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Abstract

Let i1 ≥ i2 ≥ i3 ≥ 1 be integers. An L(i1, i2, i3)-labelling of a graph G = (V, E) is a
mapping φ : V → {0, 1, 2, . . .} such that |φ(u)− φ(v)| ≥ it for any u, v ∈ V with d(u, v) = t,
t = 1, 2, 3, where d(u, v) is the distance in G between u and v. The integer φ(v) is called the
label assigned to v under φ, and the difference between the largest and the smallest labels
is called the span of φ. The problem of finding the minimum span, λi1,i2,i3(G), over all
L(i1, i2, i3)-labellings of G arose from channel assignment in cellular communication systems,
and the related problem of finding the minimum number of labels used in an L(i1, i2, i3)-
labelling was originated from recent studies of the scalability of optical networks. In this
paper we study the L(i1, i2, i3)-labelling problem for hypercubes Qd (d ≥ 3) and obtain
upper and lower bounds on λi1,i2,i3(Qd) for any (i1, i2, i3).

Key words: channel assignment, labelling, λ-number, distance-colouring, hypercube,
binary code

AMS subject classification: 05C78

1 Introduction

Let d ≥ 1 be an integer. The d-dimensional cube Qd is the graph with vertices the binary
code words of length d such that two vertices are adjacent if and only if they differ in exactly
one position. Motivated by radio channel assignment and investigation of scalability of optical
networks, a few labelling problems [5, 6, 10, 14, 15, 17, 18, 20, 21] on hypercubes with distance
constraints have attracted considerable attention in recent years.

Let G = (V, E) be a graph and i1 ≥ i2 ≥ · · · ≥ ik (≥ 1) a sequence of integers. An
L(i1, i2, . . . , ik)-labelling of G is a mapping φ : V → {0, 1, 2, . . .} such that

|φ(u)− φ(v)| ≥ it, t = 1, 2, . . . , k (1)

for any u, v ∈ V with d(u, v) = t, where d(u, v) is the distance in G between u and v. The
integer φ(u) is called the label of u under φ, and sp(G; φ) := maxv∈V (G) φ(v) −minv∈V (G) φ(v)
is called the span of φ. Without loss of generality we will always assume minv∈V (G) φ(v) = 0,
so that sp(G; φ) = maxv∈V (G) φ(v). The minimum span over all L(i1, i2, . . . , ik)-labellings of G,
namely,

λi1,i2,...,ik(G) := min
φ

sp(G; φ),
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is called the λi1,i2,...,ik-number of G. A related invariant, χi1,i2,...,ik(G), is the minimum number
of labels required in an L(i1, i2, . . . , ik)-labelling of G. In the context of channel assignment
[6, 7, 8], G can be interpreted as an interference graph of a communication network, φ(u) is
the channel assigned to transmitter u, (1) is the separation requirement for transmitters with
distance at most k, and λi1,i2,...,ik(G) is the minimum span of a channel assignment under such
constraints. In a different scenario, we may think of packing vertices of G in a sufficiently
large number of bins (say, at least i1|V | bins), which are labelled 0, 1, 2, . . . sequentially, in such
a way that, for t = 1, 2, . . . , k, any two bins (possibly identical) with distance < it do not
contain distinct vertices with distance t or less in G. In this model, bin j contains vertices
in φ−1(j) for j = 0, 1, 2, . . ., empty bins correspond to unused labels, and λi1,i2,...,ik(G) is the
minimum of the largest label of a used bin, with minimum over all possible ways of packing. An
unused label between 0 and the largest label used is called a hole, and the meaning of a no-hole
L(i1, i2, . . . , ik)-labelling is self-evident. So far most research on the L(i1, i2, . . . , ik)-labelling
problem has focused on the case where k = 2; see [1] for a recent survey with over one hundred
references on λi1,i2 and related topics.

A related problem is to colour the vertices of a graph G such that any two vertices of
distance at most k receive different colours. Such a colouring is called a k̄-colouring in [17] and
the minimum number of colours needed in a k̄-colouring of G is denoted by χk̄(G). Clearly,

χk̄(G) = χ1,1,...,1(G) = χ(Gk)

where Gk is the kth power of G and χ denotes the chromatic number. Thus the k̄-colouring
problem is the same as the colouring problem for power graphs. This problem has a long history
[11] and is active in recent years (see e.g. [10, 14, 17, 20]) with motivation from studying the
scalability of optical networks. Anthony W. To (personal communication) observed that, for
any i1 ≥ i2 ≥ · · · ≥ ik ≥ 1, we have

χk̄(G) = χi1,i2,...,ik(G). (2)

In fact, since any L(i1, i2, . . . , ik)-labelling is an L(1, 1, . . . , 1)-labelling, we have χ1,1,...,1(G) ≤
χi1,i2,...,ik(G). On the other hand, we can magnify any L(1, 1, . . . , 1)-labelling φ to get an
L(i1, i2, . . . , ik)-labelling, namely, ψ(v) = i1φ(v) for v ∈ V . It is obvious that ψ uses the same
number of labels as φ. Hence χi1,i2,...,ik(G) ≤ χ1,1,...,1(G) and (2) follows. Another observation
is the following relation:

λ1,1,...,1(G) = χk̄(G)− 1. (3)

In fact, any L(1, 1, . . . , 1)-labelling of G with minimum span must be no-hole. Hence λ1,1,...,1(G) ≤
χk̄(G)− 1. This together with λ1,1,...,1(G) ≥ χk̄(G)− 1 implies (3).

