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Abstract

A problem arising from a recent study of scalability of optical networks seeks to assign
channels to the vertices of a network so that vertices distance 2 apart receive distinct channels.
In this paper we introduce a general channel assignment scheme for Cayley graphs on abelian
groups, and derive upper bounds for the minimum number of channels needed for such graphs.
As application we give a systematic way of producing near-optimal channel assignments for
connected graphs admitting a vertex-transitive abelian group of automorphisms. Hypercubes are
examples of such graphs, and for them our near-optimal upper bound gives rise to the one
obtained recently by Wan.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Optical networking [12] has been widely recognized as a key technology in commu-
nication and computer networks due to its very promising applications in high-speed
supercomputing, distributed computing, scienti:c visualisation, and so on. In an optical
network, processors are interconnected by optical :bre links, each of which supports a
given number of wavelengths. To enhance scalability Aly and Dowd [1,2] suggested
to use a class of networks which e;ciently combine space with time and=or wave-
length division. In such a network, vertices are grouped into clusters with time and=or
wavelength multiplexing, and the clusters are interconnected by :bre links. All clusters
contain the same number, m0, of vertices [14,15]. In the case where m0¿1, internal
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links in each cluster are provided to allow communications within the cluster. Taking
the clusters as vertices we then get a new network, called the cluster interconnection
network (CIN). For such a CIN, a key issue [14,15] is to assign channel sets to its
vertices (clusters) so that no conGicts may happen at input couplers. Depending on
whether m0 = 1 or m0¿1, this channel assignment problem can be formulated [14] as
the vertex colouring problems in the following de:nition.

De�nition 1. Let �=(V; E) be a simple undirected graph. An assignment of n colours
to the vertices of � is called a (2; n)-colouring (( J2; n)-colouring, respectively) of �
if vertices distance 2 apart (with distance at most 2, respectively) receive distinct
colours. The minimum number of colours needed for such a colouring is denoted by
	2(�) (	 J2(�), respectively). A colouring scheme is balanced if each colour is used by
the same number of vertices.

Equivalently, we can de:ne a (2; n)-colouring of � as a partition {P1; : : : ; Pn} of the
vertex set V such that any two non-adjacent vertices in the same part Pi are not joined
by a length-two path of �, and de:ne a ( J2; n)-colouring of � as a (2; n)-colouring
{P1; : : : ; Pn} such that each Pi is an independent set. (An independent set of � is a set
of pairwise non-adjacent vertices of �.) In the following we will use these equivalent
de:nitions.
The reader is referred to [14,15] for more background information on the colourings

above. One can :nd in [15] an optimal J2-colouring for a special Cayley digraph called
rotator digraph, and in [1] results on other CIN topologies. In [10] the concepts of
(2; n)- and ( J2; n)-colourings are generalised, and the problems of colouring hypercubes
so that two vertices with distance exactly k, at most k, respectively, receive diLerent
colours are studied, where k is a positive integer.
Before proceeding to the main results in this paper, we would like to record a few

connections between 	2; 	 J2 and other invariants for graphs. First, as noticed in [10],
from the de:nitions above we have

	2(�)6 	 J2(�) = 	(�2); (1)

where 	 denotes the chromatic number and �2 is the square of �. (The chromatic
number of a graph � is the minimum number of colours needed to colour the vertices
of � such that adjacent vertices receive distinct colours. The square of � is the graph
with the same vertex set as � in which two vertices are adjacent if and only if they
are within distance 2 in �.)
Second, we point out that, the invariant 	 J2 is equal to the radio colouring number,

which was introduced by Harary [5] in studying the channel assignment problem for
radio communication systems. An L(2; 1)-labelling [4], or a radio colouring as used
in [5], of a graph � is an assignment of labels—non-negative integers—to the vertices
of � such that adjacent vertices receive labels that diLer by at least 2, and vertices at
distance 2 receive diLerent labels. The minimum number of labels needed is called the
radio colouring number of � by Harary [5]. One can show that this number is equal
to 	(�2) (see [17] for an explanation), and hence is the same as 	 J2(�).
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The vertex linear arboricity vla(�) of � is the minimum number of parts into which
V can be partitioned such that each part induces a forest whose connected components
are paths. From this de:nition and the de:nition of 	2 it follows that

