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Fuzzy Causal Networks: General Model, Inference,
and Convergence

Sanming Zhou, Zhi-Qiang Liu, Senior Member, IEEE, and Jian Ying Zhang

Abstract—In this paper, we first propose a general framework
for fuzzy causal networks (FCNs). Then, we study the dynamics
and convergence of such general FCNs. We prove that any general
FCN with constant weight matrix converges to a limit cycle or a
static state, or the trajectory of the FCN is not repetitive. We also
prove that under certain conditions a discrete state general FCN
converges to its limit cycle or static state in ( ) steps, where
is the number of vertices of the FCN. This is in striking contrast
with the exponential running time 2 , which is accepted widely for
classic FCNs.

Index Terms—Fuzzy causal network (FCN), fuzzy cognitive
map, fuzzy system, inference, intelligent system.

I. INTRODUCTION

A. Fuzzy Causal Networks

A fuzzy causal network (FCN) is a dynamic system whose
topological structure is a directed graph. Each vertex of repre-
sents a concept whose state varies with (discrete) time, and each
arc of indicates a causal relationship from the tail to the head
of the arc. The states of vertices are quantified as real numbers,
which specify the fuzzy event occurring to some degree at dis-
crete times. At any time , when some vertices receive a series
of external stimuli [10], [24], the vertex states of such a dynamic
network are updated at time . This process is iterated until
a final equilibrium state is reached [3], [4].

FCNs are evolved from fuzzy cognitive maps (FCM) [3], and
they have wide applications [1]–[3], [5], [6] in knowledge rep-
resentation and inference. In fact, many applications of FCNs
in quite different areas have been found, including geographic
information systems [8], [18]–[20], fault detection [12], [16],
policy analysis [17], chemical engineering [7], etc. In recent
years, FCNs have received considerable research interest due to
their power for decision-support and causal discovery in an en-
vironment of uncertainty and incomplete information [1], [10],
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[24]. One of the main objectives in studying FCNs is to under-
stand their dynamic properties and causal inference processes.
For basic concepts on FCNs and FCMs, the reader is referred to
[1]–[11], [24], [25]. For recent theoretic development of FCNs,
the reader is referred to, for example, [9], [10], and [21]–[25].

B. Contributions of This Paper

In this paper, we will focus on theoretic aspects of FCNs.
The objectives are to introduce a general model for FCNs and
to study causal inference and convergence of such generalized
FCNs. The major contributions of the paper and their signifi-
cance are as follows.

First, we propose a general framework for FCNs. This gen-
eralized model puts the study of FCNs on a solid foundation,
and enables us to apply FCNs to a wider spectrum of real-world
applications. Moreover, it helps us to understand better the dy-
namics and causal inferences of FCNs. Under our framework we
define a general FCN as a 5-tuple , where is a
directed graph, is the weight matrix, and , and are cer-
tain functions governing respectively the state-transition, input
aggregation and strength of one vertex influencing another. For
different applications, we may need to use different functions ,

and . We will discern conditions to be satisfied by these func-
tions. In the special case where is a bilinear function and is
a linear function, a general FCN is an FCN in the usual sense;
see Section II for details. The matrix may depend on time ,
though in most applications it is a constant matrix.

Second, we study the causal inference and convergence of
general FCNs. We show that, if is a constant matrix, then ei-
ther the FCN converges to a limit cycle or a static state, or the
trajectory of the FCN is nonrepetitive. In particular, this implies
that a general FCN with discrete states and constant weight ma-
trix always converges to a limit cycle or a static state.