1.1 Literature review

In [17, line 12, pp.185] Wan proved

d + 1 ≤ χ2̄(Qd) ≤ 2dlog2(d+1)e (4)

and conjectured that the upper bound is the exact value of χ2̄(Qd). According to [15], this
conjecture was disproved by 13 ≤ χ2̄(Q8) ≤ 14, which was obtained independently by Hougardy
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[19] in 1991 and Royle [9, Section 9.7] in 1993. In [10], Kim, Du and Pardalos proved that

2d ≤ χ3̄(Qd) ≤ 2dlog2 de+1. (5)

In the same paper they also gave an upper bound on χk̄(Qd) for k > 3, which was im-
proved by Ngo, Du and Graham in [14]. In [15] it was proved that limd→∞ χ2̄(Qd)/d = 1
and limd→∞ χ3̄(Qd)/d = 2. All these results on Qd were obtained via coding theory.

In [21, Theorem 2.5] it was proved that the upper bound in (4) is valid for the family G
of connected graphs whose automorphism group contains a vertex-transitive Abelian subgroup.
This came along with an upper bound [21, Theorem 2.5] on λi1,i2(G) for any G ∈ G, which can
be restated as follows:

λi1,i2(G) ≤ 2p max{i2, di1/2e}+ 2q(i1 −max{i2, di1/2e})− i1, (6)

where p := dlog2(d + 1)e and q := max{d + 1 + p − 2p, 0} with d the degree of G. Since all
hypercubes are members of G, (6) applies to Qd and in the special case where (i1, i2) = (2, 1)
it implies the upper bound on λ2,1(Qd) obtained earlier in [18]. It is well known that Qd is
the Cartesian product K22K22 · · ·2K2 (d factors), where K2 is the complete graph with two
vertices. In general, the Cartesian product Kn12Kn22 · · ·2Knd

of complete graphs is called
a Hamming graph, and results on its λi1,i2-number can be found in [2, 3, 4, 5, 21]. (See also
[22] for a recent survey on distance-labelling problems for Hamming graphs and hypercubes.)
In particular, Theorem 2.9 and Lemma 5.1 in [21] imply the following interesting “sandwich
theorem” (which was not stated explicitly in [21]): Suppose 2i2 ≥ i1 ≥ 2. Then for any
positive integers n1, n2, d such that n1 > d ≥ 2, n2 divides n1 and each prime factor of n1 is
no less than d, any positive integers n3, . . . , nd which are less than or equal to n2, and any
subgraph G of Kn12Kn22 · · ·2Knd

which contains a copy of Kn12Kn2 as a subgraph, we have
λi1,i2(G) = (n1n2−1)i2. A similar sandwich result was recently obtained in [2] for λ2,1, λ1,1 and
six other invariants for Hamming graphs under the condition that n1 is sufficiently large with
respect to n2, . . . , nd.

1.2 Main results

In this paper we study the L(i1, i2, i3)-problem for hypercubes. As above, denote

p = p(d) := dlog2(d + 1)e (7)

q = q(d) := max{d + 1 + dlog2(d + 1)e − 2dlog2(d+1)e, 0}. (8)

Then q ≤ p and
2p−1 ≤ d ≤ 2p − 1.

Note that d is a power of 2 if and only if d = 2p−1, that is, d 6= 2p−1 if and only if d is not a
power of 2.

The main result of this paper is the following theorem. An L(i1, i2, i3)-labelling is said to be
balanced if each label used is assigned to the same number of vertices.
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Theorem 1 Let d ≥ 3 be an integer, and let p, q be as defined in (7), (8) respectively. Then,
for any integers i1 ≥ i2 ≥ i3 ≥ 1,

i2(d− 1) + i1 ≤ λi1,i2,i3(Qd) ≤
{

2p(i3 + n) + 2q(i1 − n)− i1, d 6= 2p−1

(2p − 2)n + i1, d = 2p−1.
(9)

where n := max{i2, di1/2e}, and we can give explicitly balanced L(i1, i2, i3)-labellings of Qd which
use 2dlog2 de+1 labels and have span the upper bound above. In addition, if i1 ≤ 2, then

λi1,i2,i3(Qd) ≥ 2(d− 1) + i1. (10)

The lower bound in (9) is simple. Nevertheless, it might be the best that we can hope for
arbitrary i1 ≥ i2 ≥ i3 ≥ 1. Generally speaking, we believe that the upper bound in (9) is closer
to the actual value of λi1,i2,i3(Qd) than the lower bound.

