
on m-cycles of Σ, where m ≥ 3. Let C(σ, τ, ε) = (σ, τ, ε, η, . . . , σ) be the basic
cycle containing the 2-arc (σ, τ, ε). Then we have η ∈ Σ(ε) \ {τ}. (Note that η
coincides with σ when m = 3.) We claim that η is fixed by H. Suppose other-
wise and let ηg 6= η for some g ∈ H. Then, since E is a G-orbit on m-cycles of
Σ, (C(σ, τ, ε))g = (σ, τ, ε, ηg, . . . , σ) is a basic cycle containing (σ, τ, ε) which is
different from C(σ, τ, ε). This contradicts with the uniqueness of the basic cycle
containing a given 2-arc, and hence (b) holds.

(b) ⇒ (c) Suppose H fixes η ∈ Σ(ε) \ {τ}. Then we have H ≤ Gτεη. Since Σ
is (G, 2)-arc transitive, there exists g ∈ G such that (σ, τ, ε)g = (τ, ε, η) and hence
Gτεη = Hg. Therefore, Hg = H and g ∈ NG(H).

(c) ⇒ (a) Suppose that there exists g ∈ NG(H) such that (σ, τ)g = (τ, ε).
Set η := εg. Then η ∈ Σ(ε) \ {τ}, (σ, τ, ε)g = (τ, ε, η) and hence Gτεη = Hg = H.
Set σ0 = σ, σ1 = τ, σ2 = ε and σ3 = η, and set σ4 = σg

3 . Then σ4 ∈ Σ(σ3) \ {σ2}
and Gσ2σ3σ4 = (Gσ1σ2σ3)

g = Hg = H. Now set σ5 = σg
4 , then similarly σ5 ∈

Σ(σ4) \ {σ3} and Gσ3σ4σ5 = (Gσ2σ3σ4)
g = Hg = H. Continuing this process,

we obtain inductively a sequence σ0, σ1, σ2, σ3, σ4, σ5, . . . of vertices of Σ with the
following properties:
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(1) σi = σg
i−1 for all i ≥ 1, and hence σi+1 ∈ Σ(σi)\{σi−1} for i ≥ 1 and σi = σgi

0

for i ≥ 0; and
(2) Gσi−1σiσi+1 = H for all i ≥ 1.

Since we have finitely many vertices in Σ, this sequence will eventually contain
repeated terms. Suppose σm is the first vertex in this sequence which coincides
with one of the preceding vertices. Without loss of generality we may suppose that
σm coincides with σ0 for if σm = σi for some i ≥ 1 then we can begin with σi and
relabel the vertices in the sequence. Thus, we obtain an m-cycle

J := (σ0, σ1, σ2, σ3, σ4, . . . , σm−1, σ0)

of Σ. (It may happen that m = 3 if the girth of Σ is 3.) Let E denote the G-orbit
on m-cycles of Σ containing J . In the following we will prove that each 2-arc of Σ
is contained in exactly one of the “basic cycles” in E and hence (Σ,E) is indeed a
near m-gonal graph.

By the (G, 2)-arc transitivity of Σ, it is clear that each 2-arc (σ′, τ ′, ε′) of Σ
is contained in at least one member Jx of E, where x ∈ G is such that (σ′, τ ′, ε′) =
(σ, τ, ε)x. So it suffices to show that if two members of E have a 2-arc in common
then they are identical; or, equivalently, if Jx and J have a 2-arc in common then
they are identical.

Suppose then that Jx and J have a 2-arc in common for some x ∈ G. Note
that, for each i ≥ 0, gi maps each vertex σj to σj+i and so 〈g〉 leaves J invariant
(subscripts modulo m here and in the rest of this proof). So, replacing Jx by Jxgi

for some i if necessary, we may suppose without loss of generality that (σ0, σ1, σ2)
is a common 2-arc of Jx and J . Then (σ0, σ1, σ2) ∈ Jx implies that (σ0, σ1, σ2) =
(σi−1, σi, σi+1)x for some 1 ≤ i ≤ m. Thus, (σ0, σ1, σ2) = (σ0, σ1, σ2)gi−1x and
hence gi−1x ∈ H. From the properties (1)-(2) above, we then have σx

j+i−1 =

σgi−1x
j = σj for each vertex σj on J . That is, σx

j = σj−i+1 for each j and hence
Jx = J . Thus, we have proved that each 2-arc of Σ is contained in exactly one
member of E, and so (Σ,E) is a near m-gonal graph.