Third, we study the speed of convergence of a general FCN to
its limit cycle or static state. We prove that, when the initial con-
dition is kept in force during the whole inference process, a gen-
eral discrete state FCN with constant and nonnegative always
converges to a static state but not a limit cycle, and moreover it
converges in at most steps, where is the number of
vertices of and is the number of states that can be taken
by vertices of the FCN. As a consequence, a general binary FCN
with constant and nonnegative converges in at most steps.
This is a significant improvement of the exponential bound ,
which has been widely accepted in the community of FCNs. For
a general continuous state FCN with constant and nonnegative
weight matrix, we prove that, if the initial condition is kept in
force, then either the FCN converges to a limit cycle or static
state, or its trajectory converges to a limit point in the state space.
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We would like to emphasize that the results above are proved
for general FCNs. Of course, they apply in particular to FCNs
in the usual sense. We notice that, even for such classic FCNs,
some of these results have not been proved rigorously in the
literature, although they have been used widely. In fact, one of
the motivations for this article is to clarify a few fundamental
issues on classic FCNs. The reader is invited to read Section IV
for remarks and discussions on the results obtained in this paper.

II. GENERAL FUZZY CAUSAL NETWORKS

A. A General Framework for FCN

In this subsection, we will introduce a general framework for
FCNs. Roughly speaking, an FCN is a discrete dynamic system
whose topological structure is a directed graph ,
where is the set of vertices and the set of directed arcs of

. As usual we assume throughout the paper that contains no
loops and multiple arcs, where a loop is an arc from a vertex to
itself and multiple arcs are distinct arcs with the same initial and
terminal vertices. Each vertex of represents a concept asso-
ciated with a fuzzy event whose presence varies with (discrete)
time . For each vertex , the extent of
presence at time of the fuzzy event associated with is mea-
sured by a time-dependent real variable , called the state of

at . After normalization when necessary we can assume that all
states are between 0 and 1 all the time, that is, for
all and any time . In the following we will use to denote
the set of states allowed to take by vertices of . We will also use

to denote the number of vertices of . The state of the
FCN at time is then represented by the -dimensional vector

(1)

which we call the state vector of at . Such state vectors are
members of the state space

(2)

of , which is the set of -dimensional vectors with coordinates
in . Naturally, we may distinguish FCNs with continuous states
from those with discrete states. If can take any real number
in the interval [0,1], that is, , then has continuous
states, and in this case the state space of is the -cube

. If can take only finitely many values in [0,1], then
has discrete states. In the latter case, we may assume without

loss of generality that the state set of is

(3)

for some and integer . To be precise
we will call an -state FCN in this case. An extremely
important example of discrete states is the case where
and , . In this special case for
each and any , so the states are binary and we have the
binary state space , which is the (discrete) -cube. For
both continuous and discrete cases, if then the vertex

is said to be active at ; and if then is said to be
inactive at .

Each arc of represents a causal relationship from the
tail to the head , and this usually indicates that there is an
influence of on . The strength of this influence is measured
by a real number , called the weight of the arc . The
influence can be positive or negative, and this is reflected by the
sign of : If then the influence of on is positive,
and if then it is negative. Alternatively, we may say that
the influence of on increases or decreases, respectively, the
degree of presence of the fuzzy event associated with . Without
loss of generality we may assume , for all arcs

, after normalization when necessary.1 If there is no
arc from to , then has no any influence on at any time;
in this case, we define . In particular, since we assume
the loop is not an arc of for any vertex , we have

and has no influence on itself. Thus, associated with
is its weight matrix

(4)

(also called adjacency matrix in the literature), which is an
matrix with entries in . Note that all diagonal entries of

are 0 since for . We may adopt the usual con-
vention2 that, if is an arc of , then the weight
and may have influence on . With this convention the topo-
logical structure of is determined by the weight matrix :
there is an arc of from to if and only if the -entry

of is nonzero. However, the converse of this statement
is not true in general because the knowledge of connections be-
tween vertices does not provide us enough information about the
weights of arcs. Usually weight matrices are built up by con-
sulting experts, and various ways have been suggested in the
literature to increase their reliability, see for example the dis-
cussion in [3], [5], and [21].