	2(�)¿ vla(�):

If � is triangle-free, that is, � contains no cycle of length 3, then for each v∈V , any
two neighbours of v are distance 2 apart and hence must be assigned diLerent colours
under any (2; n)-colouring of �. Thus, for triangle-free graphs �, we get

	2(�)¿ �(�) (2)

by choosing v to be a vertex with maximum degree �(�).
Finally, we notice that, for triangle-free graphs �, 	2(�) can be bounded below by

the following three basic invariants: the independence number �(�) (maximum size of
an independent set of �), the edge independence number �′(�) (maximum size of a
set of edges no two of which have an end-vertex in common), and the clique number
!(�) (maximum size of a set of pairwise adjacent vertices of �). In fact, in a (2; n)-
colouring {P1; : : : ; Pn} of �, any two non-adjacent vertices in the same Pi are not joined
by a path of � with length 2. A necessary (but not su;cient) condition for this to be
true is that, for each Pi, all connected components of the subgraph �[Pi] induced by Pi
are complete graphs. In particular, if � is triangle-free, then the connected components
of each �[Pi] are isolated vertices or isolated edges. Hence, in this case, the partition
{P1; : : : ; Pn} is necessarily a (2; n)-colouring in the sense of [16], and consequently the
2-chromatic number of � de:ned in [16] provides a lower bound for 	2(�). From this
and [16, Theorem 4], we obtain

	2(�)¿ max {�!(�)=2�; �(|V | − 2�′(�))=�(�)�;

�|V |2=(|V |2 − 2(|E| − �′(�)))�} (3)

for any triangle-free graph �.
We will follow standard terminology and notation for graphs and groups, see for

example [3,8,13], respectively.

2. Main results

Cayley graphs are recommended [6,11] strongly by computer scientists and math-
ematicians as good models for interconnection networks. Such graphs possess many
desirable properties, including vertex-symmetry, maximal edge-fault tolerance and ex-
istence of uniform shortest path routings. As a matter of fact, a lot of networks
currently being used are Cayley graphs. These include [6,11] hypercubes, butterGies,
cube-connected cycles, star graphs and their generalisations, and many other networks
of both theoretical and practical importance.
In this paper, we will introduce a general scheme for 2-colouring Cayley graphs

� on abelian groups, and derive upper bounds for 	2(�). These will be presented in
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Theorem 1 and Corollary 1 below. The family of Cayley graphs on abelian groups
is very large, with notable members including Hamming graphs, hypercubes, circulant
graphs, etc., and our scheme applies to all of them. As application we give (Theorem 2)
a systematic way of producing near-optimal 2-colourings for connected graphs admitting
a vertex-transitive abelian group of automorphisms. Roughly speaking, any matrix over
the :eld GF(2)= {0; 1} with a certain property corresponds to such a 2-colouring, see
the proof of Theorem 2. In particular, hypercubes are examples of such graphs, and
for them our near-optimal upper bound gives rise to the one obtained recently in [14].
For any group G, a subset S of G is called a Cayley set of G if 1 �∈ S and S is

inverse-closed, namely s∈ S implies s−1 ∈ S, where 1 is the identity element of G.
For such a set S, the Cayley graph of G with respect to S, denoted by �(G; S), is
the graph with vertices the elements of G in which x; y∈G are adjacent if and only
if xy−1 ∈ S. The conditions imposed on S ensure that �(G; S) is a simple undirected
graph. Throughout the paper we will assume that G is a 4nite abelian group. As
usual, for a subgroup N of G, we use G=N to denote the quotient group of G by
N , and |G : N | := |G=N | the order of G=N . Thus, the elements of G=N are Nx for
x∈G, where Nx is the coset of N in G containing x. For any subset X of G, denote
X=G= {Nx: x∈X }. (Note that X=N is not necessarily a subgroup of G=N , and that
Ny∈X=N does not imply y∈X .) In particular, for a Cayley set S of G, we de:ne

