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Abstract

This paper forms part of a study of 2-arc transitivity for finite imprimitive symmetric graphs, namely
for graphd” admitting an automorphism gro@athat is transitive on ordered pairs of adjacent vertices,
and leaves invariant a nontrivial vertex partitigh Such a grous is also transitive on the ordered
pairs of adjacent vertices of the quotient grdpjcorresponding td. If in additionG is transitive on
the 2-arcs of " (that is, on vertex triplegx, f3, ) such that, f andp, y are adjacent and # y), then
G is not in general transitive on the 2-arcslof, although it does have this property in the special
case where% is the orbit set of a vertex-intransitive normal subgroupzofOn the other hands
is sometimes transitive on the 2-arcslof even if it is not transitive on the 2-arcs 6t We study
conditions under whicls is transitive on the 2-arcs df. Our conditions relate to the structure of
the bipartite graph induced ab U C for adjacent blocks, C of %4, and a graph structure induced
onB. We obtain necessary and sufficient conditiong3do be transitive on the 2-arcs of one or both
of I', I' 4 for certain families of imprimitive symmetric graphs.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The family of finite 2-arc transitive graphs has been studied intensively ever since
the publication of the seminal results of Tuff®,20] Although most quotients of 2-arc
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transitive graphs are not themselves 2-arc transitive, it was shown by the secondEgjthor
that all normal quotients of 2-arc transitive graphs are 2-arc transitive and are covered by
the original graph. This result led to the study, and in some cases, classification of various
families of 2-arc transitive graphs defined by the kind of 2-arc transitive automorphism
groups they admit, see for examplg5-7,10,12,13,15]

The finite 2-arc transitive graphs form part of the family of finite symmetric graphs, and
our paper arose from studying this larger class of graphs from a geometric viewpointinitiated
by Gardiner and the second authof{&). We observed that some situations arising from
this geometric approach led to a 2-arc transitive group action on a quotient of a symmetric
graph even when the original graph was not 2-arc transitive. To us this was unexpected, as
most quotients of symmetric graphs (even, as we mentioned in the previous paragraph, most
quotients of 2-arc transitive graphs) are not themselves 2-arc transitive. Thus the questions
that inspired and guided our investigations, and for which we obtain partial answers in this
paper are:

Question 1.1.When does a quotient of a symmetric graph admit a natxaic transitive
group actior? If there is such a quotient, what information does this give us about the
original graph?

We give a brief introduction below to the geometric framework f{8hfor studying finite
symmetric graphs. This enables us to explain the context of our work. Our main results are
Theoremsdl.3and1.4, stated in Sectiod.2 below.

1.1. Symmetric graphs: the context of our investigations

Let I be afinite graph ansla positive integer. As-arcof I' is a sequencex, o1, . . . , &)
of s + 1 vertices ofl" such that;, o; 1 are adjacentfor =0, ...,s — 1 ando; 1 # a;11
fori =1,...,s — 1. If I’ admits a groufs of automorphisms such th&tis transitive on
the vertex seV¥ (I') of I' and, under the induced action, transitive on theAset,(I") of
s-arcs of[', thenI is said to bg G, s)-arc transitive A 1-arc is usually called aarc, and
a (G, 1)-arc transitive graph is called@symmetric graphWe will useArc (I') in place
of Arc 1(I'). Let H be a group acting transitively on a finite $&tA partition 5 of 2 is
said to beH-invariantif B* € Bforall B € Bandh € H, whereB" := {¢" : o € B}. If
thetrivial partitions {{o} : o € Q} and{Q} are the onlyH-invariant partitions of2, then
H is said to beprimitive on Q2; otherwiseH is imprimitiveon Q. If every nontrivial normal
subgroup oH is transitive on(2, thenH is said to beguaskprimitive on Q.

For mostG-symmetric graphd”, the groupG acts imprimitively onV (I'), and " is
called arimprimitive Gsymmetric graphin this casey (I") admits a nontriviaG-invariant
partition 5. For any partition3 of V (I"), we define thejuotient graph i of I with respect
to B as the graph with vertex s& in which B, C € B are adjacent if and only if there
exists an edge of joining a vertex ofB to a vertex ofC. If I" is G-symmetric,5 is G-
invariant, andl'g has at least one edge, then each bloclBda$ an independent set &f
and ' is G-symmetric (althouglc may not act faithfully onV (I'g) = B, see e.g[2,
Proposition 22.1pr [16]). In this case, for block®, C adjacent inl", the subgraph of
induced byB U C with isolated vertices deleted is a bipartite graph, denotefi[lB; C].
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SinceB is G-invariant, up to isomorphisnd;[ B, C]is independent of the choice of adjacent
blocksB andC. We will usek to denote the size of each part of the bipartitiod o8B, C],
andv := |B| the size of blocks of3, so that XKk <wv. Also for« € V(I') we denote
by I'(z) the neighbourhoodf o in I', that is, the set of vertices adjacentatpand set
I'(B) :=Uyep I' (). Similarly I'3(B) denotes the neighbourhood®in I'5.

As remarked above, for &G, 2)-arc transitive graph’, I'g is not usually(G, 2)-arc
transitive, and several examples of this situation are givgb,B] with G = Sz(¢) and
Redq). However, it was shown ifiL6] that I'g is (G, 2)-arc transitive if3 is G-normal
(that is, if B is the orbit set of a vertex-intransitive normal subgrousifand also ifl" is
small(that is,I'(C) N I'(D) N B # ¥ wheneverC, D € I'g(B)). In both of these cases,
k = v andI is av-fold coverof I'i, thatis,I'[B, C] = v - K2 forms a matching of edges.

The aim of this paper is to study other types@invariant partitions3 for which the
guotient graphl'i is (G, 2)-arc transitive, whether or not the original graphhas this
property. The investigation was motivated by a resulflih] where, fork = v — 1>2,
necessary and sufficient conditions were obtained fgrto be (G, 2)-arc transitive, and
a useful construction (see the start of Secfid®) was given for imprimitiveG-symmetric
graphsl” with this property, starting with &G, 2)-arc transitive graph. Our first main result,
Theoreml.3, gives necessary and sufficient conditionsifgrto be(G, 2)-arc transitive in
the case where =v — 2>1.

The stabiliser irG of a vertexz € V(I') is denoted by . For a group theoretic property
P, a G-symmetric graph is said to beG-locally P if, for some vertexx (and hence for
each vertext), the permutation group induced I8y, on I'(«) has property. We will also
call the property of G, 2)-arc transitivity a local property since@symmetric graph”
is (G, 2)-arc transitive if and only if it i<5-locally 2-transitive. Since a 2-transitive group
is primitive and a primitive group is quasi-primitive, it follows th@t, 2)-arc transitivity
implies G-local primitivity, which in turn impliesG-local quasi-primitivity. Thus none of
these local properties is in general inherited by a quotient gfgphn analogy with the
case of(G, 2)-arc transitivity discussed above, we pose the following question for local
properties of symmetric graphs.

Question 1.2. For a G-symmetric grapH” with a nontrivial Ginvariant partition 3 such
that I' is G-locally P, for some property, under what conditions i’z also Glocally P?

Each of the propertie&7, 2)-arc transitivity,G-local primitivity andG-local quasi-prim-
itivity is inherited by 'z from I" if Bis G-normal or if B is small with at least three blocks,
(see[16] or [17, Theorem 4.1)] This fact leads to a useful induction scheme, which in
a sense reduces the study of nonbipaitiie2)-arc transitive graphgz-locally primitive
graphs and>-locally quasi-primitive graphs to that of the corresponding graphs @ith
quasi-primitive onV (I') (seg[17, Section 4for details). In the case wheke= v andI is
G-locally primitive, I' is av-fold cover of'g. Moreover ifk = v—1>2 andI” is G-locally
primitive, thenI'z is even(G, 2)-arc transitive. Also in this casE is analmost coveiof
I'g in the sense thadf[B, C]~ (v — 1) - K2. (Se€[8, Theorem 5.4hnd its amended form
[25, Corollary 4.2])

Here, in Theoren.4, we answer Questioh2in the casé& = v—2> 1. For such a graph
(I', B), there are exactly two verticesBthat are not adjacent to any vertex@iWe denote
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by (B, C) the set of these two verticesBf There is a naturally defined multigrapf with
vertex seB and with an edge joining the two vertices(d, C) for eachC € I'g(B) (see
Section2 for details). Thus we “decompose” the grapinto the “product” of three “factor
graphs”, namely "z, I'[B, C] andI"3, which mirror the structure af. This decomposition
is in accordance with the geometric approach to imprimitive graphs introdud8y amd
further developed ifi9,11,21,22,23,24,25]n our situation the third componeht plays
the role of the 1-desigf(B) introduced in[8]: for a G-symmetric graph” admitting a
nontrivial G-invariant partitions, D(B) is defined to have point sé&t € B and blocks
I'(C) N B (with possible repetitions) for all' € I'g(B), with incidence given by inclusion.
If k = v —2>1, thenD(B) and the multigrapt™® determine each other. We will use
Simple (I'?) to denote the underlying simple graphiof.

