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Abstract

This paper forms part of a study of 2-arc transitivity for finite imprimitive symmetric graphs, namely
for graphs�admitting an automorphism groupG that is transitive on ordered pairs of adjacent vertices,
and leaves invariant a nontrivial vertex partitionB. Such a groupG is also transitive on the ordered
pairs of adjacent vertices of the quotient graph�B corresponding toB. If in additionG is transitive on
the 2-arcs of� (that is, on vertex triples(�,�, �) such that�,� and�, � are adjacent and� �= �), then
G is not in general transitive on the 2-arcs of�B, although it does have this property in the special
case whereB is the orbit set of a vertex-intransitive normal subgroup ofG. On the other hand,G
is sometimes transitive on the 2-arcs of�B even if it is not transitive on the 2-arcs of�. We study
conditions under whichG is transitive on the 2-arcs of�B. Our conditions relate to the structure of
the bipartite graph induced onB ∪ C for adjacent blocksB,C of B, and a graph structure induced
onB. We obtain necessary and sufficient conditions forG to be transitive on the 2-arcs of one or both
of �,�B for certain families of imprimitive symmetric graphs.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The family of finite 2-arc transitive graphs has been studied intensively ever since
the publication of the seminal results of Tutte[19,20]. Although most quotients of 2-arc
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transitive graphs are not themselves 2-arc transitive, it was shown by the second author[16]
that all normal quotients of 2-arc transitive graphs are 2-arc transitive and are covered by
the original graph. This result led to the study, and in some cases, classification of various
families of 2-arc transitive graphs defined by the kind of 2-arc transitive automorphism
groups they admit, see for example[1,5–7,10,12,13,15].

The finite 2-arc transitive graphs form part of the family of finite symmetric graphs, and
our paper arose from studying this larger class of graphs from a geometric viewpoint initiated
by Gardiner and the second author in[8]. We observed that some situations arising from
this geometric approach led to a 2-arc transitive group action on a quotient of a symmetric
graph even when the original graph was not 2-arc transitive. To us this was unexpected, as
most quotients of symmetric graphs (even, as we mentioned in the previous paragraph, most
quotients of 2-arc transitive graphs) are not themselves 2-arc transitive. Thus the questions
that inspired and guided our investigations, and for which we obtain partial answers in this
paper are:

Question 1.1.When does a quotient of a symmetric graph admit a natural2-arc transitive
group action? If there is such a quotient, what information does this give us about the
original graph?

We give a brief introduction below to the geometric framework from[8] for studying finite
symmetric graphs. This enables us to explain the context of our work. Our main results are
Theorems1.3and1.4, stated in Section1.2below.

1.1. Symmetric graphs: the context of our investigations

Let� be a finite graph andsa positive integer.Ans-arcof � is a sequence(�0, �1, . . . , �s)

of s + 1 vertices of� such that�i , �i+1 are adjacent fori = 0, . . . , s − 1 and�i−1 �= �i+1
for i = 1, . . . , s − 1. If � admits a groupG of automorphisms such thatG is transitive on
the vertex setV (�) of � and, under the induced action, transitive on the setArc s(�) of
s-arcs of�, then� is said to be(G, s)-arc transitive. A 1-arc is usually called anarc, and
a (G,1)-arc transitive graph is called aG-symmetric graph. We will useArc (�) in place
of Arc 1(�). Let H be a group acting transitively on a finite set�. A partition B of � is
said to beH-invariant if Bh ∈ B for all B ∈ B andh ∈ H , whereBh := {�h : � ∈ B}. If
the trivial partitions {{�} : � ∈ �} and{�} are the onlyH-invariant partitions of�, then
H is said to beprimitiveon�; otherwiseH is imprimitiveon�. If every nontrivial normal
subgroup ofH is transitive on�, thenH is said to bequasi-primitiveon�.

For mostG-symmetric graphs�, the groupG acts imprimitively onV (�), and� is
called animprimitive G-symmetric graph. In this case,V (�) admits a nontrivialG-invariant
partitionB. For any partitionB of V (�), we define thequotient graph�B of � with respect
to B as the graph with vertex setB in which B,C ∈ B are adjacent if and only if there
exists an edge of� joining a vertex ofB to a vertex ofC. If � is G-symmetric,B is G-
invariant, and�B has at least one edge, then each block ofB is an independent set of�
and�B is G-symmetric (althoughG may not act faithfully onV (�B) = B, see e.g.[2,
Proposition 22.1]or [16]). In this case, for blocksB,C adjacent in�B, the subgraph of�
induced byB ∪ C with isolated vertices deleted is a bipartite graph, denoted by�[B,C].
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SinceB isG-invariant, up to isomorphism,�[B,C] is independent of the choice of adjacent
blocksB andC. We will usek to denote the size of each part of the bipartition of�[B,C],
andv := |B| the size of blocks ofB, so that 1�k�v. Also for � ∈ V (�) we denote
by �(�) the neighbourhoodof � in �, that is, the set of vertices adjacent to�, and set
�(B) := ⋃

�∈B �(�). Similarly �B(B) denotes the neighbourhood ofB in �B.
As remarked above, for a(G,2)-arc transitive graph�,�B is not usually(G,2)-arc

transitive, and several examples of this situation are given in[5,6] with G = Sz(q) and
Ree(q). However, it was shown in[16] that�B is (G,2)-arc transitive ifB is G-normal
(that is, ifB is the orbit set of a vertex-intransitive normal subgroup ofG), and also if� is
small (that is,�(C) ∩ �(D) ∩ B �= ∅ wheneverC,D ∈ �B(B)). In both of these cases,
k = v and� is av-fold coverof �B, that is,�[B,C] = v ·K2 forms a matching ofv edges.

The aim of this paper is to study other types ofG-invariant partitionsB for which the
quotient graph�B is (G,2)-arc transitive, whether or not the original graph� has this
property. The investigation was motivated by a result in[11] where, fork = v − 1�2,
necessary and sufficient conditions were obtained for�B to be(G,2)-arc transitive, and
a useful construction (see the start of Section1.2) was given for imprimitiveG-symmetric
graphs� with this property, starting with a(G,2)-arc transitive graph. Our first main result,
Theorem1.3, gives necessary and sufficient conditions for�B to be(G,2)-arc transitive in
the case wherek = v − 2�1.

The stabiliser inGof a vertex� ∈ V (�) is denoted byG�. For a group theoretic property
P, aG-symmetric graph� is said to beG-locally P if, for some vertex� (and hence for
each vertex�), the permutation group induced byG� on�(�) has propertyP. We will also
call the property of(G,2)-arc transitivity a local property since aG-symmetric graph�
is (G,2)-arc transitive if and only if it isG-locally 2-transitive. Since a 2-transitive group
is primitive and a primitive group is quasi-primitive, it follows that(G,2)-arc transitivity
impliesG-local primitivity, which in turn impliesG-local quasi-primitivity. Thus none of
these local properties is in general inherited by a quotient graph�B. In analogy with the
case of(G,2)-arc transitivity discussed above, we pose the following question for local
properties of symmetric graphs.

Question 1.2.For a G-symmetric graph� with a nontrivial G-invariant partitionB such
that� is G-locallyP, for some propertyP, under what conditions is�B also G-locallyP?

Each of the properties(G,2)-arc transitivity,G-local primitivity andG-local quasi-prim-
itivity is inherited by�B from � if B isG-normal or ifB is small with at least three blocks,
(see[16] or [17, Theorem 4.1]). This fact leads to a useful induction scheme, which in
a sense reduces the study of nonbipartite(G,2)-arc transitive graphs,G-locally primitive
graphs andG-locally quasi-primitive graphs to that of the corresponding graphs withG
quasi-primitive onV (�) (see[17, Section 4]for details). In the case wherek = v and� is
G-locally primitive,� is av-fold cover of�B. Moreover ifk = v−1�2 and� isG-locally
primitive, then�B is even(G,2)-arc transitive. Also in this case� is analmost coverof
�B in the sense that�[B,C]�(v − 1) · K2. (See[8, Theorem 5.4]and its amended form
[25, Corollary 4.2].)

Here, in Theorem1.4, we answer Question1.2in the casek = v−2�1. For such a graph
(�,B), there are exactly two vertices ofB that are not adjacent to any vertex ofC. We denote
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by 〈B,C〉 the set of these two vertices ofB. There is a naturally defined multigraph�B with
vertex setB and with an edge joining the two vertices of〈B,C〉 for eachC ∈ �B(B) (see
Section2 for details). Thus we “decompose” the graph� into the “product” of three “factor
graphs”, namely�B,�[B,C] and�B , which mirror the structure of�. This decomposition
is in accordance with the geometric approach to imprimitive graphs introduced in[8] and
further developed in[9,11,21,22,23,24,25]. In our situation the third component�B plays
the role of the 1-designD(B) introduced in[8]: for aG-symmetric graph� admitting a
nontrivial G-invariant partitionB, D(B) is defined to have point setB ∈ B and blocks
�(C)∩B (with possible repetitions) for allC ∈ �B(B), with incidence given by inclusion.
If k = v − 2�1, thenD(B) and the multigraph�B determine each other. We will use
Simple (�B) to denote the underlying simple graph of�B .