S=N := {Ns: s ∈ S}; S∗=N := S=N − {N}: (4)

Here and in the following “−” stands for set-theoretic subtraction. Since (Ns)−1 =Ns−1
and S is closed under taking inverse, it follows that S∗=N is closed under taking inverse
as well. Also, S∗=N does not contain the identity element N of G=N . So S∗=N is a
Cayley set of the quotient group G=N , and thus we have the Cayley graph �(G=N; S∗=N )
de:ned on G=N . Denote

S2 := {xy: x; y∈ S}:
Since S is a Cayley set of G, we have 1 �∈ S but 1= ss−1 ∈ S2 as S is inverse-
closed.

Theorem 1. Let G be a 4nite abelian group and S a Cayley set of G. Let N be a
subgroup of G such that N ∩ S2 = {1}. Then

	2(�(G; S))6 	 J2(�(G=N; S
∗=N )): (5)

Moreover, any ( J2; n)-colouring {Pi}ni=1 of �(G=N; S∗=N ) gives rise to a (2; n)-colouring
of �(G; S), namely {⋃Nx∈Pi

Nx}ni=1, and the former is balanced if and only if the latter
is balanced.

This shows a close relationship between 2-colourings of the original Cayley graph
�(G; S) and J2-colourings of the Cayley graph �(G=N; S∗=N ) on the quotient group G=N .
Clearly, the colouring under which each coset (as a vertex of �(G=N; S∗=N )) receives
a distinct colour is a balanced J2-colouring of �(G=N; S∗=N ). Applying Theorem 1 to
this trivial case, we get the following corollary.
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Corollary 1. Let G, S and N be as in Theorem 1. Then

	2(�(G; S))6 |G : N |: (6)

Moreover, the colouring under which two elements of G receive the same colour if
and only if they are in the same coset of N in G is a balanced (2; |G : N |)-colouring
of �(G; S).

For any Cayley set S of G, if we choose N = {1} to be the trivial subgroup of G,
then of course the condition N ∩ S2 = {1} is satis:ed. This condition may be satis:ed
also by some non-trivial subgroups N of G, and we are interested in such N with
|G : N | as small as possible.
The automorphism group Aut(�) of a graph �=(V; E) is the group of adjacency-

preserving permutations on V . A subgroup G of Aut(�) is said to be vertex-transitive
if for any u; v∈V there exists g∈G such that g permutes u to v. In this case we
also say that � is G-vertex-transitive, or vertex-transitive if G=Aut(�). A G-vertex-
transitive graph must be regular, that is, all the vertices have the same degree. Two
graphs �i=(Vi; Ei); i=1; 2, are isomorphic, written �1∼=�2, if there is a bijection from
V1 to V2 such that u; v∈V1 are adjacent in �1 if and only if their images are adjacent
in �2.
Using Corollary 1 and techniques from linear algebra, we will prove the following:

Theorem 2. Let � be a connected triangle-free graph. Suppose the automorphism
group Aut(�) of � contains a vertex-transitive abelian subgroup. Then

d6 	2(�)6 2�log2 d�; (7)

where d is the degree of the vertices of �.Moreover, we can give balanced (2; 2�log2 d�)-
colourings (not unique) of � explicitly.