For notation and terminology for graphs and groups not defined in the paper, the reader is
referred tg2,4], respectively. For a group acting onQ2 and forX C Q, we denote by x
andG (x) the setwise and pointwise stabilisers@h G, respectively. For € Q, the subset
0% = {0f : g € G} of Qs called theG-orbit on Q containingx. The groupG induces an
action on the cartesian produetx 2, and aG-orbit onQ x Q is called aG-orbital on Q.
The action ofG on  is said to beaithful if G, = 1, andregularif it is transitive and
the stabiliseiG, = 1 fora € Q. Suppose the group acts on two set®; andQ,. If there
exists a bijection) : Q1 — Q2 such that)(a8) = (Y(2))8 for all « € Q27 andg € G, then
the actions ofG on Q1 and (2, are said to b@ermutationally equivalenBy a graph we
mean a simple graph, whereas a multigraph means multiple edges may exist. The valency
of aregular graph or multigraphis denoted byal (I"), and the union off vertex-disjoint
copies ofl" is denoted by: - I'. For two graphd™ andX, thelexicographic producof I" by
2, denoted by'[X], is the graph with vertex sét(I") x V(2) such that«, f), (y, ) are
adjacent if and only if eithex, y are adjacent if", ora = y andf3, ¢ are adjacent iiX.

1.2. Main results

The construction introduced [i1] is as follows. For a regular graph, a subset of
Arc 3(2) is calledself-pairedif (z, g, ¢/, 17') € 4 implies (7, ¢/, 0, 1) € A. For such &,
the 3arc graphZ(X, 4) of X with respect to4 is the graph with vertex seirc (2) in
which (o, 1), (¢/, 7') are adjacent if and only ifz, o, ¢/, 7)) € 4. The reader is referred to
[11,22,23,25For results concerning this construction.

Our first main result tells us whefig is (G, 2)-arc transitive ifk = v — 2> 1. It also
gives us information about the structurelafRecall that, forlC € I'g(B), (B, C) denotes
the pair of vertices oB that are not adjacent to any vertex@fSet

P={B,C) | (B,C)ecArc (I'p}. (1)

In generalP is just a set of pairs of vertices @f, with repetitions allowed. However in
certain cases, when we ignore multiplicitigsjs a partition ofV (I).

Theorem 1.3. Supposd’ is a Gsymmetric graph admitting a nontrivial-{avariant par-
tition B such thatt = v — 2>1. ThenI'i is (G, 2)-arc transitive if and only ifl'? is a
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simple graph and one of the following occurs

(@) v =3,andI'® ~ K3 is G g-symmetri¢
(b) v=4,visevenandI'® =~ (v/2) - K».

Moreover, in case(a)we havel' >~ (|V(I')|/2) - K2, 'z is trivalent and any finite trivalent
(G, 2)-arc transitive graph can occur asg. In case(b), the setP defined in (1) is a

partition of V (I') with block size? that is a refinement aB; furthermore if v = 4 then

I'p=~s - C, for some integers >1 and ¢ >3, and eitherl"~2st - Ko or I =st - Cy; if

v>6 thenI'p is isomorphic to &3-arc graph ofI'g with respect to a selpaired Gorbit

onArc 3(I'g).

The reader is referred to Rema&ldin Section3 for the reconstruction af from I'z via
I'p in the main case > 6. The next theorem shows thatkit= v — 2 andv is sufficiently
large, then G, 2)-arc transitivity is inherited by iz from I', and moreover we can derive a
lot of structural information about, I'g andI"p. A graph is said to b&G, 3)-arc regular,
whereG < Aut(2), if Gis regular on the set of 3-arcs bf Following[2, Proposition 18.1]
atrivalent graph i$G, 3)-arc regular if and only if it iSG, 3)- but not(G, 4)-arc transitive.
For an integen >4 and a connected graghof girth at least 4, if there exists a sgtof
n-cycles ofX such that each 2-arc & is contained in a uniqua-cycle of £, thenX' is
called[14] anear ngonal graphwith respect tcf.

Theorem 1.4. Supposd is a Gsymmetric graph admitting a nontrivial-{Bvariant par-
tition B such thatk = v — 2> 3, whereG <Aut(I'). Suppose further thaf is (G, 2)-arc
transitive. Therv = 20 is evenI'? ~4 - K», andI'i is (G, 2)-arc transitive of valency.
Moreover one of the following holdsvhereP is the partition defined ifl).

(a) I'p is (G, 2)-arc transitive and is an almost cover bfz. Also I is a 2-fold cover of
I'p and has valency — 1. If 'z is connectegthen eitherl ' is a complete graph and
I'p is known explicitlyor I'g is a near ngonal graph with respect to a-@rbit on
n-cycles ofl ', for some even integer> 4.

(b) 0 =3,I' =s-C; for somes, r witht >3, I'g is a(G, 3)-arc transitive trivalent graph
andI'p = E(I'g, 4) which is4-valent and is notG, 2)-arc transitive where4 is the
set of all3-arcs of I'g. If I' is connected then it i6G, 3)-arc regular, and moreover
any connected trivaleniG, 3)-arc regular graph can occur a'3.

Remark 1.5. (a) For the cases of smallemamelyk = v—2 = 1 or 2, we can determine at
least one of the graphs I'z, I'® andI'[B, C], and we know exactly wheFig is (G, 2)-arc
transitive. See Theorem5for a full account of the results.

(b) The assumption thdty is connected does not sacrifice generality: it is satisfied in
particular whenl" is connected. The possibilities fétp in part (a) withI'z a complete
graph were classified if9], or see[23, Theorem 3.19]For each possibility in part (a)
for I'p with given 2-arc transitive automorphism grohi there is at least one gragh
satisfying the hypotheses of the theorem. For example just form the standard (unconnected)
2-fold cover by taking two vertex-disjoint copies bf> andG = H x Z».

(c) A delicate construction will be given in Constructiér2to prove the statement of the
last sentence of Theoret4(b).



84 M.A. Iranmanesh et al. / Journal of Combinatorial Theory, Series B 94 (2005) 79-99

The proofs of Theorem$.3 and1.4 will be given in Section$ and4, respectively. At
one point of the proof of Theoreth3we use the main result ¢£1], and for the proof of
Theoreml.4(a) we need some results[B] and the main result ¢25]. The key information
needed in our proofs is the structureldf, which will be explained in Sectio. We will
show that the underlying simple graimple (I'?) of I'8 is G g-vertex-transitive and
G p-edge-transitive (and; z3-symmetric in some cases), whe@mple (I'?) is defined
to be the graph obtained frof®® by identifying multi-edges. Moreovegimple (I'?) is
either connected or isomorphic to the graphi2) - K> (see Theoren.1).

In a subsequent papkr8] we will focus on the case wheié? is simple and is a cycle.
In this case we show that there are close relationships betWgesnd maps on closed
orientable surfaces. SEE3] for details.

2. The structure of the graph T'®

From now on we assume théts aG-symmetric graph admitting@-invariant partition
B such thatt = v — 2> 1. Recall that, foB, C) € Arc (I'g), (B, C) denotes the pair of
vertices ofB that are not adjacent to any vertex@ P is the set of these pairs, addf
is the multigraph with vertex s& and with an edge joining the two vertices @, C),
for all C € I'g(B). Thus, counting multiple edges, the number of edgesbiis equal
to the valency := val (I'g) of I'g. Sincel is G-symmetric, up to isomorphisth? is
independent of the choice & Also, themultiplicity of each edge of 2 is a constantn
say. In this section, we will study the structurelof and its influence on that df. The
following theorem is fundamental to our subsequent discussion. It asserts that the underlying
simple graptSimple (I'®) of I'? is aG p-vertex-transitive and z-edge-transitive graph.
Moreover, Simple (I'?) is either connected or its edges form a perfect matching. For
o € V(') we denotel'g(x) := {C € B : a € I'(C)}, and setr := |I'g(a)|. We use
gcd (-, -) to denote the greatest common divisor.

