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ABSTRACT: The decycling number �(G) of a graph G is the smallest number of vertices which
can be removed from G so that the resultant graph contains no cycles. In this paper, we study the
decycling numbers of random regular graphs. For a random cubic graph G of order n, we prove that
�(G) � n/4 � 1/ 2 holds asymptotically almost surely. This is the result of executing a greedy
algorithm for decycling G making use of a randomly chosen Hamilton cycle. For a general random
d-regular graph G of order n, where d � 4, we prove that �(G)/n can be bounded below and above
asymptotically almost surely by certain constants b(d) and B(d), depending solely on d, which are
determined by solving, respectively, an algebraic equation and a system of differential equations.
© 2002 Wiley Periodicals, Inc. Random Struct. Alg., 21: 397–413, 2002

1. INTRODUCTION

The problem of eliminating all cycles in a graph by removing a set of vertices goes back
at least to the work of Kirchhoff [14] on spanning trees. In the literature such a set is called
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a feedback vertex set, or following [5], a decycling set, of the graph. Formally, for a graph
G, a subset S � V(G) is said to be a decycling set of G if G � S is acyclic. The minimum
cardinality of a decycling set of G is defined to be the decycling number of G, denoted by
�(G) in this paper. Unlike its counterpart problem of destroying cycles by removing
edges, the problem of determining the decycling number does not have a simple solution.
The corresponding decision problem has long been known to be NP-complete, as shown
in [12]. (See Problem 7 on the feedback node set in the main theorem of [12].) Moreover,
the same is true even we restrict to the families of planar graphs, bipartite graphs and
perfect graphs. On the other hand, the problem is known to be polynomial for various
other families, including cubic graphs [15, 24], permutation graphs [16], and interval and
comparability graphs [17]. These results naturally suggest further investigations for good
bounds on the parameter and for exact results when possible. Partial results on exact
values or bounds on decycling number have been obtained for cubes and grids in [4] and
[5]. For a cubic graph G of order n, it is not difficult to see that �(G) � n/4 � 1/ 2,
and this follows from a general lower bound given in [5]. Indeed, if G is d-regular, then,
since the decycling set is incident with at most d�(G) edges, and its removal leaves a
forest containing at most n � �(G) � 1 edges, it follows that

��G� � �n�d/2 � 1� � 1�/�d � 1�. (1)

The gap between this lower bound and the actual value of �(G) can be arbitrarily large
when n is large. In fact, Bondy, Hopkins, and Staton [7] constructed a class of cubic
graphs with decycling number 3n/8 � 1/4. This class contains graphs obtained from
taking cubic trees and replacing every vertex of degree 3 by a triangle and attaching K4

with one edge subdivided at each vertex of degree 1. Except for K4, graphs in this class
are not 2-connected. Yet there are 3-connected cubic graphs with decycling number just
one-third of their order—every cubic graph constructed by replacing each vertex of any
3-connected cubic graph by a triangle has this property. Note that these constructions
make use of triangles. For a connected cubic graph G of order n with no triangles, it was
proved in [29] that �(G) � n/3, and this settled a conjecture of [7] in the affirmative.
For more results concerning the decycling number, the reader is referred to Alon et al. [1],
Bau and Beineke [3], Bafna et al. [2] and Liu and Zhao [18]. The related question of
finding a maximum induced tree has also been considered; see Erdős et al. [11] for
example.

In this paper we will study the decycling numbers of random regular graphs. We first
give a simple algorithm which greedily generates a decycling set of a random cubic graph
G, given a Hamilton cycle of G. Based on this, we show that asymptotically almost surely
the decycling number of such a graph is roughly one quarter of its order. (For a sequence
of probability spaces �n, n � 1, an event An of �n occurs asymptotically almost surely,
or a.a.s. for brevity, if limn3� P{An} � 1. Here and in the following we use P to denote
the probability, and we will use E to denote the expectation.) Our first main result is as
follows.

Theorem 1.1. For a random cubic graph G of order n, a.a.s.

��G� � n

4
�

1

2. (2)
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This shows that the somewhat trivial lower bound n/4 � 1/ 2 a.a.s. gives the correct
value of the decycling number in the random case, which settles in some asymptotic sense
the problem of [3] asking for the cubic graphs achieving this lower bound. This is in stark
contrast with the deterministic bounds for cubic graphs mentioned above. The polynomial
time algorithm given in [15] for finding the decycling number of a cubic graph seems to
offer no help for analyzing the decycling number in the random case, since it makes use
of complicated arguments involving relations with the maximum genus, apart from other
things.

We extended the algorithm for random cubic graphs to random d-regular graphs for
larger d. A description of this algorithm is given at the beginning of Section 4. However,
this algorithm gives a weaker bound than a different algorithm, based on the uniform
model, when d � 4. We will give the latter algorithm in Section 4, and by using a
differential equation method we will prove the following theorem.

Theorem 1.2. Let d � 4. For a random d-regular graph G of order n, a.a.s.

b�d� �
��G�

n
� B�d� (3)

where b(d) and B(d) are constants given in Table 1 for small d.

The values of b(d) and B(d) can be obtained by solving an algebraic equation for b(d) and
a system of differential equations to find B(d); see Sections 5 and 4 for details.