In the literature, theweights areusuallyassumedtobecon-
stants. In this case is said to be a constant matrix. However, in
a lot of applications they can vary with time . In this case, we will
write in place of to emphasize this time-depending
nature, so that the weight matrix of at time becomes

(5)

We should point out that, in this case the convention above about
constant weights will not apply since for an arc the weight

can be zero at some times and nonzero at other times. In
a lot of applications, the tail of an arc has only positive influence
on the head, that is, for all arcs and
any time . In this case we say that is nonnegative. FCNs
with nonnegative weight matrices have been studied extensively
in the literature.

The weight gives rise to the strength of influence of
on when the fuzzy event associated with happens definitely

1In fact, if all weightsw are in an interval [�a; a], for some a > 0, then by
using the linear transformation w 7! w = w =a we get another metric
of weights such that all w 2 [�1; 1].

2This has been used in the literature but not stated explicitly. As a matter of
fact, if w = 0 holds for some arcs (u; v) of 
, then we delete all such arcs
from 
 to get a new FCN. The study of 
 is equivalent to the study of this new
FCN since they have the same dynamics and inference in view of the condition
(8). So assuming w 6= 0 for all arcs (u; v) will not sacrifice generality.
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at time , that is, . As mentioned earlier, mea-
sures the degree of occurrence of this fuzzy even at . Therefore,
in general the strength of influence of on at time , denoted
by in the following, will depend not only on but
also on . In other words

(6)

is a function of and , which can be thought as an
abstract potential function. Thus, we have the strength
matrix of at time

(7)

After normalization when necessary, we can always assume that
all the strengths are between and , so that

is a function from the Cartesian product
to . Of course, this function must satisfy the obvious
boundary condition

(8)

which means that the strength of the influence of on is equal
to 0 if the weight (that is, there is no arc from to or
there is no any influence of on at time , even if the fuzzy event
at happens definitely) or the state value (that is, the
fuzzy event at does not happen definitely). In particular, since

for each , the diagonal entries of the strength
matrix are all equal to 0. Moreover, by the practical
meaning of , if , then the strength should
be nonnegative and increase with ; and if then it
should be nonpositive and decrease with . So
or according to whether or . In
the former case increases with , and in the latter case

decreases with . In other words, the absolute
increases with for fixed . Also, the increase of the weight

will result in the increase of , regardless of the sign
of . So increases with for fixed . These are
conditions for to represent legally the strength of influence.
We now give a formal definition of a strength function.

Definition 2.1: A two-variable function
is called a strength function if it satisfies the following

conditions.

a) ;
b) if , and if ;
c) is monotonically increasing with for any fixed

;
d) is monotonically increasing with for any

fixed .
So, the strength of influence of the vertex on vertex is
given by a strength function , as shown in (6). Note that the for-
mula (6) applies to all pairs , of vertices (even if is not an
arc) because of the boundary condition (8) (or a) in the definition
above). Let denote the space of matrices with
all entries in . Then we have , .
By slight abuse of notation, we may think as the function

(9)

governed by (6).

The dynamics of is as follows. First, an initial condition

(10)

is set at time 0, and this specifies the initial states of vertices
of and the initial set

(11)

of active vertices, where is an -dimensional
vector in the state space . The initial state of each vertex

is set to specific values based on the belief of experts of the
corresponding concept. At any time each vertex of receives
a number of inputs (stimuli) from other vertices, and these inputs
are aggregated in some way which depends on the nature of the
FCN. So the aggregation of such inputs, denoted by , is
given by a function of strengths , , acting on

. That is

(12)

for some -variable function . Such a function must
satisfy the condition

(13)

which means that the aggregated effect on vanishes if all the
strengths are 0, for . Also, the value of
should not change if we swap the positions of any two variables,
that is, is invariant under permutations of variables. More pre-
cisely, for any permutation of the variables
of , we have . For-
mally, such a function is called a symmetric function. (For
example, is a symmetric
function.) This symmetry requirement follows from the fact that
the aggregation should be the same no matter which strength

is the first variable, which strength is the second vari-
able, and so on. Note that, when the strength is increased
for some , the aggegated input must in-
crease as well. Therefore, the function is monotonically in-
creasing, that is, if ,

. In the following, we use to denote the
set of real numbers.