Theorem 2.1. Supposd’ is a Gsymmetric graphwhere G <Aut(I"), admitting a non-
trivial G-invariant partition B such thatc = v — 2>1. ThenG acts onI'? as a group
of automorphismsand Simple (I'®) is a G z-vertextransitive andG z-edgetransitive
graph. Alsoval (I'y =b—r =2b/v,b=v-val (I'?)/2,r = (v—2)-val (I'?)/2,
and m dividegycd (b — r, 2b). Moreover one of the following occurs

(a) I'B is connecterin this case G is faithful o8 and onArc (I'g) in its induced actions
(b) v is even Simple (I'8)~(v/2) - K5, and hence i z-symmetric. In this casehe
following hold

(i) P (defined in(1)) is the set of connected componentd 8ffor B € B, and so is
a G-invariant partition of V(I") which has block siz& and refines5, and is such
that G sy = G(py;

(i) the mappingp interchanging the two vertices in each block/is an involution
that centralises G and leavés invariant, thus (G, ¢) < Zwr Aut(I'p), and one
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Fig. 1. The three possibilities in Theoréi(b)(ii): (1) I'TP, Q] = 2.K2; (2)I'[P, Q] = K22, (3)['[P, Q] = K>.

of the following occurs

(1) I'is a2-fold cover ofl"p, ¢ € Aut(I);

(2) I'=I'plK2l, ¢ € Aut(l);

(3) I'[P, Q1= K> for adjacent blocks?, O of P, ¢ € Aut(I"), and G is faithful on
BandP.

The three cases in (b)(ii) above are illustrated in Eig\Note that in the second cafds
determined completely b¥/p. Theoren2.1 has the following consequence:

Corollary 2.2. LetI", G, Bbe as above. Suppose G is not faithfulbihenSimple (I'?)
= (v/2)-K>,and the setof; 5)-orbits onV (I') is the partitionP. Furthermore either(1) or
(2)in Theoren®.1(b)(ii) holds and if(1) holds and/"p is connected the@ 5, = (@) = Z>.

Proof of Theorem 2.1 Itis easy to check that the induced actioryf onB preserves the
adjacency of 2, and sol'”? admitsG 3 as a group of automorphisms a6g is transitive
on B. For two arcs(a, f3), (o, 7) of Simple (I'®) with  # 7, there exisiC, D € I'g(B)
such that(B, C) = {«, } and (B, D) = {«, y}. It follows from the definition of(B, C)
and (B, D) thaty is adjacent to a vertex in C, andf is adjacent to a vertex in D. By
the G-symmetry ofI', there existgy € G such that(y, §)¢ = (f, ¢). This implies that
g € Gg andC® = D. Hence(B, C)$ = (B, D), and thereforda, 5} = {a, y}. Since
G p is transitive orB, it follows thatSimple (I'?) is G g-vertex- andG z-edge-transitive.
Note that each vertex iB is incident with all butval (I'®) blocks of'g(B). So we have
r +val (I'®) = b. Counting the number of edges bfincident with a vertex oB we
havevr = b(v — 2). It follows thatval (I'!) = b —r = 2b/v, b = v-val (I'?)/2
andr = (v —2) -val (I'®)/2. Sincemis a divisor ofval (I'®), itis a divisor ofb — r
and 2.

The G z-vertex- andG p-edge-transitivity ofSimple (I'®) implies that the connected
components of 2, sayB® ..., B(®), form aG g-invariant partition ofB. From this it
is straightforward to show that the s@tof such components, fd running overs, is a
G-invariant partition ofV (I') and is a refinement d8. We claim that eithe©@ = B (that
is, I'® is connected) and (a) holds, Orhas block size 2.

Suppose first that each blo@? of Q contains at least three vertices. l@te B be
such that B, C) c B®. We shall prove thaf'? is connected. Suppose to the contrary that
I'B has at least two connected components and B \ (B, C), andy € B, Recall
that each vertex i \ (B, C) is adjacent to some vertex @\ (C, B). In particular, there
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exist 5,0 € C \ (C, B) that are adjacent to, y, respectively. By th&-symmetry of[’,
there existg € G such that(a, f)$ = (y, 0). SinceB is G-invariant, this implies thag
fixes B andC setwise. Thug fixes setwise the compone#st? of I'® containing(B, C),
and hence = o8 € (BM)8 = BD which is a contradiction. Thus® is connected. Thus,
sincev = |B| >3, distinct vertices oB are incident with distinct sets of edgesIof. This
in turn impliesl"g () # I'p(p) for distincte, f € B. Therefore, if an elemergof G fixes
setwise all the blocks d8, then for eachB € B, g fixes each vertex iB and hence fixes
each vertex of". Thereforeg = 1 andG is faithful on B. This in turn implies thaG is
faithful on Arc (I'g) in its induced action, and hence (a) holds.

In the remaining cas@ has block size 2, that is, each component8fcontains only
two vertices which are joined by multiple edges. In this case it is clear thaits even,
val (I'®y=m, Q=P ={(B,C): (B, C) € Arc (I'g)} (ignoring the multiplicity of each
(B, C)), andSimple (I'?) is isomorphic to(v/2) - K» and hence i z-symmetric. Since
P is a refinement oB3 and sinceB3 is G-invariant, we haves py € G(5). On the other
hand, ifg € Gz, theng fixes setwise each block &f and hence fixes setwise each block
(B, C) of P. Sog € Gp). ThereforeG ) = G p). Clearly the mapping interchanging
the two vertices in each blodl3, C) of P is an involution and leaves invariant. For any
oe V(I andg € G,letp = s, =a?andf’ = B?, sothatfx, o’} and{f, f'} are blocks
of P. SinceP is G-invariant we have8’ = (¢)¢. Hencen?é = (o)8 = B = B? = as?.
Since this holds for an arbitrary vertext follows thatpg = g¢ and hence centralise$.
Now ¢ fixes each block of setwise and s¢G, @) < Z>wr Aut(I'p). Since the bipartite
graphI[P, Q] is Gp,o;-symmetric, for adjacent blockB, Q of P, it follows that one
of the following occurs: (1)['[P, Q=2 - Ko, that is, " is a 2-fold cover ofl'p; (2)
I'[P, Q1=K>, thatis,I ~I'p[K3]; (3) '[P, Q]=K>. In the first two cases, it is easy
to see thatp preserves the adjacency bf so¢ € Aut(I). In the last case (3)p maps
adjacent vertices to nonadjacent vertices, which impliesghgatAut(I") andG is faithful
onP. SinceG ) = G(py, in this cases is faithful onB as well. [

Proof of Corollary 2.2 SinceG is not faithful onB3, case (b) of Theorer.1 holds, and
henceSimple (I'8) is (v/2) - K» and G@) = Gp). Since the blocks of have size 2
andGy = Gepy # 1, it follows that the set o5 )-orbits in V(I') is P. Also, since
Gy # 1, one of (1) or (2) of Theorerd.1 (b)(ii) holds. Suppose that (1) holds ahgb is
connected. Leg € G\ {1}. Thenginterchanges the two vertices in some blocotay

P = {a, f}. Let Q = {y, 0} € P be adjacent t®, say« is adjacent toy andf; is adjacent
todin I'. Sinceg interchanges andf and fixesQ setwise, th&s-symmetry ofl” implies
thatg interchanges andé as well. Similarly,g interchanges the two vertices in any block
of P adjacent toQ. Continuing this process, we conclude that, sifigeis connectedg
interchanges the two vertices in each blockpthatis,g = ¢. ThusG 5, = (¢). O

Remark 2.3. (a) Fromb = v-val (I'8)/2itfollows thatval (I'®) is even ifv is odd, and
thatv/gcd (v, 2) is a divisor ofb.

(b) In the three possibilities (1)—(3) of Theor&mi(b) (ii) the parameters with respect to
Pare(Qvp=kp=2,rp=bp=val (I); Quvp=kp =2,rp=>bp =val (I)/2;
and Qvp = 2,kp =1,rp =val (I, bp =val (I')/2, respectively.
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(c) A generic construction of a family of examples satisfying Theogei(a) is given
in Example2.4below. These examples will be used in the next two sections. In this family
the graphl” has connected components of size 2, but the quofigninay be an arbitrary
symmetric trivalent graph. The smallest member of this family of graphs is shown i&.Fig.

