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Abstract

Let Γ be a finite G-symmetric graph whose vertex set admits a non-trivial G-
invariant partition B with block size v. A framework for studying such graphs Γ was
developed by Gardiner and Praeger which involved an analysis of the quotient graph
ΓB relative to B, the bipartite subgraph Γ[B,C] of Γ induced by adjacent blocks
B,C of ΓB and a certain 1-design D(B) induced by a block B ∈ B. The present
paper studies the case where the size k of the blocks of D(B) satisfies k = v − 1. In
the general case, where k = v − 1 > 2, the setwise stabilizer GB is doubly transitive
on B and G is faithful on B. We prove that D(B) contains no repeated blocks if and
only if ΓB is (G, 2)-arc transitive and give a method for constructing such a graph
from a 2-arc transitive graph with a self-paired orbit on 3-arcs. We show further
that each such graph may be constructed by this method. In particular every 3-arc
transitive graph, and every 2-arc transitive graph of even valency, may occur as ΓB

for some graph Γ with these properties. We prove further that Γ[B,C]%Kv−1,v−1

if and only if ΓB is (G, 3)-arc transitive.

1. Introduction

A graph Γ admitting a group G of automorphisms is said to be G-symmetric if G
acts transitively on the set of ordered pairs of adjacent vertices of Γ. In many cases,
for example if Γ is connected, such a group must be transitive on the vertex set V (Γ).
We assume that this is the case and moreover that there is a non-trivial G-invariant
partition B of V (Γ), that is, the elements of G permute the blocks B of B blockwise,
and 1 < |B| < |V (Γ)|. Such a graph is said to be an imprimitive G-symmetric graph.
A study of such graphs was initiated in [5] by Gardiner and Praeger. It was suggested
there that three objects associated with B had a strong influence on the structure of
Γ, namely the quotient graph ΓB, the bipartite subgraph Γ[B,C] of Γ induced by
two adjacent blocks B,C of B, and a 1-design D(B) induced on a block B ∈ B (see
Section 2 for the definitions). It was further suggested that these three geometric
objects might provide a good framework for investigating imprimitive symmetric
graphs. The paper [5] was written in the context of G-locally primitive graphs (that
is, Gα induces a primitive group on the set Γ(α) of vertices adjacent to a vertex α)
and the theory was extended to general symmetric graphs in the sequels [6, 7]. In
particular, the case where Γ is G-locally primitive and the size k of the blocks of
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D(B) satisfies k = v − 1 was studied in [5, section 5]. In this paper we extend that
investigation to the class of all imprimitive G-symmetric graphs with k = v− 1. The
assumption k = v − 1 is equivalent to the following: for distinct blocks B,C ∈ B,
either there are no edges between B and C, or there is a unique vertex α ∈ B such
that Γ(α) w C =6.

In the special case where k = v− 1 = 1, we define two G-symmetric graphs Γ?,Γ#

with vertex set V (Γ) which are covers of ΓB (see Section 3). Our main focus, however,
is the general case where k = v − 1 > 2. We investigate this case in Section 4 and
prove in particular that G acts faithfully on B and GB is doubly transitive on B
(see Theorem 5). Thus the design D(B) is degenerate, with each k-element subset of
B occurring as a (possibly repeated) block of D(B). In Sections 5 and 6 we continue
this investigation in the special case where D(B) contains no repeated blocks. Not
only is this a natural assumption geometrically, but also we prove that D(B) has
no repeated blocks if and only if ΓB is (G, 2)-arc transitive. (An s-arc is a sequence
(α0, α1, . . . , αs) of vertices such that αi, αi+1 are adjacent and αi−1 � αi+1 for each
i. The graph Γ is said to be (G, s)-arc transitive if G is transitive on the s-arcs of
Γ.) In this case (see Proposition 7) ΓB has valency v and we show that the vertices
of Γ may be labelled by the arcs of ΓB. We continue the investigation of this case
in Section 6 where we first give a construction of a family of graphs which satisfy
these conditions. The construction requires a (G, 2)-arc transitive graph Σ of valency
v > 3 and a self-paired G-orbit ∆ of 3-arcs of Σ (where ∆ is said to be self-paired if
(α, β, γ, δ) ∈ ∆ if and only if (δ, γ, β, α) ∈ ∆). For such Σ and ∆, the graph Arc∆(Σ) is
defined to have vertices the arcs of Σ with (σ, τ ) joined by an edge to (σ′, τ ′) if and
only if (τ, σ, σ′, τ ′) ∈ ∆. We show in Theorem 10 that Arc∆(Σ) is an imprimitive G-
symmetric graph relative to a certain partition B(Σ) of the arcs of Σ, that ‘k = v−1’
and that D(B) has no repeated blocks for B ∈ B(Σ). We further show in Theorem
11 that every graph Γ satisfying these conditions is isomorphic to Arc∆(ΓB) for some
∆. Thus we have the following result, which is the main theorem of this paper.

Theorem 1. Let Γ be a finite G-symmetric graph and B a non-trivial G-invariant
partition of V (Γ) with block size v > 3 such that D(B) has block size v − 1. Then
D(B) contains no repeated blocks if and only if ΓB is (G, 2)-arc transitive. In this case
Γ%Arc∆(ΓB) for some self-paired G-orbit ∆ of 3-arcs of ΓB. Conversely, for any self-
paired G-orbit ∆ of 3-arcs of a (G, 2)-arc transitive graph Σ of valency v > 3, the graph
Γ = Arc∆(Σ), group G and partition B(Σ) (defined in Section 6) satisfy all the conditions
above.

We note that every 3-arc transitive graph, and every 2-arc transitive graph of
even valency, may occur as the graph Σ (see Remark 4(c)). This theorem follows
immediately from Theorems 8, 10 and 11. If the 3-arcs in ∆ form 3-cycles then the
possibilities for Γ are given more explicitly in Theorem 8(b). For the case where ΓB

is (G, 3)-arc transitive there is a unique graph Arc∆(ΓB), namely where ∆ is the set
of all 3-arcs of ΓB. In this case we have the following characterization.

Theorem 2. Suppose that Γ, G and B are as in Theorem 1 and that D(B) contains
no repeated blocks. Then the following conditions are equivalent:

(a) ΓB is (G, 3)-arc transitive;
(b) Γ[B,C]%Kv−1,v−1;
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(c) Γ%Arc∆(ΓB) with ∆ the set of all 3-arcs of ΓB.

Thus in this case Γ is uniquely determined by ΓB.

In Theorem 1, in the case where D(B) has no repeated blocks, we do not know
very much about the structure of the graphs Arc∆(ΓB) in general. If however ΓB has
girth 3 then ΓB is a vertex-disjoint union of complete graphs Kv+1, ∆ consists of all
the 3-cycles of ΓB and Γ is disconnected with all connected components complete
graphs Kv (see Theorem 8(b)). On the other hand, if girth (ΓB) > 5 then we derive
some weak upper bounds on the valency of Γ (see Corollary 1 in Section 5).

