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Quotient FCMs—A Decomposition Theory
for Fuzzy Cognitive Maps

Jian Ying Zhang, Zhi-Qiang Liu, and Sanming Zhou

Abstract—in this paper, we introduce a decomposition theory either 1 or O, corresponding to active or inactive respectively.
for fuzzy cognitive maps (FCMs). First, we partition the set of ver- - The weight of a directed arc measures the strength of the effect
tices of an FCM into blocks according to an equivalence refation, ¢ th jntial vertex on the terminal vertex of the arc. This effect
and by regarding these blocks as vertices we construct a quotient . . L . . .
FCM. Second, each block induces a natural sectional FCM of the IS V6..|Iq.0n|y Whep the |n.|t|al vertexis gctwg. _In other words, if
original FCM, which inherits the topological structure as well as  the initial vertex is inactive at some time, it is thought to have
the inference from the original FCM. In this way, we decompose the no effect on the terminal vertex, even though such an effect is
original FCM into a quotient FCM and some sectional FCMs. As  yery strong when the initial vertex is active. The state space of
aresult, the analysis of the original FCM is reduced to the analysis an FCM is determined initially by an initial condition and then

of the quotient and sectional FCMs, which are often much smaller . . .
in size and complexity. Such a reduction is important in analyzing propagated automatically through the vertex function relative to

large-scale FCMs. We also propose a causal algebra in the quotient @ threshold until a static pattern is reached [17]. A causal infer-
FCM, which indicates that the effect that one vertex influences an- ence is achieved when the FCM reaches a stable limit cycle or

other in the quotient depends on the weights and states of the ver- fixed point [12], [13]. Recently, the theory of FCM has found
tices along directed paths from the former to the latter. To illustrate many applications in politics, economics, medicine, military, so-

the process involved, we apply our decomposition theory to univer- . - . .
sity management networks. Finally, we discuss possible approachesc'al relation and information systeret al. [5], [8], [21], [22],

to partitioning an FCM and major concerns in constructing quo- 25].
tient FCMs. The results represented in this paper provide an ef-  To deal with very complicated real-world applications, many

fective framework for calculating and simplifying causal inference  researchers have made modifications to the concept of FCM;
pattemns in complicated real-world applications. see, e.g., [10], [24]. Most recently, Liu and Miao have proposed
Index Terms—Artificial intelligence, fuzzy causal network, fuzzy ~a dynamic cognitive network (DCN) [17], [18]. The DCN al-

cognitive map, quotient networks. lows each vertex to select its own state value according to the
requirements of the system. The value set can be a binary set,
I. INTRODUCTION a fuzzy set, or a continuous interval, so the DCN can describe

the strength of causality between two causal concepts as well as

A FUZZY cognitive map (FCM) is a fuzzy digraph withhe degree of causal concepts. It is also able to model dynamic
feedback [11], [12] that describes the causal relationshigggnitive processes.

between concepts [13]. There are three kinds of elements in aimplifying and calculating causal inference patterns in
FCM, namely the concepts, the causal relationships betwgefiMms have been a major research activity. &fwl. have made
concepts and the effects one concept influences another cgime significant attempts [14], [16]-[18]. They investigated
cept. These elements are represented by vertices, directed gigsnsively the inference properties of FCM, carried out formal
and numerical values (called weights) associated with the arggq|ysis of the causal inference mechanism of FCM. These
respectively. Each vertex has a state. Most papers in the litefgsits provide a feasible and effective framework for the anal-
ture consider the two-state cases where the state of a verteydig and design of FCM in large-scale real-world applications.
Despite these good results in the literature, the research on

, . . very complicated and large-scale FCMs is insufficient and
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and the strength one vertex influences another in the quotienThe connectivity of the FCM is represented by the adjacency

FCM. In each block of the partition the original FCM induces anatrix

sectional FCM, which inherits the topological structure as well

as the inference from the original FCM. The quotient FCM tells

us the causal relationships and the effects among various blocks

of the partition, and hence provides us the “global” informa-

tion; whereas each sectional FCM gives us “local” informatioRyhere theith row of W lists the values:; (k=1,...,n)