(d) As seen in Theorer®.1, G p is vertex- and edge-transitive on the underlying graph
Simple (I'?). However,G 3 may not be symmetric oSimple (I'?). In fact, it is even
possible to have different subgrou@s H <Aut(I") with G, H both symmetric o™ and
leaving B invariant such thaBimple (I'?) is G g-symmetric but notd z-symmetric. See
Example2.4 (b) below for a simple example of this situation.

Example 2.4. (a) LetX be any trivalenG-symmetric graph. Defing to be the graph with
vertex sefArc (2) and edge s€{(o, 1), (7, 6)} : (0, 7) € Arc (2)}. Thenl” = n-K», where
n = |Arc (2)|/2 = 3|V (2)|/2, andIl” is aG-symmetric graph admitting = {B(c¢) : ¢ €
V(2)} as aG-invariant partition, wheré (o) = {(a, 7) : T € X(0)}. For this partition we
havek = v — 2 = 1, ' ~ K3 for B = B(0), andI'3 >~ via the bijectionB(¢) — o.
Let X (o) = {7, 1, ¢}. From the definition of " we haveX is (G, 2)-arc transitives G4, is
transitive orx (o) \{t} = {, ¢} & G istransitive or{(a, 1), (0, &)} < G = (GB)(0,7) IS
transitive on the neighbourhood@f, 7) in I'? (whereB = B(0)) < I'? is G g-symmetric.

The construction above can produce@bkymmetric graphg” admitting aG-invariant
partition3 such thak = v —2 = 1 andI'® ~ K3: for if I' is such a graph then we construct
as follows an isomorphism frorfi to the graphl” obtained by applying this construction
to the quotientl"'z. For this pair(I", B), we haveb = 3 andm = r = 1 by Theoren®.1,
and hencd 3 is trivalent. For eacliB, C) € Arc (I'g), there is a unique vertex, sayin
B which is adjacent to a vertex i@, anda — (B, C) defines a bijection fronV (I') to
Arc (I'p). It can be verified that this bijection is an isomorphism frbrto . Moreover,
I'p is (G, 2)-arc transitives G g is doubly transitive on"g(B) < G (¢ is transitive on
I's(B)\ {C} < (Gp)y (= Gy = Gpc) is transitive onl '8 (o)) < I'B is G g-symmetric.

(b) Let2 = K4 andG = S4 (Symmetric group) oA4 (alternating group), witl@ acting
on V(2) in its natural action. The' is trivalent andG-symmetric, and the construction
above gives rise td' = 6 - K>, see Fig2. Let B = B(0). If G = $4 thenGg ~S3 and
I'® is G g-symmetric; whilst ifG = A4 thenG5 ~ 73 andI'? is notG z-symmetric. Note
that in the former casEg =~ K4 is (G, 2)-arc transitive buf” contains no 2-arcs.

In view of the above, one might ask for conditions under wtsample (I'%) is G-
symmetric. The following lemma provides a sufficient condition for this to be true. For
a € B, we denote by(I'2(x))¢ the “complementary neighbourhood graph” defined to
have vertex sef'® («) (the neighbourhood of in I'?) and edges of the forrf, y} with
B.v € I'B(x) not adjacent iT"2.

Lemma 2.5. Supposd’ is a Gsymmetric graph admitting a nontrivial €avariant par-
tition B such thatk = v — 2> 1. If (I'®(x))¢ is connectedthen Simple (I'?) is G-
symmetric. In particularif I'® has no triangles theSimple (I'8) is G z-symmetric

Proof. Let (a, f§), (., y) be distinct arcs oSimple (I'%). As shown in the first paragraph
of the proof of Theoren2.1, there existg € Gp such that® = f and{«, f}¢ = {a, y}.
If a8 =y, thenp® = o and hencey, f) = (a, y)¢, implying that, y are adjacent i3,
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(@) (b)

Fig. 2. ()2 = Kg4; (b) I' = 6 - Ko, with highlighted edges, is obtained froky by using the construction in
Example2.4.

In other words, if$, y are not adjacent if'?, then we haveg € G, and ¥ = 7. In the

case wherg, y are adjacent it 2, the connectedness af ® (x))¢ assures that there exists

apathf = B, Bq. ... B, =7 of (I'B(2))¢ joining f andy. Sop;_;, B; are not adjacent in

I'8 for 1<i <n, and thus the argument above ensures that there gxists5, such that

pi_1% = p;. Settingg = g1---gn, theng € G, andp® = 7, and the proof is complete.
O

3. Proof of Theorem 1.3

Throughout this section, we shall assume that a G-symmetric graph admitting a
nontrivial G-invariant partition3 such thatt = v — 2> 1. Before proceeding to the proof
of Theoreml1.3 we derive some general information about such a giaphbet B € 5.
Recall thatm denotes the multiplicity of each edge Bf. For each (unordered) pair 8
of adjacent vertices af %, we define am-element subsetr, ) of I'z(B) by

(o, By :={C € I'p(B) : (B, C) = {a, p}}, and
setL(B) := {(a, p) : o, p adjacent in[?}.

It follows from the definition thatt € (B, C) < (B, C) = {«, ff} for somef in B &

C € (a, p) for somef in B. Thus, each bloclkC of I'g(B) belongs to one and only
one member ofZ(B). The proof of the following lemma is straightforward and hence is
omitted.

Lemma 3.1. The setL(B) is a G g-invariant partition of I's(B), and the induced ac-
tion of Gg on L(B) is permutationally equivalent to the action 6fz on the edge set of
Simple (I'®). In particular,

(@) if m = 1 (thatis I'? is simplg, then the actions ofi 3 on I'z(B) and on the edges of
I'8 are permutationally equivalenand
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(b) if m>2,thenI"z is G-locally imprimitive and in particulail 'z is not (G, 2)-arc tran-
sitive.

In case (b) of Theorer2.1, we haveSimple (I'’)~(v/2) - K and V(I adnlits a
secondG-invariant partition” that is a refinement oB and has block size 2. Let :=
{PeP:Pc B}andB := {B : B € B}. Recall that, for a&5-symmetric grapiI, B),
D(B) is the 1-design with point s& and blocks (with possible repetitionsYC) N B for
all C € I'p(B). The following lemma can be easily verified.

Lemma 3.2. Suppose thaf'? is disconnectedso casgb) of Theoren®.1holds. Then the
following hold

(a) Bis a Ginvariant partition of P, and the parameters, £, b, 7 with respect tqI'p, B)
satisfyd = v/2,k =0 —1,b = b and# = r.

(b) I'p)g=Ts.

(c) D(B) has no repeated blocks if and onlyli{ B) has no repeated block&hich in turn
is true if and only if "8 is simple(that is I'? ~ (v/2) - K>).

The definition of a 3-arc graph was given at the beginning of Sedtiarit was proved
in [11, Theorem1}hat, if k = v — 1>2, thenD(B) contains no repeated blocks if and
only if I'g is (G, 2)-arc transitive, and in this cageis isomorphic to a 3-arc graph &fz
with respect to a self-paire@-orbit on 3-arcs ofl 5. Applying this to(I'p, 5) and using
Lemma3.2, we obtain the following result which proves Theorérfor largev. Note that
we needv > 6 in the proof to ensure that> 3.

Theorem 3.3. Supposd” is a G-symmetric graph admitting a nontrivial{Bvariant par-
tition B such thatt = v — 2>4 and I'? is disconnected. Thefiz is (G, 2)-arc transitive
if and only if '8 is a simple grapHthat is I'® ~ (v/2) - K>), and in this casd"p (with P

as given in Theorer@d.1 (b)) is isomorphic to &-arc graph=(I', 4) of I'g with respect
to some selpaired Gorbit 4 onArc 3(I'g).

Proof. We use Lemma.2 without mentioning each time. Sinae=6, B'is aG-invariant
partition of P (the vertex set of p) with k = 9 —1>2. Applying [11, Theorem 1jve
have:I's is (G, 2)-arc transitives (I'p)g is (G, 2)-arc transitive> D(B) contains no
repeated blocks> D(B) contains no repeated blocks I'? is a simple graph. Moreover,
in this case we know bjl1, Theorem 1ihatl'p =~ Z(I'i, 4) for some self-paire@-orbit
AonArc 3(I'g). O

We are now ready to prove TheorehB The proof uses repeatedly the fact thaba
vertex-transitive graply' is (G, 2)-arc transitive if and only iiG, is doubly transitive on
2(o) for someo € V().

