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CROSS RATIO GRAPHS

A. GARDINER, CHERYL E. PRAEGER  SANMING ZHOU

A

A family of arc-transitive graphs is studied. The vertices of these graphs are ordered pairs of distinct
points from a finite projective line, and adjacency is defined in terms of the cross ratio. A uniform
description of the graphs is given, their automorphism groups are determined, the problem of isomorphism
between graphs in the family is solved, some combinatorial properties are explored, and the graphs are
characterised as a certain class of arc-transitive graphs. Some of these graphs have arisen as examples in
studies of arc-transitive graphs with complete quotients and arc-transitive graphs which ‘almost cover ’ a
2-arc transitive graph.

1. Introduction

The purpose of this paper is to study a family of finite arc-transitive graphs which

admit an arc-transitive action of a projective linear group, and for which there is a

natural graph epimorphism onto a complete graph. The name ‘cross ratio graphs’ is

used because, for many of the graphs in the family, adjacency is defined in terms of

the cross ratio of certain quadruples of elements of a finite projective line. Various

subfamilies of this family of graphs have arisen as examples in studies of arc-transitive

graphs with complete quotients [6, 7], and arc-transitive graphs which ‘almost cover ’

a 2-arc transitive graph [17]. In this paper we give a uniform description of the graphs

in the family, we determine their automorphism groups and specify which pairs of

graphs in the family are isomorphic, and we explore some of their combinatorial

properties. In addition we give the following characterisation of cross ratio graphs as

a certain class of arc-transitive graphs (see Theorem 5.1 for a more precise statement

of this result).

T 1.1. Suppose that q¯ pr, where p is a prime, r& 1, and q& 3, and

suppose that Γ is a G-arc-transiti�e graph with �ertices the ordered pairs of distinct

points from the projecti�e line PG(1, q), where G is a 3-transiti�e subgroup of

PΓL(2, q). Then ΓF (q­1)[K
q
, or ΓF (q+"

#
)[K

#
, or Γ is a cross ratio graph.

We have been unable to locate a description of the 3-transitive subgroups of

PΓL(2, q) which contains sufficient detail for our purposes, and so we first give such

a description in Section 2. In Section 3 we give the definitions of the cross ratio

graphs, and in Section 4 we study some of their structure, in particular identifying two

complete quotients of each graph. In Section 5 we prove Theorem 5.1 from which

Theorem 1.1 follows immediately. Then in Section 6 we determine the full

automorphism groups of these graphs, proving that some of them admit a

decomposition as a non-trivial lexicograph product. The proofs of several of the

results in this section depend on the finite simple group classification to identify

overgroups of PSL(2, q) in certain symmetric groups. We are grateful to Alice
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Niemeyer for her assistance in the use of GRAPE [15] for computing some of the

automorphism groups for small values of the parameters. For convenience, a

summary of the results concerning the automorphism groups is given as Theorem 7.1

in the final section, and in this section we determine precisely which pairs of cross

ratio graphs are isomorphic.

2. The 3-transiti�e subgroups of PΓL(2, q)

Let q¯ pr be a prime power. The projective line PG(1, q) over the field GF(q) of

order q can be identified with the set GF(q)e²¢´, where ¢ satisfies the usual

arithmetic rules such as 1}¢¯ 0, ¢­y¯¢, etc. The two-dimensional projective

group PGL(2, q) then consists of all fractional linear transformations

t
a,b,c,d

:zPN
az­b

cz­d
(with a, b, c, d `GF(q), and ad®bc1 0)

of PG(1, q) (see, for example, [5, p. 242]). Note that t
a,b,c,d

¯ t
a«,b«,c«,d « if and only if the

4-tuple (a, b, c, d ) is a non-zero multiple of (a«, b«, c«, d «). The group PGL(2, q) is

sharply 3-transitive in this action on PG(1, q), that is, it is 3-transitive and only the

identity element t
",!,!,"

fixes three elements of PG(1, q). The Frobenius automorphism

ψ :xPNxp of GF(q) induces an automorphism of PGL(2, q) by ψ : t
a,b,c,d

PN
t
a
p
,b

p
,c

p
,d

p, and the group generated by PGL(2, q) and ψ is the semidirect product

PGL(2, q)[©ψª and is denoted by PΓL(2, q). It is the automorphism group of

PGL(2, q), and it too acts on PG(1, q) (with ψ :zPN zp, where ¢p ¯¢). The purpose

of this section is to determine precisely which subgroups of PΓL(2, q) act

3-transitively on PG(1, q). (A primiti�e element of GF(q) is a generator of the

multiplicative group of non-zero elements of GF(q).)

T 2.1. Let q¯ pr, where p is prime and r& 1. Then a subgroup G of

PΓL(2, q) is 3-transiti�e on PG(1, q) if and only if one of the following holds:

(a) G¯PGL(2, q)[©ψsª for some di�isor s of r;

(b) p is odd, r is e�en, and G¯M(s, q)B©PSL(2, q),ψst
a,!,!,"

ª, for some di�isor s

of r}2 (where a is a primiti�e element of GF(q)).

Proof. We use without further reference information contained in [9, II.8]. If

q is prime then PΓL(2, q)¯PGL(2, q) is sharply 3-transitive, so (a) holds. Thus we

may assume that r& 2, and in particular that q& 4, so the socle YBPSL(2, q) of

XBPΓL(2, q) is a non-abelian simple group contained in G. If q is even then

Y¯PGL(2, q) and again (a) holds. Thus we may assume that q is odd and that Gf
PGL(2, q)¯Y. Now Y consists of all t

a,b,c,d
with ad®bc a square in GF(q), and Y is

2-transitive on PG(1, q). Therefore X¯YX¢
!
, and similarly G¯YG¢

!
. Thus Xa B

X}YFX¢
!
}Y¢

!
, and Ga BG}YFG¢

!
}Y¢

!
. We shall identify Xa with X¢

!
}Y¢

!
. Now

PGL(2, q)¢
!
¯©t

a,!,!,"
ª, where a is a primitive element of GF(q), and X¢

!
is the

semidirect product ©t
a,!,!,"

ª[©ψª (and (t
a,!,!,"

)ψ ¯ t
a«,!,!,"

where a«¯ ap). Also Y¢
!
¯

©(t
a,!,!,"

)#ª, and so Xa F©aaª¬©ψª, where aa ¯ t
a,!,!,"

Y¢
!

and aa has order 2.

The subgroups of X containing Y are in one-to-one correspondence with the

subgroups of Xa , and we determine the 3-transitive subgroups of X by studying Xa .
Since G does not contain PGL(2, q), the element aa ¡Ga , and hence Ga projects faithfully

onto ©ψª. Thus Ga is cyclic, and so Ga ¯©ψsaa εª, for some divisor s of r and ε¯ 0 or

1. Also, since (ψsaa ε)r/s¯ aa εr/s and Ga does not contain aa , it follows that εr}s is even. An



   259

element of G¢
!
corresponding to the generator ψsaa ε of Ga has the form ψs(t

a,!,!,"
)ε+#k

for some integer k. Since G¢
!
is transitive on PG(1, q)c²¢, 0´, and since the two orbits

of Y¢
!

in PG(1, q)c²¢, 0´ are the set of squares, and the set of non-squares, the

generator ψs(t
a,!,!,"

)ε+#k of G¢
!

maps 1 to a non-square. The image of 1 under this

element is a ε+#k, and hence G is 3-transitive if and only if ε¯ 1. Since εr}s is even, we

must also have r}s even. *

C 2.2. Let G%PΓL(2, q) be 3-transiti�e on PG(1, q) as in Theorem 2.1.