Thus, in some sense we “decompose” the original FCM into tenitting fromuv;, and thejth column lists the values,; (k =

“product” of the quotient FCM and sectional FCMs. Inthisway; . . ., n) directing tov;. So, the total input received by at

the analysis of a large FCM can be reduced to that of the qufine ¢ is given by

tient and sectional FCMs, which are usually much smaller in n

size and complexity. i = po(vi) = Z eni - Tr(t). @)
This paper is organized as follows. In Section I, we give some =

basic definitions and preliminary results. In Section Ill, we dis-

cuss in detail the decomposition theory previously sketched.

Section 1V, we propose a causal algebra in quotient FCMs. In d(t) X Wi = (p1y « -+ fin)

Section V, we use an example to illustrate the application of our . , ,

decomposition theory. Section VI discusses possible waysq}’fthe definition of matr_lx produc_tlon. - .

partitioning an FCM and major considerations in constructin The stategy(t) of U is determined by an initial condition

quotient FCMs. In Section VII, we give a short summary. hd given thresholds; at verticesv;, 1 < i < n. When
¢u5(t) receives a series of external input sequences, its next state

¢u(t + 1) will be updated by the following formula:

We=|- e; - (3)

noreover, we have

Il. BACKGROUND bo(t+1) = fr(gu(t) x W) 5)
A. Definitions and Preliminaries where
The topological structure of an FCM is a digraph T =(T T,)
U = (V, E), whereV = V(U) is the set of vertices of T
U andE = E(U) the set of arcs (directed edges)f (The Fr(¢u(t) x Wo) = (fr. (), - fr. (1))
reader is referred to [3] and [20] for terminology and notatiofiith fr, (u;) the vertex function at; defined as follows.
on graphs and digraphs). As usual we usei = 1, 2..., n, Definition 2.2 [17]: Given a threshold; for the ith vertex

to denote the vertices df, wheren = [V| is the number of ,, thevertex functionfz, of v; is defined by
vertices ofU. If there is an arc fromy; to v;, then we use the

ordered paifv;, v;) to denote this directed arc. Each verigx fr (i) = {
stands for a concept of the FCM, and the directed(ascv,)

means that the;; has some influence om;. The strength

(weight) of such an influence is usually given by a real numb&. Causal Algebra in FCMs

ei; Which, after normalization if necessary, can k_’e assumedeyiending the idea of Liu and Satur [15], in a recent paper
between—1 and 1. Ife;; > 0, thenv; has a positive influence [19] the first two authors proposed a causal algebra which pro-
onw;; if e;; < 0, thenv; has a negative influence an; and yjges an object-oriented framework based on different context
if e;; = 0, thenv; has no influence on;. So the strengths of |eyels for interrogating the FCM structure to reveal different
influence between adjacent vertices can be viewed as a funcmceptual views. Here, we discuss briefly this causal algebra
since it is essential for the analysis and design of the quotient
wy: E(U) — [-1, 1] FCM in this paper. We first give the definition of a directed path.
(vi, ;) — €5 1) Definition 2.3: In an FCMU a directed pathP(u, v) from
a vertexu to a vertexv is a sequence,, vs, ..., v, of distinct
defined on the arcs d@$. At each vertew; there is a state space.vertices ofU such that(v;, v;+1) is an arc ofU for eachi =
We usez;(t) to denote the state of vertex at timet; and for 1, ..., r — 1, wherev; = » andv, = v. The integer — 1
simplicity we assume that the state takes only binary valuessicalled the length of the patB(u, v). In the particular case
and O (the case where the state space is not binary can be dehéirer = 2, P(u, v) reduces to the an@, v).
with similarly). The state of the FCM at timecan then be rep-  Definition 2.4: Let u, v be distinct vertices o}, andP =

L, ifp >T;
0, if i <. ©6)

resented conveniently by the vector function P(u, v) be a directed path from to v. We define theeffectu
influencesv at discrete time via P as
t) = (z1(t), ..., zp(t)). 2