For notation and terminology for graphs and groups not defined in the paper, the reader is
referred to[2,4], respectively. For a groupG acting on� and forX ⊆ �, we denote byGX

andG(X) the setwise and pointwise stabilisers ofX inG, respectively. For� ∈ �, the subset
�G := {�g : g ∈ G} of � is called theG-orbit on� containing�. The groupG induces an
action on the cartesian product� × �, and aG-orbit on� × � is called aG-orbital on�.
The action ofG on � is said to befaithful if G(�) = 1, andregular if it is transitive and
the stabiliserG� = 1 for � ∈ �. Suppose the groupG acts on two sets�1 and�2. If there
exists a bijection� : �1 → �2 such that�(�g) = (�(�))g for all � ∈ �1 andg ∈ G, then
the actions ofG on �1 and�2 are said to bepermutationally equivalent. By a graph we
mean a simple graph, whereas a multigraph means multiple edges may exist. The valency
of a regular graph or multigraph� is denoted byval (�), and the union ofn vertex-disjoint
copies of� is denoted byn · �. For two graphs� and�, thelexicographic productof � by
�, denoted by�[�], is the graph with vertex setV (�) × V (�) such that(�,�), (�, �) are
adjacent if and only if either�, � are adjacent in�, or � = � and�, � are adjacent in�.

1.2. Main results

The construction introduced in[11] is as follows. For a regular graph�, a subset	 of
Arc 3(�) is calledself-pairedif (
,�,�′, 
′) ∈ 	 implies (
′,�′,�, 
) ∈ 	. For such a	,
the 3-arc graph�(�,	) of � with respect to	 is the graph with vertex setArc (�) in
which (�, 
), (�′, 
′) are adjacent if and only if(
,�,�′, 
′) ∈ 	. The reader is referred to
[11,22,23,25]for results concerning this construction.

Our first main result tells us when�B is (G,2)-arc transitive ifk = v − 2�1. It also
gives us information about the structure of�. Recall that, forC ∈ �B(B), 〈B,C〉 denotes
the pair of vertices ofB that are not adjacent to any vertex ofC. Set

P = {〈B,C〉 | (B,C) ∈ Arc (�B)}. (1)

In generalP is just a set of pairs of vertices of�, with repetitions allowed. However in
certain cases, when we ignore multiplicities,P is a partition ofV (�).

Theorem 1.3. Suppose� is a G-symmetric graph admitting a nontrivial G-invariant par-
tition B such thatk = v − 2�1. Then�B is (G,2)-arc transitive if and only if�B is a



M.A. Iranmanesh et al. / Journal of Combinatorial Theory, Series B 94 (2005) 79–99 83

simple graph and one of the following occurs:

(a) v = 3,and�B�K3 isGB -symmetric;
(b) v�4, v is even, and�B�(v/2) · K2.

Moreover, in case(a)we have��(|V (�)|/2) ·K2, �B is trivalent, and any finite trivalent
(G,2)-arc transitive graph can occur as�B. In case(b), the setP defined in (1) is a
partition of V (�) with block size2 that is a refinement ofB; furthermore, if v = 4 then
�B�s · Ct for some integerss�1 and t�3, and either��2st · K2 or ��st · C4; if
v�6 then�P is isomorphic to a3-arc graph of�B with respect to a self-paired G-orbit
onArc 3(�B).

The reader is referred to Remark3.4in Section3 for the reconstruction of� from�B via
�P in the main casev�6. The next theorem shows that, ifk = v − 2 andv is sufficiently
large, then(G,2)-arc transitivity is inherited by�B from �, and moreover we can derive a
lot of structural information about�,�B and�P .A graph� is said to be(G,3)-arc regular,
whereG�Aut(�), if G is regular on the set of 3-arcs of�. Following[2, Proposition 18.1],
a trivalent graph is(G,3)-arc regular if and only if it is(G,3)- but not(G,4)-arc transitive.
For an integern�4 and a connected graph� of girth at least 4, if there exists a setE of
n-cycles of� such that each 2-arc of� is contained in a uniquen-cycle of E , then� is
called[14] anear n-gonal graphwith respect toE .

Theorem 1.4. Suppose� is a G-symmetric graph admitting a nontrivial G-invariant par-
tition B such thatk = v − 2�3,whereG�Aut(�). Suppose further that� is (G,2)-arc
transitive. Thenv = 2v̂ is even, �B�v̂ · K2, and�B is (G,2)-arc transitive of valencŷv.
Moreover, one of the following holds, whereP is the partition defined in(1).

(a) �P is (G,2)-arc transitive and is an almost cover of�B. Also� is a 2-fold cover of
�P and has valencŷv − 1. If �B is connected, then either�B is a complete graph and
�P is known explicitly, or �B is a near n-gonal graph with respect to a G-orbit on
n-cycles of�B, for some even integern�4.

(b) v̂ = 3,� = s ·Ct for somes, t with t�3,�B is a(G,3)-arc transitive trivalent graph,
and�P = �(�B,	) which is4-valent and is not(G,2)-arc transitive, where	 is the
set of all3-arcs of�B. If �B is connected then it is(G,3)-arc regular, and moreover
any connected trivalent(G,3)-arc regular graph can occur as�B.

Remark 1.5. (a) For the cases of smallerk, namelyk = v−2 = 1 or 2, we can determine at
least one of the graphs�, �B, �B and�[B,C], and we know exactly when�B is (G,2)-arc
transitive. See Theorem4.5for a full account of the results.

(b) The assumption that�B is connected does not sacrifice generality: it is satisfied in
particular when� is connected. The possibilities for�P in part (a) with�B a complete
graph were classified in[9], or see[23, Theorem 3.19]. For each possibility in part (a)
for �P with given 2-arc transitive automorphism groupH, there is at least one graph�
satisfying the hypotheses of the theorem. For example just form the standard (unconnected)
2-fold cover by taking two vertex-disjoint copies of�P andG = H × Z2.

(c) A delicate construction will be given in Construction4.2to prove the statement of the
last sentence of Theorem1.4(b).
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The proofs of Theorems1.3 and1.4 will be given in Sections3 and4, respectively. At
one point of the proof of Theorem1.3we use the main result of[11], and for the proof of
Theorem1.4(a) we need some results in[9] and the main result of[25]. The key information
needed in our proofs is the structure of�B , which will be explained in Section2. We will
show that the underlying simple graphSimple (�B) of �B is GB -vertex-transitive and
GB -edge-transitive (andGB -symmetric in some cases), whereSimple (�B) is defined
to be the graph obtained from�B by identifying multi-edges. Moreover,Simple (�B) is
either connected or isomorphic to the graph(v/2) · K2 (see Theorem2.1).

In a subsequent paper[18] we will focus on the case where�B is simple and is a cycle.
In this case we show that there are close relationships between�B and maps on closed
orientable surfaces. See[18] for details.

2. The structure of the graph �B

From now on we assume that� is aG-symmetric graph admitting aG-invariant partition
B such thatk = v − 2�1. Recall that, for(B,C) ∈ Arc (�B), 〈B,C〉 denotes the pair of
vertices ofB that are not adjacent to any vertex inC, P is the set of these pairs, and�B

is the multigraph with vertex setB and with an edge joining the two vertices of〈B,C〉,
for all C ∈ �B(B). Thus, counting multiple edges, the number of edges of�B is equal
to the valencyb := val (�B) of �B. Since� is G-symmetric, up to isomorphism�B is
independent of the choice ofB. Also, themultiplicity of each edge of�B is a constant,m
say. In this section, we will study the structure of�B and its influence on that of�. The
following theorem is fundamental to our subsequent discussion. It asserts that the underlying
simple graphSimple (�B) of �B is aGB -vertex-transitive andGB -edge-transitive graph.
Moreover,Simple (�B) is either connected or its edges form a perfect matching. For
� ∈ V (�) we denote�B(�) := {C ∈ B : � ∈ �(C)}, and setr := |�B(�)|. We use
gcd (·, ·) to denote the greatest common divisor.