Definition 2.2: An -variable function
is called an aggregation function if it is sym-

metric, monotonically increasing and satisfies .
Thus, the aggregation of inputs received by a vertex

at time is given by an aggregation function as in (12). In the
following, we will write

and call it the aggregated input vector of at . Symbolically,
we may take as the function

(14)

defined by (12).
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Stimulated by , the state of at will
be updated automatically. This state transition is governed by a
function

(15)

which transforms the aggregated input of at into the
next state of . In other words

(16)

By using this state-transition function, together with the func-
tions and , once the initial condition (10) is set, the state of

at any time will be determined recursively by the following
symbolic formula:

(17)

Usually, the function is acting coordinate-wise,
which means that its -coordinate function depends
only on the -coordinate of the aggregated input vector

. That is, is a function of the aggregation
and, hence, (16) gives rise to

(18)

for all . In other words, the -coordinate function
transforms the aggregated input received by into the next state

of . Setting to be the composition
of , and (acting from right to left), (18) is equivalent to

(19)

Since the state of at measures the extent of occurrence
of the fuzzy event associated with the concept at this time,
its value should be larger if receives stronger ag-
gregated input. This means that each must be monotonically
increasing, that is, whenever .

Definition 2.3: A function acting coordinate-
wise is called a state-transition function if each is
monotonically increasing.

With the previous notation, we now give the formal definition
of a general FCN.

Definition 2.4: An FCN is a five-tuple ,
where is a directed graph without loops and multiple
arcs, is the weight matrix of at discrete time

, is a strength function for , is an aggre-
gation function for and is a state-transition function for .
Usually we say briefly that is an FCN.

The function tells us how the strength of influence of
on at is calculated by using the state and the weight

. Once this is done for each pair , of vertices, we then
get the strength matrix of at . The function tells us
how to aggregate all the strengths received by a vertex at into
the aggregated input . From this aggregation, we then get
the aggregated input vector at . Finally,
the function tells us how these aggregated inputs stimulate
the FCN and cause the transition of state of at the next time

. This transition is given by (15), or equivalently by (16) and
(18). Also, the images of for , namely

, and the state set of determine each other.
That is

and the image of is a subset of . Thus, if
for all , where is the finite set in (3), then has discrete
states; and if for all , then has
continuous states. All , , , are components of the
FCN , and altogether they make the inference and dynamics
of possible. Note that, as mentioned earlier, in the case where

is a constant matrix, the topological structure of
is determined completely by . Thus, in this case we can

define equivalently as the quadruple .
We emphasize that, for different applications, we may need

to choose different functions , , and for to serve for our
purposes. For example, in the study of certainty fuzzy cognitive
maps (in which vertices are neurons and states stand for activa-
tions), Tsadiras and Margaritis [21], [22] defined the certainty
neuron transfer function as follows:

where is the decay factor for the neuron ,
and is given by

else.

Under our notation this is equivalent to saying that the function
is chosen in such a way that

.
For general -state FCNs with state set in (3), we

suggest to use the following generalized threshold function
for each :

if
if

...
if
if

where are thresholds set for .

B. Classic Fuzzy Causal Networks

In the literature, since the early dates of the study of FCMs,
researchers have been using the bilinear function

(20)

of and to represent the strength of influencing at
time , and the linear function

(21)

of to represent the aggregated input on at . In other
words, in almost all studies of FCNs researchers use
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as the strength and aggregation functions, respectively. We call
an FCN with strength and aggregation functions defined this
way a classic FCN. One can prove that indeed this is a strength
function, satisfying the conditions of Definition 2.1, and this is
an aggregation function in terms of Definition 2.2. The specific

defined in (21) gives the sum of strengths acting
on , and is called the total input received by at time in
the literature. Note that, by (20) and the definition of weights

, those vertices which are either inactive at or has no
arc to contribute nothing to the summation in (21). This is
consistent with our discussion in Section II-A for general FCN.
With and as above the aggregated input vector (also called
input vector) of at time is given by the matrix product

(22)

More explicitly, we have

for each . So for classic FCNs the recursive formula (17)
becomes

Also, we have the following linear relationship among the vertex
states , the weight matrix and the strength matrix

at time :

(23)

where is the (diagonal) matrix with
diagonal entries and all other entries 0.