Then G¢
!"

is ©ψsª if G is as in part (a), and is ©ψ#sª if G is as in part (b).

Proof. Since PGL(2, q) is sharply 3-transitive, it is clear that the stabiliser of ¢, 0

and 1 in G¯PGL(2, q)[©ψsª is G¢
!"

¯©ψsª (where s divides r). On the other hand,

suppose that G¯M(s, q)¯©PSL(2, q),ψst
a,!,!,"

ª (where r is even and s divides r}2).

Then rG¢
!"

r¯ r}2s. Since G¢
!"

%PΓL(2, q)¢
!"

¯©ψª, it follows that G¢
!"

¯©ψ#sª.

*

3. Definition of the cross ratio graphs

In this section we give the definitions of the cross ratio graphs. For each of these

graphs the vertex set may be identified with the set

V(q)B ²xy rx, y `PG(1, q), x1 y´ (1)

of ordered pairs of distinct points from PG(1, q), for some prime power q& 3. Note

that we write xy for the ordered pair (x, y), where x, y are distinct elements of

PG(1, q). Each of the cross ratio graphs with vertex set V(q) admits a 3-transitive

subgroup of PΓL(2, q) acting naturally on V(q) as a subgroup of automorphisms. Just

as the 3-transitive subgroups of PΓL(2, q) occurring in Theorem 2.1 are of two types,

so also the cross ratio graphs are of two types, according to whether the largest

subgroup of PΓL(2, q) acting as automorphisms occurs in case (a) or (b) of Theorem

2.1, and the graphs are said to be of untwisted or twisted type respectively.

The untwisted cross ratio graphs can be defined directly in terms of the cross ratio.

For distinct elements a, b, c, d `PG(1, q), the cross ratio is defined as

c(a, b ; c, d )B
(a®c) (b®d )

(a®d ) (b®c)
(2)

(see, for example, [8, p. 23]) with the usual convention that x®¢¯®¢,

¢®x¯¢, (¢[x)}(¢[y)¯x}y, etc. The cross ratio can take all values in PG(1, q)

except 0, 1 and ¢, and is invariant under the action of PGL(2, q), while under the

action of ψ we have
c(aψ, bψ ; cψ, dψ)¯ c(a, b ; c, d )ψ.

Moreover, PGL(2, q) is transitive on the set of 4-tuples with a fixed cross ratio. Let

F denote the prime subfield GF(p) of the field GF(q), where, as in Section 2, q¯ pr

with p a prime and r& 1. The following notation will be used throughout the paper.

D 3.1. For each element d `GF(q), d1 0, 1, the subfield F [d ] of GF(q)

generated by d is GF(ps(d)), for some divisor s(d ) of r. Given d, for each divisor s of

s(d ), the ©ψsª-orbit containing d is denoted B(d, s)B ²d ψsi r 0% i! s(d )}s´, and has

size s(d )}s.

We define the untwisted cross ratio graphs as follows.
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D 3.2. Let q¯ pr for a prime p and r& 1, and let d, s(d ), s, and B(d, s)

be as in Definition 3.1. Then the untwisted cross ratio graph Γ¯CR(q ; d, s) is defined

as the graph with vertex set V(q), such that ²u�,wx´ is an edge if and only if u, �,w,x

are distinct elements of PG(1, q), and c(u, � ;w,x) `B(d, s).

For a vertex γ of a graph Γ, the set of vertices joined to γ is denoted by Γ(γ).

R 3.3. (a) Since c(u, � ;w,x)¯ c(w,x ; u, �), for all distinct 4-tuples u, �,w,x,

it follows that the adjacency relation is symmetric, so the graph CR(q ; d, s) is well-

defined as an undirected graph. From the properties of the cross ratio mentioned

above it is clear that CR(q ; d, s) admits the 3-transitive subgroup GBPGL(2, q)[©ψsª
of PΓL(2, q) as a subgroup of automorphisms, and that G acts transitively on arcs

(ordered pairs of adjacent vertices).

(b) From the definition of Γ¯CR(q ; d, s), a vertex 1x `Γ(¢0) if and only if

c(¢, 0 ; 1,x) `B(d, s), that is, if and only if x `B(d, s). Since G is transitive on the arcs

of Γ, the set Γ(¢0) is the orbit of G¢
!
¯©t

a,!,!,"
,ψsª containing 1d (where a is a

primitive element of GF(q)), and hence consists of all the vertices xy, for x `
GF(q)c²0´, such that y `B(d, s)x.

(c) The subfamily of untwisted cross ratio graphs defined in [6, Example 2.4] were

given with a slightly different notation. The graph CR(q, d ) in [6] is called here

CR(q ; d, s(d )). The assertion made towards the end of [6, Example 2.4] concerning

isomorphisms between the graphs CR(2p, d ) for various d was not fully established in

that paper, since only isomorphisms induced by elements of PΓL(2, 2p) were

considered there. The assertion is in fact true and follows from our determination of

the full automorphism groups of these graphs in Section 6.

Next we turn to the cross ratio graphs corresponding to the groups defined in part

(b) of Theorem 2.1. They are defined as orbital graphs for the transitive actions of

these groups on V(q). For a transitive group G on a set Ω, there is a natural action

of G induced on Ω¬Ω given by (β, γ) g B (β g, γ g) for β, γ `Ω, g `G. The G-orbits in this

induced action are called orbitals for G in Ω. For each orbital ∆, not equal to the

trivial orbital ²(β, β) r β `Ω´, the associated orbital graph is defined as the directed

graph with vertex set Ω and edge set ∆. If ∆ is self-paired, that is, if (β, γ) `∆ implies

that (γ, β) `∆, then this orbital graph may be regarded as an undirected graph. It

follows from the definition that the group G acts as an arc-transitive group of

automorphisms of each of its orbital graphs. Conversely, any G-arc-transitive graph

Γ with vertex set Ω is isomorphic to an orbital graph for G on Ω. We denote the

G-orbital containing the pair (β, γ) by (β, γ)G.

D 3.4. Let q¯ pr, where p is an odd prime and r is an even integer, and

let d, s(d ), s and B(d, s) be as in Definition 3.1, and such that both s(d ) and s are even,

and d®1 is a square. Then the twisted cross ratio graph TCR(q ; d, s) is defined as the

orbital graph for the group GBM(s}2, q) (defined in Theorem 2.1(b)) acting on V(q)

corresponding to the orbital (¢0, 1d )G.

R 3.5. (a) Since d®1 is a square, the element t
",−d,",−"

`PSL(2, q)X
M(s}2, q) ; it interchanges ¢ and 1, and interchanges 0 and d, and hence interchanges

(¢0, 1d ) and (1d,¢0). Hence the orbital (¢0, 1d )G is self-paired and so TCR(q ; d, s)

is well-defined as an undirected graph.
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(b) By its definition as an orbital graph for GBM(s}2, q), ΓBTCR(q ; d, s)

admits G as an arc-transitive subgroup of automorphisms. The set of vertices Γ(¢0)

adjacent to ¢0 is therefore the orbit of G¢
!
¯©(t

a,!,!,"
)#,ψs/#t

a,!,!,"
ª containing 1d.

A straightforward computation shows that Γ(¢0) consists of all the vertices xy, for

x `GF(q)c²0´, such that

y `
1

2
3

4

B(d, s)x if x is a square

B(d, s)ψs/#x if x is not a square.

Note that, since B(d, s) is the ©ψsª-orbit containing d, the sets B(d, s) and B(d, s)ψs/# are

disjoint (and their union is B(d, s}2)).