Theorem 2.1. Suppose� is a G-symmetric graph, whereG�Aut(�), admitting a non-
trivial G-invariant partitionB such thatk = v − 2�1. ThenGB acts on�B as a group
of automorphisms, and Simple (�B) is a GB -vertex-transitive andGB -edge-transitive
graph. Also, val (�B) = b − r = 2b/v, b = v · val (�B)/2, r = (v − 2) · val (�B)/2,
and m dividesgcd (b − r,2b). Moreover, one of the following occurs.

(a) �B is connected; in this case G is faithful onB and onArc (�B) in its induced actions.
(b) v is even, Simple (�B)�(v/2) · K2, and hence isGB -symmetric. In this case, the

following hold:

(i) P (defined in(1)) is the set of connected components of�B for B ∈ B, and so is
a G-invariant partition ofV (�) which has block size2 and refinesB, and is such
thatG(B) = G(P);

(ii) the mapping interchanging the two vertices in each block ofP is an involution
that centralises G and leavesB invariant, thus〈G,〉�Z2 wr Aut(�P ), and one
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(1) (2) (3)

Fig. 1.The three possibilities inTheorem2.1(b)(ii): (1)�[P,Q] = 2·K2; (2)�[P,Q] = K2,2; (3)�[P,Q] = K2.

of the following occurs:

(1) � is a2-fold cover of�P ,  ∈ Aut(�);
(2) ���P [K2],  ∈ Aut(�);
(3) �[P,Q]�K2 for adjacent blocksP,Q of P,  �∈ Aut(�), and G is faithful on

B andP.

The three cases in (b)(ii) above are illustrated in Fig.1. Note that in the second case� is
determined completely by�P . Theorem2.1has the following consequence:

Corollary 2.2. Let�,G,B beas above. SupposeG is not faithful onB.ThenSimple (�B)

�(v/2)·K2,and theset ofG(B)-orbits onV (�) is thepartitionP.Furthermore,either(1)or
(2) in Theorem2.1(b)(ii) holds; and if(1)holds and�P is connected thenG(B) = 〈〉�Z2.

Proof of Theorem 2.1. It is easy to check that the induced action ofGB onBpreserves the
adjacency of�B , and so�B admitsGB as a group of automorphisms andGB is transitive
onB. For two arcs(�,�), (�, �) of Simple (�B) with � �= �, there existC,D ∈ �B(B)

such that〈B,C〉 = {�,�} and〈B,D〉 = {�, �}. It follows from the definition of〈B,C〉
and〈B,D〉 that � is adjacent to a vertex� in C, and� is adjacent to a vertexε in D. By
theG-symmetry of�, there existsg ∈ G such that(�, �)g = (�, ε). This implies that
g ∈ GB andCg = D. Hence〈B,C〉g = 〈B,D〉, and therefore{�,�}g = {�, �}. Since
GB is transitive onB, it follows thatSimple (�B) is GB -vertex- andGB -edge-transitive.
Note that each vertex inB is incident with all butval (�B) blocks of�B(B). So we have
r + val (�B) = b. Counting the number of edges of� incident with a vertex ofB we
havevr = b(v − 2). It follows that val (�B) = b − r = 2b/v, b = v · val (�B)/2
andr = (v − 2) · val (�B)/2. Sincem is a divisor ofval (�B), it is a divisor ofb − r

and 2b.
TheGB -vertex- andGB -edge-transitivity ofSimple (�B) implies that the connected

components of�B , sayB(1), . . . , B(�), form aGB -invariant partition ofB. From this it
is straightforward to show that the setQ of such components, forB running overB, is a
G-invariant partition ofV (�) and is a refinement ofB. We claim that eitherQ = B (that
is, �B is connected) and (a) holds, orQ has block size 2.

Suppose first that each blockB(i) of Q contains at least three vertices. LetC ∈ B be
such that〈B,C〉 ⊂ B(1). We shall prove that�B is connected. Suppose to the contrary that
�B has at least two connected components and let� ∈ B(1) \ 〈B,C〉, and� ∈ B(2). Recall
that each vertex inB \ 〈B,C〉 is adjacent to some vertex inC \ 〈C,B〉. In particular, there
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exist �, � ∈ C \ 〈C,B〉 that are adjacent to�, �, respectively. By theG-symmetry of�,
there existsg ∈ G such that(�,�)g = (�, �). SinceB is G-invariant, this implies thatg
fixesB andC setwise. Thusg fixes setwise the componentB(1) of �B containing〈B,C〉,
and hence� = �g ∈ (B(1))g = B(1) which is a contradiction. Thus�B is connected. Thus,
sincev = |B|�3, distinct vertices ofB are incident with distinct sets of edges of�B . This
in turn implies�B(�) �= �B(�) for distinct�,� ∈ B. Therefore, if an elementg of G fixes
setwise all the blocks ofB, then for eachB ∈ B, g fixes each vertex inB and henceg fixes
each vertex of�. Thereforeg = 1 andG is faithful onB. This in turn implies thatG is
faithful onArc (�B) in its induced action, and hence (a) holds.

In the remaining caseQ has block size 2, that is, each component of�B contains only
two vertices which are joined bymmultiple edges. In this case it is clear thatv is even,
val (�B) = m, Q = P = {〈B,C〉 : (B,C) ∈ Arc (�B)} (ignoring the multiplicity of each
〈B,C〉), andSimple (�B) is isomorphic to(v/2) · K2 and hence isGB -symmetric. Since
P is a refinement ofB and sinceB is G-invariant, we haveG(P) ⊆ G(B). On the other
hand, ifg ∈ G(B), theng fixes setwise each block ofB and hence fixes setwise each block
〈B,C〉 of P. Sog ∈ G(P). ThereforeG(B) = G(P). Clearly the mapping interchanging
the two vertices in each block〈B,C〉 of P is an involution and leavesB invariant. For any
� ∈ V (�) andg ∈ G, let� = �g, �′ = � and�′ = �, so that{�, �′} and{�,�′} are blocks
of P. SinceP is G-invariant we have�′ = (�′)g. Hence�g = (�′)g = �′ = � = �g.
Since this holds for an arbitrary vertex� it follows thatg = g and hence centralisesG.
Now  fixes each block ofP setwise and so〈G,〉�Z2 wr Aut(�P ). Since the bipartite
graph�[P,Q] is G{P,Q}-symmetric, for adjacent blocksP,Q of P, it follows that one
of the following occurs: (1)�[P,Q]�2 · K2, that is,� is a 2-fold cover of�P ; (2)
�[P,Q]�K2,2, that is,���P [K2]; (3) �[P,Q]�K2. In the first two cases, it is easy
to see that preserves the adjacency of�, so ∈ Aut(�). In the last case (3), maps
adjacent vertices to nonadjacent vertices, which implies that �∈ Aut(�) andG is faithful
onP. SinceG(B) = G(P), in this caseG is faithful onB as well. �

Proof of Corollary 2.2. SinceG is not faithful onB, case (b) of Theorem2.1holds, and
henceSimple (�B) is (v/2) · K2 andG(B) = G(P). Since the blocks ofP have size 2
andG(B) = G(P) �= 1, it follows that the set ofG(B)-orbits inV (�) is P. Also, since
G(B) �= 1, one of (1) or (2) of Theorem2.1(b)(ii) holds. Suppose that (1) holds and�P is
connected. Letg ∈ G(B) \{1}. Theng interchanges the two vertices in some block ofP, say
P = {�,�}. Let Q = {�, �} ∈ P be adjacent toP, say� is adjacent to� and� is adjacent
to � in �. Sinceg interchanges� and� and fixesQ setwise, theG-symmetry of� implies
thatg interchanges� and� as well. Similarly,g interchanges the two vertices in any block
of P adjacent toQ. Continuing this process, we conclude that, since�P is connected,g
interchanges the two vertices in each block ofP, that is,g = . ThusG(B) = 〈〉. �

Remark 2.3. (a) Fromb = v ·val (�B)/2 it follows thatval (�B) is even ifv is odd, and
thatv/gcd (v,2) is a divisor ofb.

(b) In the three possibilities (1)–(3) of Theorem2.1(b) (ii) the parameters with respect to
P are (1)vP = kP = 2, rP = bP = val (�); (2) vP = kP = 2, rP = bP = val (�)/2;
and (3)vP = 2, kP = 1, rP = val (�), bP = val (�)/2, respectively.
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(c) A generic construction of a family of examples satisfying Theorem2.1 (a) is given
in Example2.4below. These examples will be used in the next two sections. In this family
the graph� has connected components of size 2, but the quotient�B may be an arbitrary
symmetric trivalent graph. The smallest member of this family of graphs is shown in Fig.2.