2. Definitions, notation and preliminaries

Let Γ be a finite G-symmetric graph such that there is a non-trivial G-invariant
partition B of V (Γ). We define the quotient graph ΓB to be the graph with vertex set
B in which two blocks B,C ∈ B are adjacent if and only if there exist α ∈ B, β ∈ C
such that α and β are adjacent in Γ. It is clear that G induces an action (possibly
unfaithful) on B and under this action ΓB is G-symmetric. We suppose throughout
that (B,ΓB) is non-trivial in the sense that B is a non-trivial partition and that ΓB

has at least one edge. Then it is easy to see (see for example [5, 8]) that each block
of B is an independent set of Γ (that is, a subset of V (Γ) such that no two vertices
are adjacent in Γ). For each α ∈ V (Γ), B(α) denotes the block of B containing α.

For any two adjacent blocks B,C ∈ B, we denote by Γ(B) (respectively Γ(C)) the
set of vertices of Γ adjacent to at least one vertex in B (respectively C); let Γ[B,C]
be the induced bipartite subgraph of Γ with Γ(C) w B and Γ(B) w C as the parts
of the bipartition. Then Γ[B,C] is (GBxC)-symmetric, where GBxC is the setwise
stabilizer of B x C in G. In particular, if Γ[B,C] is a perfect matching between the
vertices of B and C, then Γ is said to be a cover of ΓB.

For each blockB, we denote by ΓB(B) the set of blocks of B that are adjacent toB
in ΓB; and we define D(B) as the design with point set B and blocks Γ(C)wB (with
possible repetitions) for C ∈ ΓB(B). We emphasize that D(B) may have repeated
blocks since we may have Γ(C1) w B = Γ(C2) w B for distinct C1, C2 ∈ ΓB(B). Set
k ÷ |Γ(B) w C| for adjacent blocks B,C and r ÷ |ΓB(α)| for α ∈ V (Γ), where
ΓB(α)÷ {B ∈ B: B w Γ(α)�6}. Let v÷ |B| be the size of the blocks in B and
b÷ val (ΓB) = |ΓB(B)| be the valency of ΓB. Then vr = bk and D(B) is a 1-(v, k, r)
design with b blocks (see [2] for terminology on designs).

Since Γ is G-symmetric, the bipartite graph Γ[B,C] and the 1-design D(B) are,
up to isomorphism, independent of the choice of the adjacent blocks B,C and the
blockB, respectively. Thus, with any imprimitiveG-symmetric graph Γ and non-trivial
G-invariant partition B of V (Γ) we have associated a triple (ΓB,Γ[B,C],D(B)).

For blocks B,C,D ∈ B, let GB be the setwise stabilizer of B in G and similarly
let GB,C = (GB)C = (GC)B and GB,C,D = (GB,C)D. For a vertex α ∈ V (Γ), let Gα,B
denote the subgroup of G fixing α and B setwise. Let G[B] be the setwise stabilizer in
G of B and each of the blocks in ΓB(B). Let G(B) be the pointwise stabilizer of B in
G. We say that Γ is vertex-distinguishable with respect to B if, for any two adjacent
blocks B,C of B and distinct vertices α, β ∈ Γ(B)wC, we have Γ(α)wB�Γ(β)wB.
The following lemma exemplifies some graphs of this kind.

Lemma 1. Suppose Γ is a finite G-symmetric graph admitting a non-trivial G-
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invariant partition B. Then Γ is vertex-distinguishable with respect to B if, for adjacent
blocks B,C of B, one of the following conditions holds:

(a) Γ[B,C] is a matching;
(b) Γ[B,C] is a complete bipartite graph minus a perfect matching between the vertices

of Γ(C) wB and Γ(B) w C;
(c) GB,C acts primitively on Γ(B) w C and Γ[B,C]+Kk,k.

Proof. Clearly, the result is true whenever (a) or (b) occurs. Suppose that the con-
dition (c) is satisfied. If there exist distinct α, β ∈ Γ(B) w C such that Γ(α) w B =
Γ(β) w B, then {γ ∈ C : Γ(γ) w B = Γ(α) w B} is a block of imprimitivity for GB,C
in Γ(B) w C and has size at least 2. Since this action is primitive, it follows that
Γ(γ) w B = Γ(α) w B for all γ ∈ Γ(B) w C. This implies that Γ[B,C] % Kk,k, a
contradiction. Thus, Γ is vertex-distinguishable with respect to B.

Let G1, G2 be groups acting on finite sets ∆1,∆2, respectively. The action of G1 on
∆1 is said to be permutationally isomorphic [4, pp. 17] to the action of G2 on ∆2 if
there exists a bijection λ: ∆1 → ∆2 and a group isomorphism ψ: G1 → G2 such that
λ(αg) = (λ(α))ψ(g) for all α ∈ ∆1 and g ∈ G1. We refer to [4, 11] for other terminology
for permutation groups used in the paper.

Since the main concern of this paper is the case where k = v − 1, we introduce
some special notation for this case. Suppose k = v − 1. Let α ∈ V (Γ), set B = B(α)
and let B(α)÷ {C ∈ B: Γ(C)wB = B\{α}}. Thus B(α) is the set of blocks adjacent
to B(α), but containing no vertex adjacent to α. Let A(α)÷ {(B,C): C ∈ B(α)},
the set of arcs of ΓB from B to a block of ΓB(B) containing no vertices adjacent
to α. We will show that the vertices of Γ can be labelled with the sets A(α). Let
A(B)÷ {A(α): α ∈ B} for a block B ∈ B and A÷ {A(α): α ∈ V (Γ)}.

Lemma 2. Suppose Γ is a finiteG-symmetric graph and B is a non-trivialG-invariant
partition of V (Γ) with k = v−1 > 1. Then the map (A(α))g = A(αg) for α ∈ V (Γ), g ∈ G,
defines an action of G on A and the actions of G on V (Γ) and A are permutationally
isomorphic with respect to the bijection λ: α 7→ A(α).

Proof. It is straightforward to check that (A(α))g = A(αg) defines an action. Let
α, β be distinct vertices of Γ. If B(α)�B(β), then the arcs in A(α) and A(β) have
different initial vertices; if B(α) = B(β), then B(α)wB(β) =6 as k = v− 1. In both
cases, we get A(α)�A(β) and hence λ: α 7→ A(α) is a bijection from V (Γ) to A. For
any α ∈ V (Γ) and g ∈ G, we have λ(αg) = A(αg) = (A(α))g = (λ(α))g. So the actions
of G on V (Γ) and A are permutationally isomorphic.

Next we define a graph Γ′ associated with Γ in the case k = v − 1.

Definition 1. Let Γ′ be the graph with vertex set V (Γ) in which two vertices α, β
are adjacent if and only if B(β) ∈ B(α) and B(α) ∈ B(β) (see Fig. 1). In other words,
α, β are adjacent in Γ′ if and only if B(α), B(β) are adjacent in ΓB, α is the only
vertex in B(α) not adjacent to any vertex in B(β) and β is the only vertex in B(β)
not adjacent to any vertex in B(α).