4. Quotients of cross ratio graphs

We derive a little extra information about the automorphism groups of the cross

ratio graphs Γ, and their adjacency relations. For a partition 0 of the vertex set of

Γ, the quotient graph Γ0 of Γ relative to 0 is the graph with vertex set 0 such that

²P
"
,P

#
´ is an edge of Γ0 if and only if there exist x

"
`P

"
and x

#
`P

#
such that ²x

"
,x

#
´

is an edge of Γ. We are interested in partitions 0 which are invariant under the group

G used to define Γ. To help determine such partitions, we record the following

information about the action of PΓL(2, q) on V(q).

P 4.1. Let q¯ pr where p is a prime, r& 1 and q& 3, and consider the

action of PΓL(2, q) on V(q).

(a) The centraliser of PΓL(2, q) in the symmetric group Sym(V(q)) is C¯©αª,

where α :xyPN yx ( for xy `V(q)).

(b) PΓL(2, q) preser�es the following three non-tri�ial block systems in V(q) :

"B ²B(x) rx `PG(1, q)´, where B(x)¯²xy r y `PG(1, q), y1x´

"«B ²B«(x) rx `PG(1, q)´, where B«(x)¯²yx r y `PG(1, q), y1x´

!B ²²xy, yx´ rx, y `PGL(2, q),x1 y´,

and if q1 3, 5 then these are the only non-tri�ial block systems in V(q) preser�ed by any

3-transiti�e subgroup of PΓL(2, q). Moreo�er, C preser�es ! and interchanges "
and "«.

Proof. In the action of PΓL(2, q) on V(q), the stabiliser of the point ¢0 fixes

exactly two points, namely ¢0 and 0¢. Thus rC r¯ 2, and C is generated by α (see,

for example, [5, Theorem 4.2A]). It is straightforward to check that PΓL(2, q)

preserves the block systems ", "« and !, and that C preserves ! and interchanges

" and "«. To prove the remaining assertion we suppose that q1 3, 5. Let G be a 3-

transitive subgroup of PΓL(2, q), so in particular G contains Y¯PSL(2, q). Let D be

a non-trivial block of imprimitivity for G in V(q) such that D contains ¢0. Then the

set stabiliser G
D

is a proper subgroup of G which properly contains HBG¢
!
. Since

D is also a block of imprimitivity for Y, we have HfY!Y
D
!Y, and HfYF

Z
(q−")/

gcd(#,q−")
. If q" 11, or if q¯ 4 or 8, then the only overgroups of HfY in Y are

the setwise stabilisers of the blocks containing ¢0 from the three block systems ",

"« and ! (see [4, Section 260]), and hence for these values of q, there are no other

non-trivial block systems preserved by Y, and hence no others preserved by G. The

remaining values of q to consider are q¯ 7, 9, 11. In these cases, if G contains
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PGL(2, q), then the only overgroups of H in G are the three corresponding to the

block systems ","« and !. If G does not contain PGL(2, q), then q¯ 9 and G¯
M

"!
, H¯Q

)
. Again the only overgroups of H in G are the three corresponding to

the block systems ", "« and !. *

We use this result to analyse the structure of the cross ratio graphs, and in

particular to identify two quotient graphs which are complete graphs of order q­1.

T 4.2. Let q¯ pr for a prime p and r& 1 with q& 3, let d, s(d ), s and

B(d, s) be as in Definition 3.1, and let ", "«, ! and C¯©αª be as in Proposition 4.1.

Let Γ¯CR(q ; d, s) or Γ¯TCR(q ; d, s), where in the latter case r, s(d ), s are e�en and

d®1 is a square. Then:

(a) Γ(¢0)fB(1)¯²1x rx `B(d, s)´ is of size s(d )}s, and Γ has �alency

(q®1) s(d )}s.

(b) For x, y `PG(1, q) with x1 y, the only �ertex of B(x) which is not joined by an

edge to a �ertex of B(y) is xy. Similarly, the only �ertex of B«(x) which is not joined

by an edge to a �ertex of B«(y) is yx. Also, the quotient graphs satisfy Γ" FΓ"« FK
q+"

.

(c) If Γ¯CR(q ; d, s) then Aut(Γ)f(C¬PΓL(2, q))¯C¬(PGL(2, q)[©ψsª),

while if Γ¯TCR(q ; d, s) then

Aut(Γ)f(C¬PΓL(2, q))¯
1

2
3

4

C¬M(s}2, q) if d is a square

©M(s}2, q),αψs/#ª if d is not a square.

In all cases, if q1 3, 5, then the only non-tri�ial partition of V(q) in�ariant under this

group is !.

(d) If Γ« is CR(q ; d «, s«) or TCR(q ; d «, s«) ( for appropriate d «, s«), then there exists

an element } `C¬PΓL(2, q) which defines an isomorphism from Γ to Γ« if and only if

d and d « are in the same ©ψª-orbit, s¯ s«, and Γ, Γ« are either both untwisted graphs

or both twisted graphs. Moreo�er Γ¯Γ« if and only if, in addition, d and d « are in the

same ©ψsª-orbit.

Proof. Part (a) follows from Remarks 3.3(b) and 3.5(b) since Γ(¢0) consists of

rB(d, s)r¯ s(d )}s vertices from B(w), for each w `GF(q)c²0´. Since PSL(2, q) is

transitive on V(q) it is sufficient to prove the first assertion of part (b) in the case

x¯¢, y¯ 0. By part (a), the vertex ¢0 is adjacent to no vertex of B(0), but is adjacent

to 1d. Let w `GF(q) with w1 0. Then each of t
−w,w,!,"

and ψs/#t
−w,w,!,"

maps

¢, 0, 1 to ¢,w, 0 respectively, and hence maps the edge ²¢0, 1d ´ to a pair ²¢w, 0x´,
for some x. Since t

−w,w,!,"
`PGL(2, q), and since M(s}2, q) contains t

−w,w,!,"
if ®w is a

square, and contains ψs/#t
−w,w,!,"

otherwise, it follows that ¢w is adjacent to at least

one vertex of B(0). This proves the first part of (b). Since both PGL(2, q) and

M(s}2, q) are 2-transitive on " it follows that Γ" FK
q+"

. The assertions concerning "«
follow similarly.

For part (c) we assume first that Γ¯CR(q ; d, s). Now ²u�,wx´ is an edge of Γ if

and only if c(u, � ;w,x) `B(d, s), and since

c(�, u ;x,w)¯
(�®x) (u®w)

(�®w) (u®x)
¯ c(u, � ;w,x),

it follows that ²�u,xw´ is also an edge. Thus α preserves edges, and hence, by Remark

3.3(a), Aut(Γ) contains HBC¬(PGL(2, q)[©ψsª). Suppose that } `Aut(Γ)f
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(C¬PΓL(2, q)), but } ¡H. Since ψ,ψ#,…,ψs is a transversal for H in C¬PΓL(2, q),

we may assume that }¯ψi for some i with 1% i! s. Then } fixes Γ(¢0)fB(1)

setwise, that is, ψi fixes B(d, s) setwise. It follows that B(d, s) is invariant under the

action of ©ψs,ψiª, and this group is equal to ©ψjª where j¯ gcd(s, i). Since i! s

we have j! s, and since j divides s, j also divides s(d ). By the definition of B(d, s)

(as an orbit under the action of ©ψsª) it follows that B(d, s) is an orbit under the

action of ©ψjª. However this latter orbit comprises the field elements d, dψ j,… , dψ j(k−"),

where k is the least positive integer such that dψ jk ¯ d, that is, dp
jk
−"¯ 1. Since d is

a generator of GF(ps(d)), this means that s(d ) divides jk, that is, s(d )}j divides k.