Table 1 lists values of b(d) and B(d) obtained by numerical solution methods for the
first a few integers d � 4. Note that the trivial bound b(d) � (d � 2)/ 2(d � 1), which
follows from (1), is the best we have for d � 4.

The graph-theoretic notation and terminology used in the paper will in general follow
that of [9]. For concepts and notation of random graph processes and probabilistic
methods, the reader is referred to the survey paper [27]; for the differential equation
method, see [26].

2. PRELIMINARIES

In the following we will use G n,d to denote the uniform space of d-regular graphs on the
set [n] � {1, 2, . . . , n} of n vertices, where, of course, dn is required to be even. In

TABLE 1. Lower and Upper Bounds

d b(d) B(d)

4 1/3 0.3787
5 0.3786 0.4512
6 0.4232 0.5043
7 0.4610 0.5459
8 0.4932 0.5800
9 0.5210 0.6085

10 0.5453 0.6328
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particular, G n,1 is the uniform space of perfect matchings on [n] when n is even. A
method of sampling from G n,d is to use the following pairing model introduced by
Bollobás [6], or a related model of others (see [27, Section 2.1] for a brief history about
this model). Suppose that dn is even and d � 1. Consider a set of dn points partitioned
into n cells v1, v2, . . . , vn each containing d points. A perfect matching of these dn
points into dn/ 2 pairs is called a pairing. A pairing P induces a multigraph G(P) in which
the vertices are the cells and each pair { x, y} � P gives rise to one edge joining the cell
containing x and the cell containing y. (When x and y are in the same cell, this will be a
loop.) We may assume that the points are elements of [n] � [d] so that G(P) is induced
by a projection onto [n]. Since each simple graph corresponds to precisely (d!)n pairings,
a regular graph can be chosen uniform at random (u.a.r.) by choosing a pairing P u.a.r. and
accepting G(P) if it has no loops or multiple edges. For later reference, we denote the
uniform probability space of these pairings by P n,d.

In order to achieve our main result for the case of cubic graphs, the pairing model is
not enough, and we rely on more advanced theory. Let P n and Q n be two discrete
probability spaces over the same underlying set for each n � 1. The sequences of spaces
{P n} and {Q n} are said to be contiguous, denoted P n 	 Q n, if any sequence of events
An(n � 1) occurs a.a.s. in {P n} if and only if it occurs a.a.s. in {Q n}. In this case for
simplicity we also say that the spaces P n and Q n are contiguous. For two probability
spaces P, Q of random graphs on the same vertex set, as in [27] define the sum P � Q

to be the space whose elements are determined by the random multigraphs G � H (called
the superposition of G and H), where G � P and H � Q are generated independently.
Define the graph-restricted sum P � Q to be the space which is the restriction of P �
Q to simple graphs. In order to maintain identical underlying sets for spaces that are to
be related, the sum space P � Q is extended to include all d-regular multigraphs on the
same vertex set (where, as usual, a loop contributes 2 to the degree of a vertex), with all
multigraphs not already appearing given probability 0. Similarly, P � Q is extended to
include the underlying set of G n,d. The operations � and � are clearly commutative and
associative. Hence, for k spaces P i on the same vertex set, the meaning of P 1 � . . . �

P k is unambiguous. In particular, we will use kP to denote the graph-restricted sum of k
copies of a random graph space P.

The proof of Theorem 1.1 will be based on an algorithm for finding a decycling set in
a random cubic graph. In turn, this algorithm relies on a special case (namely, d � 3) of
the fundamental result implicitly proved by Robinson and Wormald [22], which asserts
that for d � 3 a random d-regular graph with an even number of vertices is contiguous
to the superposition of a random Hamilton cycle and d � 2 random perfect matchings.
See also [27]. Define H n to be the uniform space of random Hamilton cycles on the same
vertex set as G n,d. The following result is a special case of a general result which was
implied by the proofs in [22] and stated explicitly in [13] and [27, Corollary 4.17].

Theorem 2.1. Let d � 3 and n be even. Then

Gn,d � Hn � �d � 2�Gn,1.

By definition, if S is a decycling set of a graph G, then the subgraph G � S of G
induced by V(G)�S is a forest, and vice versa. So the problem of finding the decycling
number is equivalent to that of finding the maximum number of vertices which induce a
forest. The sum of these two numbers is equal to n.
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3. RANDOM CUBIC GRAPHS

In this section we will study the decycling number of a random cubic graph.

Proof of Theorem 1.1. By Theorem 2.1, G � G n,3 is contiguous to the graph-restricted
superposition of a random Hamilton cycle H and a random perfect matching M. We will
work with this sum space. The edges in M will be called the matching edges. We may
suppose the vertices of G are labeled 1, 2, . . . , n around H, so that H � (1, 2, . . . , n,
1). We first give a greedy algorithm for finding a decycling set of G based on the
following very simple idea: Start from 1, walk along H and delete the vertex being visited
if it creates a cycle when added to the undeleted vertices. The algorithm is carried out
simultaneously with generating the perfect matching M. When a vertex i is visited in the
walk, the “direction” of the incident matching edge is first revealed—whether it goes
forwards to the vertices {i � 1, . . . , n} or backwards to the vertices already visited—by
generating it at random with the correct probability. Only if it is a backward edge is the
other end of the edge then chosen; otherwise the next vertex along H is visited. (Of course,
if a matching edge goes backwards, then it can only join to an undeleted vertex.) This is
an instance of the “method of deferred decisions”: one aspect of the random edge is
determined (its direction) while the choice of the other end of the edge is deferred.
Consequently, at any point, there are some vertices which have already been visited but
are still unmatched. Suppose there are k such vertices when the walk reaches the vertex
i. At this point, the distribution of the edges matching them is that of a uniformly
distributed perfect matching, subject to the condition that these k vertices are precisely the
ones in the set {1, . . . , i � 1} which match to vertices in the set {i, . . . , n}. The set
of vertices matching them will consequently be a subset of {i, . . . , n} chosen uniformly
at random. It follows easily that

the probability that the matching edge at i goes backwards is k/�n � i � 1�. (4)