Note that (α, β) 7→ (B(α), B(β)) establishes a bijection from the set of arcs of Γ′

to the set of arcs of ΓB.
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Fig. 1. The definition of Γ′.

Proposition 3. Suppose Γ is a finite G-symmetric graph and V (Γ) admits a non-
trivial G-invariant partition B with k = v − 1 > 1. Then Γ′ is a G-symmetric graph.

Proof. Let (α, β), (γ, δ) be distinct arcs of Γ′. Then (B(α), B(β)), (B(γ), B(δ))
are distinct arcs of ΓB. Since ΓB is G-symmetric, there exists g ∈ G such that
(B(α), B(β))g = (B(γ), B(δ)), that is, (B(αg), B(βg)) = (B(γ), B(δ)). Since α is the
only vertex in B(α) not adjacent to any vertex in B(β), we know that αg is the only
vertex in B(αg) = B(γ) not adjacent to any vertex in B(βg) = B(δ) and γ is the only
vertex in B(γ) not adjacent to any vertex in B(δ). So we must have αg = γ. Similarly,
βg = δ. Hence (α, β)g = (γ, δ) and Γ′ is a G-symmetric graph.

We use Kn and Kn,n to denote, respectively, the complete graph with n vertices
and the complete bipartite graph with n vertices in each part of its bipartition. For
an integer n > 1 and a graph Γ, n · Γ denotes the vertex-disjoint union of n copies
of Γ. Thus, a matching with n edges is the graph n · K2. We use Γ to denote the
complement graph of Γ with respect to the complete graph. The girth of Γ, denoted
by girth (Γ), is the length of a shortest cycle in Γ if the graph Γ contains cycles and
is defined to be ∞ otherwise. A cycle (path, respectively) of length n is called an
n-cycle (n-path, respectively) and is denoted by Cn (Pn, respectively). A clique of Γ
is a set of vertices of Γ which induces a complete subgraph. A clique with n vertices
is called an n-clique. The distance in Γ between two vertices α, β ∈ V (Γ) is denoted
by dΓ(α, β). For a G-vertex-transitive graph Γ, it is easy to show that Γ is (G, 2)-arc
transitive if and only if Gα is doubly transitive on Γ(α) for some α ∈ V (Γ).

3. The case where k = 1 and v = 2

In the remainder of the paper we will assume that Γ is a G-symmetric graph and
B is a G-invariant partition of V (Γ) such that (B,ΓB) is non-trivial (that is, B is
non-trivial and ΓB has at least one edge) and k = v−1. We distinguish the following
two cases:

(I) k = v − 1 = 1; and
(II) k = v − 1 > 2.

In this section we discuss Case (I), which can occur in a non-trivial way (see the
examples in [5, section 5] and see also Theorem 9 and the remarks following it). The
characterization of Γ in Case (I) varies in difficulty according to the nature of ΓB.
For example, if ΓB = Cn, then r = 1 and Γ is uniquely determined (see [5, theorem
4·1(a)]), namely Γ = n · K2, while if ΓB is a complete graph, then it seems rather
difficult to determine or describe Γ (see [5, section 4]).

Suppose then that k = v− 1 = 1. For each vertex α, let B(α) = {α, α′} denote the
block of B containing α, so B(α) = B(α′). The adjacency relation for the graph Γ′

defined in Definition 1 becomes: α and β are adjacent in Γ′ if and only if α′ and β′
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Fig. 2. The definitions of Γ′,Γ? and Γ#.

are adjacent in Γ. Besides Γ′, we can associate with Γ two other graphs Γ? and Γ#

(see Fig. 2) defined as follows.

Definition 2. (a) Let Γ? be the graph with vertex set V (Γ) in which {α, β} is an
edge if and only if either {α, β} or {α′, β′} is an edge of Γ.

(b) Let Γ# be the graph with vertex set V (Γ) such that {α, β′} and {α′, β} are
edges of Γ# if and only if either {α, β} or {α′, β′} is an edge of Γ.

The following result is analogous to [5, lemma 5·1] without assumingG-local prim-
itivity. It shows that the quotient graph ΓB may be covered by two (possibly non-
isomorphic) symmetric graphs each with block size two. Let z be the involution which
interchanges the two vertices in each block of B.

Theorem 4. Suppose that Γ is a finite G-symmetric graph and B is a non-trivial
G-invariant partition of V (Γ) with block size v = k + 1 = 2. Then G is faithful on B.
Furthermore,

(a) Γ′%Γ, and Γ′ is G-symmetric;
(b) both Γ? and Γ# are (G×〈z〉)-symmetric and B is a (G×〈z〉)-invariant partition

of V (Γ). Also, Γ?B = Γ#
B = ΓB and both Γ? and Γ# are covers of ΓB.

Proof. Let B(α) = {α, α′} be a block of B. If g ∈ G is any element which maps α
to α′, then g interchanges α and α′. Hence g interchanges ΓB(α) and ΓB(α′). Note
that ΓB(α) and ΓB(α′) are disjoint since k = 1. Thus, g acts non-trivially on B, and it
follows thatG is faithful on B. By Proposition 3, Γ′ isG-symmetric and the mapping
z: α 7→ α′, for α ∈ V (Γ), is an isomorphism from Γ to Γ′.

Clearly, 〈G, z〉%G× Z2. Since the edge set of Γ? is the union of the sets of edges
of Γ and Γ′ it follows from (a) that G× 〈z〉 6 Aut(Γ?) and that G× 〈z〉 is transitive
on the arcs of Γ?. Also, B is a (G×〈z〉)-invariant partition of V (Γ) and Γ? is a cover
of Γ?B = ΓB. Moreover, ΓB = Γ#

B and Γ# is a cover of ΓB. For two adjacent blocks
B = {α, α′} and C = {β, β′} of ΓB, suppose that (α, β) is an arc of Γ. Then (α, β′)
and (β, α′) are arcs of Γ# which are interchanged by z. It is also easy to check that
G preserves the edge set of Γ#. It follows that G×〈z〉 is transitive on the arcs of Γ#.

Remark 1. The graphs Γ?, Γ# defined in Definition 2 may, or may not, be isomor-
phic to each other. For example, if ΓB = C4, then both Γ? and Γ# are 2 · C4; while
if ΓB = C3, then Γ? = C6 whilst Γ# = 2 · C3. So Γ? and Γ# may be non-isomorphic
covers of ΓB.

4. A general discussion: k = v − 1 > 2

In the remaining sections of the paper we investigate the general case where v =
k + 1 > 3. Note that if, in addition, Γ is G-locally primitive, then D(B) contains
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no repeated blocks (see [5, lemma 3·3]). This however is not true in general for
symmetric graphs. We consider the general case in this section and the subsequent
sections are devoted to studying the case where D(B) has no repeated blocks. In
Lemma 2 we defined an action of G on A by (A(α))g = A(αg) for α ∈ V (Γ), g ∈ G,
and proved that this action is permutationally isomorphic to the action of G on
V (Γ). Thus, GB induces an action on A(B). Part (b) of the following theorem shows
that, if v = k + 1 > 3, then this action of GB is doubly transitive.