In view of (3), a consequence of Theorem 1 is the upper bound (5) on χ3̄(Qd). Moreover,
the proof of Theorem 1 will provide a method of generating 3̄-colourings of Qd with 2dlog2 de+1

colours in a systematic way. In general, this method can produce many such “near-optimal”
3̄-colourings by varying a set of vectors of V (p, 2) satisfying certain conditions (see section 5 for
details), where V (d, 2) is the d-dimensional linear space over the Galois field GF(2). A specific
3̄-colouring of Qd with 2dlog2 de+1 colours was given in [14, Section 3] by using Hamming code.

In the case where d 6= 2p−1, the leading term of the upper bound in (9) is 2p(i3 +n), which is
strictly less than 2(i3 +n)d. In the case where d = 2p−1, the upper bound in (9) is 2n(d−1)+ i1,
which is independent of i3. For (i1, i2, i3) = (1, 1, 1), the lower bound in (10) is 2d− 1, and the
upper bound in (9) is 2p+1−1 = 2dlog2 de+1−1 if d 6= 2p−1, and 2p−1 = 2d−1 = 2dlog2 de+1−1 if
d = 2p−1. Thus, in view of (3), when (i1, i2, i3) = (1, 1, 1), (9)-(10) gives (5) exactly. Moreover,
in this case λ1,1,1(Qd) = 2d − 1 for d = 2p−1, and hence the upper bound (9) and the lower
bound (10) are attained. The next small instance is (i1, i2, i3) = (2, 1, 1), for which we have the
following consequence of Theorem 1. Again, the upper bound (9) and the lower bound (10) are
attained when (i1, i2, i3) = (2, 1, 1) and d = 2p−1.

Corollary 1 Let d ≥ 3, and let p, q be as in (7), (8) respectively. If d 6= 2p−1, then

2d ≤ λ2,1,1(Qd) ≤ 2p+1 + 2q − 2; (11)

if d = 2p−1, then
λ2,1,1(Qd) = 2d (12)

and moreover Qd admits a balanced L(2, 1, 1)-labelling with span 2d and exactly one hole.

Theorem 1 will be proved in the next two sections and Corollary 1 will be proved in section 4.
In section 5 we will summarize the procedure of generating the L(i1, i2, i3)-labellings promised
in Theorem 1, and conclude the paper with a few remarks.

2 Lower bounds

Different techniques will be exploited in proving the lower and upper bounds in (9). For the
lower bounds, which are the easier part of Theorem 1, a pure combinatorial argument will be
used. For a vertex u of Qd, let Qd(u) denote the neighbourhood of u in Qd.
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Proof of Theorem 1 (lower bounds) Let φ be an L(i1, i2, i3)-labelling of Qd, and u

a 0-labelled vertex of Qd. Then φ(v) ≥ i1 for v ∈ Qd(u), and |φ(v) − φ(v′)| ≥ i2 for distinct
v, v′ ∈ Qd(u). Hence sp(Qd; φ) ≥ φ(v∗) := maxv∈Qd(u) φ(v) ≥ i2(d−1)+i1. Thus, λi1,i2,i3(Qd) ≥
i2(d− 1) + i1 by the arbitrariness of φ.

Suppose i1 ≤ 2 in the remaining proof. Clearly, there are φ(v∗)−d labels in {1, 2, . . . , φ(v∗)}
which are not used by any vertex in Qd(u). Call them “unused labels”. For w ∈ Qd(v∗) \ {u},
since the distance in Qd between w and any vertex in Qd(u)∪{u} is at most 3, any “used label”
is forbidden for w; in other words, w should receive an unused label or a label larger than φ(v∗).

Case 1: φ(v∗) ≥ 2d − 1. In this case, there are enough unused labels for the d − 1
vertices in Qd(v∗) \ {u}. In the case where at least one vertex in Qd(v∗) \ {u} receives a
label which is larger than φ(v∗), this label must be at least as large as φ(v∗) + i1, and hence
sp(Qd; φ) ≥ (2d− 1) + i1 > 2(d− 1) + i1. Thus, we may assume that all vertices in Qd(v∗) \ {u}
receive unused labels. If φ(v∗) ≥ 2d, then sp(Qd; φ) ≥ φ(v∗) ≥ 2d ≥ 2(d − 1) + i1 since i1 ≤ 2.
Assume then that φ(v∗) = 2d − 1. Then the φ(v∗) − d (= d − 1) unused labels are all used up
by the d− 1 vertices in Qd(v∗) \ {u}. However, for w ∈ Qd(v∗) \ {u} and x ∈ Qd(w) \Qd(u), the
distance between x and any vertex in (Qd(v∗) \ {u}) ∪ {v∗} is at most 3. Thus, x must receive
a label which is larger than φ(v∗), and hence sp(Qd;φ) ≥ φ(v∗) + 1 = 2d ≥ 2(d− 1) + i1.