Such colourings will be produced by using null spaces of certain matrices over
GF(2), see the proof in Section 4. The reader is referred to [7–9] for existence
and constructions of graphs satisfying the conditions of Theorem 2. Hypercubes Qd
are such graphs, and for them we can produce a number of balanced (2; 2�log2 d�)-
colourings of Qd systematically and explicitly, see Corollary 2 below. In fact, we have
Qd∼=�(V+(d; 2); S), so we may identify Qd with �(V+(d; 2); S), where V+(d; 2) is the
additive group of the d-dimensional linear space V (d; 2) of row vectors over GF(2),
and S = {e1; : : : ; ed} is the standard basis of V (d; 2). (For each i, ei is the vector of
V (d; 2) with the i-coordinate 1 and all other coordinates 0.) For a d× n matrix A over
GF(2), denote by NA the additive group of the null space {x∈V (d; 2): xA= 0n} of
A, where 0n is the zero vector (identity element) of V (n; 2). From a geometric point
of view, the cosets of NA in V+(d; 2) are 6ats of V (d; 2) induced by NA. Theorem 2
and its proof imply the following:

Corollary 2. Let Qd be the d-dimensional cube. Then [14]

d6 	2(Qd)6 2�log2 d�: (8)
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Moreover, for any d×�log2 d� matrix A over GF(2) with rank �log2 d� and rows
pairwise distinct, the colouring of Qd under which two vectors of V (d; 2) receive the
same colour if and only if they are in the same 6at induced by NA is a balanced
(2; 2�log2 d�)-colouring of Qd.

Remark 1. (a) From the proof of Theorem 2, we will see that the upper bound in (7)
remains true if � is not triangle-free (that is, xy= z holds for some x; y; z ∈ S). But
the lower bound 	2(�)¿d is not guaranteed in this case. For example, let �=�(G; S)
with G=V+(2; 2) and S =G − {02}. Then �∼=K4 has triangles and admits G as a
vertex-transitive abelian subgroup of automorphisms [3, Lemma 16.3]. For this graph
	2(�)¿d does not hold since � has degree d=3 whilst 	2(�)= 1.
(b) For d a power of 2, the lower and upper bounds in (7) coincide, so we get

	2(�)=d and similarly 	2(Qd)=d. For other integers d, the upper bound 2�log2 d� in
(7) and (8) is near-optimal. In this latter case, from our proof of Theorem 2, and by
using (5) instead of (6), it seems that the upper bound 2�log2 d� can be improved. (If
this is true, then the improved bound will not be generated by balanced 2-colourings.)
On the contrary, Wan [14] conjectured that 	2(Qd)= 2�log2 d� for all d. He also pre-
sented [14] a speci:c balanced (2; 2�log2 d�)-colouring of Qd. Corollary 2 enables us to
produce systematically a number of such near-optimal 2-colourings. The existence of
the matrices A in this corollary is guaranteed by the fact that V (�log2 d�; 2) contains
2�log2 d�¿d distinct vectors.
(c) Wan [14] also gives an upper bound for 	 J2(Qd), namely 	 J2(Qd)62

�log2(d+1)�.
This bound follows from a general result [17, Theorem 3.1] on the radio colouring
number.

3. Proof of Theorem 1

For any graph �=(V; E) and partition P of V , the quotient graph �P of � with
respect to P is de:ned to be the graph with vertex set P in which P;Q∈P are
adjacent if and only if there exist u∈P and v∈Q such that {u; v}∈E. We will use
�[P;Q] to denote the bipartite subgraph of � with vertex set P ∪Q and all such edges
{u; v} of � between P and Q. In the case where each part of P is an independent set
of � with k vertices, for some integer k¿1, and �[P;Q] is a perfect matching of k
edges, the graph � is called a k-fold cover [3] of the quotient �P. In particular, for a
Cayley graph �(G; S) and a subgroup N of G, G=N is a natural partition of G with
cosets Nx as its parts. Hence, we have the quotient graph (�(G; S))G=N of �(G; S) with
respect to G=N .
One can see that the sets S=N and S∗=N de:ned in (4) satisfy

S=N = {Nx ∈ G=N : Nx ∩ S �= ∅}; (9)

S∗=N = (S − N )=N: (10)

In fact, since s∈Ns∩ S for any s∈ S, S=N ⊆ {Nx∈G=N : Nx∩ S �= ∅}. Conversely, if
Nx∩ S �= ∅, say s∈Nx∩ S, then Nx=Ns∈ S=N and hence (9) is proved. For Ns∈ S=N ,
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where s∈ S, we have Ns∈ S∗=N ⇔ Ns �=N ⇔ s∈ S−N , and hence (10) is valid. In the
case where N ∩ S2 = {1}, we have the following Lemma 1, which will be needed in the
proof of Theorem 1. Note that case (b) in this lemma cannot occur if the order of G is
odd. An element x of a group G is called an involution of G if x �=1 but x2 = 1. It is
well known that [3, Proposition 16.2] any Cayley graph �(G; S) is G-vertex-transitive
with degree |S|.