Theorem 5. Suppose that Γ is a finite G-symmetric graph and B is a non-trivial
G-invariant partition of V (Γ) with block size v = k + 1 > 3. Let B be a block of B and
α ∈ B and set m = |B(α)| (where B(α) = {C ∈ B: Γ(C) w B = B\{α}}). Then the
following hold.

(a) D(B) has v distinct blocks, each repeated exactly m times, so b = mv, r = m(v−1)
and D(B) is a 2-(v, v − 1,m(v − 2))-design.

(b) The actions of GB on B and A(B) are permutationally isomorphic (with respect
to the bijection α 7→ A(α), for α ∈ B) and doubly transitive.

(c) Gα has two orbits on ΓB(B), namely, B(α) and ΓB(B) \B(α).
(d) G acts faithfully on B. Moreover, G[B] 6 G(B) and equality holds whenever D(B)

contains no repeated blocks.
(e) If D(B) contains no repeated blocks and, if ΓB is connected and Γ is vertex-

distinguishable with respect to B, then GB acts faithfully on B and ΓB(B).

Proof. (a) Since GB is transitive on B, each (v− 1)-subset of B is a block of D(B)
and hence D(B) has v distinct blocks each repeated m times. So we have b = mv.
This, together with vr = bk = b(v − 1), gives r = m(v − 1). In particular, D(B) is a
2-(v, v − 1,m(v − 2))-design.

(b) It follows from Lemma 2 that the actions of GB on B and A(B) are permu-
tationally isomorphic. For pairwise distinct vertices α, β, γ ∈ B (note that v > 3),
let C ∈ B(β) and D ∈ B(γ). Since k = v − 1, C contains a neighbour δ of α and D
contains a neighbour ε of α. By the transitivity of Gα on Γ(α), there exists g ∈ Gα
such that δg = ε. Hence, (B,C)g = (B,D). Since A(B) is a (GB)-invariant partition
of the set {(B,E): E ∈ ΓB(B)}, it follows from (B,C)g = (B,D) that (A(β))g = A(γ)
and (A(α))g = A(α). Thus, Gα is transitive on A(B) \ {A(α)}. Since Gα = (GB)α and
GB is transitive on A(B), it follows that GB is doubly transitive on A(B) and hence
doubly transitive on B as well.

(c) Clearly, B(α) is (Gα)-invariant. Let C,D ∈ B(α). Since ΓB is G-symmetric,
there exists g ∈ G with Bg = B,Cg = D. Now αg = α for otherwise α is adjacent to
no vertex in C but αg is adjacent to at least one vertex in Cg = D. Thus, g ∈ Gα and
so Gα is transitive on B(α). Now let C,D ∈ ΓB(B)\B(α). Then α ∈ Γ(C)wΓ(D)wB.
So there exist β ∈ C, γ ∈ D which are adjacent to α. Since Γ is G-symmetric, there
exists g ∈ G with (α, β)g = (α, γ). Thus, g ∈ Gα and Cg = D. So ΓB(B) \B(α) is a
(Gα)-orbit.

(d) If g ∈ G[B] then, for each β ∈ B, g fixes setwise each block C ∈ B(β) and hence
fixes setwise Γ(C) w B. Therefore, g fixes B \ (Γ(C) w B) = {β}. Thus, G[B] 6 G(B).
Moreover, if g ∈ G fixes setwise each block of B, then it lies in G[B] for each B and
hence fixes each vertex of Γ; this implies that g = 1. So G is faithful on B. Suppose
that D(B) contains no repeated blocks and g ∈ G(B). Then for each α ∈ B, g fixes
the unique block in B(α) and hence g fixes each block of ΓB(B) setwise, so g ∈ G[B].
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(e) Let g ∈ G(B) = G[B]. Then for C ∈ ΓB(B), g fixes the unique vertex in

C\(Γ(B) w C) and, for each β ∈ Γ(B) w C, we have βg ∈ Γ(B) w C and Γ(β) w B =
Γ(βg) wB (since g fixes B pointwise). Since Γ is vertex-distinguishable with respect
to B, we get βg = β. Thus g ∈ G(C) and hence G(B) 6 G(C). By a similar argument
G(C) 6 G(B), so G(B) = G(C). Since ΓB is connected, this equality is true for any
two blocks B,C (not necessarily adjacent) and hence G(B) = 1 = G[B]. Thus, GB is
faithful on B and on ΓB(B).

Note that if in addition Γ is G-locally primitive then (i) Γ[B,C] is a matching [5]
and (ii) D(B) contains no repeated blocks [5, lemma 3·3]. From (i) and Lemma 1
we know that Γ is vertex-distinguishable with respect to B and hence GB is faithful
on B (Theorem 5(e)) if ΓB is connected. Also from (i) and (ii), we know that, for
each α ∈ B, there exists a bijection from B\{α} to Γ(α), namely each β ∈ B\{α}
corresponds to the unique neighbour of α in the unique block of B(β). So Gα is
primitive on B\{α} (that is, GB is doubly primitive on B) as Gα is primitive on Γ(α).
Combining these with Theorem 5(a)(b)(e), we deduce theorem 5·3 of [5], one of the
results which motivated this investigation.

Now we consider the graph Γ′ defined in Definition 1. Each maximal clique of
Γ′ has at most m + 1 vertices since the valency of Γ′ is m, where m = |B(α)|. The
following result shows that if each maximal clique of Γ′ does contain m+ 1 vertices,
or equivalently if Γ′ % ` · Km+1 for some `, then we obtain a second G-invariant
partition of V (Γ). This condition holds in particular when m = 1 and Proposition 6
will be used in this case in the next section.

Proposition 6. Suppose that Γ is a finite G-symmetric graph with a non-trivial G-
invariant partition B with blocks of size v = k + 1 > 3. Let α ∈ V (Γ). Then P =
{({α} x Γ′(α))g : g ∈ G} is a G-invariant partition of V (Γ) if and only if V (Γ) is a
disjoint union of (m + 1)-cliques of Γ′, where m = |B(α)|.

Proof. Set Γ′(α) = {α1, α2, . . . , αm} and B′ = {α} x Γ′(α) and suppose that V (Γ)
is a disjoint union of (m+ 1)-cliques of Γ′. Then B′ is the unique (m+ 1)-clique of Γ′

containing α. Since G permutes the connected components of Γ′, it follows that P

is a G-invariant partition of V (Γ).
Conversely, suppose P is a G-invariant partition of V (Γ). For i = 1, 2, . . . ,m, let

g ∈ G be such that αg = αi. Then B′g = B′ since αi is in both B′ and B′g and hence
Γ′(αi) = Γ′(αg) = (Γ′(α))g = (B′\{α})g = B′\{αi}. Therefore, B′ is a clique of Γ′

with the maximum possible size m + 1. In other words, V (Γ) is a disjoint union of
(m + 1)-cliques of Γ′.