(d) As seen in Theorem2.1, GB is vertex- and edge-transitive on the underlying graph
Simple (�B). However,GB may not be symmetric onSimple (�B). In fact, it is even
possible to have different subgroupsG,H �Aut(�) with G,H both symmetric on� and
leavingB invariant such thatSimple (�B) is GB -symmetric but notHB -symmetric. See
Example2.4(b) below for a simple example of this situation.

Example 2.4. (a) Let� be any trivalentG-symmetric graph. Define� to be the graph with
vertex setArc (�) and edge set{{(�, 
), (
,�)} : (�, 
) ∈ Arc (�)}. Then� = n·K2, where
n = |Arc (�)|/2 = 3|V (�)|/2, and� is aG-symmetric graph admittingB = {B(�) : � ∈
V (�)} as aG-invariant partition, whereB(�) = {(�, 
) : 
 ∈ �(�)}. For this partition we
havek = v − 2 = 1, �B�K3 for B = B(�), and�B�� via the bijectionB(�) �→ �.
Let �(�) = {
, �, ε}. From the definition of� we have:� is (G,2)-arc transitive⇔ G�
 is
transitive on�(�)\{
} = {�, ε}⇔G�
 is transitive on{(�, �), (�, ε)}⇔G�
 = (GB)(�,
) is
transitive on the neighbourhood of(�, 
) in �B (whereB = B(�)) ⇔ �B isGB -symmetric.

The construction above can produce allG-symmetric graphs� admitting aG-invariant
partitionB such thatk = v−2 = 1 and�B�K3: for if � is such a graph then we construct
as follows an isomorphism from� to the graph�′ obtained by applying this construction
to the quotient�B. For this pair(�,B), we haveb = 3 andm = r = 1 by Theorem2.1,
and hence�B is trivalent. For each(B,C) ∈ Arc (�B), there is a unique vertex, say�, in
B which is adjacent to a vertex inC, and� �→ (B,C) defines a bijection fromV (�) to
Arc (�B). It can be verified that this bijection is an isomorphism from� to �′. Moreover,
�B is (G,2)-arc transitive⇔ GB is doubly transitive on�B(B) ⇔ GBC is transitive on
�B(B) \ {C} ⇔ (GB)� (= G� = GBC) is transitive on�B(�) ⇔ �B is GB -symmetric.

(b) Let� = K4 andG = S4 (symmetric group) orA4 (alternating group), withG acting
on V (�) in its natural action. Then� is trivalent andG-symmetric, and the construction
above gives rise to� = 6 · K2, see Fig.2. Let B = B(�). If G = S4 thenGB

B�S3 and
�B is GB -symmetric; whilst ifG = A4 thenGB

B�Z3 and�B is notGB -symmetric. Note
that in the former case�B�K4 is (G,2)-arc transitive but� contains no 2-arcs.

In view of the above, one might ask for conditions under whichSimple (�B) is GB -
symmetric. The following lemma provides a sufficient condition for this to be true. For
� ∈ B, we denote by(�B(�))c the “complementary neighbourhood graph” defined to
have vertex set�B(�) (the neighbourhood of� in �B ) and edges of the form{�, �} with
�, � ∈ �B(�) not adjacent in�B .

Lemma 2.5. Suppose� is a G-symmetric graph admitting a nontrivial G-invariant par-
tition B such thatk = v − 2�1. If (�B(�))c is connected, thenSimple (�B) is GB -
symmetric. In particular, if �B has no triangles thenSimple (�B) isGB -symmetric.

Proof. Let (�,�), (�, �) be distinct arcs ofSimple (�B). As shown in the first paragraph
of the proof of Theorem2.1, there existsg ∈ GB such that�g = � and{�,�}g = {�, �}.
If �g = �, then�g = � and hence(�,�) = (�, �)g, implying that�, � are adjacent in�B .
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Fig. 2. (a)� = K4; (b) � = 6 · K2, with highlighted edges, is obtained fromK4 by using the construction in
Example2.4.

In other words, if�, � are not adjacent in�B , then we haveg ∈ G� and�g = �. In the
case where�, � are adjacent in�B , the connectedness of(�B(�))c assures that there exists
a path� = �0,�1, . . .�n = � of (�B(�))c joining � and�. So�i−1,�i are not adjacent in
�B for 1� i�n, and thus the argument above ensures that there existsgi ∈ G� such that
�i−1

gi = �i . Settingg = g1 · · · gn, theng ∈ G� and�g = �, and the proof is complete.
�

3. Proof of Theorem 1.3

Throughout this section, we shall assume that� is aG-symmetric graph admitting a
nontrivialG-invariant partitionB such thatk = v − 2�1. Before proceeding to the proof
of Theorem1.3 we derive some general information about such a graph�. Let B ∈ B.
Recall thatm denotes the multiplicity of each edge of�B . For each (unordered) pair�,�
of adjacent vertices of�B , we define anm-element subset〈�,�〉 of �B(B) by

〈�,�〉 := {C ∈ �B(B) : 〈B,C〉 = {�,�}}, and

setL(B) := {〈�,�〉 : �,� adjacent in�B}.
It follows from the definition that� ∈ 〈B,C〉 ⇔ 〈B,C〉 = {�,�} for some� in B ⇔
C ∈ 〈�,�〉 for some� in B. Thus, each blockC of �B(B) belongs to one and only
one member ofL(B). The proof of the following lemma is straightforward and hence is
omitted.

Lemma 3.1. The setL(B) is a GB -invariant partition of�B(B), and the induced ac-
tion ofGB onL(B) is permutationally equivalent to the action ofGB on the edge set of
Simple (�B). In particular,

(a) if m = 1 (that is, �B is simple), then the actions ofGB on�B(B) and on the edges of
�B are permutationally equivalent; and
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(b) if m�2, then�B is G-locally imprimitive and in particular�B is not(G,2)-arc tran-
sitive.

In case (b) of Theorem2.1, we haveSimple (�B)�(v/2) · K2 andV (�) admits a
secondG-invariant partitionP that is a refinement ofB and has block size 2. Let̂B :=
{P ∈ P : P ⊂ B} andB̂ := {B̂ : B ∈ B}. Recall that, for aG-symmetric graph(�,B),
D(B) is the 1-design with point setB and blocks (with possible repetitions)�(C) ∩ B for
all C ∈ �B(B). The following lemma can be easily verified.

Lemma 3.2. Suppose that�B is disconnected, so case(b) of Theorem2.1holds. Then the
following hold.

(a) B̂ is a G-invariant partition ofP, and the parameterŝv, k̂, b̂, r̂ with respect to(�P , B̂)

satisfyv̂ = v/2, k̂ = v̂ − 1, b̂ = b and r̂ = r.
(b) (�P )B̂��B.
(c) D(B̂) has no repeated blocks if and only ifD(B) has no repeated blocks,which in turn

is true if and only if�B is simple(that is, �B�(v/2) · K2).

The definition of a 3-arc graph was given at the beginning of Section1.2. It was proved
in [11, Theorem1]that, if k = v − 1�2, thenD(B) contains no repeated blocks if and
only if �B is (G,2)-arc transitive, and in this case� is isomorphic to a 3-arc graph of�B
with respect to a self-pairedG-orbit on 3-arcs of�B. Applying this to(�P , B̂) and using
Lemma3.2, we obtain the following result which proves Theorem1.3for largev. Note that
we needv�6 in the proof to ensure thatv̂�3.

Theorem 3.3. Suppose� is a G-symmetric graph admitting a nontrivial G-invariant par-
tition B such thatk = v − 2�4 and�B is disconnected. Then�B is (G,2)-arc transitive
if and only if�B is a simple graph(that is, �B�(v/2) · K2), and in this case�P (withP
as given in Theorem2.1 (b)) is isomorphic to a3-arc graph�(�B,	) of �B with respect
to some self-paired G-orbit 	 onArc 3(�B).

Proof. We use Lemma3.2 without mentioning each time. Sincev�6, B̂ is aG-invariant
partition ofP (the vertex set of�P ) with k̂ = v̂ − 1�2. Applying [11, Theorem 1]we
have:�B is (G,2)-arc transitive⇔ (�P )B̂ is (G,2)-arc transitive⇔ D(B̂) contains no
repeated blocks⇔ D(B) contains no repeated blocks⇔ �B is a simple graph. Moreover,
in this case we know by[11, Theorem 1]that�P��(�B,	) for some self-pairedG-orbit
	 onArc 3(�B). �

We are now ready to prove Theorem1.3. The proof uses repeatedly the fact that aG-
vertex-transitive graph� is (G,2)-arc transitive if and only ifG� is doubly transitive on
�(�) for some� ∈ V (�).