Case 2: φ(v∗) < 2d− 1. In this case at least (d− 1)− (φ(v∗)− d) = (2d− 1)− φ(v∗) ≥ 1
vertices in Qd(v∗) \ {u} receive labels larger than φ(v∗). In fact, such labels must be at least as
large as φ(v∗)+i1, and also they are pairwise distinct (with mutual separation at least i2). Thus,
the largest label assigned to a vertex in Qd(v∗)\{u} is at least (φ(v∗)+ i1)+{(2d−2)−φ(v∗)} =
2(d− 1) + i1, and hence sp(Qd;φ) ≥ 2(d− 1) + i1.

In each case above we have proved that sp(Qd;φ) ≥ 2(d − 1) + i1. Since φ is an arbitrary
L(i1, i2, i3)-labelling of Qd, it follows that λi1,i2,i3(Qd) ≥ 2(d−1)+ i1 when i1 ≤ 2, and the proof
of the lower bounds is complete. 2

3 Upper bounds

To establish the upper bounds in (9) we will use a group-theoretic approach, which bears some
similarity with the one for L(i1, i2)-labellings introduced by the author in [21]. The terminology
on groups used in the proof is standard; see e.g. [16]. Let Γ be a finite group. A subset Ω of Γ is
called a Cayley set if 1Γ 6∈ Ω and α ∈ Ω implies α−1 ∈ Ω, where 1Γ is the identity element of Γ.
Given such a pair (Γ, Ω), the Cayley graph of Γ with respect to Ω, denoted by Cay(Γ, Ω), is the
graph with vertices the elements of Γ in which α, β ∈ Γ are adjacent if and only if αβ−1 ∈ Ω.
Thus, for any α, β ∈ Γ, there is a path in Cay(Γ,Ω) joining α and β if and only if αβ−1 ∈ 〈Ω〉,
where 〈Ω〉 is the subgroup of Γ generated by Ω. In particular, Cay(Γ, Ω) is connected if and only
if Ω is a generating set of Γ. In the case where Γ is an Abelian group of order at least three, it is
well known that any connected Cayley graph on Γ is Hamiltonian (see e.g. [13, Corollary 3.2]).
In particular, any connected Cayley graph on a finite Abelian group contains a Hamiltonian
path, that is, a path visiting every vertex exactly once.

Recall that V (d, 2) is the d-dimensional linear space over GF(2). In the following vectors of
V (d, 2) are taken as row vectors, and e1, e2, . . . , ed denotes the standard basis of V (d, 2), where
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ej = (0, . . . , 1, . . . , 0) with the jth coordinate 1 and all other coordinates 0, for j = 1, 2, . . . , d. It
is well known that the additive group of V (d, 2) is isomorphic to the elementary Abelian 2-group
Zd

2, and that Qd is isomorphic to the Cayley graph Cay(Zd
2, S), where

S := {e1, e2, . . . , ed}.

Henceforth we will identify Qd with Cay(Zd
2, S). Thus, for u,v ∈ V (d, 2), the distance in Qd

between u and v, d(u,v), is the Hamming distance between u and v, that is, the number of
coordinates in which u and v differ. A vector u = (u1, u2, . . . , ud) ∈ V (d, 2) is called even or odd
according as

∑d
i=1 ui = 0 or 1, that is, the number of 1’s in the coordinates of u is even or odd.

The strategy that we are going to use to establish the upper bounds in Theorem 1 can be
explained as follows. We first choose a subspace N of V (d, 2) which is defined as the null space of
a d×p matrix A over GF(2) (see (13) below). In the language of coding theory, N can be viewed
as a binary linear (d, d − p)-code [12, Chapter 8] with the transpose of A as the parity-check
matrix. In the following it is convenient to take N as an additive subgroup of Zd

2. Thus we have
a natural partition of Zd

2 into cosets N +u where u ∈ Zd
2, and we consider the quotient graph G

of Qd with respect to this partition. (Given a graph H and a partition P of its vertex set, the
quotient graph of H with respect to P is defined to have vertex set P such that B,C ∈ P are
adjacent if and only if there exists at least one edge of H between B and C.) We will choose
A judiciously such that any two vectors in the same coset are distance ≥ 3 apart in Qd, and
distance ≥ 4 apart if in addition they have the same parity (even or odd). Thus we may label
the vectors in the same coset by two labels, one for even vectors and the other for odd vectors.
(For the special case where d = 2p−1, one label is enough for each coset if we choose a different
matrix A judiciously.) The complement of G is a Cayley graph on the Abelian group Zd

2/N , and
hence each of its components contains a Hamiltonian path. We will label the cosets on such a
path successively and make the span as small as we can.