5. The case D(B) contains no repeated blocks

From now on we focus on the case where k = v− 1 > 2 and D(B) has no repeated
blocks. We will prove in Theorem 8 below that this is true if and only if k = v−1 > 2
and ΓB is (G, 2)-arc transitive. In this case, each vertex of Γ may be labelled by an
arc of ΓB. In the main result of this section, Theorem 8, we classify all the graphs Γ
for which adjacent vertices of Γ have labels involving at most three distinct blocks
of B. In the final section we consider the general case and complete the proofs of
Theorems 1 and 2.
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Thus we suppose that k = v − 1 > 2 and D(B) has no repeated blocks. Then the

valency of Γ′ is 1 and each vertex α ∈ V (Γ) has a unique mate α′, namely the unique
vertex adjacent to α in Γ′. Hence the partition P defined in Proposition 6 consists
of the pairs {α, α′} and the map z: α 7→ α′ defines a G-invariant bijection on V (Γ).
So A(α) contains only one arc (B(α), B(α′)) and B(α′) is the unique block in ΓB(B)
fixed setwise by Gα (see Theorem 5(c)). As in the G-locally primitive case [5], the
mapping λ of Lemma 2 defines, for each α ∈ V (Γ), a unique label ‘B(α)B(α′)’ for
α with the blocks of B containing α and α′ as the first and the second coordinates,
respectively. Set B∗ = Bz = {‘CB’: C ∈ ΓB(B)} for B ∈ B. Then B∗ wΓ(B) =6, so
no neighbour of α ∈ B has a label involving B as either coordinate.

Proposition 7. Suppose that Γ is a finite G-symmetric graph, B is a non-trivial
G-invariant partition of V (Γ) with block size v = k + 1 > 3 such that D(B) contains no
repeated blocks. Then ΓB has valency b = v. Let z: α 7→ α′, α ∈ V (Γ), as defined above.
Then also

(a) the actions ofG on V (Γ) and on the set of arcs of ΓB are permutationally isomorphic
and each α ∈ V (Γ) can be uniquely labelled by a pair ‘BB′’ of adjacent blocks of B,
where B = B(α) and B′ is the unique block in ΓB(B) fixed setwise by Gα.

(b) z centralizes G and is an involution (that is, z2 = 1) and P = {{α, α′}: α ∈ V (Γ)}
is a G-invariant partition of V (Γ).

(c) B∗÷ {(B∗)g: g ∈ G} is a G-invariant partition of V (Γ) with blocks of size v; and
GB∗ = GB is doubly transitive on B and B∗.

Proof. Theorem 5(a) implies that b = v. Each A(α) can be identified with the arc
(B(α), B(α′)) of ΓB and each arc of ΓB has this form. So from Lemma 2 the actions of
G on V (Γ) and on the set of arcs of ΓB are permutationally isomorphic. Clearly, z is
an involution and, from Proposition 6, P is a G-invariant partition of V (Γ). For each
g ∈ G and ‘BD’ ∈ V (Γ), we have ‘BD’zg = ‘DB’g = ‘DgBg’ = ‘BgDg’z = ‘BD’gz

and hence z centralizes G. Since (B∗)g = {‘CgBg’: ‘CB’ ∈ B∗} = (Bg)∗, it follows
from B∗ w (B∗)g � 6 that g ∈ GB and consequently (B∗)g = B∗. Thus, B∗ is a
G-invariant partition of V (Γ) with block size v. Clearly, GB∗ = GB and the actions
of GB on B and B∗ are permutationally isomorphic with respect to z : α 7→ α′. So
by Theorem 5(b), GB is doubly transitive on both B and B∗.

The main result of this section is the following theorem.

Theorem 8. Suppose that Γ is a finite G-symmetric graph and B is a non-trivial
G-invariant partition of V (Γ) with block size v = k + 1 > 3. Then D(B) contains no
repeated blocks if and only if ΓB is (G, 2)-arc transitive. Furthermore, in this case either

(a) adjacent vertices have labels involving four distinct blocks, or

(b) there exist two adjacent vertices of Γ which share the same second coordinate. In
this case, Γ[B,C] is a matching of v− 1 edges, Γ%n(v + 1) ·Kv and ΓB%n ·Kv+1 for
some integer n > 1 and the group induced on the connected component {B} x ΓB(B) of
ΓB is 3-transitive. In particular, if ΓB is connected, then Γ% (v + 1) ·Kv, ΓB%Kv+1

and G acts faithfully on B as a 3-transitive permutation group of degree v + 1.
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Proof. Suppose D(B) has no repeated blocks. Then for each α ∈ B, A(α) can be

identified with the unique block in B(α). So Theorem 5(b) implies that GB is doubly
transitive on ΓB(B). Then since G is transitive on B, it follows that ΓB is (G, 2)-
arc transitive. Conversely suppose that ΓB is (G, 2)-arc transitive and let α, β, γ be
pairwise distinct vertices of B. (Note that v > 3.) If D(B) contains repeated blocks
(that is, m > 2), then there are distinct blocks C1, C2 ∈ B(α). Let D ∈ B(β) and
E ∈ B(γ). By the (G, 2)-arc transitivity of ΓB there exists g ∈ GB with (C1, C2)g =
(D,E). Note that {B(δ): δ ∈ B} is a (GB)-invariant partition of ΓB(B) (by Lemma
2). So Cg1 = D implies (B(α))g = B(β), whilst Cg2 = E implies (B(α))g = B(γ). This
contradiction shows that D(B) contains no repeated blocks. Thus the first assertion
is proved.

For the rest of the proof we assume that D(B) has no repeated blocks. If adjacent
vertices of Γ have different second coordinates, then it follows from the definition of
the labels that two adjacent vertices of Γ have labels involving four distinct blocks.
Suppose there exist two adjacent vertices whose second coordinates are the same.
Since G acts transitively on B, we may assume without loss of generality that there
are two adjacent vertices in B∗. Since GB∗ is doubly transitive on B∗, it follows that
B∗ induces a complete graphKv. Since Γ isG-symmetric and since B∗ isG-invariant,
it follows that each edge of Γ joins two vertices in the same block of B∗. This means
that each block of B∗ induces a connected componentKv of Γ and hence Γ = |B∗|·Kv.
This implies in particular that Γ[B,C] is a matching of v − 1 edges. Note that any
two blocks in ΓB(B) are adjacent in ΓB and hence {B} x ΓB(B) induces a complete
subgraph Kv+1 of ΓB. Since the valency of ΓB is b = v, the subgraph induced by
{B} x ΓB(B) is a connected component of ΓB. This implies (i) ΓB = n · Kv+1 and
hence Γ = n(v + 1) ·Kv, where n is the number of connected components of ΓB; and
(ii) since G is transitive on B and GB is doubly transitive on ΓB(B), as shown above,
it follows that the group induced on the connected component {B}xΓB(B) of ΓB is
3-transitive. In particular, if ΓB is connected, then ΓB = Kv+1, Γ = (v + 1) ·Kv and
G is 3-transitive on B = {B} x ΓB(B) with degree |B| = v + 1. From Theorem 5(d),
G is also faithful on B.