Proof of Theorem 1.3 Suppose firstthdfz is (G, 2)-arc transitive. Thel g is 2-transit-
ive onI'z(B) (see the comments above), and LenBukb) implies thatl'? is a simple
graph. Suppose that = 3. ThenI'? ~ K3 and thush = val (I'y) = 3 andr = 1 by
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Theoren?.1 It follows that' = (|V (I)|/2) - K>, I'g is trivalent, and ™ is G z-symmetric

from the discussion in Exampke4(a). (TheG z-symmetry ofl"? also follows from Lemma
3.1(a), the 2-transitivity ofz 3 onI'z(B) and the simplicity of "2.) Moreover, for any finite
trivalent(G, 2)-arc transitive grap®, the graph” constructed in Examp[2 4together with

the partitionB3 therein satisfies the conditions of Theorér8 and is such that = 3 and

I'px=2.

Now suppose that >4. ThenI'® must contain two independent edges (that is, sharing
no common vertex). Howevee  is 2-transitive on the edges 6, so every pair of edges
of I'? isindependent. In other wordsijs even and™® ~ (v/2) - K, and in particulal™? is
G p-symmetric. By Theorer.1(b), V (I") admits aG-invariant partitioriP with the desired
properties. Moreover, if = 4 thenb = v/2 = 2 and sd gz =s - C; for some integers>1
andr >3. Thus, sincd’[B, C] is either 2. K5 or C4, we havel =~2st - Ky or I’ st - Cg,
respectively. Ifv > 6 then by Theoren3.3, I'p is isomorphic to a 3-arc graph éfg with
respect to some self-pair€torbit onArc 3(I'g).

To complete the proof we must prove thaf#f is simple and either (a) or (b) of Theorem
1.3 holds, thenl's is (G, 2)-arc transitive. Suppose then thaf is simple and suppose
first that (a) holds. Theil's is (G, 2)-arc transitive by the discussion in Exam@&l(a).
(Another proof: Sincd ® ~ K3 is G 3-symmetric,G 3 is 2-transitive on the edges &%,
and hences p is 2-transitive onl'g(B) by Lemma3.1(a).) Finally suppose that (b) holds.
If v =4thenI'®~2. Ky, b = v/2 = 2 and sol'5 is a union of disjoint cycles. Then
sincel g is G-symmetric, it is(G, 2)-arc transitive. In the general case 6, v is even,
andI'? ~ (v/2) - K». Here the(G, 2)-arc transitivity of['5 follows from Theoren8.3. This
completes the proof. [

Remark 3.4. (a) In the general case of Theordn8 wherev > 6, an interesting situation
arises. The groug p is not 2-transitive omB, for otherwisel’® would be a complete graph,
but the vertices oB can be paired in such a way th@j is 2-transitive on the set of these
pairs. See Exampl.4for such a triple(I’, G, B) with v = 6.

(b) Also in this casd” can be constructed froifiz via the following two steps:

(i) Constructl'p from I'g using the 3-arc graph construction.
(i) Then construct” from I'p.

The first step is under our control in a sense. For the second step, recall that we have
only three possibilities listed in (b)(ii) of Theorethl In Theorem2.1 (b)(ii))(1), I is a

2-fold cover ofl"p, and so we can make use of a standard covering graph construction (see
[2, Chapter 19} In Theorem2.1 (b)(ii)(2), ' =~ I'p[K2] so I is known. The remaining

case, Theorerd.1 (b)(ii)(3), is very hard to manage in general. An attempt to construct
imprimitive symmetric graphs with at most one edge between any two blocks is given in
[24, Section 4]

(c) Under the assumption thals is (G, 2)-arc transitive, Theorerh.3 shows that pos-
sibility (a) of Theorem2.1 occurs if and only ifv = 3, and in this casé’ is determined
uniquely byI's. HereI'® ~ K3, and the permutation group induced by on B is S3
sincel'8 is G z-symmetric. The smallest example of such graphs i#sgmmetric graph
I' = 6 - K, with (G, 2)-arc transitive quotienf’s =~ K4, whereG = S4, which was con-
structed in Exampl@.4(b).
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4. Proof of Theorem 1.4

The main result of this section, Theorehb, determines precisely whekiz inherits
(G, 2)-arc transitivity fromI” in the case wherg = v — 2> 1. This is a rather technical
and detailed result and Theorelm follows immediately from it. In the proof we use the
following lemma which is a direct consequencd1®, Lemma 2.2(a)$ince our condition
k> (v+1)/2implies that3 is small, thatis] (C)NI'(D)N B # @ forall C, D € I'g(B).

Lemma 4.1. Suppose thai” is a (G, 2)-arc transitive graph admitting a nontrivial G
invariant partition B of block sizev such that the size k of each part of the bipartite graph
I'[B, C]is greater tharw/2. ThenI 5 is also(G, 2)-arc transitive

In the proof of Theorernd.5we will also use the following construction. Followirig]
we define ars-pathin a graph as as-arc identified with its reversgarc. Thus, ars-path
is an undirected walk of lengthin which successive edges are distinct.

Construction 4.2. Let X2 be a connected trivalerfG, 3)-arc regular graph, wheré <
Aut(2). Let o € V(2), and letX(o) = {t,n,¢}. Let X(n) = {o, 4, u} and X(e) =
{a, &, {}. SinceX has girth at least 4Z, Proposition 17.2] we have{/, u} N {z,e} = ¥
and{¢, {} N {t, n} = @. (But it may happen thatd, u} N {&, {} # @.) By the (G, 3)-arc
transitivity of X, there existg € G such that(u, 5, 0, )¢ = (t, 0,1, ). Setd = &8,
DefineQ to be the orbit unde® of the 4-pathunoeé. Then (see Lemmad.3), tanAl € Q,
and4 := (unoeé, 1onl0)¢ is a self-paireds-orbital onQ. Definel” to be the graph with
vertex sef2 and arc setl. See Fig3 for an illustration of this construction.

Lemma 4.3. With the notation of Constructiofh.2,

(@) tonil € Q, and A = (unoeé, 1on)0)¢ is a selfpaired Gorbital on Q;

(b) the graphI” is G-symmetric admitting the Gwariant partition B := {B(s) : ¢ €
V(2)}, whereB(o) is the set ofi-paths of2 with middle vertex,. Moreover | B(o)| =
6,'g=2X andIl’, G, B satisfy all the conditions of Theoret(b).

Proof. In fact, we haveG,w;(Zz)2 by [2, 18f], and hence each nonidentity element of
G o is an involution. Since® = A, we haver$ # /, and similarlyi® # 7. Butg swaps
o andn and hence swaps(¢) andX(y), so it follows thatt® = p andA® = ¢. Thus, we
have(z, 6,1, )¢ = (1, 1, 6, €). Setgp = (8. Then®® = ¢ and¢® = { for otherwise we
would have(y, 1, o, ¢, é)gz = (u, 1, 0, ¢, ), whichimplies tha is (G, 4)-arc transitive, a
contradiction. S@ swaps(u, 4, g, ¢, &) and(z, g, n, 4, ), and (a) follows. Thus the graph
I' with vertex set® and arc setl is well-defined and undirected. One can check fha

a G-symmetric graph of valency 2. Henée= s - C; for somes, r with ¢+ > 2 and[I is
(G, 2)-arc transitive. One can also check tifat= {B(0) : ¢ € V(2)} is aG-invariant
partition of 2 with block size|B(g)| = 6 such thatl'z =~ X via the bijectionB(o) — g,
for ¢ € V(2). For any two adjacent blockB(s) and B(n), there are exactly two vertices
in B(g), namelyéeatx and{satx, which are not adjacent to any vertex B{5), where
*, * are the two vertices i (t) other thars. Moreover,I'[B(o), B()]=~4 - K>, and two
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Fig. 3. lllustration of Constructio#.2 The right-hand side shows the case whEre- K3 3, which is trivalent
(G, 3)-arc regular, wher& = Aut(X) = S3wr Z5.

vertices of[” are in the same block of the partitign (defined in ()) if and only if they
correspond to two 4-paths i@ with the same 2nd, 3rd and 4th coordinates. TherefGre,
G andB satisfy all the conditions of Theorein4(b). [

Note that the graplt” is determined entirely by the 4-patlyoeé of X, and the graph
constructed in the same way by using the 4-pathe( is isomorphic td" via the bijection
generated bymoe — unoel. The construction above is a special case of a more general
construction, called the flag graph construction, introducg@4r23] by the third author.
In line with this general constructid24], we may interpret the 4-pafyocé as the flag
(o1, {07, nu, £&}) of the triple system with point sétrc () and block sefor, nu, ££}°.
Also, Constructiord.2 bears some similarity with the 3-arc constructidd] which we
used in the proof of Theorem3. In fact, a 3-ardz, o, ¢’, v) of a graphX can be identified
with the ordered pait(a, 1), (¢’, t")) of arcs ofX, and thus the self-paire@-orbit 4 on
Arc 3(2) required to construct the 3-arc grapliX, 4) can be identified with a self-paired
G-orbital onArc (). Here in Constructiod.2we use a self-paire@-orbital on the set of
4-paths of the graph. Let us illustrate this construction by the following example.