3.1 Preparations

Now we start the technical detail. As before we assume that d ≥ 3 and p, q are as defined in (7),
(8) respectively. Since d ≤ 2p − 1 and V (p, 2) has 2p − 1 non-zero vectors, there exists a d × p

matrix A over GF(2) such that rank(A) = p and the rows a1,a2, . . . ,ad of A are pairwise distinct
and non-zero vectors of V (p, 2). Later we will specify the choice of these vectors together with
a set of other vectors in V (p, 2). Let

N := {x ∈ V (d, 2) : xA = 0p} (13)

be the null space of A, where 0p is the zero-vector of V (p, 2). Since rank(A) = p, N is a (d− p)-
dimensional subspace of V (d, 2). The additive group of N , denoted by the same notation, is a
subgroup of Zd

2 with |Zd
2 : N | = 2p, and thus Zd

2 is partitioned into 2p cosets N + u of N in Zd
2,

where u ∈ V (d, 2). Since ejA = aj (the jth row of A), and since the rows of A are non-zero and
pairwise distinct, it follows that ej 6∈ N for j = 1, 2, . . . , d and ej + ej′ 6∈ N when j 6= j′.

The following lemmas are valid for any d × p matrix A over GF(2) such that rank(A) = p

and the rows of A are non-zero and pairwise distinct. These lemmas will be used in the proof
of the upper bounds in (9) for specifically chosen A.
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Lemma 1 For any N +u ∈ Zd
2/N and any two distinct elements x+u,x′+u of N +u (where

u ∈ V (d, 2) and x,x′ ∈ N with x 6= x′), we have d(x + u,x′ + u) ≥ 3.

Proof Clearly, d(x+u,x′+u) = d(x,x′) = x−x′. Thus, for x+u ∈ N +u and x′+u ∈ N +u
with x 6= x′, we have d(x + u,x′ + u) ≥ 3 since d(x,x′) = 1 implies x − x′ = ej ∈ N , and
d(x,x′) = 2 implies x− x′ = ej + ej′ ∈ N . 2

Let
N (0) := {x ∈ N : x is even} , N (1) := {x ∈ N : x is odd}

and
N (0) + u := {x + u : x ∈ N (0)}, N (1) + u := {x + u : x ∈ N (1)}. (14)

Lemma 2 For any N +u ∈ Zd
2/N , {N (0) +u, N (1) +u} is a partition of N +u. Moreover, for

any two distinct elements x+u,x′+u in the same part of {N (0) +u, N (1) +u} (where x,x′ ∈ N

with x 6= x′), we have d(x + u,x′ + u) ≥ 4.

Proof Since {N (0), N (1)} is a partition of N , it follows immediately that {N (0) + u, N (1) + u}
is a partition of N + u. By Lemma 1 we have d(x + u,x′ + u) ≥ 3. If d(x + u,x′ + u) = 3, then
d(x,x′) = d(x + u,x′ + u) = 3, and hence x, x′ differ in precisely three coordinates. Thus, x
and x′ must have different parity, which is a contradiction. Hence Lemma 2 is established. 2

Denote
S/N := {N + ej : j = 1, 2, . . . , d}.

Since ej 6∈ N for each j, the identity element N of Zd
2/N is not in S/N . Also, it is clear that

S/N is closed under taking inverse. Hence both S/N and S∗/N := (Zd
2/N) \ ((S/N)∪ {N}) are

Cayley sets of Zd
2/N . Let

G := Cay(Zd
2/N, S/N), G∗ := Cay(Zd

2/N, S∗/N)

be the corresponding Cayley graphs. Since (S/N) ∪ (S∗/N) is a partition of (Zd
2/N) \ {N}, we

have the following lemma.

Lemma 3 G and G∗ are complementary graphs of each other, that is, N + u, N + v ∈ Zd
2/N

are adjacent in G if and only if they are not adjacent in G∗.

The next lemma tells us the relationship between the adjacency relations of G and Qd.

Lemma 4 Let N + u, N + v ∈ Zd
2/N be distinct cosets, where u − v 6∈ N . Then N + u and

N +v are adjacent in G if and only if there exist u′ ∈ N +u and v′ ∈ N +v such that u′ and v′

are adjacent in Qd. In other words, G is the quotient graph of Qd with respect to the partition
Zd

2/N of Zd
2.

Proof If N +u and N +v are adjacent in G, then (N +u)− (N +v) = N +(u−v) ∈ S/N and
hence x+(u−v) = ej for some x ∈ N and j. Thus, x+u ∈ N +u and v ∈ N +v are adjacent
in Qd. Conversely, if x + u ∈ N + u, y + v ∈ N + v are adjacent in Qd for some x,y ∈ N , then
(x + u) − (y + v) = ej for some j and hence (N + u) − (N + v) ∈ S/N , that is, N + u and
N + v are adjacent in G. 2
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Lemma 5 Each coset of 〈S∗/N〉 in Zd
2/N is a connected component of G∗, and vice versa.