Thus rB(d, s)r¯k& s(d )}j" s(d )}s, contradicting part (a). Hence Aut(Γ)f
(C¬PΓL(2, q))¯H. By Proposition 4.1, if q1 3, 5 then the only non-trivial block

system in V(q) preserved by C¬PGL(2, q) is !.

Now suppose that Γ¯TCR(q ; d, s). Since r is even, it follows that ®1 is a square,

and hence t
a,!,!,"

¡PSL(2, q) (where a is a primitive element of GF(q)). Now t
a,!,!,"

maps the edge ²¢0, 1d ´ to the pair ²¢0, ad «´, where d «¯ ad, and by Remark 3.5(b),

this pair is not an edge. It follows that Aut(Γ) does not contain PGL(2, q), and

therefore, by Theorem 2.1, Aut(Γ)fPΓL(2, q)¯M(s«, q), for some s« dividing r. Next

suppose that ψi `Aut(Γ), for some divisor i of r. Then ψi maps the edge ²¢0, 1d ´ to

the edge ²¢0, 1dψi´. By Remark 3.5(b), dψi `B(d, s), and it follows that i is a multiple

of s. Therefore Aut(Γ)fPΓL(2, q)¯M(s}2, q). Since M(s}2, q) is transitive on the arcs

of Γ, the generator α of C is an automorphism of Γ if and only if eB ²0¢, d1´ (the

image of ²¢0, 1d ´ under α) is an edge, and e is an edge if and only if the image e« of

e under t
!,",",!

`PSL(2, q) is an edge. (Note that t
!,",",!

`PSL(2, q) since ®1 is a

square.) The image e« is ²¢0, d−"1´, and by Remark 3.5(b) it is an edge if and

only if

1 `
1

2
3

4

B(d, s) d−" if d is a square

B(d, s)ψs/# d−" if d is not a square.

Since d `B(d, s) it follows that α is an automorphism if and only if d is a square. Thus

if d is a square we have proved that Aut(Γ)f(C¬PΓL(2, q))¯C¬M(s}2, q). Now

suppose that d is not a square. Then α ¡Aut(Γ). In this case the image of ²¢0, 1d ´
under αψs/# is ²0¢, dψs/#1´, and this is an edge if and only if its image eB ²¢0, d−ψs/#1´
under t

!,",−",!
is an edge. By Remark 3.5(b), since d is not a square, e is an edge if and

only if 1 `B(d, s)ψs/# d−ψs/#, and this condition holds since d `B(d, s). Thus αψs/# is in

Aut(Γ), and it follows that Aut(Γ)f(C¬PΓL(2, q))¯©M(s}2, q),αψσ/#ª. Thus, for

all d, Aut(Γ)f(C¬PΓL(2, q)) interchanges " and "«, and so, by Proposition 4.1,

since here q1 3, 5, the only non-trivial partition of V(q) which is invariant under this

group is !. Thus part (c) is proved.

Finally suppose that } `C¬PΓL(2, q) induces an isomorphism from Γ to Γ«,
where Γ«¯CR(q ; d «, s«) or TCR(q ; d «, s«). Since the quotient group of C¬PΓL(2, q)

modulo PSL(2, q) is abelian, HBAut(Γ)f(C¬PΓL(2, q)) is normal in C¬PΓL(2, q)

and hence is normalised by }. It follows that Aut(Γ«)f(C¬PΓL(2, q))¯
Aut(Γ)f(C¬PΓL(2, q)), and in particular, by part (c), either Γ and Γ« are both

untwisted graphs, or they are both twisted graphs. Also s«¯ s. Since Γ and Γ« must

have the same valency, we have also s(d «)¯ s(d ). Since H is arc-transitive on Γ, we

may assume that } maps the arc (¢0, 1d ) of Γ to the arc (¢0, 1d «) of Γ«. In particular

} fixes the vertex ¢0 and maps 1d to a vertex in B(1). The subset of C¬PΓL(2, q) of

elements with this property is the subgroup ©ψ,αt
!,d,",!

ª, and so } lies in this

subgroup (which contains ©ψª as a subgroup of index 2). Since αt
!,d,",!

fixes the
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vertex 1d, it follows that } maps 1d to 1dψi for some i. Hence d and d « are in the same

©ψª-orbit. The graphs Γ and Γ« will be equal if and only if dψi `B(d, s), that is, i is

a multiple of s. Conversely, if d «¯ dψi and s«¯ s, then ψi maps CR(q ; d, s) to

CR(q ; d «, s«), and TCR(q ; d, s) to TCR(q ; d «, s«). Thus (d) is proved. *

We end this section by noting a combinatorial property of the cross ratio graphs

which highlights the relationship between the partitions " and "« of V(q). For a

graph Γ and a subset U of the vertex set V of Γ, Γ(U ) denotes the set of vertices in

VcU which are joined by an edge to some vertex of U.

L 4.3. For Γ¯CR(q ; d, s) or TCR(q ; d, s), we ha�e, for each x `PG(1, q),

V(q)cΓ(B(x))¯B(x)eB«(x)¯V(q)cΓ(B«(x)).

Proof. By Theorem 4.2, the set Γ(B(x)) contains B(y)c²yx´, but not yx, for any

y1x, and hence Γ(B(x))¯V(q)c(B(x)eB«(x)). The second equality is proved in a

similar manner. *

5. Characterising the cross ratio graphs

First we characterise the cross ratio graphs as a certain family of arc-transitive

graphs. It was in this situation that they first arose in [6]. Theorem 1.1 follows

immediately from Theorem 5.1.

T 5.1. Suppose that q¯ pr, where p is a prime, r& 1, and q& 3, and

suppose that Γ is a G-arc-transiti�e graph with �ertex set V(q) (as defined in (1)), where

G is a 3-transiti�e subgroup of PΓL(2, q) with the induced natural action on V(q). Then

one of the following holds:

(a) ΓF (q­1)[K
q
, with connected components being either the sets B(x) or the sets

B«(x), for x `PG(1, q) (where these sets are as defined in Proposition 4.1) ;

(b) ΓF (q+"
#

)[K
#

with connected components the pairs ²xy, yx´, x1 y;

(c) Γ is isomorphic to CR(q ; d, s) or TCR(q ; d, s) for some d, s.

In part (c) of this theorem we show that, for Γ¯CR(q ; d, s) or Γ¯TCR(q ; d, s),

the group G is equal to PGL(2, q)[©ψs«ª or M(s«}2, q) respectively, for some divisor

s« of r such that gcd(s(d ), s«)¯ s.

Proof of Theorem 5.1. As discussed in Section 3, Γ is an orbital graph for some

non-trivial self-paired G-orbital in V(q). This orbital is the G-orbit on ordered pairs

containing (¢0,xy) for some x, y `PG(1, q), with x1 y. If x¯¢ then (a) holds with

components the blocks B(u) for u `PG(1, q), if y¯ 0 then (a) holds with components

the blocks B«(u) for u `PG(1, q), and if xy¯ 0¢ then (b) holds. Thus suppose that

x1¢, y1 0, and xy1 0¢. Suppose that x¯ 0, so that y1¢. Any element of G

which maps ¢0 to 0y must map 0y to yz, for some z, and hence there is no element

of G which interchanges ¢0 and 0y, contradicting the arc-transitivity of G. Hence

x1 0 and similarly y1¢, so ¢, 0,x, y are pairwise distinct. Since G is 3-transitive

on PG(1, q), we may assume that x¯ 1.

By Theorem 2.1, for some divisor s of r, we have G¯PGL(2, q)[©ψsª, or G¯
M(s}2, q), where in the latter case p is odd and both r and s are even. By Corollary
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2.2, G¢
!"