We point out that, in the theory of classic FCNs, the above
choices of strength and total input (strength and aggregated
functions) apply uniformly to both continuous and discrete
states. However, for these two cases different state-transition
functions should be used. For the continuous
case, Kosko [6] suggested to use the function
such that each is a bounded signal function, or the sigmoid
function

(24)

for some special FCNs (called simple FCNs), where is a
threshold for set beforehand. In the case of binary states, the
coordinate function is usually chosen to be the following
threshold function

if
if

(25)

III. CAUSAL INFERENCE AND CONVERGENCE

A. Trajectory and Inference

The most important goal of studying FCNs is to understand
their dynamics and causal inferences. As we have seen in (17),
the inference process of an FCN is determined by the initial
condition (10), or in other words by the set of active vertices

at time together with the states (for ),
both are set initially. So understanding the inference will help
us to answer a lot of “what-if” type questions such as “what if

happens and keeps in force during the whole inference
process ?” and so on. As mentioned earlier, the state of is
updated with time by using the formula (17), and this generates
the following state sequence:

(26)

From a geometric point of view, we may think states as
points of the state space , and state transitions as motions of
points with time governed by (17). Then the previous sequence
can be interpreted as trajectory of . To a large extent the study
of FCNs is meant to understand the behavior of this trajectory,
especially its limit behavior. In this subsection, we discuss this
issue for general FCNs.

Clearly, we have the following two disjoint and exhaustive
possibilities.

a) , for any times , with .
b) There exists such that coincides with one

of the preceding states, that is, for some
with .

In case a) the trajectory (26) contains no any repeated terms;
whilst in case b), and are repeated terms. The
following theorem tells us what is happening in case b). The re-
sult in this theorem has been accepted widely, but never proved
rigorously, in the literature of classic FCNs. We now prove that
it is true for any general FCN, as long as its weight matrix is a
constant matrix.

Theorem 3.1: Let be an FCN with constant
weight matrix . Suppose that (26) contains repeated terms
(that is, case (b) above occurs), and let be the smallest such
that for some with . Then

(27)

for any , with , and
are pairwise distinct.

In other words, starting from time , the state vectors of will
repeat periodically with period .

Proof: By its definition, is the smallest such that there
exists satisfying . From this, it follows
that the terms

are pairwise distinct, for otherwise repetition would occur no
later than time , violating the choice of . In the following,
we will prove by induction that

(28)

for any . Of course this is true for since
by our assumption. The equation

is equivalent to saying that for all .
So from (6) and by noting that is a constant matrix we
have for all , . By (12) this im-
plies for all . From (18) this in turn
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Fig. 1. Trajectory of 
: (a) chaos and semi-chaos; (b) limit cycle; (c) static state.

implies , and hence
. In general, suppose (28) is true for some ,

then we have for , and hence
for all , by (6). From (12)

we then have for . This to-
gether with (18) implies , that
is, . So by induction (28) is
true for all . However, (28) is equivalent to saying that

for any , with .
Hence, the proof is complete.

Theorem 3.1 tells us that, if b) occurs, then the subsequence
of the state sequence (26) from onwards will be

In particular, in the case where the period , we have
for all and, hence, the states of will

not undergo any change from onwards.
Definition 3.2: If there exist (the smallest) and

such that (27) holds for any , with
), then is said to converge to the limit cycle

with period . In the particular case where ,
this limit cycle degenerates to a cycle of length one (that is, a
loop), and is said to converge to the static state .