Proof of Theorem 1.3. Suppose first that�B is (G,2)-arc transitive. ThenGB is 2-transit-
ive on�B(B) (see the comments above), and Lemma3.1(b) implies that�B is a simple
graph. Suppose thatv = 3. Then�B�K3 and thusb = val (�B) = 3 andr = 1 by
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Theorem2.1. It follows that��(|V (�)|/2) ·K2, �B is trivalent, and�B isGB -symmetric
from the discussion in Example2.4(a). (TheGB -symmetry of�B also follows from Lemma
3.1(a), the 2-transitivity ofGB on�B(B) and the simplicity of�B .) Moreover, for any finite
trivalent(G,2)-arc transitive graph�, the graph� constructed in Example2.4together with
the partitionB therein satisfies the conditions of Theorem1.3 and is such thatv = 3 and
�B��.

Now suppose thatv�4. Then�B must contain two independent edges (that is, sharing
no common vertex). However,GB is 2-transitive on the edges of�B , so every pair of edges
of �B is independent. In other words,v is even and�B�(v/2) ·K2, and in particular�B is
GB -symmetric. By Theorem2.1(b),V (�) admits aG-invariant partitionP with the desired
properties. Moreover, ifv = 4 thenb = v/2 = 2 and so�B�s ·Ct for some integerss�1
andt�3. Thus, since�[B,C] is either 2· K2 or C4, we have��2st · K2 or ��st · C4,
respectively. Ifv�6 then by Theorem3.3, �P is isomorphic to a 3-arc graph of�B with
respect to some self-pairedG-orbit onArc 3(�B).

To complete the proof we must prove that if�B is simple and either (a) or (b) of Theorem
1.3 holds, then�B is (G,2)-arc transitive. Suppose then that�B is simple and suppose
first that (a) holds. Then�B is (G,2)-arc transitive by the discussion in Example2.4(a).
(Another proof: Since�B�K3 is GB -symmetric,GB is 2-transitive on the edges of�B ,
and henceGB is 2-transitive on�B(B) by Lemma3.1(a).) Finally suppose that (b) holds.
If v = 4 then�B�2 · K2, b = v/2 = 2 and so�B is a union of disjoint cycles. Then
since�B is G-symmetric, it is(G,2)-arc transitive. In the general casev�6, v is even,
and�B�(v/2) ·K2. Here the(G,2)-arc transitivity of�B follows from Theorem3.3. This
completes the proof. �

Remark 3.4. (a) In the general case of Theorem1.3 wherev�6, an interesting situation
arises. The groupGB is not 2-transitive onB, for otherwise�B would be a complete graph,
but the vertices ofB can be paired in such a way thatGB is 2-transitive on the set of these
pairs. See Example4.4for such a triple(�,G,B) with v = 6.

(b) Also in this case� can be constructed from�B via the following two steps:

(i) Construct�P from �B using the 3-arc graph construction.
(ii) Then construct� from �P .

The first step is under our control in a sense. For the second step, recall that we have
only three possibilities listed in (b)(ii) of Theorem2.1. In Theorem2.1 (b)(ii)(1), � is a
2-fold cover of�P , and so we can make use of a standard covering graph construction (see
[2, Chapter 19]). In Theorem2.1 (b)(ii)(2), ���P [K2] so � is known. The remaining
case, Theorem2.1 (b)(ii)(3), is very hard to manage in general. An attempt to construct
imprimitive symmetric graphs with at most one edge between any two blocks is given in
[24, Section 4].

(c) Under the assumption that�B is (G,2)-arc transitive, Theorem1.3shows that pos-
sibility (a) of Theorem2.1 occurs if and only ifv = 3, and in this case� is determined
uniquely by�B. Here�B�K3, and the permutation group induced byGB on B is S3
since�B isGB -symmetric. The smallest example of such graphs is theG-symmetric graph
� = 6 · K2 with (G,2)-arc transitive quotient�B�K4, whereG = S4, which was con-
structed in Example2.4(b).
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4. Proof of Theorem 1.4

The main result of this section, Theorem4.5, determines precisely when�B inherits
(G,2)-arc transitivity from� in the case wherek = v − 2�1. This is a rather technical
and detailed result and Theorem1.4 follows immediately from it. In the proof we use the
following lemma which is a direct consequence of[16, Lemma 2.2(a)]since our condition
k�(v+1)/2 implies thatB is small, that is,�(C)∩�(D)∩B �= ∅ for all C,D ∈ �B(B).

Lemma 4.1. Suppose that� is a (G,2)-arc transitive graph admitting a nontrivial G-
invariant partitionB of block sizev such that the size k of each part of the bipartite graph
�[B,C] is greater thanv/2.Then�B is also(G,2)-arc transitive.

In the proof of Theorem4.5 we will also use the following construction. Following[3]
we define ans-path in a graph as ans-arc identified with its reverses-arc. Thus, ans-path
is an undirected walk of lengths in which successive edges are distinct.

Construction 4.2. Let � be a connected trivalent(G,3)-arc regular graph, whereG�
Aut(�). Let � ∈ V (�), and let�(�) = {
, �, ε}. Let �(�) = {�, �,�} and �(ε) =
{�, �, �}. Since� has girth at least 4 ([2, Proposition 17.2]), we have{�,�} ∩ {
, ε} = ∅
and{�, �} ∩ {
, �} = ∅. (But it may happen that{�,�} ∩ {�, �} �= ∅.) By the (G,3)-arc
transitivity of �, there existsg ∈ G such that(�, �,�, ε)g = (
,�, �, �). Set� = �g.
Define� to be the orbit underG of the 4-path���ε�. Then (see Lemma4.3), 
���� ∈ �,
and	 := (���ε�, 
����)G is a self-pairedG-orbital on�. Define� to be the graph with
vertex set� and arc set	. See Fig.3 for an illustration of this construction.

Lemma 4.3. With the notation of Construction4.2,

(a) 
���� ∈ �, and	 := (���ε�, 
����)G is a self-paired G-orbital on�;
(b) the graph� is G-symmetric admitting the G-invariant partitionB := {B(�) : � ∈

V (�)},whereB(�) is the set of4-paths of� with middle vertex�.Moreover, |B(�)| =
6, �B�� and�, G, B satisfy all the conditions of Theorem1.4(b).

Proof. In fact, we haveG���(Z2)
2 by [2, 18f], and hence each nonidentity element of

G�� is an involution. Sinceεg = �, we have
g �= �, and similarly�g �= 
. But g swaps
� and� and hence swaps�(�) and�(�), so it follows that
g = � and�g = ε. Thus, we
have(
,�, �, �)g = (�, �,�, ε). Set� = �g. Then�g = � and�g = � for otherwise we
would have(�, �,�, ε, �)g

2 = (�, �,�, ε, �), which implies that� is (G,4)-arc transitive, a
contradiction. Sog swaps(�, �,�, ε, �) and(
,�, �, �, �), and (a) follows. Thus the graph
� with vertex set� and arc set	 is well-defined and undirected. One can check that� is
aG-symmetric graph of valency 2. Hence� = s · Ct for somes, t with t > 2 and� is
(G,2)-arc transitive. One can also check thatB := {B(�) : � ∈ V (�)} is aG-invariant
partition of� with block size|B(�)| = 6 such that�B�� via the bijectionB(�) �→ �,
for � ∈ V (�). For any two adjacent blocksB(�) andB(�), there are exactly two vertices
in B(�), namely�ε�
∗ and�ε�
", which are not adjacent to any vertex inB(�), where
∗, " are the two vertices in�(
) other than�. Moreover,�[B(�), B(�)]�4 · K2, and two
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Fig. 3. Illustration of Construction4.2. The right-hand side shows the case where� = K3,3, which is trivalent
(G,3)-arc regular, whereG = Aut(�) = S3 wr Z2.

vertices of� are in the same block of the partitionP (defined in (1)) if and only if they
correspond to two 4-paths in� with the same 2nd, 3rd and 4th coordinates. Therefore,�,
G andB satisfy all the conditions of Theorem1.4(b). �

Note that the graph� is determined entirely by the 4-path���ε� of �, and the graph
constructed in the same way by using the 4-path���ε� is isomorphic to� via the bijection
generated by���ε� �→ ���ε�. The construction above is a special case of a more general
construction, called the flag graph construction, introduced in[24,23] by the third author.
In line with this general construction[24], we may interpret the 4-path���ε� as the flag
(�
, {�
, ��, ε�}) of the triple system with point setArc (�) and block set{�
, ��, ε�}G.
Also, Construction4.2 bears some similarity with the 3-arc construction[11] which we
used in the proof of Theorem1.3. In fact, a 3-arc(
,�,�′, 
′) of a graph� can be identified
with the ordered pair((�, 
), (�′, 
′)) of arcs of�, and thus the self-pairedG-orbit 	 on
Arc 3(�) required to construct the 3-arc graph�(�,	) can be identified with a self-paired
G-orbital onArc (�). Here in Construction4.2we use a self-pairedG-orbital on the set of
4-paths of the graph�. Let us illustrate this construction by the following example.