Lemma 1. Let G be a 4nite abelian group and S a Cayley set of G. Let N be a
subgroup of G such that N ∩ S2 = {1}. Then

|Nx ∩ S| =
0 if Nx �∈ S=N;
1 if Nx ∈ S=N

(11)

and the mapping s �→Ns for s∈ S is a bijection from S to S=N . In particular, |S=N |=
|S|. Moreover, (�(G; S))G=N ∼=�(G=N; S∗=N ), and the following (a) and (b) hold.
(a) If N �∈ S=N , then S∗=N = S=N , N ∩ S = ∅, each coset Nx is an independent set of

�(G; S), and �(G; S) is an |N |-fold cover of �(G=N; S∗=N ).
(b) If N ∈ S=N , then S∗=N = S=N − {N}, N ∩ S = {s} for an involution s of G, |N |

is even, each coset Nx induces a perfect matching of |N |=2 edges, and deleting
from �(G; S) all such matchings results in an |N |-fold cover of �(G=N; S∗=N ).

Proof. By (9), |Nx∩ S|=0 if Nx �∈ S=N and |Nx∩ S|¿1 if Nx∈ S=N . In the latter case,
if y; z ∈Nx∩ S, say y= gx; z= hx for some g; h∈N , then yz−1 = (gx)(hx)−1 = gh−1
and hence yz−1 ∈N ∩ S2. But N ∩ S2 = {1} by our assumption, so yz−1 = 1, that is,
y= z. Thus, |Nx∩ S|=1 and (11) is proved. In particular, |Ns∩ S|=1 for s∈ S. Hence
the mapping s �→ Ns is a bijection from S to S=N , and consequently |S=N |= |S|.
In the following we set � :=�(G; S) and �∗ :=�(G=N; S∗=N ). Since (gx)(hx)−1 =

gh−1 ∈N for any g; h∈N and x∈G, by the de:nition of a Cayley graph we have
(i) Two elements gx; hx in the same coset Nx are adjacent in � if and only if

gh−1 ∈N ∩ S.
Since G is abelian, for distinct Nx; Ny and g; h∈N we have: gx; hy are adjacent in

� ⇔ (gx)(hy)−1 ∈ S ⇔ (ugx)(uhy)−1 ∈ S for any u∈N . Note that ugx runs over Nx
when u runs over N , and that uhy �= u′hy whenever u �= u′. So all elements in Nx have
the same number of neighbours in Ny, and similarly all elements in Ny have the same
number of neighbours in Nx. Therefore, we have

(ii) �[Nx; Ny] is a regular subgraph of �, for Nx; Ny adjacent in the quotient graph
�G=N .

In the case where N �∈ S=N , we have S∗=N = S=N and N ∩ S = ∅ by (11). Thus, by
(i) each coset Nx is an independent set of �. We have: Nx; Ny∈G=N are adjacent in
�∗ ⇔ Nx(Ny)−1 ∈ S=N ⇔ N (xy−1)=Ns for some s∈ S ⇔ xy−1 = gs for some g∈N
and s∈ S ⇔ x(gy)−1 = s for some g∈N and s∈ S ⇔ x∈Nx and gy∈Ny are adjacent
in � for some g∈N ⇔ Nx; Ny are adjacent in the quotient graph �G=N . Here in the last
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step we used (ii) above. Hence we have �∗ ∼=�G=N . Moreover, since � and �∗ have
the same degree, namely |S|= |S∗=N |, �[Nx; Ny] is forced to be a perfect matching
between Nx and Ny. In other words, � is an |N |-fold cover of �∗.
In the remaining case where N ∈ S=N , we have S∗=N = S=N − {N} and, by (11),