Thus, a static state can be regarded as a degenerated limit
cycle with length one. From the aforementioned geometric
viewpoint, it can be also taken as a fixed point of the dynamic
system (17). In view of Definition 3.2, Theorem 3.1 can be
restated as follows.

Theorem 3.3: Let be an FCN with constant
weight matrix . Then either the state sequence (26) contains
no repeated terms, or converges to a limit cycle, or con-
verges to a static state.

The three possibilities are illustrated in Fig. 1. When the first
possibility occurs, the trajectory (26) is usually thought to be-
have in a chaotic manner. Nevertheless, it may not be in total
disorder,3 and further research is needed in order to understand
better this “semi-chaos”. We should emphasize that, without the

3For example, in Lemma 3.6 in the next subsection we will show that (26) is
increasing under certain conditions.

assumption that the weight matrix is a constant matrix, the re-
sults of Theorems 3.1 and 3.3 are not guaranteed. More explic-
itly, in the case where the weight matrix depends on ,
even if there exist such that , in
general we cannot draw the conclusion that the FCN converges
to a limit cycle or a static state. This can be seen from the proof
of Theorem 3.1, where the induction required that each
does not change with time for otherwise
would not imply for all , , and so
forth.

We should also emphasize that, in the case of continuous
states, the FCN may not converge (even if is a constant
matrix); in other words, the possibility (a) before Theorem 3.1
may occur in this case. On the other hand, for discrete state FCN
the possibility a) before Theorem 3.1 will never occur, and hence
the FCN will converge definitely. We present this together with a
result about the speed of convergence in the following theorem.
In the special case of classic FCNs with binary states, this re-
sult has been a folklore in the literature. Note that, as explained
above, the result of this theorem is guaranteed only when the
weight matrix is a constant matrix.

Theorem 3.4: Let be a discrete state FCN
with states and constant weight matrix . Then must
converge to a limit cycle or static state. Moreover, it converges
in at most steps. In particular, any binary FCN with
constant weight matrix converges to a limit cycle or static state
in at most steps.

Proof: Since there are only states, there are
possibilities for the state vectors , . Hence, the

infinite state sequence (26) must contain repeated terms, and
repetition occurs no later than . Thus, by Theorem 3.1,

must converge to a limit cycle or static state. Also, we have
, and hence converges in at most

steps. In particular, in the case where is a binary FCN, we
have and so converges to a limit cycle or static state
in at most steps.

B. Convergence and Speed

In a lot of applications, we would like to keep all vertices
active during the whole process and see the impact

of this initial condition (10). In other words, the vertices in
will not change their states and, thus, the initial

condition will be kept "in force" in the whole process. This is
the “what-if” question asked at the beginning of the previous
subsection. Note that, under our general framework for FCNs,
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this is equivalent to the following inference process: reset the
-coordinate function to be the constant function

for , and leave the system running automatically (without
extra force) according to (16).

For any FCN, we may ask the following fundamental
questions.

Question 3.5:

a) Under what circumstances will converge?
b) If does converge, how fast it converges to the limit cycle

or static state?
For continuous state FCNs, these questions are very hard to an-
swer in general. We will give partial answers in Theorem 3.7,
which is the first main result of this subsection. For discrete
state , Question 3.5a) was answered by Theorem 3.4, which
says that will always converge as long as the weight matrix
is a constant matrix. The same theorem also gives an exponen-
tial bound for the number of steps required. However,
this bound is very crude and impracticable, especially for FCNs
with large size . Our second main result in this subsection, The-
orem 3.9, shows that in fact any discrete state FCN with weight
matrix constant and nonnegative converges very fast, namely in
less than steps. This answers Question 3.5b) and is in
striking contrast to the exponential bound above.

At any time , the vertices of fall into two categories,
active and inactive, according to their states. We will use to
denote the set of active vertices of at , that is

is active at (29)

Then, is partitioned as at any time , and
we have the following sequence of active-vertex sets of :

(30)

Recall that the initial active-vertex set has been defined
in (11).