Example 4.4. The smallest trivalent(G,3)-arc regular graph is� = K3,3 with G =
Aut(�) = S3 wr Z2. As shown in Fig.3, we label the vertices of� by 1,2,3,4,5,6 such
that {{1,3,5}, {2,4,6}} is the bipartition of�. Since� is (G,3)-arc regular,G has two
orbits on the set of 4-paths of�. The first orbit is the set�0 of 4-paths�����, where
�,�, �, � ∈ {1,2, . . . ,6} are pairwise distinct and any two consecutive terms in����� have
different parity, and the second orbit is the set�1 of 4-paths����
, where�,�, �, �, 
 ∈
{1,2, . . . ,6} are pairwise distinct and any two consecutive terms in����
 have different
parity. (Note that����� and����� represent the same 4-path, and so do����
 and
����.)

The graphs obtained by applying Construction4.2 to �0 and�1 are both isomorphic to
9 · C4, and moreover the situation mentioned in Remark3.4(a) occurs. In the following we
will give details for the case of�0. One can check that	 = (12561,45234)G is the only self-
pairedG-orbital on�0, and hence the graph� obtained from Construction4.2by using�0
is unique.Also, one can check that, in theG-invariant partitionB = {B(i) : i = 1,2, . . . ,6}
of �0, each blockB(i) consists of the six 4-paths����� with � = i. Since� has arc set
	, the edges of� have the form{�ij��, �ji��}, wherei, j ∈ {1,2, . . . ,6} have different
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Table 1
Results table for Theorem4.5

Line v � �B �B is (G,2)-arc transitive ?

1 3 (|V (�)|/2) · K2 K3 if and only if �B is GB -symmetric

2 3 m = val (�)�2 — no;G
�B(B)

B
has a set of 3 blocks

of imprimitivity of sizem
3 4 2st · K2 2 · K2 yes;�B�s · Ct

s�1, t �3
4 4 st · C4 2 · K2 yes;�B�s · Ct

s�1, t �3
5 4 — C4 or K4 no

6 4 m = val (�)�2 — no;G
�B(B)

B
has a set of 2 blocks

of imprimitivity of sizem
7 > 4 v = 2v̂ is even v̂ · K2 yes; andval (�B) = v̂

parity, say,j is even andi is odd, and{{�,�}, {�, �}, {i, j}} is a partition of{1,2, . . . ,6}.
Consequently, for evenj and oddi, �[B(i), B(j)] = 4 · K2, 〈B(j), B(i)〉 = {� ∗ j�� ∈
�0 : � ∈ {2,4,6} \ {j}, {∗,�} = {1,3,5} \ {i}}, and〈B(i), B(j)〉 = {� ∗ i�� ∈ �0 :
� ∈ {1,3,5} \ {i}, {∗, �} = {2,4,6} \ {j}}. It follows that� = 9 · C4 and�B(i) = 3 · K2
for eachi ∈ {1,2, . . . ,6}. (The 4-cycle 12561,45234,12361,43654,12561 is a typical
component of�.) Each edge of�B(i) joins the two elements of some〈B(i), B(j)〉, where
j ∈ {1,2, . . . ,6} andj has parity opposite toi. Since�B(i) = 3·K2 and�B(i) admitsGB(i)

as a group of automorphisms,GB(i) is not 2-transitive onB(i). On the other hand, since
�B�� is (G,2)-arc transitive, from Lemma3.1(a) it follows thatGB(i) is 2-transitive on
the edges of�B(i). That is,GB(i) is 2-transitive on the three pairs〈B(i), B(j)〉 of elements
of B(i).

We now state Theorem4.5. Recall thatmdenotes the multiplicity of each edge of�B .

Theorem 4.5. Suppose that� is a (G,2)-arc transitive graph admitting a nontrivial G-
invariant partitionB such thatk = v − 2�1,whereG�Aut(�). Then one of the lines of
Table1 holds, and�[B,C]�(v − 2) ·K2 for adjacent blocksB,C ofB in all cases except
line 4 where�[B,C]�C4. Moreover, examples exist for each of the lines of Table1, and
further, if v > 4, then one of the following holds, whereP is the partition defined in(1).

(a) �P is (G,2)-arc transitive and is an almost cover of�B. Also� is a 2-fold cover of
�P and has valencŷv − 1. If �B is connected, then either�B is a complete graph and
�P is known explicitly, or �B is a near n-gonal graph with respect to a G-orbit on
n-cycles of�B, for some even integern�4.

(b) v̂ = 3,� = s ·Ct for somes, t with t�3,�B is a(G,3)-arc transitive trivalent graph,
and�P = �(�B,	) which is4-valent and is not(G,2)-arc transitive, where	 is the
set of all3-arcs of�B. If �B is connected then it is(G,3)-arc regular, and moreover
any connected trivalent(G,3)-arc regular graph can occur as�B.
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Proof. We first point out that examples exists for each line of Table1. In fact, the graphs
� in line 1 of Table1 are precisely the graphs obtained from trivalentG-symmetric graphs
� by using the construction in Example2.4. The graph� in line 3 of Table1 is isomorphic
to a 2-fold cover of the graph� with vertex setArc (s · Ct) and edge set{{(�, 
), (
,�)} :
(�, 
) ∈ Arc (s · Ct)}. Similarly, the graph in line 4 of the table is isomorphic to the
lexicographic product of� by K2 (empty graph on two vertices). The graphs constructed
in Construction4.2and Lemma4.3are examples for line 7 of Table1. In Examples4.6–4.8
we will construct graphs in lines 2, 5 and 6 of Table1, respectively. Thus, the existence of
graphs in each line of Table1 is established.

Now let us proceed to the core part of the proof. Suppose that� is a (G,2)-arc transi-
tive graph admitting a nontrivialG-invariant partitionB such thatk = v − 2�1, where
G�Aut(�). Let B ∈ B and� ∈ B. Since� is (G,2)-arc transitive,G� is 2-transitive on
�(�) and hence is primitive on�(�). It is easily checked that{�(�) ∩ C : C ∈ �B(�)} is a
G�-invariant partition of�(�).Therefore this partition is trivial, that is, either|�(�)∩C| = 1,
or �(�) ∩ C = �(�).

Suppose that�(�) ⊆ C andval (�)�2. Thenr = |�B(�)| = |{C}| = 1 andk =
v − 2�val (�)�2. Since� is G-symmetric,C contains�(�) for each of thek = v − 2
vertices� ∈ B \ 〈B,C〉. Let � ∈ 〈B,C〉. Then�B(�) = {D} for someD ∈ �B(B), and
D contains�(�) for v − 2 vertices� of B. It follows thatv = 4, m = 1, �B�2 · K2, and
�[B,C]�K2,2 = C4. Thus both� and�B have valency 2. So�B�s · Ct for somes�1,
t�3, and as�[B,C]�C4, we have��st · C4 and line 4 in Table1 holds.

From now on we will assume that|�(�)∩C| = 1, and hence that�[B,C]�(v−2) ·K2
for adjacent blocksB,C of B. This implies that, for each part〈�, �〉 = {C1, . . . , Cm} of
L(B) (defined at the start of Section3), and each� ∈ B \ {�, �}, each of theCi contains a
unique vertex of�(�), and

⋃m
i=1(�(�)∩Ci) is a block of imprimitivity for the action ofG�

on�(�). SinceG� is primitive on�(�), this block is trivial so eitherm = 1 orm = |�(�)|.
Suppose thatm = |�(�)|�2. Then�B is G-locally imprimitive and in particular is not
(G,2)-arc transitive by Lemma3.1. Also �(�) ⊆ ⋃m

i=1 Ci for each of thev − 2 vertices
� ∈ B \ {�, �}, so by Theorem1.3, v = 3 or 4. Ifv = 3, thenGB preserves on�B(B) a set
of three blocks of imprimitivity of sizem = val (�), and line 2 in Table1 holds. Ifv = 4,
then we must haveSimple (�B)�2 · K2, soGB preserves on�B(B) a set of two blocks
of imprimitivity of sizem = val (�)�2, and line 6 in Table1 holds.