¯©ψsª, and since G is 3-transitive on PG(1, q), and transitive on arcs of Γ,

it follows that ©ψsª is transitive on the vertices of Γ(¢0)fB(1). Thus this set consists

of all pairs 1y«, for y« `A(y)B ²yψsi r for some i´. We can determine Γ(¢0) since it is

the orbit of G¢
!

containing 1y. If G¯PGL(2, q)[©ψsª then Γ(¢0) consists of the

pairs u� where � `A(y) u. If G¯M(s}2, q), then Γ(¢0) consists of the pairs u� where

� `A(y) u if u is a square, and where � `A(y)ψs/# u if u is not a square.

The set A(y) is contained in the subfield F [y]¯GF(ps(y)) generated by y, and so

each element of A(y) is left invariant by ψs(y). Moreover ψs(y) maps squares to

squares. It follows that Γ(¢0) is left invariant by ©G¢
!
,ψs(y)ª and hence that

©G,ψs(y)ª leaves the G-orbital of arcs of Γ invariant, that is, ©G,ψs(y)ª is contained in

Aut(Γ). Thus we may assume that ψs(y) `G, and hence that s divides s(y). This means

that A(y) is the set B(y, s), see Definition 3.1. If G¯PGL(2, q)[©ψsª then we have

shown that the set of vertices adjacent to ¢0 is the same for Γ and CR(q ; y, s), and

they admit the same arc-transitive group G. Hence in this case Γ¯CR(q ; y, s).

Suppose therefore that G¯M(s}2, q). Since G is arc-transitive on Γ, some element

g¯ψit
a,b,c,d

of G interchanges ¢0 and 1y. Since g interchanges ¢ and 1, and maps

0 to y, we have g¯ψit
",−y,",−"

. Then, since g maps y to 0, we have yψi ¯ y, and hence

s(y) divides i. Since s divides s(y), this means that s divides i, and hence ψi `G.

Therefore t
",−y,",−"

`GfPGL(2, q)¯PSL(2, q), and so y®1 is a square. Therefore

the graph TCR(q ; y, s) is defined, and we have shown that the set of vertices adjacent

to ¢0 is the same for Γ and TCR(q ; y, s), and they admit the same arc-transitive

group M(s}2, q). Hence in this case Γ¯TCR(q ; y, s). *

6. Combinatorial structure and automorphisms

In many of the graphs CR(q ; d, s) and TCR(q ; d, s) the centraliser C of PΓL(2, q)

is admitted as a group of automorphisms. When this happens we have at least two

edges between the blocks A
"
B ²¢0, 0¢´ and A

#
B ²1d, d1´ of ! (defined in

Proposition 4.1), namely the edges ²¢0, 1d ´ and ²0¢, d1´. Occasionally all four

possible edges joining a vertex of A
"

to a vertex of A
#

are present. In this case the

graph has the structure of a lexicographic product of two smaller graphs, and we can

determine its automorphism group precisely. Our first task is to identify when this

situation arises. If Σ and ∆ are graphs with vertex sets VΣ and V∆, then the

lexicographic product Σ[∆] of Σ and ∆ is the graph with vertex set VΣ¬V∆ such that

(σ, δ) and (σ«, δ«) are joined by an edge if and only if either ²σ,σ«´ is an edge of Σ, or

σ¯σ« and ²δ, δ«´ is an edge of ∆.

P 6.1. Let q¯ pr, where p is a prime p, r& 1, and q& 3. Suppose that

Γ is a cross ratio graph CR(q ; d, s) or TCR(q ; d, s), for some d, s. Then ΓFΓ![K
#
] if

and only if one of the following holds:

(a) Γ¯CR(q ; d, s), and

(i) either p is odd, d¯®1 ;

(ii) or s(d ) is di�isible by 2s;

(b) Γ¯TCR(q ; d, s), d (as well as d®1) is a square, s is e�en, and 2s di�ides s(d ).

Proof. Suppose that Γ satisfies one of the conditions above. By Theorem 4.2,

Aut(Γ) contains C¬G, for some 3-transitive subgroup G of PΓL(2, q). Since G is

transitive on the arcs of Γ!, and since C interchanges the vertices in each block of !,

in order to prove that ΓFΓ![K
#
] it is sufficient to prove that the vertex ¢0 is
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adjacent to d1. By Remark 3.3 or 3.5, this is the case provided that 1 `B(d, s) d. This

is clearly true if d¯®1, while in the other cases, since s(d ) is even, it follows from

the fact that dp
s(d)/#

+"¯ 1, and s divides s(d )}2.

Conversely, suppose that ΓFΓ![K
#
]. Then in particular C%Aut(Γ), so by

Theorem 4.2, d is a square in the case where Γ¯TCR(q ; d, s). Since ¢0 is adjacent

to d1, it follows from Remark 3.3 or 3.5 that 1 `B(d, s) d, that is, dp
is
+"¯ 1 for some

integer i such that 0% i! s(d )}s. If this holds for i¯ 0 then d¯®1, and in this case

Γ¯CR(q ; d, s) (since for the twisted graphs the parameter s(d ) is even). Thus we may

suppose that i1 0. Then dp
#is

−"¯ 1 but dp
is
−"1 1, and hence s(d ) divides 2is but s(d )

does not divide is. Thus 2is¯ks(d ) for some odd integer k. Since s divides s(d ), and

in addition s is even in the case of TCR(q ; d, s), the result follows. *

For q¯ 3 there is only one cross ratio graph, namely CR(3; 2, 1) and it is not

difficult to show that this graph is the disjoint union of three cycles of length 4, namely

(¢0, 12, 0¢, 21), (¢1, 20, 1¢, 02) and (¢2, 01, 2¢, 10). This is the smallest example

of a cross ratio graph being a lexicographic product ; the quotient graph Γ! is 3[C
#
,

and CR(3; 2, 1)¯ (3[C
#
) [K

#
]¯ 3[(C

#
[K

#
])¯ 3[C

%
. Also for q¯ 5, the quotient graph

Γ! for Γ¯CR(5; 4, 1) is 5[C
$

and CR(5; 4, 1)¯ (5[C
$
) [K

#
]¯ 5[(C

$
[K

#
]). It turns

out that all other cross ratio graphs are connected.

P 6.2. Let q¯ pr, where p is a prime p, r& 1, and q& 3. Suppose that

Γ is a cross ratio graph CR(q ; d, s) or TCR(q ; d, s), for some d, s. Then one of the

following holds:

(a) Γ¯CR(3; 2, 1)¯ 3[C
%
;

(b) Γ¯CR(5; 4, 1)¯ 5[(C
$
[K

#
]) ;

(c) Γ is connected.

Proof. By the remarks above, we may suppose that q& 4. Let G¯
Aut(Γ)f(C¬PΓL(2, q)). If Γ is not connected then the connected components form

a G-invariant partition of V(q). By Theorem 4.2, if q1 5, then the only non-trivial G-

invariant partition of V(q) is !, but the blocks of ! (of size 2) are not connected

components of Γ. Hence if q1 5 then Γ is connected. Thus suppose that q¯ 5, and

Γ is not as in case (b). Then Γ¯CR(5; d, 1) with d¯ 2 or 3. By Theorem 4.2, G¯
C¬PGL(2, 5), and Γ has valency 4. Also by Proposition 6.1, Γ is not Γ![K

#
], so ¢0

is adjacent to vertices in four distinct blocks of !. Thus Γ! has valency at least 4, and

its connected components therefore have size at least 5. Since PSL(2, 5) is transitive

on ! (of degree 15) and has no proper subgroup of index 3, it follows that the

quotient graph Γ! is connected. Thus Γ has one or two components, and since

PSL(2, 5) is vertex-transitive on Γ and has no subgroup of index 2, it follows that

Γ is connected. *

We now determine the full automorphism groups of the cross ratio graphs which

are lexicographic products. For a simple group S, let m(S ) denote the minimal index

of a proper subgroup of S. In the next theorem, and other results in this section we

use results from [10, 12] which depend on the finite simple group classification.