Example 4.4. The smallest trivalentG, 3)-arc regular graph i = K33 with G =
Aut(X) = Sswr Z,. As shown in Fig3, we label the vertices of by 1, 2, 3,4, 5, 6 such
that {{1, 3, 5}, {2, 4, 6}} is the bipartition of2. SinceX is (G, 3)-arc regularG has two
orbits on the set of 4-paths df. The first orbit is the se€q of 4-pathsafydc, where
o, By, 0 €{l,2,...,6}are pairwise distinct and any two consecutive termsgsippo have
different parity, and the second orbit is the §htof 4-pathsxfyot, wherea, 3, 7, 0,7 €
{1, 2,..., 6} are pairwise distinct and any two consecutive termgfipot have different
parity. (Note thatfydo andady f represent the same 4-path, and se gt andtdyfa.)
The graphs obtained by applying Constructib@to Qg and{1 are both isomorphic to
9. C4, and moreover the situation mentioned in Renarka) occurs. In the following we
will give details for the case dBg. One can check that = (12561, 45234 is the only self-
pairedG-orbital on2y, and hence the graghobtained from Constructiof.2 by usingQ2g
is unique. Also, one can check that, in thénvariant partition3 = {B(@) : i = 1,2, ..., 6}
of Qp, each blockB(i) consists of the six 4-pathgiydo with y = i. Sincel” has arc set
A, the edges of " have the form{aij o, yjidy}, wherei, j € {1, 2, ..., 6} have different
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Table 1
Results table for Theoresh5

Line v r rs I'gis (G, 2)-arc transitive ?
1 3 (vnNl/2) - Ko K3 if and only if Ir'Bis G g-symmetric
2 3 m=val (I''>2 — no;Gll;B(B) has a set of 3 blocks
of imprimitivity of sizem
3 4 2t - Ko 2-Kp yes;I'gxs - C;
s=>1,1>3
4 4 st-Cy 2-Kp yes;I'g=xs - Ct
s=>1,t>3
5 4 — Cyqo0rKy no
6 4 m=val (I''>2 — no;GII;B(B) has a set of 2 blocks
of imprimitivity of sizem
7 >4 v =20 is even v- Ko yes;andval (I'g) =0

parity, say, is even and is odd, and{{«, 3}, {7, ¢}, {i, j}} is a partition of{1, 2, ..., 6}.
Consequently, for evepand oddi, I'[B(i), B(j)] = 4 - K2, (B(j), B(i)) = {a* jfo €
Qo 1o € {2,4,6}\ {j}, x B} = {1, 3,5\ {i}}, and(B(i), B(j)) = {y *idy € Qo :
y e {1,3,5)\ {i}, {*, 0} = {2,4,6}\ {j}}. It follows that]' = 9. C4 andI'?") = 3. K>
for eachi € {1,2,...,6}. (The 4-cycle 1256145234 12361, 43654 12561 is a typical
component of.) Each edge of 2®) joins the two elements of som&(i), B(j)), where
j €{1,2,...,6}andj has parity opposite tio Sincel'2%) = 3. K, andI"® admitsG p ;)
as a group of automorphism& ;) is not 2-transitive orB(i). On the other hand, since
I'p=2is (G, 2)-arc transitive, from Lemma.1(a) it follows thatG p(; is 2-transitive on
the edges of %), That is,G p;) is 2-transitive on the three pai(8(i), B(j)) of elements
of B(i).

We now state Theored.5. Recall thaim denotes the multiplicity of each edge B6f .

Theorem 4.5. Suppose thal” is a (G, 2)-arc transitive graph admitting a nontrivial G
invariant partition 5 such thatc = v — 2> 1, whereG <Aut(I'). Then one of the lines of
Tablel holds andI'[B, C]= (v — 2) - K2 for adjacent block®3, C of 5 in all cases except
line 4 wherel'[ B, C] =~ C4. Moreover examples exist for each of the lines of Tabland
further, if v > 4, then one of the following holda/hereP is the partition defined irfl).

(@) I'p is (G, 2)-arc transitive and is an almost cover dfz. Also I is a 2-fold cover of
I'p and has valency — 1. If I'z is connectegthen eitherl "5 is a complete graph and
I'p is known explicitlyor I'z is a near ngonal graph with respect to a-@rbit on
n-cycles ofl g, for some even integer> 4.

(b) v =3,I'=s-C, forsomes, r withr >3, I'g is a(G, 3)-arc transitive trivalent graph
andI'p = E(I'g, 4) which is4-valent and is notG, 2)-arc transitive where4 is the
set of all3-arcs of I'g. If I'g is connected then it i6G, 3)-arc regular, and moreover
any connected trivaleniG, 3)-arc regular graph can occur agg.
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Proof. We first point out that examples exists for each line of Tdblm fact, the graphs
I'inline 1 of Tablel are precisely the graphs obtained from trival@asymmetric graphs
2 by using the construction in Exam@ed4. The graphl” in line 3 of Tablel is isomorphic
to a 2-fold cover of the grapH with vertex setArc (s - C;) and edge s€f{ (g, 1), (1, 9)} :
(g,7) € Arc (s - Cy)}. Similarly, the graph in line 4 of the table is isomorphic to the
lexicographic product off by K, (empty graph on two vertices). The graphs constructed
in Constructiort.2and Lemmat.3are examples for line 7 of Table In Example<t.6-4.8
we will construct graphs in lines 2, 5 and 6 of Tattlgespectively. Thus, the existence of
graphs in each line of Tablkis established.

Now let us proceed to the core part of the proof. Supposelthata (G, 2)-arc transi-
tive graph admitting a nontriviab-invariant partition3 such thatt = v — 2>1, where
G <Aut(I'). Let B € Bandua € B. Sincel is (G, 2)-arc transitive G, is 2-transitive on
I'() and hence is primitive of'(2). It is easily checked thdf (o) N C : C € I'g(x)} is a
G 4-invariant partition of (o). Therefore this partitionistrivial, thatis, eithdr()NC| = 1,
orl'e) NC = T'().

Suppose that'(«) € C andval (I'>2. Thenr = |[I'g(®)] = |{C}| = 1 andk =
v—2>val (I')>2. Sincel is G-symmetric,C containsl’(y) for each of thek = v — 2
verticesy € B\ (B, C). Letf € (B, C). ThenI'g(p) = {D} for someD < I'g(B), and
D containsl'(d) for v — 2 verticess of B. It follows thatv = 4,m = 1,I'®~2. K>, and
I'[B, C]1= K22 = C4. Thus bothl” andI'z have valency 2. Sbz s - C; for somes > 1,
t>3,and ad [B, C]1=Cy4, we havel st - C4 and line 4 in Tabldl holds.

From now on we will assume thilf(«) N C| = 1, and hence thdi[B, C1~ (v —2) - K>
for adjacent blocksB, C of B. This implies that, for each patp, y) = {C1, ..., Cy} of
L(B) (defined at the start of Secti@), and eachx € B \ {f, y}, each of theC; contains a
unique vertex of (), and| ", (I'(x) N C;) is a block of imprimitivity for the action o& ,
onI'(x). SinceG, is primitive onI"(«), this block is trivial so eithem: = 1 orm = |I'(a)|.
Suppose thatr = |I'(a)| =2. ThenI'i is G-locally imprimitive and in particular is not
(G, 2)-arc transitive by Lemma&.1 Also I'(«) < (J/L; C; for each of thev — 2 vertices
o€ B\ {p, 7}, soby Theoreml.3 v = 3 or 4. Ifv = 3, thenG g preserves oh'g(B) a set
of three blocks of imprimitivity of sizen = val (I'), and line 2 in Tabld holds. Ifv = 4,
then we must havBimple (I'!)~2. K>, soG p preserves o' z(B) a set of two blocks
of imprimitivity of sizem = val (I') > 2, and line 6 in Tabld holds.