N ∩ S = {s} for some s∈G. Since 1 �∈ S, we have s �=1. Since s2 ∈N ∩ S2, we have
s2 = 1 by our assumption, and hence s is an involution of G. As N ∩ S = {s}, it follows
from (i) that gx; hx∈Nx are adjacent if and only if gh−1 = s, where g; h∈N . Thus,
each gx∈Nx is adjacent to exactly one vertex in Nx, namely s−1gx. So N must be
of even order, and the subgraph of � induced on Nx is a perfect matching of |N |=2
edges. By a similar argument as above, one can show that �∗ ∼=�G=N , and that deleting
from � all such matchings results in an |N |-fold cover of �∗.

Proof of Theorem 1. Let G; S; N be as in Theorem 1. Denote � :=�(G; S) and �∗ :=
�(G=N; S∗=N ). We prove :rst that any two elements in the same coset Nx are not
distance 2 apart in �. Suppose on the contrary that gx; hx are distinct elements in Nx
with distance 2 in �, where g; h∈N . Then g �= h and gx; hx have a common neighbour,
say uy∈Ny for some u∈N and y∈G. We have Nx �=Ny for otherwise the subgraph
of � induced by Nx would contain the path gx; uy; hx of length 2, which contradicts
Lemma 1. Since gx; uy are adjacent in �, it follows that (gx)(uy)−1 ∈ S. Similarly,
since uy; hx are adjacent in �, we have (uy)(hx)−1 ∈ S. So gh−1 = ((gx)(uy)−1)((uy)
(hx)−1)∈ S2, and hence gh−1 ∈N ∩ S2. But N ∩ S2 = {1} by our assumption, so we
have gh−1 = 1 and g= h. This :nal contradiction shows that the distance of any two
elements in the same coset of N is not equal to 2.
Suppose {P1; : : : ;Pn} is a ( J2; n)-colouring of �∗ for some integer n, that is, a partition

of G=N such that any two cosets in the same part Pi are distance at least 3 apart in �∗.
For each i, de:ne Pi to be the union of the cosets in Pi, that is, Pi :=

⋃
Nx∈Pi

Nx. We
assert that the distance in � between any two elements of Pi is not equal to 2. Suppose
otherwise, and let gx; hy∈Pi be elements which are distance 2 apart in �. Let gx; uz; hy
be a length-two path of �, where g; h; u∈N . By the result in the previous paragraph,
gx; hy must be in distinct cosets Nx; Ny, and Nx; Ny must be in Pi by the de:nition
of Pi. If uz ∈Nx, then the edge joining uz and hy connects Nx and Ny, and thus
Nx; Ny are adjacent in �G=N . In other words, they are adjacent in �∗ since �G=N ∼=�∗

by Lemma 1. This contradicts the assumption that any two cosets in Pi are distance at
least 3 apart in �∗. Hence Nz �=Nx, and similarly Nz �=Ny. Note that Nx and Nz are
adjacent in �G=N since {gx; uz} is an edge of � between Nx and Nz. Similarly, Nz and
Ny are adjacent in �G=N . Thus, Nx; Nz; Ny is a length-two path of �G=N ∼=�∗, which
again contradicts the assumption above. Therefore, the distance in � between any two
elements of Pi is not equal to 2, and so we can colour all of them with the same colour
i without violating the regulation of (2; n)-colouring. In other words, {P1; : : : ; Pn} is a
(2; n)-colouring of �, which is induced by the ( J2; n)-colouring {P1; : : : ;Pn} of �∗.
Moreover, since |Pi|= |N ||Pi| for each i, all Pi have the same cardinality if and only
if all Pi have the same cardinality. That is, {P1; : : : ;Pn} is a balanced ( J2; n)-colouring
of �∗ if and only if {P1; : : : ; Pn} is a balanced (2; n)-colouring of �. For n= 	 J2(�∗),
a ( J2; n)-colouring of �∗ exists, and it gives rise to a (2; n)-colouring of �. Hence (5)
follows and the proof is complete.
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Proof of Corollary 1. The colouring under which the members of G=N all receive
diLerent colours is a ( J2; |G : N |)-colouring of �(G=N; S∗=N ). From the proof above,
this colouring induces the (2; |G : N |)-colouring of �(G; S) under which two elements
receive the same colour if and only if they are in the same coset Nx. This colouring
is balanced since each colour is used by |N | vertices.