In the case that it is a backward edge, the other end (call it j) of the matching edge is
chosen uniformly at random from the k unmatched vertices in {1, . . . , i � 1}. The
vertex i is deleted if and only if j is in the latest component of the forest generated by
undeleted vertices up to i � 1, that is, the component of this forest containing i � 1. It
is easy to see that this process generates the final matching uniformly at random. (If any
matching edge corresponds to an edge of H, we can start the process again; the probability
that this never happens is asymptotic to a nonzero constant—see [27].)

The algorithm which generates the random matching and simultaneously the decycling
set is as follows.

Algorithm CUBIC

Input An even integer n � 4.

Output A random matching M and a decycling set S of the random cubic graph G which
is the union of M with the Hamilton cycle H � (1, 2, . . . , n, 1).

1. Set S1 � M1 � A and let G1 be the empty graph with vertex set {1}. Set i � 2.
2. Decide whether the matching edge at i goes backwards or forwards. The probability

of the former is equal to the number of unmatched vertices in [i � 1] divided by
n � i � 1.
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2a. In the former case the vertex which matches i is chosen u.a.r. from those available,
and we add the corresponding matching edge to Mi�1 to form Mi. If adding this
edge and the edge {i � 1, i} (plus {n, 1} if i � n) to Gi�1 creates no cycle, then
let Gi be the graph obtained this way and set Si � Si�1; otherwise let Gi � Gi�1

and Si � Si�1 � {i}.
2b. In the latter case, leave the vertex i unmatched. Set Mi � Mi�1, Si � Si�1, and

let Gi be the graph obtained by adding the edge {i � 1, i} to Gi�1.

3. If i � n then stop and output S :� Sn and M :� Mn; otherwise set i � i � 1 and
go to Step 2.

One can see that Gi is the subgraph of G induced by [i]�Si. Alternatively, it consists
of the subgraph of H induced by [i]�Si and the matching edges at these vertices. From the
algorithm it is obvious that Gi contains no cycles; in particular this applies to Gn � G �
Sn and hence Sn is a decycling set of G. In Step 2a, provided i 
 n, a cycle is created
if and only if i � 1 � Si�1 and the vertex to be matched with i lies in the latest
component of Gi�1. (If i � 1 � Si�1, we regard the latest component as being empty.)
We will next show the less obvious fact that a.a.s. Sn has cardinality no more than
n/4 � 1.

Each vertex i is included in Si only when the matching edge at i is joined to a vertex
in the latest component of Gi�1. From this one can see that each Si, 1 � i � n � 1, is
an independent set of G. Moreover, the only possible edge between vertices of S � Sn is
the edge joining n � 1 and n. This is a special case because the edge joining n to 1 causes
the matching edge from vertex n to create a cycle if it joins to the component containing
the vertex 1. In this case, n is placed into S even when n � 1 is in S. Hence there are at
least 3�S� � 1 edges incident with vertices in S. The major part of the proof is to show
that a.a.s. the subgraph Gn of G is connected (and hence is a tree). Once this is achieved,
then counting the total number of edges of G gives 3n/ 2 � (3�S� � 1) � (n � �S� �
1), implying �S� � n/4 � 1 and hence �(G) � n/4 � 1 holds a.a.s. But n/4 � 1/ 2
is a lower bound for �(G), as mentioned earlier, so Theorem 1.1 follows since n/4 �
1/ 2 � n/4 � 1 for even integers n.

The algorithm is well defined when G is not necessarily a graph; i.e., we work with
multigraphs. It is sufficient to show that Gn is a.a.s. connected in the multigraph setting,
since the probability that Gn is a graph is asymptotically constant (see [27, Proof of
Lemma 4.14]). The proof has similarities with the proof that a random d-process a.a.s.
results in a connected graph [23]. First fix an integer K � 3. Define a vertex i 
 n to be
special if i � S and the latest component of Gi�1 has at most K vertices not yet matched.
Let j � n1/3. We first prove the following.

Claim 1. The number of special vertices in [n � j] is a.a.s. O(log3 n).

Proof. As in the derivation of (4), if the latest component of Gi�1 has at most K
unmatched vertices, the probability that one of them is chosen to be matched in Step 2a
of the algorithm is at most K/(n � i), and this is independent of the number of special
vertices chosen previously. Thus, for any integer k with 0 � k 
 2

3 log2 n, each vertex
i in the interval Ik � {i : n � 2k�1j 
 i � n � 2kj} has probability at most K/N of
being special (independently of the earlier ones), where N � 2kj. Hence the probability
that some fixed set R � Ik of vertices is special is at most (K/N)�R�. Since �Ik� � N, the
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probability of more than log2n (note that the base of this logarithm is irrelevant) such
vertices being special is at most

� N
log2 n��K

N�
log2 n

� o�1/n�.