T 6.3. Let q¯ pr, where p is a prime, r& 1, and q& 3. Suppose that Γ is

a cross ratio graph CR(q ; d, s) or TCR(q ; d, s) such that ΓFΓ![K
#
], for some d, s as in

Proposition 6.1. Then one of the following holds:
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(a) Γ¯CR(3; 2, 1)¯ 3[C
%

and Aut(Γ)¯D
)
wrS

$
;

(b) Γ¯CR(5; 4, 1)¯ 5[(C
$
[K

#
]) and Aut(Γ)¯ (S

#
wrS

$
)wrS

&
;

(c) Aut(Γ)¯S
#
wrAut(Γ!)FS(q+")q/#

#
[Aut(Γ!) and Aut(Γ!)¯Aut(Γ)f

PΓL(2, q).

Proof. The automorphism groups of the graphs in parts (a) and (b) are easily

seen to be as stated. Thus by Proposition 6.2, we may assume that Γ is connected, and

by Proposition 6.1 we may assume that q1 3, 5. Now Aut(Γ) contains S
#
wrAut(Γ!)

and equality holds provided Aut(Γ) preserves the partition !. By Theorem 4.2 the

only non-trivial partition of V(q) which may be preserved by Aut(Γ) is !.

Consequently, if Aut(Γ) does not preserve !, then it is primitive on V(q). If Aut(Γ)

were primitive on V(q), then since S
#
wrAut(Γ!) contains a transposition, Aut(Γ)

would be the full symmetric group on V(q), which is not the case. Hence Aut(Γ)¯
S
#
wrAut(Γ!). Now the group Aut(Γ!) is primitive on ! and contains a primitive

subgroup G which is a 3-transitive subgroup of PΓL(2, q) acting on unordered pairs

from PG(1, q).

Suppose that Aut(Γ!)1G, and let G!A!Aut(Γ!) with G a maximal sub-

group of A. In particular q1 4. Then it follows from [10] that one of the

following holds:

(i) A¯A
q+"

or S
q+"

on pairs ;

(ii) q¯ 2r, and for some prime divisor r
!

of r, soc(A)¯Sp(2r
!
, 2r/r

!) acting on

[Sp(2r
!
, 2r/r

!) :O+(2r
!
, 2r/r

!)] ;

(iii) q¯ 7, and A¯U(3, 3)[2.

In case (i), the action of A is on unordered pairs from a set of size q­1; the

neighbours of ²¢0´ in Γ! consist of pairs disjoint from ²¢0´ and (A
q+"

)¢
!
is transitive

on such pairs, so the valency of Γ! is (q−"
#

), which contradicts the fact that this valency

is (q®1) s(d )}2s (see Theorem 4.2).

In case (ii), the stabiliser A
!

in A of ²¢0´ is an orthogonal group of type

O+(2r
!
, 2r/r

!). Suppose first that r
!

is odd. Then the derived group A!

!
is the simple

group Ω+(2r
!
, 2r/r

!), and by [16, 18.2], Ω+(2r
!
, 2r/r

!) must be involved in the action of A
!

on Γ!(²¢0´) (since A is primitive on !). However Γ!(²¢0´) has size (q®1) s(d )}2s,

which is less than m(A!

!
) when r

!
& 5 (see [3]). If r

!
¯ 3, then Ω+(6, 2r/$)FPSL(4, 2r/$),

and the valency of Γ! is (2r®1)k with k¯ s(d )}2s an integer less than r. There is no

subgroup of PSL(4, 2r/$) of index (2r®1)k (see for example, [14, Theorem 3.1], noting

that the indices of the possible subgroups are all divisible by (2r/$)#). This leaves the

case r
!
¯ 2; here Ω+(4, 2r/#)FPSL(2, 2r/#)¬PSL(2, 2r/#), and A

!
fPSL(2, q)¯D

#(q−")

acts on Γ!(²¢0´) with orbits of length q®1 or 2(q®1). Moreover (A
!
fPSL(2, q))«

intersects the two simple direct factors of Ω+(4, 2r/#) in cyclic groups of orders 2r/#³1.

Hence both simple direct factors are involved in the action of A
!

on Γ!(²¢0´).
However Ω+(4, 2r/#) has no transitive representation of degree q®1 or 2(q®1) in

which a stabiliser meets each direct factor in a proper subgroup.

In case (iii), r¯ 1 and so by Proposition 6.1, d¯®1 and Γ! has valency

(q®1)}2¯ 3. The stabiliser A
!
in A of ²¢0´ is a parabolic subgroup 3"+# :8 :2 and has

no subgroup of index 3. Thus we have shown that in all cases Aut(Γ)¯G. *

We may now assume that, for Γ¯CR(q ; d, s) or TCR(q ; d, s), each vertex is

adjacent to at most one vertex of any block of !. We say that a graph Γ is an r-fold

co�er of its quotient graph Γ! if the blocks of ! all have size r and, for each pair
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A,A« of adjacent blocks of Γ!, the subgraph of Γ induced on AeA« is a perfect

matching r[K
#
. A 2-fold cover is usually called a double co�er. The case q¯ 5 is

unusual in that the subgroup of Aut(Γ) studied in Theorem 4.2 may have extra block

systems in V(5). Therefore we deal with this case next.

T 6.4. The graphs Γ¯CR(5; d, 1), with d¯ 2 or 3, are double co�ers of

Γ!, the line graph of the Petersen graph, and Aut(Γ)¯C¬PGL(2, 5).

We thank Brendan McKay and Gordon Royle for helping us to identify these two

graphs. The first one CR(5; 2, 1) is the line graph of the tensor product P nK
#
where

P is the Petersen graph. The graph P nK
#
has 20 vertices and valency 3; its adjacency

matrix is

0 0

A
P

A
P

0 1
where A

P
is the adjacency matrix of the Petersen graph. The other graph CR(5; 3, 1)

has girth 5 and so is not a line graph. Both graphs appear in the list of vertex-

transitive graphs of order less than 31 to be found at http:}}www.cs.uwa.edu.au}
gordon}remote}trans}index.html, which extends the work described in [13]. They are

two of the eight connected vertex-transitive graphs of order 30 and valency 4 which

are not Cayley graphs.

Proof of Theorem 6.4. Let Γ¯CR(5; d, 1) with d¯ 2 or 3, so Aut(Γ) contains

G¯C¬PGL(2, 5). Here Γ has valency 4, and G¢
!
FD

)
has orbits of lengths 1, 1, 4,

4, 4, 8, 8 in V(5). Also the set of points at distance 2 from ¢0 in Γ is one of the orbits

of length 8. A small computation shows that Γ is a double cover of its quotient graph

Γ!, and Γ! is distance transitive with intersection array ²4, 2, 1 ; 1, 1, 4´. Thus Γ! is

the line graph of the Petersen graph (see [1, p. 222]), with automorphism group

PGL(2, 5). This means that the subgroup of Aut(Γ) which preserves ! is precisely

G¯C¬PGL(2, 5).

Suppose that Aut(Γ) does not preserve !. If Aut(Γ) is primitive on V(5) of degree

30, then (see [5]), its socle is PSL(2, 29) or A
$!