Now, we can formally define an FCM as follows. (u,2)€E(P)

Definition 2.1: Let U = (V, E), wy: E(U) — [-1,1] whereE(P) is the set of directed arcs dp, z,(t) is the state
andgys(t) be as before. We call the trip{®, wis, ¢5) an FCM  of vertexy at timet, ande,. is the weight associated with the
onU. directed ardy, z) on the pathP.
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Also, we definel(, (t) and/, (., ,)(t) to be thestrongestnd
weakest effeat influencesy at timet via all directed paths from

u to v, respectively. In other words, we define

Izcu,v) (t) = PGIIIP}E(B(,U) IP(t) (10)
Liwo() = min Ip(t). 11
(u,v) (1) pomin p(t) 11)

In the particular case where there is a unique directed path
Fig. 1. Vertexv and its in-neighborhood — (v). P = P(u, v) fromu tow, itis clear from the definition that

T(U,'v)(t) = I(Z,v)(t) = I*(u,v)(t) = IP(t)- (12)

From this definition, it follows thatp(¢t) # 0 holds only
when all vertices orP are active at time; and, in this case, From (8), one can see that in the definition of total effect all di-
Ip(t) is equal to the product of the weights of arcsBnThis rected paths from to » are under our consideration. We should
fact coincides with our intuition. point out that, even ifv, «) is an arc ofU, it will make no

In order to calculate the total effect with which a vertex contribution to the effect of, on v since it is in the opposite
influences another vertex at discrete time, we should con- direction. On the other hand, {k, v) is an arc ofU, then it
sider all directed paths from to v. So we need the following does make contribution to the effect ofon v if v is active.

definition. In fact, in this case, we hawe € N~ (v) andP(u, u, v) con-
Definition 2.5: tains only one member, namely the directed p@tk= (u, v)
a) For any vertex of U, we define oflength 1. Hencenaxpep (u, u, v) Ip(t) = Iq(t) = zu(t)ewr,

and this is contributed to (9). (Of course, in this case other di-
rected paths from: to v, if existed, make contribution to the
effect ofu on v in an “indirect” way). Note that the values of
Ip(t), Tiu,v)(t), It v)(t) andl,,, ,(t) alldepend on the states
that is,N~ (v) is the set of vertices of U such that there xz;(¢) of verticesv; on some paths from to v, and in turn such
is an arc fromu tov. We callN~ (v) thein-neighborhood z; depends on the threshold$ at verticesv;, 1 < j < n.
of the vertexw. Thus, whenps(t) receives a series of external input sequences,
b) For any two vertices, v of U, we defineP(u, v) to be its next statep;(t + 1) as well as the corresponding values
the set of all directed pathB(u, v) from u to v, where Ip(t + 1), T(u, ) (1 + 1), Ia’,”)(t + 1) and . (y, (¢ + 1) will
P(u, v) is as in Definition 2.3. For any;; € N~ (v), be updated automatically by (7), (9)—(11), respectively. We il-
let P(u, u;, v) denote a directed path fromto v which lustrate the discussion above by the simple example shown in
passes;, and defindP (u, u;, v) to be the set of all such Fig. 2, where the FCM has nine vertices. The input vettex
P(u, ug, v). (government’s investment) is where the external stimulus can
We illustrate the concept of in-neighborhood by Fig. 1. In th@fféct the system, and the directed paths frarto v (research
case where,; = u, which occurs only whefw, v) is an arc of quality) are the channels _that carry the causal effect. The adja-
U, P(u, u;, v) is taken as the directed pathv of length 1, that C&NCy matrix of the FCM is
is, the arc(u, v); in this case this arc is the unique member of