Hence a.a.s. none of the intervals Ik has more than log2 n special vertices. Since there are
O(log n) such intervals which altogether cover all vertices of [n � j], Claim 1 follows.

�

Claim 2. A.a.s. no vertex in the interval n � j � 1, . . . , n is matched with another such
vertex.

Proof. This follows from the fact that the matching is chosen u.a.r. The probability that
any particular vertex is matched with a vertex in this interval is at most j/(n � 1), and
so the expected number of such vertices from this interval is at most j2/(n � 1) � o(1).
Markov’s inequality completes the proof. �

Armed with the two claims above, we are now ready to prove that Gn is a.a.s.
connected. We first show that a.a.s. there exists no i 
 n � j such that i � S and all
vertices in the latest component of Gi�1 are matched. For any such i and each component
of Gi containing at most K unmatched vertices, if the last vertex in this component is t,
then t � 1 is special. By Claim 1, there are at most O(log3n) such special vertices. Hence
there are at most O(log3n) such components in the graphs Gi�2 and Gi�1. Recalling that
K � 3, we see that i cannot be as described above (i.e., creating a component of Gi with
no unmatched vertices which remains a separate component of Gi� for i� � i) unless both
the edges of M incident with i � 1 and i join to components with less than K unmatched
vertices. There being at most O(K log3n) unmatched vertices in such components, the
probability of hitting them twice is O(K2 log6 n/(n � i)2). Summing this over all i �
n � j gives O(K2 log6 n/j) � o(1), so the expected number of times that a component
with no unmatched vertices is created in this fashion is o(1). Again, by Markov’s
inequality we conclude that a.a.s. every component of Gn�j contains at least one
unmatched vertex.

We finally turn to the vertices n � j � 1, . . . , n. Probabilities are conditioned on the
occurrence of the events in Claims 1 and 2. Whether or not these hold is determined as
soon as the vertex n � j has been treated in the algorithm, since the event in Claim 2 holds
if and only if the number of unmatched vertices at this point is j. We may then complete
the perfect matching M on these vertices by matching them u.a.r. with the j previously
unmatched vertices. Continuing the algorithm, it suffices to show that no subset R of the
components of Gn�j remains isolated from the rest when the process terminates. We prove
this by showing that the expected number of such subsets is o(1). Without loss of
generality, choose R so that it contains t � j/ 2 unmatched vertices in total. Let u denote
the number of components of Gn�j having less than K unmatched vertices. Then u �
O(log3n) by Claim 1, and the number of ways of choosing the components in R is
O(1)(t/K�u

j/K�u). The factor O(1) accounts for the fact that the binomial coefficients are
unimodal and symmetric about the center, and, even though t/K 
 j/ 2K, it may be that
t/K � u � ( j/K � u)/ 2. However, u � O(log3n).
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Now consider the rest of the algorithm, and color the remaining vertices in {n � j �
1, . . . , n} red and blue, where a vertex is red if it matches to one in a component in R,
and blue otherwise. A red vertex cannot be adjacent to blue ones on both of its sides along
the Hamilton cycle H, for then a component in R would join to one outside R. So we can
restrict the remaining part of the matching M to one in which the components (paths) of
the subgraph of H induced by red vertices all have length at least 2. Call such components
red strings, and denote by r the number of them. Then there are ( r

t�r) ways to choose the
sequence of lengths of red strings, and ( r

j�t�1) ways to choose those of blue strings such
that each has length at least 2. For a bound on the number of matchings under consider-
ation, we multiply these two binomials together and divide by the number of ways of
choosing the t red vertices, i.e., divide by (t

j). Finally, we must sum over r. (We should
also multiply by 2 to account for the two ways to interleave the red and blue strings.)

Now use

� j � t � 1
r �� t � r

r � � � j � t � 1
r �� t � r

t � 2r� � � j
t � r� � � j

3t/4�
for r � t/4 and

� j � t � 1
r �� t � r

r � � � j
2r� � � j

3t/4�
for r � t/4. Use the estimates

� j
3t/4��� j

t� � �t/j�t/4

and

� j/K � u
t/K � u� � ju� j/K

t/K� � �ej/t�t/K

and multiply by t to account for summing over r. The result is o(1). This completes the
proof of Theorem 1.1. �

4. UPPER BOUNDS FOR d > 4

In this section we prove the upper bounds in Theorem 1.2.
The idea of Algorithm CUBIC can be used to generate a decycling set of any random

regular graph: Walk along the Hamilton cycle guaranteed by Theorem 2.1, and skip the
vertex being visited when it creates a cycle with the unskipped vertices so far. After all
vertices have been visited, the set of skipped vertices gives rise to a decycling set. As seen
in the previous section for the special case where d � 3, to analyze this algorithm we have
to keep track of the sizes of all components of the forest induced by the unskipped
vertices. However, this seems to be an impossible task for larger d. Instead one might be
tempted to use a relaxation of this algorithm which keeps track of some manageable
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information and places vertices in the decycling set whenever there is some possibility of
forming a cycle otherwise. By using the standard differential equation method [26], we
have analyzed the size of the decycling set generated by such an algorithm and obtained
an asymptotic upper bound for �(G)/n. (The particular algorithm we used was the
following, which the reader may like to verify is valid and can easily be implemented. The
vertex w being visited is included in the decycling set if at least two matching edges at w
go backwards, or if only one matching edge at w goes backwards but it creates a cycle
with the vertices so far placed in the growing forest, or if the last vertex before w which
had at least one backward matching edge was not placed in the decycling set.) However,
for d � 4, we found that this upper bound is weaker than one obtained by using a natural
algorithm on the pairing model. The purpose of this section is to prove this stronger upper
bound, which is the right-hand side of (3). We will use the terminology set at the
beginning of Section 2, and we will use the differential equation method for the main
analysis of the algorithm.