, both of which are 2-transitive,

contradicting the fact that Γ is not a complete graph. Thus Aut(Γ) is imprimitive. Let

B be a non-trivial block of imprimitivity for Aut(Γ) in V(5) containing ¢0. If 0¢ ¡B

then, as B is a union of G¢
!
-orbits, and rBr divides 30, it follows that rBr¯ 5.

However this means that B meets five blocks of ! which form a block for G in !.

However G has no blocks of imprimitivity in ! of size 5. Hence 0¢ `B. Since B is

a block for G, it is a union of a subset B! of blocks of !, and B! is a non-trivial block

for G in Γ!. Thus B! is an antipodal block for Γ! of size 3, and rBr¯ 6. Moreover

B is the unique non-trivial block for Aut(Γ) containing ¢0, and so its stabiliser

induces a primitive subgroup of S
'

on it. Such a subgroup has order divisible by 5,

and so rAut(Γ)r is divisible by 25. Thus a Sylow 5-subgroup of Aut(Γ) has orbits of

length 5, 25, and hence there is a 5-subgroup S with five fixed points, and five orbits

of length 5. We may assume that S fixes ¢0. Then S fixes setwise the set of four points

adjacent to ¢0, and eight points at distance 2 from ¢0. This contradiction proves

that Aut(Γ) is as stated. *

Now we may assume in addition that q1 3, 5, and hence by Theorem 4.2, that the

unique non-trivial block system for Aut(Γ)f(C¬PΓL(2, q)) in V(q) is !. We prove

first that this subgroup is the largest subgroup of Aut(Γ) which preserves !.
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P 6.5. Let q¯ pr, where p is a prime, r& 1, and q1 3, 5. Suppose that

Γ is a cross ratio graph CR(q ; d, s) or TCR(q ; d, s), for some d, s, such that Γ is not

isomorphic to Γ![K
#
]. Then the stabiliser in Aut(Γ) of the block system ! is the

subgroup Aut(Γ)f(C¬PΓL(2, q)).

Proof. Suppose that the assertion is false for Γ, and let A be a subgroup of

Aut(Γ) which preserves !, and which contains G as a maximal subgroup. Let K

denote the kernel of the action induced by A on !. Since ¢0 is joined to at most one

vertex of each block of !, the stabiliser K¢
!
fixes pointwise each vertex adjacent to

¢0, and since Γ is connected, by Proposition 6.2, it follows that K¢
!
¯ 1. Thus

rK r% 2. In fact K¯CfAut(Γ), so K¯C unless Γ¯TCR(q ; d, s) and d is not a

square, in which case K¯ 1. Then since A1G, we must have q1 4. Let Aa ¯A}K, the

subgroup of Sym(!) induced by A, and similarly let Ga ¯GK}K. By Theorem 4.2,

Ga ¯PGL(2, q)[©ψsª if Γ¯CR(q ; d, s), and if Γ¯TCR(q ; d, s) then Ga ¯M(q, s}2) if

d is a square, and Ga ¯PGL(2, q)[©ψs/#ª if d is not a square (see Theorem 4.2). In all

cases Ga is primitive on !. Thus we have an inclusion Ga !Aa of primitive groups with

Ga maximal in Aa . By [10], Aa is one of the groups listed in (i)–(iii) in the proof of

Theorem 6.3. In this case we note that there are one or two edges of Γ between

adjacent blocks of Γ!, and hence Γ! has valency �! ¯ 2(q®1) s(d )}s or (q®1) s(d )}s

respectively, and in either case �! is a multiple of q®1.

In case (i), Aa ¯A
q+"

or S
q+"

acting an unordered pairs from a set of size q­1, and

arguing as in the proof of Theorem 6.3, Γ! has valency (q−"
#

). Since �! ¯ (q®1)k,

where k divides 2r, it follows that q¯ 8, and both Γ! and Γ have valency 7s(d )}s¯
21, so s(d )¯ 3, s¯ 1. By [2, p. 37], the central product 2[A

*
has no transitive

permutation representation of degree 72, and hence A contains a subgroup A
*
acting

on V(q) (as on the set of ordered pairs of distinct points from PG(1, 8)). However the

stabiliser in A
*

of ¢0 is transitive on the 42 pairs xy with x, y distinct from ¢, 0.

Hence A
*

does not preserve adjacency in Γ.

In case (ii), q¯ 2r & 8 and soc(Aa )¯Sp(2r
!
, 2r/r

!), for some prime divisor r
!
of r,

and if r
!
is odd then the derived group Aa !²¢

!
´ of Aa

²¢
!
´ is the simple group Ω+(2r

!
, 2r/r

!)

and acts non-trivially on Γ!(²¢0´) of degree �! ¯ (q®1)k, where k¯ 2s(d )}s or

s(d )}s, an integer at most 2r. If r¯ r
!
then the action of Aa on ! is 2-transitive, which

is not allowed since Γ! is not a complete graph. Hence r" r
!
. If r

!
& 5 then, by [3],

�! is less than m(Aa !²¢
!
´), so r

!
% 3. If r

!
¯ 3, then Ω+(6, 2r/$)FPSL(4, 2r/$), but there

is no subgroup of PSL(4, 2r/$) of index (2r®1)k with k% 2r (see [14, Theorem 3.1]).

This leaves the case r
!
¯ 2; here Ω+(4, 2r/#)FPSL(2, 2r/#)¬PSL(2, 2r/#), and the

argument in the proof of Theorem 6.3 works in this case also, proving that there are

no possibilities. Finally in case (iii), q¯ 7 so r¯ s(d )¯ s¯ 1, Aut(Γ) contains C and

so �! ¯ 6. By [2], the subgroup Aa
²¢

!
´ ¯ 3"+# :8 :2, which has no subgroup of index 6.

*

Finally we determine Aut(Γ). The case q¯ 7 required special attention. We are

grateful to Alice Niemeyer for helping us investigate the automorphism groups of the

graphs CR(7; d, 1) using GRAPE [15].

T 6.6. Let q¯ pr, where p is a prime, r& 1, and q1 3, 5. Suppose that Γ

is a cross ratio graph CR(q ; d, s) or TCR(q ; d, s), for some d, s, such that Γ is not

isomorphic to Γ![K
#
]. Then Aut(Γ)f(C¬PΓL(2, q)) (as determined in Theorem 4.2).
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Proof. Suppose now that Aut(Γ)1G where G¯Aut(Γ)f(C¬PΓL(2, q)), and

let A%Aut(Γ) be a subgroup which contains G as a maximal subgroup. Since ! is

the unique non-trivial block system preserved by G, it follows from Proposition 6.5

that A is primitive on V(q). Let S denote the socle of G«, so S¯PSL(2, q), and let N

denote the socle of A. Note that since q1 3, 5, either (q,m(S )) (m(S ) defined above)

is one of (7, 7), (9, 6), (11, 11), or m(S )¯ q­1.

Since rV(q)r¯ q(q­1) is not a prime power, it follows that N is not elementary

abelian, and hence N¯Tk for some positive integer k and non-abelian simple group

T. Suppose first that k& 2. Then, by the O’Nan–Scott theorem (see [11]), it follows

that q(q­1) is either nk where n¯ rT :Rr for some proper subgroup R of T, or rT rl with

k}2% l%k. In particular, q1 7, 9, 11, and so m(S )¯ q­1. If S\N, then S

permutes the simple direct factors of N non-trivially. This implies that k&m(S )¯
q­1, but then q(q­1) cannot have the required form. Thus S%N, and S is a

subgroup of the direct product S
"
¬…¬S

k
of the projections of S onto the k simple

direct factors of N. Since S is simple this means that S is isomorphic to a subgroup

of T. In particular q(q­1)! rS r% rT r, and so q(q­1)¯ nk with n¯ rT :Rr&m(T ).