Let us prove first the following lemma, which will be used in
the proofs of Theorems 3.7 and 3.9. It shows that, keeping the
initial condition in force all the time, the state sequence (26) will
be increasing if the weight matrix is constant and nonneg-
ative. For any , , we write

if for all , and if and in
addition for at least one .

Lemma 3.6: Let be an FCN with the weight
matrix constant and nonnegative. Suppose that the initial
active vertices in are kept active with states unchanged in the
whole inference process. Then

(31)

for all . Moreover, we have

(32)

In other words, both state sequence and the sequence of active-
vertex sets are increasing with time .

Proof: Since is nonnegative, by (6) and Definition 2.1
we have and is increasing with . We first prove
(31) by induction on . Since we assume that the vertices in

are always kept active with their states unchanged with time, we
have for and . In particular,

for . For , we have by our
way of setting initial condition and, hence, is
true trivially. In other words, (31) is true for . Suppose
inductively that for some , that is,

for all vertices of . Then, since is
monotonically increasing with the first variable, we have

for any , . So, by the monotonicity of , we get

for each . But is increasing as well, so by (18), we have

for any , and hence . By induction
the proof of (31) for all is complete. From (31), it follows
that, if , then . That is, if a vertex
is active at time , then it must be active at the next time .
Thus, we have for all and (32) is proved.

From the previous proof, one can see that the result of Lemma
3.6 is true also if the weight matrix is nonnegative and
nondecreasing with (that is, for any ,

and ), but not necessarily constant. This is due to the fact
that the strength function is increasing with its second variable

as well. Note that Lemma 3.6 applies to both continuous and
discrete states. For continuous case, it leads to the following
theorem. Recall that (26) is a sequence of points of . So,
we can talk about its convergence and limit in the usual sense.

Theorem 3.7: Let be a continuous state
FCN with the weight matrix constant and nonnegative.
Suppose that the initial active vertices in are kept active with
states unchanged in the whole inference process. Then either
converges to a limit cycle or static state, or the state sequence
(26) converges to a limit . Moreover,
for any .

Proof: We have proved in Theorems 3.1 and 3.3 that, if
(26) contains repeated terms, then converges to a limit cycle
or static state. So it remains to show that, if (26) contains no
repeated terms, then it must converge and its limit lies in .
In fact, in this case (26) is strictly increasing by Lemma 3.6. So,
for each , the sequence

(33)

is increasing and bounded above by 1. Hence, by a basic result in
calculus, we know that (33) converges and its limit satisfies

. Thus, the state sequence (26) (as sequence of
points in ) converges to the limit .
Moreover, we have for any , since otherwise we
would have for by the monotonicity of
(33) and, hence, (26) has repeated terms, a contradiction. This
completes the proof.



ZHOU et al.: FUZZY CAUSAL NETWORKS: GENERAL MODEL, INFERENCE, AND CONVERGENCE 419

In the third possibility of the previous theorem, we know the
trend of the trajectory (26), although the FCN does not converge
to a limit cycle or static state.

Now let us turn to discrete state FCNs. Let be an
-state FCN with state set in (3). For any

and , we
define

In the case where , gives the number of “moves”
needed to “jump” from to . Here, by one “move” we mean
replacing one coordinate in the vector by and leaving
the remaining coordinates unchanged. For example, it takes
one move from to , two moves
from to and three moves from

to . To prove our next theorem,
we will need the following lemma whose proof is routine and,
hence, omitted.

Lemma 3.8: Let be as defined in (3). For any
with , we have

(34)

Theorem 3.9: Let be an -state FCN
with state set given in (3) and with weight matrix constant
and nonnegative. Suppose that the initial active vertices in
are kept active with states unchanged in the whole inference
process. Then converges to a static state but not a limit cycle,
and it converges in at most steps.