Proof of Theorem 1.2. Recall that in the pairing model P n,d, as described in Section 2,
the vertices of a random d-regular multigraph are cells each containing d points. We first
give an algorithm which outputs a decycling set and an induced forest (usually a tree)
simultaneously with generating a random pairing u.a.r. Simultaneous generation of
random structures and running of algorithms has been used many times (for example, see
[25]). The point which is paired with a particular point is called its mate. The method of
deferred decisions will be used, to the extent that when vertices are added to the decycling
set, the points which join back to the growing tree are determined, and their mates are
chosen, but the mates of the other points are not determined. We will prove a property of
the random pairing a.a.s. It then follows that the uniformly random d-regular graphs have
the same property a.a.s. (see [6] or [27, Corollary 2.3]).

Algorithm PAIRING

Input Integers n � 5 and d � 4 with dn even.

Output A random pairing P in P n,d, a decycling set S of the corresponding multigraph
G � G(P) and an induced forest T of G.

1. Set S1 � A and P � A, and let T1 be the graph containing just the vertex 1. Set
t � 1.

2. Let Ut denote the set of unpaired points in the vertices of Tt. Choose a point x u.a.r.
from Ut. (If there is no such point, choose any vertex not in Tt or St and just add
it to Tt to form Tt�1.) Select its mate, y, u.a.r. from the points in the vertices not
in Tt or St. We will call these the untreated vertices. Let u denote the vertex
containing y. For each of the other points z1, . . . , zd�1 
 y in u, decide whether
the mate of zi is in Ut or not. (This must be done with the correct probability, given
that the pairing is uniform subject to all of Ut being paired with untreated points.
This probability is estimated below.) If no mate of any zi is in Ut, set St�1 � St and
let Tt�1 be the forest obtained from Tt by adding u together with the edge joining
u and the vertex containing x. Otherwise, set St�1 � St � {u} and Tt�1 � Tt and
select mates for those zi which, as determined above, have mates in Ut. These are
of course selected u.a.r. from Ut�{ x}. In the second case, the mates of those points
which lie in the untreated vertices are left undetermined.
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2. All new pairs determined in this step are added to the pairing P.
3. If t � 1 � dn/ 2 then stop and output S � Sdn/ 2 and T � Tdn/ 2 and the pairing

P; otherwise set t � t � 1 and go to Step 2.

The algorithm is similar to that [10] for generating an independent dominating set of
a random cubic graph (see [26] also). Let X(t) denote the number of untreated vertices at
time t. Let Z(t) be the number of vertices of Tt, and Y(t) � �Ut�, the number of unpaired
points in such vertices. During the algorithm the probability that one of the points in the
vertex u being treated is paired with an unpaired point of Tt is in a general step (i.e., one
far from the very end of the algorithm, by which we mean, say, X(t) � log n)
asymptotically Y(t)/(X(t)d). This is because the pairing is uniform subject to all Y(t)
unpaired points in Tt being paired with the X(t)d points in the untreated vertices. During
the processing of the unpaired points in the vertex u, this probability changes only by
o(1). Hence the probability that u is added to the growing forest Tt is

P�t�d�1 � o�1�, where P�t� � 1 �
Y�t�

X�t�d
. (5)

Consequently, the expected change in Z(t) in one step is asymptotically P(t)d�1.
Unlike many other problems of this type, we will need to examine the first �n steps of

the algorithm separately. Note that, in the first step, Y(1) becomes d. Until Y(t) drops to
0, the growing forest will be a tree. It is this tree property we need to pay attention to, and
which requires careful consideration of these early stages of the algorithm.

We will break the “time” t up into three intervals, for suitably small � � 0: t 
 �n,
�n 
 t 
 (	0 � �)n, where 	0 will be defined later, and t � (	0 � �)n. We examine
these intervals in the natural order, but the reader interested in the definition of 	0 and in
the main part of the analysis may wish to skip to the main (middle) interval first.