So far we have proved the equivalence of (a), (b) and (c). Now assume that one
of these conditions is satisfied, so that (Σ,E) is a near m-gonal graph for a G-orbit
E on m-cycles of Σ, where m ≥ 3. Clearly, we have G ≤ Aut(Σ,E). Let (α, e, C),
(α′, e′, C ′) be maximal flags of the Buekenhout geometry associated with (Σ,E).
Denote e = {α, β}, e′ = {α′, β′}, C = (α, β, γ, . . . , α) and C ′ = (α′, β′, γ′, . . . , α′).
Since Σ is (G, 2)-arc transitive there exists h ∈ G such that (α, β, γ)h = (α′, β′, γ′).
Hence αh = α′, eh = e′ and Ch = C ′. That is, (α, e, C)h = (α′, e′, C ′), and thus
G is transitive on the maximal flags of the Buekenhout geometry associated with
(Σ,E).

2
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3. Remarks

The proof above gives a procedure for generating the near m-gonal graph (Σ,E)
guaranteed by Theorem 1. Unfortunately, it does not tell us any information about
the relationship between m and the girth of Σ. Moreover, the basic cycles of (Σ,E)
are not necessarily induced cycles of Σ, that is, they may have chords. (See [19,
Example 3.3, Proposition 3.4] for an example of such graphs. A chord of a cycle
is an edge joining two non-consecutive vertices on the cycle.) Furthermore, from
[19, Lemma 2.6(e)] such basic cycles contain chords only when either Gτ is sharply
2-transitive on Σ(τ) or Gστ is imprimitive on Σ(τ) \ {σ}, where σ, τ are adjacent
vertices of Σ, Gτ is the stabiliser of τ in G and Gστ is the pointwise stabiliser of
{σ, τ} in G.

It is hoped that Theorem 1 would be useful in constructing 2-arc transitive
near-polygonal graphs. In view of the 3-arc graph construction [6] and [19, Theorem
1.1], it would also be helpful in studying imprimitive G-symmetric graphs (Γ,B)
such that the subgraph (excluding isolated vertices) induced by two adjacent blocks
B,C of B is a matching of |B| − 1 ≥ 2 edges and that Γ(C) ∩ B 6= Γ(D) ∩ B for
different blocks C,D of B adjacent to B. A sufficient condition was given in [19]
for a connected, non-complete, (G, 2)-arc transitive graph Σ of valency at least 3
to be a near m-gonal graph with respect to a G-orbit on m-cycles, where m ≥ 4
is even. It was shown in [19, Corollary 4.1] that this is the case if Gσ is sharply
2-transitive on Σ(σ) and one of the G-orbits on 3-arcs of Σ is self-paired. (A set
A of 3-arcs is called self-paired if (σ, τ, ε, δ) ∈ A implies (δ, ε, τ, σ) ∈ A.) Another
sufficient condition was given in [13, Theorem 2.2] for a connected, non-complete,
(G, 2)-arc transitive graph Σ to be a near m-gonal graph with respect to a G-orbit
on m-cycles, where m ≥ 4 is not necessarily even. Note that a near m-gonal graph
(Σ,E) is (G, 2)-arc transitive if and only if G is transitive on the maximal flags
of the Buekenhout geometry associated with (Σ,E). The “only if” part of this
statement was proved in the last paragraph of the proof of Theorem 1, and the
“if” part was part of [13, Theorem 1.8] and can be verified easily.