Thus we may assume thatm = 1, that is,�B is simple. Suppose thatv = 3. Then
�B�K3, b = 3, r = 1, and hence��(|V (�)|/2) ·K2. By Theorem1.3, �B is (G,2)-arc
transitive if and only if�B is GB -symmetric, and thus line 1 in Table1 holds. Suppose
next thatv = 4. Then�B�2 · K2, C4 or K4, andb = 2, 4 or 6 andr = 1, 2 or 3
respectively. In the first case there exist integerss�1, t�3 such that�B, � are as described
in line 3 of Table1, and�B is (G,2)-arc transitive. In the last two cases�B is not(G,2)-arc
transitive by Theorem1.3, and thus line 5 in Table1 holds.

We may therefore assume thatv > 4, �[B,C]�(v − 2) · K2, and�B is simple. Let
P be as in (1). Thenk = v − 2�(v + 1)/2 and hence by Lemma4.1, �B is (G,2)-
arc transitive. By Theorem1.3, v = 2v̂ is even,�B�v̂ ·K2, and hence the valency of�B is
v̂. Thus, line 7 in Table1 holds. Also from Theorem1.3, �P is isomorphic to a 3-arc graph
�(�B,	) of �B with respect to a self-pairedG-orbit 	 on Arc 3(�B). Since the edges of
�[B,C] form a matching, only cases (1) or (3) of Theorem2.1(b)(ii) can occur. Let̂B be



M.A. Iranmanesh et al. / Journal of Combinatorial Theory, Series B 94 (2005) 79–99 95

the partition ofP defined before Lemma3.2. As we noted there,̂B is G-invariant and has
blocks of sizev̂ = v/2�3.

Suppose that case (1) of Theorem2.1(b)(ii) holds so that� is a 2-fold cover of�P . By
Lemma4.1 applied toP, �P is (G,2)-arc transitive. Also in this case�P is an almost
cover of�B. If �B is a complete graph, then all possibilities for the 3-arc graphs of�B
were classified in[9] (see also[23, Theorem 3.19]for an explicit list), and thus�P is known
explicitly. If �B is connected but not complete, then it has girth at least 4 as it is(G,2)-arc
transitive. By[25, Theorem1.1]there exists an even integern�4 such that�B is a near
n-gonal graph with respect to aG-orbit onn-cycles of�B. Thus (a) holds.

Finally suppose that case (3) of Theorem2.1(b)(ii) holds, so thatG is faithful onB. Since
�B�(v/2) ·K2, it follows that, for(B,C) ∈ Arc (�B), �P [B̂, Ĉ] has valency 2, and hence
is r · Cu wherer�1 andu is even andu�4. Thenru is the number of edges of� between
B andC soru = v − 2. Also� has valencŷv − 1.

We claim thatGB is 3-transitive on�B(B) of degreêv. By Lemma3.1(a), the actions of
GB on�B(B) and the edges of�B are permutationally equivalent, so�B has valencŷv. If
C ∈ �B(B) and� ∈ 〈B,C〉, thenG� has index 2 inGB C . Then sinceG� is 2-transitive
on�(�) and since each of the blocks of�B(B) \ {C} contains exactly one point of�(�), it
follows thatG� is 2-transitive on�B(B)\{C} and henceGB is 3-transitive on�B(B). This
proves the claim. It follows thatGB is 2-transitive and hence primitive onB \ 〈B,C〉. Since
GB induces a group of automorphisms of�P [B̂, Ĉ], this implies that�P [B̂, Ĉ] = Cu (that
is, r = 1) andu/2�3. Thusv̂ = 1 + u/2 = 3 or 4. In the following we will show further
that the casêv = 4 cannot happen.

Suppose for a contradiction thatv̂ = 4. LetG1(B) denote the kernel of the action ofGB

on�B(B). We claim thatG1(B) acts trivially on the connected component of�B containing
B. Suppose to the contrary that this is not so. ThenG1(B) must act non-trivially on�B(C)

for C ∈ �B(B). Now G1(B) is normal inGBC , andGBC inducesS3 on �B(B) \ {C},
and henceG1(B) is transitive on�B(B) \ {C}. ThereforeG1(B) is transitive on the 3
blocks ofP in C \ 〈C,B〉. This contradicts the fact thatGB induces a subgroup ofD12
on �P [B̂, Ĉ]�C6. ThusG1(B) is trivial on the connected component of�B containing
B. In particularG1(B) fixes setwise the blocks ofP in B ∪ C, and because of the nature
of �[B,C] we see thatG1(B) must fixB ∪ C pointwise. ThusG1(B)�G� < GB , and
so |GB : G1(B)| is divisible by 8|G� : G1(B)|. However,GB/G1(B)�S4 and hence
|G� : G1(B)| divides 3. This is a contradiction sinceG� inducesS3 on�(�) and its actions
on�(�) and�B(B) \ {C} are permutationally equivalent.

Now the only possibility iŝv = 3. In this case�P [B̂, Ĉ]�C4�K2,2, so�B is (G,3)-arc
transitive and�P��(�B,	) with 	 the set of all 3-arcs of�B (see[11]). Since�B is
trivalent, it follows from the definition of a 3-arc graph that�P is 4-valent. Moreover, since
the edges of�P [B̂, Ĉ] do not form a matching,�P cannot be(G,2)-arc transitive. Also in
this case� has valency 2 so� = s · Ct for somes, t with t > 2. In the following we will
prove that�B is (G,3)-arc regular if it is connected. We note first that each vertex� of � can
be labelled by a 4-path of�B in the following way. Let� ∈ 〈B,C〉 and�(�) = {�, �}, and
let � ∈ D and� ∈ E, whereB,C,D,E are blocks ofB such that�B(B) = {C,D,E}. Let
� ∈ 〈D,F 〉 and� ∈ 〈E, I 〉, for blocksF, I of B. The 3-arc transitivity of�B implies that its
girth is at least 4[2, Proposition 17.2]. HenceD �= I andE �= F (butF = I may happen),
and(F,D,B,E, I) is a 4-arc of�B. Now we label the vertex� by the 4-pathFDBEI of
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�B. One can verify that the set� of such 4-paths, for� running overV (�), is aG-orbit on
the set of all 4-paths of�B. Moreover, the actions ofG onV (�) and� are permutationally
equivalent via this labelling. Since� is the unique vertex whose labelling 4-path has prefix
FDBE, it follows that any elementg of G fixing the 3-arc(F,D,B,E) must fix each of
F,D,B,E, I setwise and hence fix the 3-arc(D,B,E, I). Since the connectedness of�B
implies that each block ofB appears in at least one member of�, repeating this procedure
we know thatg fixes setwise each block ofB. SinceG is faithful onB by Corollary2.2, as
mentioned earlier, it follows thatg = 1. Therefore,�B is (G,3)-arc regular and hence is
not (G,4)-arc transitive. Conversely, by Construction4.2, any connected trivalent(G,3)-
arc regular graph� gives rise to a(G,2)-arc transitive graph� = s · Ct which admits a
G-invariant partitionB such thatk = v − 2 = 4 and�B��. Thus (b) holds, and the proof
is complete. �

Example 4.6. (a) The graphs in line 2 of Table1 havek = v − 2 = 1 (andval (�B) =
3m by Theorem2.1), and hence can be constructed by using the flag graph construction
given in [24, Section 4]. In particular, such graphs� with �B a complete graph (that is,
�B�K3m+1) are(G,2)-arc transitive graphs constructed in[24, Corollary 4.4(b)](with
v = 3 andr = m�2). For instance, in[24, Corollary 4.4(b)]we may take the designD
to be the Fano plane PG(2,2) and setG = PGL(3,2). Then, since in PG(2,2) any two
points lie in exactly one line, from[24, Example 4.5(b)]we get the graph� with vertices
the (point, line)-flags of PG(2,2) such that two such flags are adjacent if and only if they
have the same line entry. Thus, we have��7 · K3, and� is a(G,2)-arc transitive graph
admittingB = {B(�) : � a point of PG(2,2)} as aG-invariant partition, whereB(�) is the
set of (point, line)-flags of PG(2,2) with point entry�. ForB we havek = v − 2 = 1 and
m = 2, and� satisfies the conditions in line 2 of Table1.