For t 
 �n, the probability that the new vertex chosen is not added to the forest is at
most td/(n � t) by (5), since clearly Y(t) � td and X(t) � n � t. If the new vertex is
added to the forest, Y(t) increases by d � 2. Otherwise, Y(t) decreases by at most d.
Standard arguments now show that a.a.s. Y(t) � t/ 2 for all t 
 �n. (We sketch the proof
of this as follows. We claim that a.a.s., for all such t, the number of times the new vertex
was not added to the forest, from step 1 up until step t, is at most 1

3 t(d � 2)/d. It then
follows that Y(t) �

1
3 t(d � 2). The claim can be verified by defining Qt to be the

indicator of the event that the new vertex is not added to the forest in step t, and then
proceeding for t in three ranges. First, ¥1�t
n2/5 EQt � o(1), so by linearity of
expectation and Markov’s inequality, a.a.s. Qt � 0 for all such t. Secondly, E ¥n2/5�t�n2/3 Qt �
O(n1/3). Standard large deviation inequalities such as [26, Lemma 4.2] (see also Mc-
Diarmid [19) show that a.a.s. this sum exceeds n1/3 by at most n1/3�
 for all 
 � 0. Hence
a.a.s. ¥n2/5�t�n2/3 Qt � O(n1/3�
). In this event, the claim holds for all t in this range.
The interval n2/3 
 t � �n is similar, where the expected value is O(�n) and the deviation
above this is essentially a.a.s. O(n1/ 2�
). This gives the claim for sufficiently small
� � 0.)

We may now assume that at the beginning of the second interval, when t � �n, we
have Y(t) � �/ 2. In the analysis of the second interval, we assume Y(t) � 0 at each step.
(When we come to apply a theorem approximating the process by differential equations,
it is only deduced that the variables are well approximated by the solution of a differential

406 BAU, WORMALD, AND ZHOU



equation until that solution approaches a boundary of a domain in which a variable which
approximates Y(t) is positive. Numerical computations reveal when this occurs. Until this
point, we will only need to know about the behaviour of the process conditional upon
Y(t) � 0.)

Since the forest is a tree, of the Z(t)d points in its vertices, 2Z(t) � O(1) are used by
the edges within the forest Tt, and Y(t) are unpaired. So (d � 2) Z(t) � Y(t) have been
paired to vertices in St, which therefore has [up to additive error O(1)]

W�t� � d�n � Z�t� � X�t�� � ��d � 2�Z�t� � Y�t��

� d�n � X�t� � 2Z�t�� � Y�t� � 2Z�t�

unpaired points. In Step 2 of the algorithm, the point x counted by Y(t) is used up. For
each of the d � 1 points in u other than y, the probability that its mate is a point counted
by Y(t) is 1 � P(t) � o(1) [see (5)]. Hence the expected number of such points in u
paired to Tt is (d � 1)(1 � P(t)) � o(1). Thus, in the event that u is added to St [which
happens with probability 1 � P(t)d�1 � o(1)], the expected change in Y(t) is [up to an
additive term o(1)]

�1 � P�t�d�1���1 � �d � 1��1 � P�t��/�1 � P�t�d�1��

� �1 � P�t�d�1 � �d � 1��1 � P�t��.

On the other hand, in the event that u is added to Tt [which happens with probability
P(t)d�1], the probability that any particular one of these d � 1 points is paired with one
of the points counted by X(t) [and not with one of the W(t) unpaired points in St] is
(X(t)d � Y(t))/(X(t)d � Y(t) � W(t)) � o(1). [This is because all Y(t) unpaired points
in Tt must be paired with points in the untreated vertices u.a.r., leaving X(t)d � Y(t)
points among these vertices, plus the W(t) unpaired points in S(t), for a random perfect
matching. Here we are assuming that, in this particular step, the denominator X(t)d �
Y(t) � W(t) is at least some constant times n, with the constant depending on �. We
discuss later why this can be assumed.] So the expected change in Y(t) due to this event
is [up to �o(1)]

� �d � 1�� X�t�d � Y�t�

X�t�d � Y�t� � W�t�� � 1�P�t�d�1.

Putting together the expected change in Y(t) in one step is

�d � 1�� X�t�d � Y�t�

X�t�d � Y�t� � W�t��P�t�d�1 � �d � 1��1 � P�t�� � 1. (6)

On the other hand, the expected change in X(t) per step is exactly �1, since each untreated
vertex is used in every step. Recall that the expected change in Z per step is given in (5).
We use 	 � t/n to denote the “scaled time,” and, as usual for the differential equation
method, we use x(	), y(	), z(	), and w(	) to model X(t)/n, Y(t)/n, Z(t)/n, and W(t)/n,
respectively. Then P(t) and W(t)/n can be modeled by p(	) � 1 � y(	)/( x(	)d) and
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w(	) � d(1 � x(	) � 2z(	)) � y(	) � 2z(	), respectively. The expected changes in
X(t), Y(t), and Z(t) suggest the following system of differential equations:

�
dx

d	
� �1

dy

d	
� �d � 1�� xd � y

xd � y � w�pd�1 � �d � 1��1 � p��1 � pd�1� � 1

dz

d	
� pd�1

with initial conditions x(0) � 1, y(0) � z(0) � 0. These can be solved (numerically)
up to the first positive 	 for which x � 0 or xd � y � w � 0. We denote this value of
	 by 	0. By [26, Theorem 5.1] (see also [25] or the simplified version [28, Theorem 3]),
the solutions x(	), y(	), z(	) to these equations exist, and X(t), Y(t), and Z(t) are a.a.s.
approximated by nx(t/n), ny(t/n), and nz(t/n), respectively, with error o(n), for t 

(	0 � �)n. (We leave the precise application of these theorems, which is quite routine, to
the reader.) Numerical solutions of the differential equations (which we performed for d
up to 10) reveals that x(	0) � 0 (to within the precision of the numerical computations).
By restricting this second interval to t 
 (	0 � �)n, we have ensured that the
approximation is valid through this whole interval. The last interval, t � (	0 � �)n, can
only contain a negligible number of steps, so by ignoring it we do not lose anything
significant.