Proof: Since is nonnegative, by Lemma 3.6 we have
for . Since has states, by

Theorem 3.4 must converge to a limit cycle or static state. Let
be the earliest time such that for some

with , as in Theorem 3.1. Since
by the monotonicity of the state sequence,

we must have and, hence, converges to the static
state , but not a limit cycle. Thus,
for all , and by the definition of we have

(35)

Our assumption about initial condition implies that, for ,
the -coordinates of are all the
same as the initial state of . So only the rest coordi-
nates , for , can change with . Furthermore, for
any fixed with , we have and
by (35) the inequality “ ” holds for at least one . Thus, setting

for each with ,
we have , with in-
equality “ ” appearing at least once. Hence ,

with inequality occurring at least once. So
we have

.
Denote by the unique member of with -coordinates
, for , and all other coordinates . Then

. Note that is the unique member of
with -coordinates , for , and all other coordinates

. So we have . On the

other hand, because of the monotonicity of the sequence (35),
by Lemma 3.8 we have

Thus, , implying that converges
to the static state in at most steps.

Note that Theorem 3.9 applies to any discrete state FCN
with general strength function , aggregation function , and
state-transition function with for each

. (Such an is not necessarily a threshold function.)
For the binary case, we get the following corollary, which
shows that converges in less than steps if the weight matrix
is constant and nonnegative. This improves significantly the
widely accepted bound . Also, this corollary applies to not
only classic but also general binary FCNs.

Corollary 3.10: Let be a binary FCN with
constant and nonnegative. Suppose that the initial active

vertices in are kept active with states unchanged in the whole
inference process. Then converges to a static state but not a
limit cycle, and it converges in at most steps.

We conclude this section by pointing out that, for binary
FCNs, the state sequence (26) and the sequence (30) of active-
vertex sets determine each other. This is because in this case
there is only one state, namely 1, for active vertices, and hence
knowing active vertices is equivalent to knowing the 1-valued
coordinates of the state vector at any time. This property can be
taken as a characteristic of binary FCNs since it is not possessed
by nonbinary FCNs in general. In fact, for nonbinary FCNs,
(26) determines (30), but not conversely. Thus, it may happen
that, say, but for some .

IV. CONCLUDING REMARKS

In this paper, we proposed a general framework for fuzzy
causal networks. This enables us to apply the theory of FCNs to
many real-world application problems that are not covered by
classic FCNs. We then analyzed the dynamics and convergence
of general FCNs. We proved that, under certain general condi-
tions, a general FCN converges to a limit cycle or a static state,
or the trajectory of the FCN is nonrepetitive. For a discrete state
general FCN, the last possibility cannot appear. We also proved
that under certain conditions a discrete state general FCN con-
verges to its limit cycle or static state in steps, where
is the number of vertices. This is in striking contrast with the
widely accepted exponential running time .

We emphasize that all the results obtained in Section III,
namely Theorems 3.1, 3.3, 3.4, 3.7, 3.9, and Corollary 3.10, are
valid for any strength function , any aggregation function
and any state-transition function . This universality for , ,

is meant wide applications of the results to different FCNs.
As pointed out in the paragraph after Theorem 3.3, the results
in Theorems 3.1, 3.3 and 3.4 are not guaranteed if is not a
constant matrix. For general FCNs with general weight matrix

and general functions , , , it is very difficult to identify
whether converges and, if it converges, how fast it converges.
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We solved these problems in Theorems 3.7 and 3.9 under the as-
sumption that is constant and nonnegative and that the ini-
tial active vertices are kept active. (For a lot of practical applica-
tions the weight matrices are indeed constant and nonnegative.)
Without these conditions the results in Theorems 3.7 and 3.9
are not guaranteed. All these limitations suggest that it is inade-
quate to take convergence as granted and use it unconditionally.

Besides its significance in applications, general FCNs intro-
duced in this paper are of interest from a mathematical point
of view. Challenging problems (e.g. the convergence problem)
arise from this general model, and they deserve further research.
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