(b) We can also construct an infinite family of graphs satisfying line 2 of Table1 by using
a different approach. Lett be a prime witht ≡ 1(mod 3). Let � be the graph with vertex
setZ3 × Zt and edge set{{(i, j), (i, j ± 1)} : i ∈ Z3, j ∈ Zt }. Then��3 · Ct . Since
t ≡ 1(mod 3), we may choosea ∈ Zt with order 3 inZ∗

t , so thata3 ≡ 1(modt) and
1,−1, a,−a, a2,−a2 are pairwise distinct(modt). Letx, y, z be permutations defined by
(i, j)x = (i, j + ai), (i, j)y = (i,−j), (i, j)z = (i + 1, j), for (i, j) ∈ Z3 × Zt . Then
x, y, z ∈ Aut(�), and henceG := 〈x, y, z〉�Aut(�). Clearly,x, y, z have orderst,2,3,
respectively, and(yx)2 = 1. Hence〈x, y〉�D2t on each of the three components of�.
Also, xz = zx andyz = zy. Thus,|G| = 6t andG is transitive onZ3 × Zt . The stabiliser
of (0,0) in G is 〈y〉�Z2, and it acts doubly transitively on�((0,0)) = {(0,1), (0,−1)}.
It follows that� is a (G,2)-arc transitive graph. Sincet is a prime anda3 ≡ 1 (modt),
B = {Bj : j ∈ Zt } is a partition ofZ3×Zt (the vertex set of�) with block sizev = |Bj | = 3,
whereBj = {(0, j), (1, aj), (2, a2j)}. Moreover,B is invariant underG sinceBx

j = Bj+1,

B
y
j = B−j andBz

j = Ba2j for eachj ∈ Zt . Two blocksBj , Bj ′ of B are adjacent in�B
if and only if j ′ − j ≡ ±1 (modt), or a(j ′ − j) ≡ ±1 (modt), or a2(j ′ − j) ≡ ±1
(modt). Thus, forB we havek = v − 2 = 1, m = 2 andval (�B) = 6. In particular,
�B(B0) = {B1, B−1, Ba2, B−a2, Ba, B−a} with (0,0) ∈ B0 adjacent to(0,1) ∈ B1 and
(0,−1) ∈ B−1, (1,0) ∈ B0 to (1,1) ∈ Ba2 and (1,−1) ∈ B−a2, and (2,0) ∈ B0
to (2,1) ∈ Ba and(2,−1) ∈ B−a . Furthermore,{{B1, B−1}, {Ba2, B−a2}, {Ba, B−a}} is
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a GB0-invariant partition of�B(B0) with block sizem = 2. Therefore,� satisfies the
conditions in line 2 of Table1. The smallest graph thus constructed is��3 · C7, which is
obtained by takingt = 7 anda = 2. For this smallest graph we have�B�K7, and the
blockBj (j ∈ Z7) of B is given by thejth column of the following 3× 7 array:

00 01 02 03 04 05 06
10 12 14 16 11 13 15
20 24 21 25 22 26 23

In conclusion, in the next two examples we will construct graphs in lines 5 and 6 of
Table1 by using a method similar to that used in Example4.6(b).

Example 4.7. Let� be the graph with vertex setZ4 ×Z8 and edge set{{(i, j), (i, j ±1)} :
i ∈ Z4, j ∈ Z8}. Then��4 · C8. Let x, y, z be permutations onZ4 × Z8 defined by

(i, j)x =
{

(i, j + 1 + 2i), i = 0,2,

(i + 2, j + 1 + 2i), i = 1,3

(i, j)y =
{

(i,−j), i = 0,2,

(i + 2,−j), i = 1,3

and(i, j)z = (i + 1, j), for i ∈ Z4 andj ∈ Z8. (Thus,(0, j)x = (0, j + 1), (1, j)x =
(3, j + 3), (2, j)x = (2, j + 5), (3, j)x = (1, j + 7) and(i, j)x

2 = (i, j + 2) for all i, j .)
Thenx, y, z all preserve the adjacency of� and henceG := 〈x, y, z〉�Aut(�). Clearly,
x, y, z have orders 8,2,4, respectively. One can check thaty−1xy = x−1 andy−1zy = z−1,
and soy andz2 commute. One can also check thatz−1xz = x−1z2 andz2xz2 = x5. It
follows thatH := 〈x, z〉 andH0 := 〈x, z2〉 are normal inG, andH0 has order 16. Note
that |G : H | = 2 and|H : H0| = 2. Hence|G| = 64. Clearly,G is transitive on the
vertex setZ4 × Z8 of �. Thus, the stabiliser of(0,0) in G has order 64/(4 × 8) = 2
and hence is equal to〈y〉. Since〈y〉 is doubly transitive on�((0,0)) = {(0,1), (0,7)}, it
follows that� is (G,2)-arc transitive. LetB0 = (0,0)〈z〉 = {(0,0), (1,0), (2,0), (3,0)},
B2 = Bx2

0 = {(0,2), (1,2), (2,2), (3,2)}, B4 = Bx4

0 = {(0,4), (1,4), (2,4), (3,4)},
B6 = Bx6

0 = {(0,6), (1,6), (2,6), (3,6)}, B1 = Bx
0 = {(0,1), (1,7), (2,5), (3,3)}, B3 =

Bx
2 = {(0,3), (1,1), (2,7), (3,5)}, B5 = Bx

4 = {(0,5), (1,3), (2,1), (3,7)} andB7 =
Bx

0 = {(0,7), (1,5), (2,3), (3,1)}. Theny fixesB0 andB4 and swapsB2 andB6, B1 and
B7, andB3 andB5. Also, z fixesB2i for i = 0,1,2,3, and cyclesB1 to B3, B3 to B5,
B5 to B7 andB7 to B1. HenceB = {B- : - = 0,1, . . . ,7} is aG-invariant partition of
Z4 × Z8. By the definition of�, (0,0) is adjacent to(0,1) ∈ B1 and(0,7) ∈ B7, (1,0) to
(1,1) ∈ B3 and(1,7) ∈ B1, (2,0) to (2,1) ∈ B5 and(2,7) ∈ B3, and(3,0) to (3,1) ∈ B7
and (3,7) ∈ B5. Hence�B(B0) = {B1, B3, B5, B7}, �B0�C4, �[B0, B1]�2 · K2 and
k = v − 2 = 2. Moreover,GB0 = 〈y, z〉�D8, and from the actions ofy andz on B it
follows that{{B1, B5}, {B3, B7}} is aGB0-invariant partition of�B(B0). Therefore,�B is
not (G,2)-arc transitive, and� satisfies all conditions in line 5 of Table1. In addition, we
have�B�K4,4.
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Example 4.8. Let t be a prime such thatt ≡ 1 (mod 4). Let a be an element ofZ∗
t with

order 4, so thata4 ≡ 1 anda2 ≡ −1 (modt). Define� to be the graph with vertex set
Z4 × Zt and edge set{{(i, j), (i, j ± 1)} : i ∈ Z4, j ∈ Zt }. Then��4 · Ct . Let x, y, z
be permutations defined by(i, j)x = (i, j + ai), (i, j)y = (i,−j), (i, j)z = (i + 1, j),
for (i, j) ∈ Z4 × Zt . Thenx, y, z ∈ Aut(�) and henceG := 〈x, y, z〉�Aut(�). From
the definitions ofx, y, z it follows that they have orderst,2,4, respectively, and thatG is
transitive onZ4 × Zt . Also, the stabiliser of(0,0) in G is 〈y〉. Since〈y〉�Z2 is doubly
transitive on�((0,0)) = {(0,1), (0,−1)}, if follows that � is (G,2)-arc transitive. Let
Bj = {(0, j), (1, ja), (2,−j), (3,−ja)} for j ∈ Zt . ThenBj = Bxj

0 andBx
j = Bj+1. For

eachj, we haveBz
j = B−aj andy swapsBj andB−j . HenceB is aG-invariant partition of

Z4×Zt andGB0�〈y, z〉. From the definition of�, (0,0) ∈ B0 is adjacent to(0,1) ∈ B1 and
(0,−1) ∈ B−1, (1,0) ∈ B0 to (1,1) ∈ B−a and(1,−1) ∈ Ba , (2,0) ∈ B0 to (2,1) ∈ B−1
and (2,−1) ∈ B1, and(3,0) ∈ B0 to (3,1) ∈ Ba and (3,−1) ∈ B−a . It follows that
�B(B0) = {B1, B−1, Ba, B−a}, �[B0, B1]�2 · K2, and�B0 is isomorphic to 2· K2 with
each edge repeated twice. Thus, forB we havek = v − 2 = 2 andm = val (�) = 2. Note
thaty swapsB1 andB−1, andBa andB−a , and thatBz

1 = B−a , Bz
−1 = Ba , Bz

a = B1 and
Bz−a = B−1. Thus, sinceGB0�〈y, z〉, {{B1, B−1}, {Ba, B−a}} is aGB0-invariant partition
of �B(B0) with block sizem = 2. Consequently,�B is not (G,2)-arc transitive, and�
satisfies all conditions in line 6 of Table1. The smallest graph thus constructed is��4·C5,
which is obtained by takingt = 5 anda = 2. For this graph the blockBj (j ∈ Z5) of B is
given by thejth column of the following 4× 5 array:

00 01 02 03 04
10 12 14 11 13
20 24 23 22 21
30 33 31 34 32
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