Recall that Z(t) is the number of vertices in the induced tree Tt. Now take � very small
and consider the end of the second interval. Then, for all � � 0, z(	0) � � is a.a.s. an
asymptotic lower bound on the proportion of vertices in the induced tree, and hence an
upper bound on �(G)/n is a.a.s. B(d) � 1 � z(	0) � �. Upper bounds B(d) which hold
a.a.s. on 1 � z(	0) are listed for 4 � d � 10 in the right column of Table 1 in the
Introduction, as computed by numerical solution of the differential equations. This proves
the upper bounds in Theorem 1.2. �

Note that, from this proof, it follows that there is a.a.s. an induced tree of the same
asymptotic size as the induced forest found (at least, to the precision of the computations).

5. EXPECTED NUMBER OF TREES AND FORESTS

In this section we obtain the lower bounds in Theorem 1.2.
We consider first the expected number of induced trees of order k in the random graph

G n,d, and then modify the calculations for induced forests. We use the pairing model
described in Section 2, and thus consider a random pairing. Any property obeyed a.a.s. by
the random pairing then carries over to G n,d (see [27]). We calculate EXk, where Xk

denotes the number of trees of order k in (the graph corresponding to) the pairing.
Suppose that T is an induced tree on k vertices the graph corresponding to the pairing.

The vertices of T can be chosen in

�n
k�

408 BAU, WORMALD, AND ZHOU



ways. If the degrees of the vertices are d1, . . . , dk then T can be chosen in

�k � 2�!

�i�1
k �di � 1�!

(7)

ways.
We pause here to justify this. It is well known in tree enumeration theory, but we will

have a need to extend the result to a bound for forests. The simple explanation for (7)
comes from the Prüfer sequence for the labeled tree, which comes from repeatedly
deleting the lowest-labeled leaf and writing down the label of its adjacent vertex. Stop
when there are only two vertices left. This means that all labels of nonleaves appear
somewhere in the sequence, and hence the first vertex is the lowest label not appearing.
Thus the first step of the deletion process can be reconstructed from the sequence, by
attaching this leaf to the vertex whose number is first in the sequence. By induction, the
whole tree can be reconstructed, so each sequence corresponds to at most one tree.
Conversely, it is easy to see that each sequence of length k � 2 from the k labels
corresponds to a tree. Thus the number of trees on k vertices is kk�2, but in particular,
since the label of a vertex of degree j appears exactly j � 1 times in the sequence, we
obtain (7).

Once the tree T has been chosen, we may choose precisely which points in the pairing
are used for the pairs corresponding to its edges. The di edges coming into a vertex can
be mapped to points in the vertex in d!/(d � di)! ways. Hence, collecting the factors
above, the number of ways to choose all the pairs corresponding to edges of T is (with
square brackets denoting coefficient extraction)

�n
k� �k � 2�! 	

d1, . . . , dk
2k�2�¥ di

d!

�d � di�!�di � 1�!
� �n

k� �k � 2�! 	
d1, . . . , dk
2k�2�¥ di

� d
di
�di

� �n
k� �k � 2�!�x2k�2�� 	

j�1

d �d
j � jxj� k

� �n
k� �k � 2�!�x2k�2��g�x��k (8)

where

g�x� � xd�1 � x�d�1.

The standard way to estimate the coefficient in (8) is (see [20], for example) to observe
that it is bounded above by


�2k�2g�
�k (9)

for all 
 � 0. We may choose 
 so as to minimize this bound. Since all we require
ultimately is an upper bound on EXk, this suffices for our purposes. In fact, it can be
shown that using this bound results in the correct value of Xk to within a polynomial
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factor, and hence we are not losing anything by this when the final result is considered.
Differentiation of the logarithm of (9) [noting that the derivative of log g( x) is ( xd �
1)/( x2 � x)] shows that the best 
 is 1/(d � 2). Thus (8) is bounded above by

�n
k� �k � 2�!

�d � 2�2 �k, where � �
d�d � 1�d�1

�d � 2�d�2 . (10)

This is a bound on the number of ways to form the pairs which give the induced tree.
The rest of the pairing is formed by first pairing each unused point in the tree’s vertices
with points in vertices not used by the tree—in [dn � dk]dk�2k�2 ways, where [r]i

denotes the falling factorial—and then choosing a perfect matching of all remaining
points—in M(nd � 2kd � 2k � 2) ways, where M(2i) � (2i)!/(i!2i). Multiplying
these three factors together and dividing by M(nd), and using Stirling’s formula for
factorials, neglecting polynomial factors [so that, for example, M(nd) 	 (nd)nd/ 2] gives

EXk � �f �d, 
� � o�1��n (11)

where 
 � k/n and

f�d, 
� �
�
dd�d
�1 � 
��d�1��1�
�

�d � 2d
 � 2
�d/2�d
�
dd/2 .