Finally, in the original definition [13] of a near m-gonal graph Σ, it was
required that the girth of Σ be at least 4 and subsequently m ≥ 4. In the definition
given at the beginning of the introduction, we removed this requirement since the
case of girth 3 is not entirely uninteresting when the graph is not 2-arc transitive.
Of course for 2-arc transitive graphs this case is not so interesting, because a
connected 2-arc transitive graph has girth 3 if and only if it is a complete graph
(see e.g. [19, Lemma 2.5]). This is perhaps the main reason [15] for requiring girth
≥ 4 in a near-polygonal graph in [13], since the research in the area is focused on
2-arc transitive near-polygonal graphs.

References

[1] N. L. Biggs, Algebraic Graph Theory. 2nd edition, Cambridge University Press, Cam-
bridge, 1993.



6 Sanming Zhou

[2] J. D. Dixon and B. Mortimer, Permutation Groups. Springer, New York, 1996.

[3] F. Buekenhout, Diagrams for geometries and groups. J. Combinatorial Theory Ser. A
27 (1979), 121-151.

[4] A. Gardiner, C. E. Praeger and S. Zhou, Cross ratio graphs. J. London Math. Soc.
(2) 64 (2001), no. 2, 257-272.

[5] M. A. Iranmanesh, C. E. Praeger and S. Zhou, Finite symmetric graphs with two-arc
transitive quotients. J. Combinatorial Theory Ser. B 94 (2005), 79-99.

[6] C. H. Li, C. E. Praeger and S. Zhou, A class of finite symmetric graphs with 2-arc
transitive quotients. Math. Proc. Camb. Phil. Soc. 129 (2000), no. 1, 19-34.

[7] M. Perkel, Bounding the valency of polygonal graphs with odd girth. Canad. J. Math.
31 (1979), 1307-1321.

[8] M. Perkel, A characterization of J1 in terms of its geometry. Geom. Dedicata 9 (1980),
no. 3, 291-298.

[9] M. Perkel, A characterization of PSL(2, 31) and its geometry. Canad. J. Math. 32
(1980), no. 1, 155-164.

[10] M. Perkel, Polygonal graphs of valency four. Congr. Numer. 35 (1982), 387-400.

[11] M. Perkel, Trivalent polygonal graphs. Congr. Numer. 45 (1984), 45-70.

[12] M. Perkel, Trivalent polygonal graphs of girth 6 and 7. Congr. Numer. 49 (1985),
129-138.

[13] M. Perkel, Near-polygonal graphs. Ars Combinatoria 26(A) (1988), 149-170.

[14] M. Perkel, Some new examples of polygonal and near-polygonal graphs with large
girth. Bull. Inst. Combin. Appl. 10 (1994), 23-25.

[15] M. Perkel, Personal communication, 2005.

[16] M. Perkel, C. E. Praeger, Polygonal graphs: new families and an approach to their
analysis. Congr. Numer. 124 (1997), 161-173.

[17] M. Perkel, C. E. Praeger, R. Weiss, On narrow hexagonal graphs with a 3-
homogeneous suborbit. J. Algebraic Combin. 13 (2001), 257-273.

[18] C. E. Praeger, Finite transitive permutation groups and finite vertex transitive
graphs, in: G. Hahn and G. Sabidussi eds., Graph Symmetry (Montreal, 1996, NATO
Adv. Sci. Inst. Ser. C, Math. Phys. Sci., 497), Kluwer Academic Publishing, Dordrecht,
1997, pp. 277-318.

[19] S. Zhou, Almost covers of 2-arc transitive graphs. Combinatorica 24 (4) (2004), 731-
745.

[20] S. Zhou, Imprimitive symmetric graphs, 3-arc graphs and 1-designs. Discrete Math.
244 (2002), 521-537.

[21] S. Zhou, Constructing a class of symmetric graphs. European J. Combinatorics 23
(2002), 741-760.

[22] S. Zhou, Symmetric graphs and flag graphs. Monatshefte für Mathematik 139 (2003),
69-81.

Acknowledgment

The author thanks an anonymous referee for his/her helpful comments and inter-
esting examples.



2-arc transitive near-polygonal graphs 7

Sanming Zhou
Department of Mathematics and Statistics
The University of Melbourne
Parkville, VIC 3010, Australia
e-mail: smzhou@ms.unimelb.edu.au