Thus we may assume that = 1, that is,I'’? is simple. Suppose that = 3. Then
I'8~K3 b=23r=1and hencé = (|V(I')|/2) - K». By Theoreml.3 'z is (G, 2)-arc
transitive if and only ifl'® is G g-symmetric, and thus line 1 in Tablieholds. Suppose
next thatv = 4. ThenI'?~2. K,, C4 or K4, andb = 2, 4or6 andr = 1, 2 or 3
respectively. In the first case there exist integeedl, > 3 such thaf 'z, I' are as described
inline 3 of Tablel, andl'z is (G, 2)-arc transitive. In the last two casEg is not(G, 2)-arc
transitive by Theorem.3, and thus line 5 in Tablé holds.

We may therefore assume that> 4, I'[B, C]~ (v — 2) - K», andI'? is simple. Let
P be asinl). Thenk = v — 2> (v + 1)/2 and hence by Lemma.1, I'z is (G, 2)-
arc transitive. By Theorerh.3, v = 20 is even,I'® ~ 1 . K5, and hence the valency 6% is
. Thus, line 7 in Tabld holds. Also from Theorert.3, I'p is isomorphic to a 3-arc graph
E(I'p, 4) of I'g with respect to a self-paire@-orbit 4 on Arc 3(I'). Since the edges of
I'[B, C] form a matching, only cases (1) or (3) of Theor2ri(b)(ii) can occur. Let3 be
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the partition of P defined before Lemma.2. As we noted there is G-invariant and has
blocks of sized = v/2>3.

Suppose that case (1) of Theor@m(b)(ii) holds so that" is a 2-fold cover ofl p. By
Lemmad4.1 applied toP, I'p is (G, 2)-arc transitive. Also in this casEp is an almost
cover of I'g. If I'g is a complete graph, then all possibilities for the 3-arc graph§of
were classified if9] (see als§23, Theorem 3.1%pr an explicit list), and thug'p is known
explicitly. If I'z is connected but not complete, then it has girth at least 4 aéGt,i®)-arc
transitive. By[25, Theorem1.1jhere exists an even integet=4 such thatl'z is a near
n-gonal graph with respect to@-orbit onn-cycles ofl'z. Thus (a) holds.

Fmally suppose that case (3) of Theor2ri(b)(ii) holds, so thaG is faithful on 5. Since

I'8 ~(v/2)- K>, itfollows that, for(B, C) € Arc (I'g), Fp[B C] has valency 2, and hence
isr - C, wherer > 1 anduis even and: > 4. Thenru is the number of edges éf between
BandCsoru = v — 2. AlsoI has valency — 1.

We claim thatG  is 3-transitive on"'z(B) of degreev. By Lemma3.1(a), the actions of
G onI'z(B) and the edges df? are permutationally equivalent, o has valency. If
C € I'p(B) andu € (B, C), thenG, has index 2 inG g ¢. Then sinceG, is 2-transitive
onI'(x) and since each of the blocks Bf(B) \ {C} contains exactly one point df(x), it
follows thatG, is 2-transitive ol z(B) \ {C} and henc&  is 3-transitive o'z (B). This
proves the claim. It follows tha® 5 is 2-transitive and hence primitive a@h\ (B, C). Since
G p induces a group of automorphismslos[ [B, C], this implies tharp[B Cl=C, (that
is,r = 1) andu/2<3. Thust = 1+ u/2 = 3 or 4. In the following we will show further
that the casé = 4 cannot happen.

Suppose for a contradiction thiat= 4. Let G1(B) denote the kernel of the action 6fg
onI'g(B).We claimthatG1(B) acts trivially on the connected componen{ gf containing
B. Suppose to the contrary that this is not so. ThaB) must act non-trivially o'z (C)
for C € I'g(B). Now G1(B) is nhormal inGgc, andG g¢ inducesSs on I's(B) \ {C},
and henceG1(B) is transitive onl'g(B) \ {C}. ThereforeG1(B) is transitive on the 3
blocks 9\f7iin C \ (C, B). This contradicts the fact that g induces a subgroup db;2
onI'p[B, C]l=Cs. ThusG1(B) is trivial on the connected component Bf containing
B. In particularG1(B) fixes setwise the blocks ? in B U C, and because of the nature
of I'[B, C] we see thatG1(B) must fix B U C pointwise. ThusG1(B)< G, < Gp, and
so|Gp : G1(B)| is divisible by 8 G, : G1(B)|. However,Gg/G1(B) =S4 and hence
|Gy : G1(B)| divides 3. This is a contradiction sin€g, inducesSz on I'(z) and its actions
onI'(x) andI'p(B) \ {C} are permutationally equivalent.

Now the only possibility i$ = 3. In this casefp[B C] ~Cs=K>s2,s0I'5is(G, 3)-arc
transitive andl'p =~ =(I'g, 4) with 4 the set of all 3-arcs of g (see[11]). Sincel's is
trivalent, it follows from the definition of a 3-arc graph thap is 4-valent. Moreover, since
the edges ofp[B C] do not form a matching'» cannot bgG, 2)-arc transitive. Also in
this casdl” has valency 2 s& = s - C; for somes, ¢t with z > 2. In the following we will
prove that 'z is (G, 3)-arc regular if itis connected. We note first that each vertafi” can
be labelled by a 4-path dfg in the following way. Letx € (B, C) andI'(x) = {y, ¢}, and
lety € D ando € E, whereB, C, D, E are blocks of5 such that'g(B) = {C, D, E}. Let
y € (D, F)yando € (E, I), for blocksF, I of B. The 3-arc transitivity of ' implies that its
girth is at least 42, Proposition 17.2]HenceD # I andE # F (but F = I may happen),
and(F, D, B, E, I) is a 4-arc ofl'z. Now we label the vertex by the 4-pathF DBEI of
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I'p. One can verify that the s€& of such 4-paths, fox running overV (I'), is aG-orbit on
the set of all 4-paths df 5. Moreover, the actions @ on V (I") andQ are permutationally
equivalent via this labelling. Sinceis the unique vertex whose labelling 4-path has prefix
FDBE, it follows that any elemerq of G fixing the 3-arc(F, D, B, E) must fix each of
F, D, B, E, I setwise and hence fix the 3-am®, B, E, I). Since the connectednessig$
implies that each block df appears in at least one membehfrepeating this procedure
we know thafg fixes setwise each block . SinceG is faithful on3 by Corollary2.2, as
mentioned earlier, it follows that = 1. Therefore['5 is (G, 3)-arc regular and hence is
not (G, 4)-arc transitive. Conversely, by Constructiér®, any connected trivalent, 3)-
arc regular graplt’ gives rise to &G, 2)-arc transitive grapli’ = s - C; which admits a
G-invariant partition3 such thak = v — 2 = 4 andl'g ~ 2. Thus (b) holds, and the proof
is complete. O

Example 4.6. (a) The graphs in line 2 of Tablehavek = v — 2 = 1 (andval (I'g) =
3m by Theorem?2.1), and hence can be constructed by using the flag graph construction
given in[24, Section 4] In particular, such graphs with I'g a complete graph (that is,
I'p>~Ks,+1) are (G, 2)-arc transitive graphs constructed[24, Corollary 4.4(b)](with
v = 3 andr = m >2). For instance, ifi24, Corollary 4.4(b)jwe may take the desigh
to be the Fano plane R& 2) and setG = PGL(3, 2). Then, since in P@, 2) any two
points lie in exactly one line, frorf24, Example 4.5(b)jve get the graptt” with vertices
the (point, line)-flags of P@, 2) such that two such flags are adjacent if and only if they
have the same line entry. Thus, we hdve 7 - K3, andI is a(G, 2)-arc transitive graph
admittingB = {B(0) : ¢ a point of PG2, 2)} as aG-invariant partition, wheré (o) is the
set of (point, line)-flags of P@, 2) with point entrys. For B we havek = v —2 =1 and
m = 2, andl” satisfies the conditions in line 2 of Takle