In this case the action of A is said to be of product type and the stabiliser N¢
!

is

R
"
¬…¬R

k
with each R

i
FR. If S

i
%R

i
for each i, then N¢

!
&S

"
¬…¬S

k
&S,

which is not the case. Hence for some i, the subgroup R
i
fS

i
is a proper subgroup of

S
i
and we have S

i
FS and m(S )% rS

i
: (R

i
fS

i
)r% rT :Rr¯ n. This however implies

that n& q­1 so q(q­1)1 nk.

Thus N¯T is a non-abelian simple group, and since A}N is therefore soluble we

have S%N. We have a maximal factorisation A¯A¢
!
G with rA :A¢

!
r¯ q(q­1).

By [12], it follows that q¯ 7, and soc(A)¯PSL(3, 4), G¯C¬PGL(2, 7). However,

for each of the graphs Γ¯CR(7; d, 1) with d1®1, computation using GRAPE [15]

showed that Aut(Γ)¯C¬PGL(2, 7). *

7. Summary, and isomorphisms of cross ratio graphs

The previous section contains a determination of the full automorphism groups

of all the cross ratio graphs. Here we give a summary of those results, and then

determine all occurrences of isomorphism between cross ratio graphs. The results of

the next theorem follow immediately from the results proved in Section 6.

T 7.1 (Summary of automorphism group results). Let q¯ pr for a prime

p and r& 1. Let d `GF(q), d1 0, 1, and let s be a di�isor of s(d ). Let Γ be a cross ratio

graph (twisted or untwisted ) defined on V(q).

(a) If Γ¯CR(q ; d, s) then one of the following holds:

(i) Γ¯CR(3; 2, 1)¯ 3[C
%

and Aut(Γ)¯D
)
wrS

$
.

(ii) Γ¯CR(5; 4, 1)¯ 5[(C
$
[K

#
]) and Aut(Γ)¯ (S

#
wrS

$
)wrS

&
.

(iii) q is odd, q& 7, d¯®1 (so s¯ 1),Γ¯CR(q ;®1, 1)FΓ![K
#
] is connected,

and we ha�e Aut(Γ)¯S
#
wrPΓL(2, q).

(iv) s(d )}s is e�en, Γ¯CR(q ; d, s)FΓ![K
#
] is connected, and we ha�e Aut(Γ)

¯S
#
wr(PGL(2, q)[©ψsª).

(v) s(d )}s is odd, d1®1, Γ¯CR(q ; d, s) is connected and is a co�er of Γ!,

and we ha�e Aut(Γ)¯C¬(PGL(2, q)[©ψsª).

(b) If Γ¯TCR(q ; d, s), so in addition q is odd, s is e�en, and d®1 is a square, then

one of the following holds:
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(i) d is a square, s(d )}s is e�en, Γ¯TCR(q ; d, s)FΓ![K
#
] is connected, and

Aut(Γ)¯S
#
wrM(s}2, q).

(ii) d is a square, s(d )}s is odd, Γ¯TCR(q ; d, s) is connected and is a co�er

of Γ!, and we ha�e Aut(Γ)¯C¬M(s}2, q).

(iii) d is not a square, Γ¯TCR(q ; d, s) is connected (and there is at most

one edge of Γ between any pair of blocks of !), and Aut(Γ)¯©M(s}2, q),αψs/#ª.

Finally we examine isomorphism between cross ratio graphs.

T 7.2 (Isomorphism of cross ratio graphs). Suppose that Γ¯CR(q ; d, s)

or TCR(q ; d, s), and that Γ«¯CR(q« ; d «, s«) or TCR(q« ; d «, s«), for appropriate

parameters q, d, s, q«, d«, s«. Suppose further that Γ and Γ« are isomorphic. Then q¯ q«,
s(d )¯ s(d «), s¯ s«, and Γ, Γ« are either both untwisted graphs or both twisted graphs.

Moreo�er, either d and d « are in the same ©ψª-orbit, or Γ and Γ« are lexicographic

products in case (a) (iv) or (b) (i) of Theorem 7.1, and d−" is in the same ©ψª-orbit as

d «. Con�ersely, if either of these sets of conditions holds, then ΓFΓ«.

Proof. Suppose that Γ and Γ« are isomorphic and let } :V(q)MNV(q«) be an

isomorphism. Since rV(q)r¯ rV(q«)r, we have q¯ q«, and so } `Sym(V(q)), and

Aut(Γ)} ¯Aut(Γ«). Also, since Γ and Γ« have the same valency, s(d )}s¯ s(d «)}s«. We

consider the possibilities for Γ according to the case of Theorem 7.1 it belongs to, and

use the fact that Aut(Γ)} ¯Aut(Γ«). If Γ is in case (a) (i) or (ii) then Γ is disconnected,

and so Γ« is disconnected and hence is equal to Γ, and d¯ d «¯®1. If Γ is in case

(a) (iii), then considering the automorphism groups of Γ and Γ« specified in Theorem

7.1, we see that Γ« also lies in case (a) (iii), so d¯ d «¯®1 and Γ¯Γ«. (Since ®1 is

fixed by ψ, the converse assertion holds in these cases also.) If Γ is in case (a) (v), then

consideration of the automorphism groups again implies that Γ« also lies in case

(a) (v) and s«¯ s so s(d «)¯ s(d ). Here } normalises Aut(Γ), so } `C¬PΓL(2, q), and

by Theorem 4.2, d, d « are in the same ©ψª-orbit, and this condition is sufficient for

isomorphism.

The remaining case for untwisted cross ratio graphs Γ is the case where Γ lies in

(a) (iv), and this case requires more analysis. Consideration of the automorphism

groups again implies that Γ« also lies in case (a) (iv) and s«¯ s so s(d «)¯ s(d ). Here

} normalises S
#
wr(PGL(2, q)[©ψsª), so } `S

#
wrPΓL(2, q). We may assume that }

maps the arc (¢0, 1d ) of Γ to the arc (¢0, 1d «) of Γ«. The subset of S
#
wrPΓL(2, q)

which maps the ordered pair (¢0, 1d ) to (¢0, 1e), for some e, consists of elements }

of the form }
"
}
#

where }
"

lies in the base group of the wreath product, and }
#
`

PΓL(2, q) maps ¢0 to either ¢0 or 0¢, and }
#

maps 1d to either 1e or e1. The

possible elements }
#

form a union of four cosets of ©ψª, namely ©ψª, t
",!,!,d

©ψª,

t
!,",",!

©ψª, and t
!,d,",!

©ψª. The possibilities for e are the ©ψª-orbits of either d or

d−". Conversely if d « is in the ©ψª-orbit of d or d−", then there exists an element }
#
`

PΓL(2, q) which fixes ¢0 and maps 1d to 1d « or d «1, and hence there is an element

} `S
#
wrPΓL(2, q) which induces an isomorphism from Γ to Γ«.

Now we may assume that both Γ and Γ« are of twisted type, and since Aut(Γ)} ¯
Aut(Γ«), both graphs lie in the same case of Theorem 7.1, and we have s«¯ s, s(d «)¯
s(d), and } normalises Aut(Γ). If the graphs lie in case (b) (ii) or (iii), then all the

assertions follow from Theorem 4.2. This leaves case (b) (i), where we have } `S
#
wr

PΓL(2, q). As in the previous paragraph we may assume that } maps the arc (¢0, 1d )
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of Γ to the arc (¢0, 1d «) of Γ«, and so }¯}
"
}
#
with }

#
in one of the specified cosets

of ©ψª. The argument above holds here also, proving that d « is in the same ©ψª-orbit

as d or d−", and that this condition is sufficient for isomorphism of Γ and Γ«. *
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