4. Proofs of Theorem 2 and Corollary 2

Now we prove Theorem 2 by using Corollary 1. In the proof we will use the
following lemma. Although it is stated in [3] for the full automorphism group Aut(�),
the result is valid for any transitive abelian subgroup of Aut(�) and the proof is the
same. For a G-vertex-transitive graph �=(V; E), if for any u; v∈V there exists a
unique g∈G which maps u to v, then G is said to be regular on V .

Lemma 2 (Biggs [3, Proposition 16.5]). Let �=(V; E) be a graph such that Aut(�)
contains a vertex-transitive abelian subgroup G. Then G is regular on V , and G is
an elementary abelian 2-group.

Recall that we use V+(n; 2) to denote the additive group of the linear space V (n; 2).
The operation of this group is addition of vectors. Henceforth, we will use N + x
and 2S to replace Nx and S2, respectively, where N is a subgroup of V+(n; 2) and
x∈V (n; 2). It is well known that V+(n; 2) is isomorphic to the elementary abelian
2-group Zn2 of order 2n. From the de:nition of a Cayley graph, one can see that
�(G; S) is connected if and only if S is a generating set of G, that is, each element
of G has the form sn11 · · · sntt for some s1; : : : ; st ∈ S and integers n1; : : : ; nt , where t¿1.

Proof of Theorem 2. Suppose �=(V; E) is a connected triangle-free graph with degree
d such that Aut(�) has a vertex-transitive abelian subgroup G. Since � is triangle-free,
we have 	2(�)¿d by (2). So we need to prove the upper bound in (7) only.
By Lemma 2, G is regular on V and G is an elementary abelian 2-group. Hence

|G|=2‘ and G∼=Z‘2 for a positive integer ‘. In the following we will identify G with
the group V+(‘; 2). Since G is regular on V , by Biggs [3, Lemma 16.3] � is isomorphic
to a Cayley graph of G, that is, �∼=�(G; S) for a Cayley set S := {x1; : : : ; xd} of G,
where each xi ∈V (‘; 2) − {0‘}. Since � is connected, S must be a generating set of
G. This is equivalent to saying that S contains a basis of the linear space V (‘; 2).
Hence ‘6d. Also, we have d¡2‘ as S is a proper subset of G. Set n := �log2 d�.
Then 2n−1¡d62n. So 2n−1¡d¡2‘, which implies n6‘ and hence n6d.
We will show by explicit construction that there exists an ‘× n matrix A over GF(2)

with rank n such that x1A; : : : ; xdA are pairwise distinct. Once this is achieved, then
the null space

UA := {x∈V (‘; 2): xA= 0n}
of A is an (‘−n)-dimensional subspace of V (‘; 2), and thus |G : NA|=2n holds for the
additive group NA of UA. Also, since x1A; : : : ; xdA are distinct, we have (xi+xj)A �= 0n
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for i �= j and hence NA ∩ (2S)= {0n}. Thus, from Corollary 1 we get 	2(�)6|G :
NA|=2n, which is exactly the upper bound in (7). Also from Corollary 1, for each
such A we can give explicitly a balanced (2; 2n)-colouring of �, namely the one under
which two vectors of V (‘; 2) receive the same colour if and only if they are in the
same Gat NA + x induced by NA.
Now it remains to construct explicitly matrices A with required properties. Since

n6d62n and V (n; 2) has 2n vectors, we can choose d distinct vectors c1; : : : ; cd in
V (n; 2) such that the d× n matrix C with the ith row ci has rank n. Thus, the n
columns of C are independent vectors of dimension d. Since n6‘6d, we can add
‘− n column vectors of dimension d to C to form a d× ‘ matrix Y of rank ‘. Thus
YB=C, where B=