(b) We can also construct an infinite family of graphs satisfying line 2 of Thbleusing
a different approach. Ldtbe a prime witr = 1 (mod 3. Let I" be the graph with vertex
setZ3 x Z, and edge se{{(i, j),(i,j £ 1)} :i € Z3,j € Z;}. Then['=3 . C;. Since
t = 1(mod 3, we may choose € Z, with order 3 inZ;, so thata® = 1(modr) and
1,-1,a, —a, a? —a? are pairwise distinatmod?). Let x, y, z be permutations defined by
i, ) =G j+a), G j)Y = G-, GJ)°=G+1)),forG, j) € Z3x Z,. Then
x,y,z € Aut(l), and hences = (x, y, z) <Aut(l). Clearly,x, y, z have orders, 2, 3,
respectively, andyx)2 = 1. Hence(x, y) = Dy, on each of the three componentsIaf
Also, xz = zx andyz = zy. Thus,|G| = 6t andG is transitive onZ3 x Z;. The stabiliser
of (0,0) in Gis (y)=Z», and it acts doubly transitively oFfi((0, 0)) = {(0, 1), (0, —1)}.
It follows that I' is a (G, 2)-arc transitive graph. Sindeis a prime and:® = 1 (modr),
B ={B;:j € Z;}isapartition oZ3x Z, (the vertex set of ) with block sizev = |B;| = 3,
whereB; = {(0, j), (1, aj), (2, a?j)}. Moreover B is invariant unde6 sincij = Bj1,
B/)f =B_; andBf = B,2; for eachj € Z,. Two blocksB;, B of B are adjacent i3
if and only if j/ — j = +1 (mods), ora(j’ — j) = +1 (modr), ora?(j’ — j) = +1
(modt). Thus, forB we havek = v — 2 = 1, m = 2 andval (I'g) = 6. In particular,
I'g(Bg) = {B1, B_1, B,2, B_,2, B;, B_,} with (0, 0) € Bp adjacent to(0, 1) € B1 and
(0,-1) € B_1,(1,0) € Boto (1,1) € By and(1,—-1) € B_,2, and(2,0) € Bo
to (2,1) € B, and(2, —1) € B_,. Furthermore{{B1, B_1}, {B,2, B_,2}, {Ba, B_4}} IS
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a G p,-invariant partition ofl'g(Bo) with block sizem = 2. Therefore,I” satisfies the
conditions in line 2 of Tabld. The smallest graph thus constructed’i= 3 - C7, which is
obtained by taking = 7 anda = 2. For this smallest graph we havg =~ K-, and the
block B; (j € Z7) of B is given by thgth column of the following 3x 7 array:

00 01 02 03 04 05 06
10 12 14 16 11 13 15
20 24 21 25 22 26 23

In conclusion, in the next two examples we will construct graphs in lines 5 and 6 of
Tablel by using a method similar to that used in Exanglé&b).

Example 4.7. Let I be the graph with vertex sély, x Zg and edge s€{ (i, j), (i, j +1)} :
i €74, € Zg}. Thenl' =4 . Cg. Letx, y, z be permutations oA 4 x Zg defined by

WV LCPAR St i=0,2,
L] =
(i+2j+1+2), i=13

Ly (l? _J)a l=07 23
i, )’ =

and(i, j)* = (G +1,j),fori € Zyandj € Zg. (Thus,(0, j)* = (0, + 1), (1, j)* =
B, j+3).2 ) =2,j+5,3 ) =1, j+7 and(, j))‘2 =(,j+2foralli,.)
Thenx, y, z all preserve the adjacency 6fand hences := (x, y, z) <Aut(l'). Clearly,
x, y, zhave orders &, 4, respectively. One can check thattxy = x~Landy 1zy = z71,
and soy andz2 commute. One can also check thatxz = x~1z2 andz2xz2 = x5. It
follows that H := (x, z) and Hp := (x, z%) are normal inG, and Hy has order 16. Note
that|G : H| = 2 and|H : Hp| = 2. Hence|G| = 64. Clearly,G is transitive on the
vertex setZ4 x Zg of I'. Thus, the stabiliser of0, 0) in G has order 644 x 8) = 2
and hence is equal t). Since(y) is doubly transitive orf"((0, 0)) = {(0, 1), (0, 7)}, it
follows that[I" is (G, 2)-arc transitive. LetBg = (0, 0)*) = {(0, 0), (1, 0), (2, 0), (3, 0)},
By = By ={(0,2.(1.2,(22.(3.2)}, Bs = By = {(0.4), (L 4). (24,3 4}
Bs = BSG =1{(0,6),(1,6),(2,6),(3,6)}, B1= By ={(0,1),(1,7),(2,5), (3,3}, B3 =
B; = {(0,3),(1,1),(2,7),(3,5}, Bs = B; = {(0,5),(1,3),(2,1),(3,7)} andB7 =
By =1{(0,7),(1,5), (2 3), (3, D}. Theny fixes By and B4 and swapsB, and Bg, By and
B7, and B3 and Bs. Also, z fixes By; fori = 0,1, 2,3, and cyclesB; to B3, B3 to Bs,
Bs to By and By to B;. HenceB = {B; : £ = 0,1, ..., 7} is aG-invariant partition of
Z4 x Zg. By the definition ofl", (0, 0) is adjacent tq0, 1) € B1 and(0, 7) € B7, (1,0) to
(1,1) € Bzand(1,7) € By, (2,0)to (2, 1) € Bsand(2, 7) € Bz, and(3,0)to (3, 1) € By
and(3,7) € Bs. Hencel's(Bg) = {B1, B3, Bs, B7}, I'Bo~cy, I'[Bog, B1]=2 - K2 and
k = v —2 = 2. Moreover,Gp, = (y, z) & Dg, and from the actions of andz on 5 it
follows that{{B1. Bs}, { B3, B7}} is aG p,-invariant partition ofl '3(Bo). Therefore s is
not (G, 2)-arc transitive, and’ satisfies all conditions in line 5 of Table In addition, we
havel' s~ K4 4.
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Example 4.8. Lett be a prime such that= 1 (mod 4. Let a be an element oZ; with
order 4, so that* = 1 anda? = —1 (modr). DefineI to be the graph with vertex set
Z4 x Z; and edge sef{(i, j), (i, j £ 1)} :i € Z4,j € Z;}. ThenI' =4 . C,. Letx, y, z
be permutations defined ly, j)* = (i, j + a'), (i, j)* = (i, —j), (i, j)* = (i + 1, j),
for (i, j) € Z4 x Z,. Thenx, y,z € Aut(I') and henceG := (x, y, z) <Aut(I'). From
the definitions ofx, y, z it follows that they have orders 2, 4, respectively, and th&s is
transitive onZ4 x Z,. Also, the stabiliser of0, 0) in G is (y). Since(y) =7, is doubly
transitive onI'((0, 0)) = {(0, 1), (0, —1)}, if follows that I" is (G, 2)-arc transitive. Let
B ={(0, j), (L, ja), (2, —)), (3, —ja)} for j € Z;. ThenB; = By’ andB} = B; 1. For
eachj, we havij = B_,; andy swapsB; andB_;. HenceB3 is aG-invariant partition of
ZsxZ; andG g, = (y, z). Fromthe definition of, (0, 0) € Bopis adjacentt@0, 1) € By and
(0,-1) € B_1,(1,0) € Bgto(1,1) € B_,and(1, —-1) € B,,(2,0) € Boto(2,1) € B_1
and (2, —1) € B1, and(3,0) € Bpto (3,1) € B, and (3, —1) € B_,. It follows that
I's(Bo) = {B1, B_1, Ba, B_a}, I'[Bo, B1]1=2 - K, andI"'® is isomorphic to 2 K» with
each edge repeated twice. Thus,fowve havek = v — 2 =2 andm = val (I') = 2. Note
thaty swapsB; andB_1, andB, andB_,, and thatB; = B_,, B*; = B,, B} = B; and
B*, = B_1. Thus, sinc& g, = (y, z), {{B1, B_1}, {Ba, B_4}} is aG py-invariant partition
of I'g(Bp) with block sizem = 2. Consequentlyl's is not (G, 2)-arc transitive, and”
satisfies all conditions in line 6 of Table The smallest graph thus constructediz 4- Cs,
which is obtained by taking= 5 anda = 2. For this graph the block; (j € Zs) of B is
given by thejth column of the following 4x 5 array:

00 01 02 03 04
10 12 14 11 13
20 24 23 22 21
30 33 31 34 32
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