Proof From the definition of a Cayley graph, we have: N + u and N + v are in the same
connected component of G∗ ⇔ (N + u) − (N + v) ∈ 〈S∗/N〉 ⇔ N + u and N + v are in the
same coset of 〈S∗/N〉 in Zd

2/N . 2

Since G∗ is a Cayley graph, its components must be isomorphic to each other, and they are
all isomorphic to Cay(〈S∗/N〉, S∗/N). Thus, G∗ has r components each with order s, where r, s

are defined by
r := |(Zd

2/N) : 〈S∗/N〉|, s := |〈S∗/N〉|. (15)

Clearly, we have
rs = |Zd

2 : N | = 2p. (16)

Let G∗
1, G

∗
2, . . . , G

∗
r denote the connected components of G∗. Since 〈S∗/N〉 is Abelian, from [13,

Corollary 3.2], Cay(〈S∗/N〉, S∗/N) contains a Hamiltonian path, and so does every G∗
i . (See

the first paragraph of this section.) For i = 1, 2, . . . , r, let

N + ui,1, N + ui,2, . . . , N + ui,s (17)

be a Hamiltonian path of G∗
i . Note that by Lemmas 3-4 there exists no edge of Qd between

N + ui,j and N + ui,j+1 for j = 1, 2, . . . , s − 1. Note also that {N + ui,j : i = 1, 2, . . . , r, j =
1, 2, . . . , s} is a partition of Zd

2.

3.2 Upper bounds

Equipped with the results above, we are now ready to prove the upper bounds in (9).

Proof of Theorem 1 (upper bound) We use the notations above and distinguish the
following two cases: (a) d 6= 2p−1; (b) d = 2p−1.

General Case: d 6= 2p−1. Since d + (p− q) = min{2p − 1, d + p} ≤ 2p − 1, we can choose
pairwise distinct non-zero vectors a1,a2, . . . ,ad,b1,b2, . . . ,bp−q of V (p, 2) such that

(i) rank(A) = p; and

(ii) b1,b2, . . . ,bp−q are independent,

where A is the d × p matrix with rows a1,a2, . . . ,ad. To be specific let us choose such vectors
in the following way: if q ≥ 1, then for t = 1, 2, . . . , p − q let bt be the vector with the jth
coordinate 0 if j < t and 1 if j ≥ t; if q = 0, then define b1,b2, . . . ,bp−1 in the same way
and set bp = (1, 0, . . . , 0, 1). (The case p = q occurs precisely when d + 1 = 2p, and in this
case we leave b0 undefined.) Choose a1,a2, . . . ,ap to be the standard basis of V (p, 2), and then
choose distinct non-zero vectors ap+1, . . . ,ad from V (p, 2) \ {a1,a2, . . . ,ap,b1,b2, . . . ,bp−q}.
Then a1,a2, . . . ,ap,ap+1, . . . ,ad,b1,b2, . . . ,bp−q meet all the requirements above.

With the specific choice above, Lemmas 1-5 are all valid for A and its null space N , and
we will use them in the following. Note that a1,a2, . . . ,ap are odd. Since d > 2p−1 but V (p, 2)
contains 2p−1 odd vectors only, there exists at least one even vector among ap+1, . . . ,ad. Without
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loss of generality we may suppose that ad is even, that is,
∑p

j=1 adj = 0, where we denote

ai = (ai1, ai2, . . . , aip) for each i. Let x = (x1, x2, . . . , xd) ∈ V (d, 2). If x ∈ N , then
∑d

i=1 xi =∑d
i=p+1(1 +

∑p
j=1 aij)xi by the specific choice of a1,a2, . . . ,ad. Setting (xp+1, . . . , xd−1, xd) =

(0, . . . , 0, 1), we get
∑d

i=1 xi = 1 and hence x is odd. Thus, N (1) 6= ∅. Let M = {x ∈ V (d, 2) :∑d
i=1 xi = 0}, so that N (0) = N ∩M . Since ∅ 6= N (1) = N \M and M is a (d− 1)-dimensional

subspace of V (d, 2), we must have M + N = V (d, 2). Thus, since the dimension of N is d− p, it
follows from the dimension formula that N (0) is a (d − p − 1)-dimensional subspace of V (d, 2),
and therefore |N (0)| = |N (1)| = |N |/2.

Now that rank(A) = p, there exists xj ∈ V (d, 2) such that xjA = bj , for j = 1, 2, . . . , p− q.
Since bj 6= ai = eiA for i = 1, 2, . . . , d and j = 1, 2, . . . , p − q, we have xj − ei 6∈ N and
hence xj ∈ Zd

2 \ (N + S), where N + S := {x + ei : x ∈ N, ei ∈ S}. One can check that
〈S∗/N〉 = 〈Zd

2 \ (N + S)〉/N . Hence N + xj ∈ 〈S∗/N〉 for j = 1, 2, . . . , p − q. Since by (ii)
b1,b2, . . . ,bp−q are independent in V (p, 2), N + x1, N + x2, . . . , N + xp−q are independent in
the quotient space V (d, 2)/N . Therefore, s = |〈S∗/N〉| ≥ |〈N+x1, N+x2, . . . , N+xp−q〉| ≥ 2p−q,
and thus by (16) we have

r ≤ 2q. (18)

Recall that n := max{i2, di1/2e}. Define φ to be the labelling of Qd such that, for i =
1, 2, . . . , r and j = 1, 2, . . . , s, all the elements in N (0) + ui,j are labelled by