N-(w)={u|uweV, (u,v)€E}

P(u, u;, v). In general case, if there is no any directed path in 0 06 070507 0 0 0 O
U fromu to v viaw;, then of cours® (u, u;, v) is an empty set. -02 0 0O O O 06 0O 0 038
Similarly, if there is no directed path fromto v, thenP (u, v) -01 0 0 0O O 050804 0
is an empty set. From the definition, it follows that -01 0 0 0 0 O 070504
Ws=]1-03 0 0 0 O 0 O 06 0
o 0 o o0 0 0 06 0 0.7
P(uv U) - U P(u/ Uy s U)' (8) 0 0 0 0 0 0 0 07 0
wENT () 0 0 0 0 0 0 0 0 09
o o , , 09 0 0 0 0 0 08 0 0
This simple observation is crucial to the following definition of (13)
the total effect vertex has on vertex at discrete time viaall  First, let us calculate the causal inference pattern. In order to
directed paths from to v. do this, we can simply keep active during the inference cycle
Definition 2.6: For any two vertices, v of U, we define the - . Jﬁ - .
and indicate this . Now, it is started with the government

total effectu has orw via all directed paths from to v as ; .
investment policy

Tan®= 3, gmx  Ip(0) © #o(0) = ([1]00000000).

u; EN— (v)
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Vi
Government’s investment
-0.2 03
0.6 0.7
0.9 o7 | ! ol Vs
v ) . Quantity of qualified
2 .. 1
Quantity of qualified administors
researchers
V3
Research fund
0.6 vV 0.6
' Quantity of research
facilities
0.8 o7
Ve L 0.8 ) 0.5
Research communication
V7 ’ M
Researchers satisfaction Retention of best
researchers
0.9
Vo
Research quality
Fig. 2. FCM based on the goal “what influence does the government’s investment to a university have on its research quality?”

In the following, we take the thresholds at nine vertice%jas

its next statesp(t + 1) will be updated automatically by the

0(:=1,2,3,4,5),Ts=1T; =2 (j =7,8,9), respec- following processes until the fixed poiti;(5) is reached:

tively. Then

¢15(0) x Wys = (00.60.70.50.700 0 0)
$u(1) = fr(dus(0) x Wy)
_ ( 11110000)
d(1) x Wy =(00.60.70.50.7 1.1 1.5 1.5 1.2)
¢65(2) = fr(dus(l) x We)
:(11111000)
¢5(2) x Wy = (00.60.70.50.7 1.1 2.1 1.5 1.9)
$65(3) = fr(du(2) x W)
:(11111100)
d5(3) x Wy = (00.60.70.50.7 1.1 2.1 2.2 1.9)
Pus(4) = fr(Pu(3) x W)
:(11111110)
d5(4) x Wy = (00.60.70.50.7 1.1 2.1 2.2 2.8)
¢v(5) = fr(ds(4) x W)
I (EIRSSSERERY
d5(5) x Wy = (00.60.70.50.7 1.1 2.9 2.2 2.8)
¢6(6) = fr(Pu(5) x W)

:(11111111).

Therefore, the statg;(¢) for this FCM at timet is determined
by an initial condition and the thresholds given above. When

¢(t) receives a series of external input sequences, i.e.,

#u(0) = ([1]00000000)

¢5(0) = ¢u(1) = du(2) = du(3) = ¢u(4) — ¢u(5).

That is

(00000000)
_>(11110000)_>(11111000)
ﬁ(11111100)_>(11111110)
_>(11111111)_ (14)

Second, according to Definition 2.5, we obtaW (vg) =
{ve, v4, vg, vg}. From Fig. 2, itis easy to find that, there is one
directed path fromy; tovg viavs and another directed path from
v1 t0vg Via vy there are two directed paths framto vg via vg
and six directed paths from to vy viavg. We can then simulate
the effect that the government’s investment to a university (
has on the university’s research quality X at different timet,
which are shown in Table I.

Finally, from Table I, it is easy to find that the strongest and
weakest effect; influencesvg via all directed paths from, to

vg, for timest = 0, 1, ..., 5, are as follows:
I(*UI’UQ)(t) - Pelr;%f?lx,vg)lp(t) = I<vl7v2:”9)(t)

=0, 0.48, 0.48 0.48 0.48, 0.48
I*(Ul,vo)(t) = Pelgl(li?, UQ)IP(t) = I(U17U37U63U7-,U87'U0)(t)
=0, 0,0, 0, 0.1323, 0.1323.