Remark 2. It follows from the classification of finite multiply-transitive perm-
utation groups (which relies on the finite simple group classification, see [3, p. 8])
that in Theorem 8(b), if ΓB is connected and two adjacent vertices of Γ share
the same second coordinate, then G is one of Sv+1 (v > 3), Av+1 (v > 4), Mv+1

(v = 10, 11, 21, 22, 23), M11 (v = 11), PSL(2, v) 6 G 6 PΓL(2, v) (v a prime power),
G = AGL(d, 2) (v = 2d − 1), or Z4

2.A7 (v = 15).

According to Theorem 8, under the assumption that D(B) contains no repeated
blocks, all possibilities for the graphs Γ, ΓB, Γ[B,C] and the group G are known
if there are two adjacent vertices of Γ sharing the same second coordinate. For the
remaining case where the labels of any two adjacent vertices involve four distinct
blocks, the following theorem gives some structural information about Γ and ΓB

provided the girth of ΓB is sufficiently large. A mapping ϕ: V (Γ) → V (Σ) between
the vertex sets of two graphs Γ and Σ is called a graph homomorphism if ϕ maps
adjacent vertices of Γ to adjacent vertices of Σ; if in addition ϕ is one-to-one, then
it is called a graph monomorphism.
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Theorem 9. Suppose that Γ is a finite G-symmetric graph and B is a non-trivial

G-invariant partition of V (Γ) with block size v = k + 1 > 3 such that D(B) contains no
repeated blocks. Suppose further that girth (ΓB) > 5. Then

(a) Γ[{α, α′}, {β, β′}]%K2 for adjacent blocks {α, α′} and {β, β′} of P.
(b) Γ[B∗, C∗] is a matching for adjacent blocks B∗, C∗ of B∗ and if in addition

girth (ΓB) > 7 then Γ[B∗, C∗]%K2.
(c) The involution z: α 7→ α′ (α ∈ V (Γ)) defines a graph monomorphism from Γ to

the complement Γ, and z interchanges the two partitions B and B∗. Moreover, z
induces graph monomorphisms from ΓB to ΓB∗ and from ΓB∗ to ΓB, defined by
B 7→ B∗ and B∗ 7→ B, respectively.

Proof. The assumption girth (ΓB) > 5 implies that adjacent vertices of Γ have
labels involving four distinct blocks. Suppose that {‘BD’, ‘DB’} and {‘CE’, ‘EC’}
are blocks of P with ‘DB’ and ‘EC’ adjacent in Γ. (This is represented diagramati-
cally in Fig. 3, where the two dashed boxes represent B∗ and C∗ respectively.) Then
B,C,D,E are pairwise distinct blocks by our assumption about the labels. Note
that ‘BD’ is not adjacent to ‘EC’ and ‘DB’ is not adjacent to ‘CE’ for otherwise
(B,D,E,B) or (C,D,E,C) would be a triangle of ΓB, contradicting girth (ΓB) > 5.
Similarly, ‘BD’=‘DB’z is not adjacent to ‘CE’=‘EC’z, for otherwise (B,D,E,C,B)
would be a 4-cycle of ΓB. Thus, Γ[{‘BD’, ‘DB’}, {‘CE’, ‘EC’}]%K2 and (a) holds.

In particular, the non-adjacency of ‘BD’ and ‘CE’ implies that z is a graph
monomorphism from Γ to Γ. By the definition of z, two vertices α, β lie in the
same block B of B if and only if αz, βz lie in the same block B∗ of B∗. Hence z
induces the bijection B 7→ B∗ from B to B∗. Suppose B∗, C∗ are adjacent blocks
of B∗, say ‘DB’, ‘EC’ are adjacent vertices of Γ, where D ∈ ΓB(B), E ∈ ΓB(C) (see
Fig. 3). If B and C were adjacent in ΓB then (B,D,E,C,B) would be a 4-cycle in
ΓB, which is not the case. Thus B, C are not adjacent in ΓB, that is to say, if B,
C are adjacent in ΓB, then B∗, C∗ are not adjacent in ΓB∗ . Therefore, the bijection
B 7→ B∗ induced by z is a graph monomorphism from ΓB to ΓB∗ and similarly the
bijection B∗ 7→ B is a graph monomorphism from ΓB∗ to ΓB.

If ‘DB’ were adjacent to a second vertex, say ‘E1C’, in C∗, then (D,E,C,E1, D)
would be a 4-cycle of ΓB, contradicting the assumption that girth (ΓB) > 5. There-
fore, Γ[B∗, C∗] is a matching. Now suppose girth (ΓB) > 7 and suppose that there is
an edge {‘D1B’, ‘E1C’} connectingB∗ andC∗, distinct from {‘DB’, ‘EC’}. IfD1 = D
then E1�E and (D,E,C,E1, D) is a 4-cycle and similarly if E1 = E then D1�D
and (E,D1, B,D,E) is a 4-cycle. Hence {D,E} w {D1, E1} = 6, but in this case
(B,D,E,C,E1, D1, B) is a 6-cycle. Hence Γ[B∗, C∗]%K2.

It is worth noticing that, under the assumptions of Theorem 9, the G-invariant
partition P satisfies all the assumptions of Section 3. Thus, from Theorem 4, we
know that the graphs Γ? = Γ x Γ′ and Γ# defined in Definition 2 with respect to P

are both covers of ΓP.

Remark 3. From the group theoretical point of view (see, for example, [9, theorem
2·1(b)]), Theorem 9(c) shows that z carries the arc set A(Γ) of Γ to a self-paired
G-orbital on V (Γ) disjoint from Γ1 and hence z(A(Γ)) ⊆ Γi for some i > 2, where
Γi ÷ {(α, β): dΓ(α, β) = i}. This parameter i might have a strong influence on the
structure of Γ. Essentially the same argument as that used in the proof of Theorem



30 C. H. Li, C. E. Praeger and S. Zhou

�

�

�

�r

r

ppp
ppp �
�
�
�
u

�
�
�
�
u

Dppp �
�
�
�
e

�
�
�
�
e

E ppp
�

�

�

�r

r

ppp
ppp

B C

Fig. 3. Blocks of B, B∗ and P.

9 shows that i > girth (ΓB) − 3 (so in particular i > 2 if girth (ΓB) > 5). However,
we have been unable to determine the exact value of i.

One consequence of Theorem 9 is that the valencies of Γ and ΓB∗ are bounded as
shown below. We denote by val (Γ) the valency of a graph Γ.

Corollary 1. Under the assumptions of Theorem 9, val (Γ) 6 (|V (Γ)| − 2)/4 and
ΓB∗ has valency at most (|V (Γ)|/v)−v−1. If in addition girth (ΓB) > 7, then val (Γ) 6
(|V (Γ)|/v2)− (1/v)− 1.