( In
0

)
with In the n× n identity matrix and 0 the all-zero matrix of

dimension (‘−n)× n. Let X be the d× ‘ matrix with the ith row xi, for 16i6d. Then
X has rank ‘ since S is a generating set of G. Since Y has also rank ‘, there exists a
non-singular ‘× ‘ matrix D over GF(2) such that Y =XD. Now we set A=DB. Then
the non-singularity of D implies that A has the same rank as B, namely n. Moreover,
we have XA=X (DB)=YB=C, which implies xiA= ci for each i. Thus, x1A; : : : ; xdA
are pairwise distinct, and the matrix A satis:es all the requirements.

Note that in the above proof of 	2(�)62n we do not need the condition that � is
triangle-free. One can see that the matrix A is not unique, and each A gives rise to
one balanced (2; 2n)-colouring of �.

Proof of Corollary 2. We will use the proof of Theorem 2 and the notation there.
The d-dimensional cube Qd=�(V+(d; 2); S) admits G=V+(d; 2)∼=Zd2 as a vertex-
transitive abelian subgroup of automorphisms, where S = {e1; : : : ; ed} (see the paragraph
before Corollary 2). So ‘=d, and we need to :nd d× n matrices A over GF(2) with
rank n= �log2 d� such that e1A; : : : ; edA are pairwise distinct, that is, the rows of A
are pairwise distinct. Such matrices exist since V (n; 2) contains 2n¿d vectors. In fact,
we can choose A to be any d× n matrix over GF(2) such that the :rst n rows are
n linearly independent vectors of V (n; 2) and the remaining d − n rows are pairwise
distinct and distinct from the :rst n rows.
For each d× n matrix A with rank n and rows pairwise distinct, from the proof of

Theorem 2, the colouring such that two vectors of V (d; 2) receive the same colour if
and only if they are in the same Gat NA+x is a balanced (2; 2n)-colouring of Qd. This
completes the proof.
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Combinatorica Theory and its Applications, Vol. 4, Colloquia Mathematica Societatis JWanos Bolyai,
North-Holland, Amsterdam, 1970, pp. 651–656.

[8] W. Imrich, S. KlavXzar, Product Graphs, Wiley, New York, 2000.
[9] W. Imrich, M.E. Watkins, On automorphism groups of Cayley graphs, Period. Math. Hungar. 7 (1976)

243–258.
[10] D.S. Kim, D.-Z. Du, P.M. Pardalos, A coloring problem on the n-cube, Discrete Appl. Math. 103 (2000)

307–311.
[11] S. Lakshmivarahan, J.S. Jwo, S.K. Dhall, Symmetry in interconnection networks based on Cayley graphs

of permutation groups: a survey, Parallel Comput. 19 (1993) 361–407.
[12] R. Ramaswami, K. Sivarajan, Optical Networks, Morgan KauLman Publishers, Los Altos, CA, 1998.
[13] J.S. Rose, A Course on Group Theory, Cambridge University Press, Cambridge, 1978.
[14] P.-J. Wan, Near-optimal conGict-free channel set assignments for an optical cluster-based hypercube

network, J. Combin. Optim. 1 (1997) 179–186.
[15] P.-J. Wan, ConGict-free channel set assignment for an optical cluster interconnection network based on

rotator digraphs, Theoret. Comput. Sci. 207 (1998) 193–201.
[16] S. Zhou, Locally restricted colorings of graphs, J. Combin. Math. Combin. Comput. 43 (2002)

147–157.
[17] S. Zhou, Labelling Cayley graphs on abelian groups, submitted.


	A channel assignment problem for optical networks modelled by Cayley graphs
	Introduction
	Main results
	Proof of Theorem 1
	Proofs of Theorem 2 and Corollary 2
	Acknowledgements
	References