For k � 3, (1) implies that EXk � 0 if 
 � 3/4. We find f(3, 3/4) � �2, so there
is no new information gained for d � 3. Similarly, for d � 4, f(4, 2/3) 	 1.1906, which
permits many induced trees of size 2n/3, corresponding to the upper bound obtained from
(1). For larger d, we obtain new upper bounds on the size of the largest induced tree in
G n,d as shown in the middle column of Table 2, from the point 
 at which f(d, 
) dips

TABLE 2. Upper Bounds on Size of Induced Trees and Forests, a.a.s.

d 
 for Tree 
 for Forest

5 0.6214756457 0.6215520592
6 0.5768963205 0.5775223167
7 0.5390900048 0.5402738418
8 0.5068847315 0.5085196796
9 0.4790661409 0.4810425927

10 0.4547283832 0.4569554491
11 0.4332035162 0.4356103248
12 0.4139905628 0.4165230118
13 0.3967060215 0.3993230883
14 0.3810506356 0.3837212484
15 0.3667868661 0.3694874682
16 0.3537233114 0.3564360217
17 0.3417036974 0.3444149357
18 0.3305989350 0.3332983963
19 0.3203012819 0.3229811686
20 0.3107199781 0.3133744218
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below 1, since then EXk becomes exponentially small.
However, the largest induced forest may be substantially larger than the largest induced

tree. We next consider an upper bound on EYk, where Yk is the number of induced forests
of k vertices in G � G n,d. The bounds we will obtain are shown in the third column of
Table 2.

Forests with given degree sequence and given number of vertices and edges do not
seem to have been counted in the literature, though Britikov [8] found asymptotic
formulae without regard to degree sequence. Without too much trouble we can obtain
quite useful upper bounds. First, for simplicity, consider forests with no isolated vertices,
with k vertices and j components. Consider constructing the Prüfer sequence for such a
forest, as described above for a tree. This time, it is possible that the lowest-labeled leaf
is adjacent to another leaf. If it is, do not write down the label of that leaf, but simply enter
a special character (which we may call 0) and delete the two adjacent leaves. Again, stop
when there are two (adjacent) vertices left. Then the length of the sequence is reduced by
j � 1 as compared to the Prüfer sequence for a tree of k vertices, and so the number of
sequences is

�k � j � 1�!

�j � 1�! �i�1
k �di � 1�!

.

Each sequence corresponds to at most [k � 1]j forests, since the full identity of the forest
is not revealed unless the labels of the vertices adjacent to the ones which enter “0”s are
revealed. For these there are at most [k � 1]j possibilities, as the lowest-labeled leaf in
the forest cannot occur here. (This is quite an overcount, and is the only source of error
in our overestimate for EYk.)

Of course, if a forest has j0 isolated vertices out of k, their labels can be chosen
separately. Thus, since ¥i di � 2k � 2j, an upper bound on the ways to choose pairs
corresponding to a forest with k vertices, j components and with j0 isolates is, corre-
sponding to (10),

�n
k� �k � 1�!

j0!�j � 1�!
�k�j0�j,

with � as in (10). Following the argument as for trees, this results in

EYk � �h�d, 
, �, �0� � o�1��n (12)

where 
 � k/n and

h�d, 
, �, �0� �
�
����0dd�d
�1 � 
��d�1��1�
�

�0
�0���d � 2d
 � 2
 � 2� � 2�0�

d/2�d
�
����0dd/2 .

Fixing � � �0, the first and second derivatives show that the maximum occurs at �0 � �.
Making this substitution, we find the second partial derivative of log h with respect to �
is
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2��2
 � d � 2d
�

��d � 2d
 � 2
 � 4��
.

The expression in the denominator occurs in the denominator of h(d, 
) and has a
physical meaning as the cardinality of a set of points. Hence the second derivative is
negative, and putting �log h/�� � 0 will reveal the unique maximum. Solving this
equation to yield �1 and solving h(d, 
, �1, �1) � 1 for 
 (using Maple) gives the results
in the third column of Table 2.

We conclude this section with our opinion on the question of whether the decycling
number of random 4-regular graphs is a.a.s. equal to the bound given in (1). Our
calculation above shows that the expected number of induced trees of the complementary
size, (2n � 1)/3, is exponentially large.

Conjecture 5.1. For G � G n,4, a.a.s.

��G� � �G�
3

�
1

3.
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[11] P. Erdős, M. Saks, and V. T. Sós, Maximum induced trees in graphs, J Combinat Theory 41B
(1986), 61–79.

[12] R. M. Karp, “Reducibility among combinatorial problems,” Complexity of computer compu-
tations, Eds. R. E. Miller and J. W. Thatcher, 85–103, Plenum Press, New York, London, 1972.

[13] J. H. Kim and N. C. Wormald, Random matchings which induce Hamilton cycles and
hamiltonian decompositions of random regular graphs, J Combinat Theory Ser B 81 (2001),
20–44.

412 BAU, WORMALD, AND ZHOU
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H. J. Prömel, 73–155. PWN, Warsaw, 1999.

[27] N. C. Wormald, “Models of random regular graphs,” Surveys in combinatorics, 1999, Eds.
J. D. Lamb and D. A. Preece, London Mathematical Society Lecture Notes Series, Vol. 267,
239–298. Cambridge University Press, Cambridge, 1999.

[28] N. C. Wormald, Analysis of greedy algorithms on graphs with bounded degrees, Discrete
Math, to appear.

[29] M. Zheng and X. Lu, On the maximum induced forests of a connected cubic graph without
triangles, Discrete Math 85 (1990), 89–96.

DECYCLING NUMBERS OF RANDOM REGULAR GRAPHS 413