(i− 1){(s− 1)n + i1}+ (j − 1)n + {(i− 1)s + (j − 1)}i3 (19)

and all the elements in N (1) + ui,j are labelled by

(i− 1){(s− 1)n + i1}+ (j − 1)n + {(i− 1)s + j}i3. (20)

Clearly, for any fixed i, the labels assigned to the elements in N + ui,j increase with j. The
smallest and the largest labels assigned to an element of

⋃s
j=1(N +ui,j) are (i−1)(s−1)n+(i−

1)i1 +(i−1)i3s and i(s−1)n+(i−1)i1 + ii3s, respectively. Thus, the labels increase with i, and
if i 6= i′, then for any u ∈ ⋃s

j=1(N + ui,j) and u′ ∈ ⋃s
j=1(N + ui′,j) we have |φ(u)− φ(u′)| ≥ i1.

Thus, since i1 ≥ i2 ≥ i3, (1) is satisfied by such pairs (u,u′) for t = 1, 2, 3, regardless of the
distance in Qd between u and u′.

Now let us consider N+ui,j , N+ui,j′ in the same connected component of G∗. If u ∈ N+ui,j

and u′ ∈ N + ui,j′ are adjacent in Qd, then by Lemma 4, N + ui,j , N + ui,j′ are adjacent in G,
and hence by Lemma 3 they are not adjacent in G∗. Thus, due to the Hamiltonian path (17)
of G∗

i , we have |j − j′| ≥ 2 and hence |φ(u)− φ(u′)| ≥ |j − j′|n ≥ 2n ≥ i1. If d(u,u′) = 2, then
by Lemma 1 we have j 6= j′ and hence |φ(u) − φ(u′)| ≥ |j − j′|n ≥ n ≥ i2. Finally, suppose
d(u,u′) = 3. If j 6= j′, then |φ(u) − φ(u′)| ≥ i2 (≥ i3) as above. If j = j′, then by Lemma 2,
one of u, u′ is in N (0) + ui,j and the other one is in N (1) + ui,j , and hence |φ(u)− φ(u′)| = i3.

In summary, we have proved that φ is an L(i1, i2, i3)-labelling of Qd. Noting that rs = 2p

and r ≤ 2q by (16) and (18), we have

sp(Qd; φ) = rs(i3 + n) + r(i1 − n)− i1 ≤ 2p(i3 + n) + 2q(i1 − n)− i1 (21)

and hence the first upper bound in (9) follows. The number of labels used by φ is 2rs = 2dlog2 de+1

since 2p−1 < d ≤ 2p − 1. Recall that N (0) and N (1) each contains half of the elements of N .
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Hence N (0) + ui,j and N (1) + ui,j each contains half of the elements of N + ui,j . Therefore, φ is
balanced.

Special Case: d = 2p−1. Note that we could apply the labelling φ above to the case where
d = 2p−1. However, it does not produce the desired bounds on λi1,i2,i3(Qd) and χ3̄(Qd) in this
case. In fact, the case d = 2p−1 is quite special and deserves a more careful treatment. In this
case, q = max{p + 1 − 2p−1, 0} = 0 (note that p ≥ 3 as d ≥ 3), and we are going to choose
a1,a2, . . . ,ad,b1,b2, . . . ,bp in a different way. Let us first choose {b1,b2, . . . ,bp} to be a set
of even vectors of V (p, 2) with rank p− 1. (For instance, we may choose bt to be the vector of
V (p, 2) with the tth and (t + 1)th coordinates 1 and all other coordinates 0, for t = 1, 2, . . . , p,
with t modulo p.) Then choose a1,a2, . . . ,ap to be the standard basis of V (p, 2). Note that
{b1,b2, . . . ,bp} is no longer independent, but it contains p− 1 independent vectors due to the
requirement on its rank. (As a matter of fact, any set of p even vectors of V (p, 2) must be
dependent because the corresponding determinant is equal to 0.) Note also that a1,a2, . . . ,ap

are all odd. Since in total there are 2p−1 odd vectors in V (p, 2) and b1,b2, . . . ,bp are all even,
there are exactly 2p−1 − p (= d− p) odd vectors in V (p, 2) \ {a1,a2, . . . ,ap,b1,b2, . . . ,bp}, and
hence we can choose ap+1, . . . ,ad to be these odd vectors. Then a1,a2, . . . ,ad,b1,b2, . . . ,bp

are non-zero and pairwise distinct such that rank(A) = p, where A is the d × p matrix with
rows a1,a2, . . . ,ad. For this A and its null space N , Lemmas 1-5 are all valid. Using the
same notation as before, since {b1,b2, . . . ,bp} contains p− 1 instead of p independent vectors,
we have s = |〈S∗/N〉| ≥ |〈N + x1, N + x2, . . . , N + xp〉| ≥ 2p−1. Hence, instead of (18), we
have r ≤ 2 by (16). Thus, again by (16), we have either (r, s) = (1, 2p) or (r, s) = (2, 2p−1).
Since a1,a2, . . . ,ap is the standard basis of V (p, 2), for each x = (x1, x2, . . . , xd) ∈ N we have∑d

i=1 xi =
∑d

i=p+1(1 +
∑p

j=1 aij)xi, where ai = (ai1, ai2, . . . , aip) for each i. Since all ai’s are

odd, we have
∑p

j=1 aij = 1 for i = p + 1, . . . , d, and hence
∑d

i=1 xi = 0. Thus, N consists of

even vectors only, that is, N (0) = N and N (1) = ∅. Hence, by Lemmas 1-2, for each coset
N + u ∈ Zd