Proof. By Theorem 9, each edge of Γ joining α and β corresponds to a unique
3-path α, β′, α′, β of Γ and conversely each 3-path of Γ of this form corresponds to a
unique edge of Γ. One can see that the 3-paths of Γ with this form corresponding to
distinct edges of Γ are pairwise edge-disjoint and that they have no common edges
with Γ′ (the latter being contained in Γ). So |E(Γ)| > 3|E(Γ)| + |V (Γ)|/2, that is,
val (Γ) > 3 · val (Γ) + 1. Thus, we have val (Γ) 6 (|V (Γ)| − 2)/4. Now by Theorem
9(c), we have val (ΓB) + val (ΓB∗) 6 |B| − 1 = (|V (Γ)|/v)− 1, which yields the second
inequality since val (ΓB) = v. Note that by Theorem 9(b), val (ΓB∗) = v · val (Γ) if
girth (ΓB) > 7, which implies the last inequality.

6. Construction of the graphs Arc∆(Σ) and proofs of Theorems 1 and 2

A fundamental problem arising from the approach used in the paper is that of
reconstructing Γ from the triple (ΓB,Γ[B,C],D(B)). In this section we study this
problem for the case where k = v − 1 > 2 and D(B) contains no repeated blocks.
Recall that, in this case, ΓB is (G, 2)-arc transitive by Theorem 8. We will give an
explicit construction for such graphs Γ from (G, 2)-arc transitive graphs Σ of valency
v > 3. In particular if Σ is (G, 3)-arc transitive then the construction yields a unique
graph Γ with the above properties and it has Γ[B,C] % Kv−1,v−1. Our proof of
Theorem 2 shows that Γ is (G, 3)-arc transitive if and only if it is isomorphic to the
graph obtained from a (G, 3)-arc transitive graph ΓB by this construction.

We present the construction in a general setting, starting with a regular graph Σ
of valency v > 3. (A graph is regular if its vertices have the same valency.) Let Ai(Σ)
denote the set of i-arcs of Σ, for i a positive integer, so A(Σ) = A1(Σ). For a subset ∆
of Ai(Σ) the paired subset of ∆ is defined by

∆◦÷ {(σi, σi−1, . . . , σ1, σ0): (σ0, σ1, . . . , σi−1, σi) ∈ ∆}
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and ∆ is said to be self-paired if ∆ = ∆◦. The data needed for our construction are a
regular graph Σ and a self-paired subset of A3(Σ).

Definition 3. Let Σ be a finite regular graph of valency v > 3 and let ∆ be a non-
empty self-paired subset of A3(Σ). Define Arc∆(Σ) to be the graph with vertex set
A(Σ) such that (σ, τ ), (σ′, τ ′) ∈ A(Σ) are joined by an edge in Arc∆(Σ) if and only if
(τ, σ, σ′, τ ′) ∈ ∆. We call Arc∆(Σ) the 3-arc graph of Σ corresponding to ∆.

The requirement that ∆ is self-paired ensures that adjacency in Arc∆(Σ) is well-
defined (in the sense that (σ, τ ) is joined to (σ′, τ ′) if and only if (σ′, τ ′) is joined to
(σ, τ )). There are several natural partitions of the vertex set of Arc∆(Σ), namely

(i) P(Σ)÷ {{(σ, τ ), (τ, σ)}: (σ, τ ) ∈ A(Σ)};
(ii) B(Σ)÷ {B(σ): σ ∈ V (Σ)}, where B(σ)÷ {(σ, τ ): τ ∈ Σ(σ)};

(iii) B∗(Σ)÷ {B∗(σ): σ ∈ V (Σ)}, where B∗(σ)÷ {(τ, σ): τ ∈ Σ(σ)}.
Each subgroup G 6 Aut (Σ) induces natural actions on A(Σ) and A3(Σ) and, pro-

vided G leaves ∆ invariant, G will preserve the adjacency relation for Arc∆(Σ) and
hence will induce a (faithful) action as a group of automorphisms of Arc∆(Σ). More-
over, the three partitions P(Σ), B(Σ) and B∗(Σ) are all G-invariant. We note the
following relations between the G-actions on Σ and Arc∆(Σ): the proofs are straight-
forward and are omitted.

Lemma 3. Let Σ, ∆ be as in Definition 3 and let G 6 Aut (Σ) leave ∆ invariant. Then
(a) Arc∆(Σ) is G-vertex-transitive if and only if Σ is G-symmetric.
(b) Arc∆(Σ) is G-symmetric if and only if G is transitive on ∆.
(c) For σ ∈ V (Σ), Gσ = GB(σ) = GB∗(σ) and the actions of Gσ on Σ(σ), B(σ) and

B∗(σ) are permutationally isomorphic.

Thus if G 6 Aut (Σ), G is transitive on ∆ and Σ is G-symmetric, then Arc∆(Σ) is an
imprimitive G-symmetric graph relative to each of the partitions above. Because of
our remarks at the beginning of this section we will explore further the case where
Σ is (G, 2)-arc transitive, with particular attention to the partition B(Σ). Moreover
in the case where ∆ consists of proper 3-arcs (that is, for (τ, σ, σ′, τ ′) ∈ ∆ we have
τ � τ ′), for adjacent vertices (σ, τ ) and (σ′, τ ′) of Arc∆(Σ), the four labels σ, τ, σ′, τ ′

are pairwise distinct.

Theorem 10. Suppose Σ is a finite (G, 2)-arc transitive graph with valency v > 3
and G 6 Aut (Σ). Suppose ∆ is a self-paired G-orbit of 3-arcs of Σ. Set Γ = Arc∆(Σ).
Then

(a) for adjacent blocksB(σ), B(σ′) of ΓB(Σ), (σ, σ′) is the unique element ofB(σ) which
is not adjacent to an element of B(σ′) (that is, ‘k = v − 1’).

(b) ΓB(Σ)%Σ and D(B(Σ)) has no repeated blocks.
(c) If ∆ contains a 3-cycle then ∆ consists of all the 3-cycles of Σ and both Arc∆(Σ)

and Σ are vertex disjoint unions of complete graphs, as specified in Theorem 8(b).
The connected components of Arc∆(Σ) are the induced subgraphs on the blocks of
B∗(Σ).

(d) On the other hand if ∆ consists of proper 3-arcs then adjacent vertices of Arc∆(Σ)
involve four distinct vertices of Σ.

Proof. Since B(σ), B(σ′) are adjacent in ΓB(Σ), there exist (σ, τ ), (σ′, τ ′) ∈ A(Σ)
such that (τ, σ, σ′, τ ′) ∈ ∆. In particular (σ, σ′) ∈ A(Σ). Conversely, if (σ, σ′) ∈ A(Σ)
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then, since ∆�6 and Σ is (G, 2)-arc transitive it follows that there exist τ, τ ′ such
that (τ, σ, σ′, τ ′) ∈ ∆ and hence such that (σ, τ ) and (σ′, τ ′) are adjacent in Γ. Thus
B(σ) is adjacent to B(σ′) in ΓB(Σ). This proves that ΓB(Σ)%Σ.