2/N , the distance in Qd between any two elements in N + u is at least 4, and so we
need only one label for N + u. In the case where (r, s) = (1, 2p), from Lemmas 4-5 the labelling
under which all elements in N + u1,j are labelled by

(j − 1)n, j = 1, 2, . . . , 2p (22)

is an L(i1, i2, i3)-labelling of Qd with span (2p − 1)n ≤ (2p − 2)n + i1. In the case where
(r, s) = (2, 2p−1), we may label all elements in N + u1,j by

(j − 1)n, j = 1, 2, . . . , 2p−1 (23)

and all elements in N + u2,j by

(2p−1 − 1)n + i1 + (j − 1)n, j = 1, 2, . . . , 2p−1. (24)

Using Lemmas 4-5, one can verify that this is an L(i1, i2, i3)-labelling of Qd with span (2p −
2)n + i1. Thus, in each case the second bound in (9) has been established, and moreover
the L(i1, i2, i3)-labelling above uses rs = 2p = 2dlog2(d+1)e = 2dlog2 de+1 labels. (Note that
dlog2(d + 1)e = dlog2 de + 1 when d = 2p−1.) Moreover, in each case the labelling above is
balanced with each label used by 22p−1−p elements. 2

Up to now we have completed the proof of Theorem 1.
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4 Proof of Corollary 1

Proof of Corollary 1 Let (i1, i2, i3) = (2, 1, 1). Then n = 1 and hence (11) follows from
(9)-(10) when d 6= 2p−1. In the case where d = 2p−1, the upper bound in (9) and the lower
bound in (10) are both equal to 2d, and hence (12) follows. In this latter case, since χ3̄(Qd) = 2d
by (5), any optimal L(2, 1, 1)-labelling of Qd contains exactly one hole. Hence we must have
(r, s) = (2, 2p−1) when d = 2p−1 (where r, s are as defined in (15)), and the labelling defined by
(23)-(24) is a balanced optimal L(2, 1, 1)-labelling of Qd with exactly one hole. 2

5 Remarks

The proof of Theorem 1 implies the following procedure for generating L(i1, i2, i3)-labellings of
Qd which have span the upper bound in (9) and use 2dlog2 de+1 labels. Let p, q be as in (7), (8)
respectively.

1. In the case where d 6= 2p−1, choose pairwise distinct non-zero vectors a1,a2, . . ., ad,
b1,b2, . . . ,bp−q of V (p, 2) satisfying (i) and (ii); in the case where d = 2p−1, choose
a1,a2, . . . ,ad to be all odd vectors of V (p, 2), and let {b1,b2, . . . ,bp} be any set of even
vectors of V (p, 2) with rank p− 1.

2. Compute the null space N of the d × q matrix with rows a1,a2, . . . ,ad; and compute
N (0) + u and N (1) + u for each N + u ∈ Zd

2/N using (14).

3. Let G∗ := Cay(Zd
2/N, S∗/N), where S∗/N := (Zd

2/N)\((S/N)∪{N}). Find a Hamiltonian
path (17) in each connected component of G∗.

4. In the case where d 6= 2p−1, label the elements of Zd
2 using (19)-(20); in the case where

d = 2p−1, label the elements of Zd
2 using (22) if r = 1, or (23)-(24) if r = 2.

For (i1, i2, i3) = (1, 1, 1) and d = 2p−1, since λ1,1,1(Qd) = 2d − 1 by (9) and (10), and
χ3̄(Qd) = 2d by (3) and (5), any optimal L(1, 1, 1)-labelling must be no-hole. Since i1 = n = 1
in this case, the labelling given by (22) (when r = 1) or (23)-(24) (when r = 2) is a no-hole
balanced L(1, 1, 1)-labelling with span 2d− 1 (hence optimal).

The lower bound λi1,i2,i3(Qd) ≥ i2(d − 1) + i1 in (9) is quite crude, and there is room to
obtain better lower bounds for specific values of i1, i2 and i3.

Comparing (9) and (6), the upper bound for λi1,i2,i3(Qd) is larger than the upper bound for
λi1,i2(Qd) by 2pi3 when d 6= 2p−1, and by min{i1 − i2, bi1/2c} when d = 2p−1.

Finally, in view of (21) the first upper bound in (9) can be improved as 2p(i3+n)+(2p/s)(i1−
n)− i1, where s = |〈(Zd

2/N) \ ((S/N) ∪ {N})〉| with N as defined in (13) for the chosen matrix
A.
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