It follows from the definition of a 3-arc that (σ, σ′) is not adjacent to any ver-
tex of B(σ′). Let (σ, ρ) ∈ B(σ) with ρ � σ′. Then some g ∈ G maps the 2-arc
(τ, σ, σ′) to the 2-arc (ρ, σ, σ′) of Σ and hence g maps the edge {(σ, τ ), (σ′, τ ′)} of Γ to
{(σ, ρ), (σ′, (τ ′)g)}. Thus (σ, ρ) is joined to some vertex of B(σ′)\{(σ′, σ)}. It is now
clear that the set of points of D(B(σ)) incident with the block B(σ′) is B(σ)\{(σ, σ′)}.
So D(B(σ)) has no repeated blocks.

If ∆ contains a 3-cycle then, since Σ is (G, 2)-arc transitive, the end points of every
2-arc of Σ are adjacent vertices of Σ, so Σ is a disjoint union of complete graphs.
From the previous paragraph it follows that ∆ contains all the 3-cycles of Σ and that
(σ, τ ) is adjacent to (σ′, τ ′) in Arc∆(Σ) if and only if (σ, σ′) is an arc of Σ and τ = τ ′.
Thus the connected components of Arc∆(Σ) are the blocks B∗(τ ) of B∗(Σ) and each is
a complete graph. By Lemma 3, the conditions of Theorem 8(b) hold, so Γ%Arc∆(Σ)
and ΓB(Σ)% Σ are as given there. On the other hand, if ∆ consists of proper 3-arcs
then adjacent vertices (σ, τ ) and (σ′, τ ′) of Arc∆(Σ) involve four distinct vertices of Σ.

Thus under the assumptions of Theorem 10, we see that the graph Arc∆(Σ) satisfies
all the hypotheses of Theorem 1. We now show that every graph satisfying the
hypotheses of Theorem 1 is isomorphic to Arc∆(ΓB) for some ∆. Theorems 10 and 11
together yield a proof of Theorem 1 stated in the introduction.

Theorem 11. Suppose that Γ is a finite G-symmetric graph admitting a non-trivial
G-invariant partition B of block size v = k+ 1 > 3 such that ΓB is (G, 2)-arc transitive,
so the vertices of Γ are labelled with the arcs of ΓB. Then Γ%Arc∆(ΓB) for ∆ the (self-
paired) G-orbit in A3(ΓB) containing the 3-arc (C,B,D,E), where (‘BC’, ‘DE’) is an
arc of Γ. In particular, ∆ contains a 3-cycle if and only if Γ,ΓB are as in Theorem 8(b).

Proof. Let (‘BC’, ‘DE’) be an arc of Γ. Then by the labelling defined before Propo-
sition 7, it is clear that (C,B,D,E) is a 3-arc of ΓB. Let ∆ be the G-orbit containing
it. Since G is transitive on A(Γ), ∆ is independent of the choice of arc and ∆ is self-
paired. Since every arc of Γ is of the form (‘BgCg’, ‘DgEg’) for some g ∈ G, and since
(Cg, Bg, Dg, Eg) = (C,B,D,E)g ∈ ∆, it follows from Definition 3 that Γ%Arc∆(ΓB).
Finally, by Theorem 10(c) and (d), ∆ contains a 3-cycle if and only if the second co-
ordinates of labels for adjacent vertices of Γ are equal and hence Γ,ΓB are as in
Theorem 8(b).

In the case where ΓB is 3-arc transitive, we have ∆ = A3(ΓB) in Theorem 11 and
hence there is a unique graph Γ. Theorem 2 gives a characterization of this case and
we prove this now.

Proof of Theorem 2. Since D(B) has no repeated blocks, ΓB is (G, 2)-arc transitive,
by Theorem 1. Suppose that (‘BC’, ‘DE’) is an arc of Γ and let ∆ be the G-orbit
in A3(ΓB) containing the 3-arc (C,B,D,E). By Theorem 11, Γ % Arc∆(ΓB). Now
each 3-arc (C1, B,D,E1) of ΓB corresponds to a unique ordered pair ‘BC1’, ‘DE1’ of
adjacent vertices of Γ and vice versa, where C1 ∈ ΓB(B)\{D} and E1 ∈ ΓB(D)\{B}.
Thus we have the following: Γ[B,D]%Kv−1,v−1⇔ for any such C1, E1, ‘BC1’, ‘DE1’



A class of finite symmetric graphs 33
are adjacent in Γ ⇔ for any such C1, E1, there exists g ∈ G with (‘BC’, ‘DE’)g =
(‘BC1’, ‘DE1’) ⇔ for any such C1, E1, there exists g ∈ G with (C,B,D,E)g =
(C1, B,D,E1) ⇔ for any such C1, E1, the 3-arc (C1, B,D,E1) is in ∆ ⇔ ∆ = A3(ΓB)
⇔ ΓB is (G, 3)-arc transitive.

Remark 4. (a) The structure of Arc∆(Σ) for (G, 2)-arc transitive graphs Σ is of
considerable interest. Zhou [12] has explored the family of these graphs for which
Σ is a near-polygonal graph and ∆ is the set of 3-arcs occurring in the distinguished
‘polygons’ of Σ. This case is of particular interest in connection with section 5 of [5].

(b) The construction of the graphs Arc∆(Σ) bears some similarity with the cover-
ing graph construction of Biggs [1, pp. 149–154]. The graphs Arc∆(Σ) are ‘almost
multicovers’ of the 2-arc transitive graph Σ.

(c) Let Σ be a (G, 2)-arc transitive (and G-vertex-transitive) graph and let σ, σ′ be
a pair of adjacent vertices of Σ. Then G contains an element g which interchanges
σ and σ′. Let τ ∈ Σ(σ)\{σ′}. Then τ ′÷ τ g ∈ Σ(σ′)\{σ} and (τ, σ, σ′, τ ′) is a 3-arc
of Σ. Also τ g

2 ∈ Σ(σ)\{σ′}. If it is possible to choose g and τ such that τ g
2

= τ ,
then g maps the 3-arc (τ, σ, σ′, τ ′) to its reverse (τ ′, σ′, σ, τ ) and hence the G-orbit
∆ containing (τ, σ, σ′, τ ′) is self-paired. This is certainly possible if any one of the
following conditions holds:

(i) σ and σ′ are interchanged by an element g of order 2;
(ii) the valency |Σ(σ)| of Σ is even (since we may take g to be a 2-element and

g2 ∈ Gσσ′);
(iii) Σ is (G, 3)-arc transitive;
(iv) the actions ofGσσ′ on Σ(σ)\{σ′} and Σ(σ′)\{σ} are permutationally isomorphic,

in the sense thatGσσ′τ fixes a point ρ ∈ Σ(σ′)\{σ}, and σ′, τ are the only points
of Σ(σ) fixed by Gσσ′τ . (For if h ∈ Gσσ′ maps τ ′ to ρ, then gh interchanges σ
and σ′, and maps τ to ρ and hence normalizes Gσσ′τ = Gσσ′ρ. Therefore gh
interchanges τ and ρ and hence reverses the 3-arc (τ, σ, σ′, ρ).)

If any of these conditions holds, then Σ will occur as the quotient graph ΓB for a
graph Γ satisfying the hypotheses of Theorem 1.
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