ZHANG et al: QUOTIENT FCMs—A DECOMPOSITION THEORY FOR FUZZY COGNITIVE MAPS

TABLE |
EFFECTSIp(t) VERTEX v; INFLUENCESVERTEX vg AT DIFFERENT
TIME ¢ VIA ALL DIRECTED PATHS P (v, vo)

P = P(’U]_,’Ug) Ip(t)
t=0]t=1]t=2t=3] t=4 | t=5
(v1, 2, Vo) 0 | 048 | 048 | 048 | 0.48 0.48
(v1,v4,v9) 0 0.2 0.2 0.2 0.2 0.2
(v1, va, Vs, g) 0 0 [0.252]0.252| 0.252 | 0.252
(v1, v3, Vs, Vg) 0 0 0.245 | 0.245 | 0.245 0.245
(v1, v3, vs, Vo) 0 0 0 0 0.252 | 0.252
(1, V4, Vs, Vg) 0 0 0 0 0.225 | 0.225
(’Ul, Vs, Vs, ’Ug) 0 0 0 0 0.378 0.378
(111, vs3, U7, Us, 'Ug) 0 0 0 0 0.3528 0.3528
(v1,v2, Vs, U7, V8, Vg) | O 0 0 0 |0.13608 | 0.13608
(v1,v3, V6, v7,Us,09) | O 0 0 0 0.1323 | 0.1323

Furthermore, from Table |, we can obtain that, foe= 0, 1,

=

.y 0

max Ip(t

PeP(vy,v2,v9)

0, 0.48, 0.48, 0.48, 0.48, 0.48

max Ip(t

(
(t)=0,0.2,0.2, 0.2, 0.2, 0.2
PeP(v1,v4,v9)
max Ip(t
(

.0, 0.252, 0.252, 0.252, 0.252
PEP(vl, Vg, ’Ug)

max Ip(t
PeP (v, vs,v9)

0
0

)
)
)=
) =0, 0, 0,0, 0.378, 0.378.

According to (9), we know that the total effegt influencesvg
via all directed paths from; to vg is

T ()= D max  Ip(t)
v; EN~ (vg) PeP(vi,vi,v9)
that is
Twr,v0)(t) = max Ip(t) + max Ip(t)

PeP(v1,v2,v9) PeP (v, v4,v9)

Ip(t)+

max
PEP (v, v6,v9)

max

Ip(t).
PeP (v, vs,v9) P( )

ThereforeI,, ) (t) attimest = 0, 1, 2, 3, 4, 5 are 0, 0.68,
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row 5
row 7

row 6

Fig. 3. Partitioning a class of students into seven groups.

3) The values of,(,, ,.,)(t) at different times indicate that
the weakest effect thay has onvg via different directed
paths is the effed,,, | v, vs, vr, vs, vo) () fromvy towg via

vs (research fund)ys (research communicationy; (re-
search satisfaction) ang (retention of best researchers).
The values off(,, .,)(t) at different times indicate that
the total effect with whichy; influencesvy via all pos-
sible paths fromv; to vy equals the sum of the strongest
effects that; has onvg via the directed paths through the
in-neighbory; (i = 2, 4, 6, 8) of vg.

Note that the final stable state may be quite different if we
choose different thresholds at the nine vertices of Fig. 2. For
example, if we sefl; = 0.75 for eachwv;, thenvg will not be
activated even if the initial condition remains the same, and as
a resultv; will have no influence onyg.

4)

C. Partition of the Vertices of an FCM

In order to construct a quotient FCM, we need to partition the
set of vertices of the original FCM. For this purpose, we first
introduce the concept of equivalence relation on a set.

Definition 2.7: Given two setsS andT’, abinary relationp
betweenS andT is a subset of the Cartesian prodi§ck T'. If
(z, y) € p, then we say that andy have the binary relation
p, and we denote this fact bypy. In particular, for a sef, a
binary relation or5 x S (the set of ordered pairs of elements of
S) is called a binary relation of.

Definition 2.8: Let p be a binary relation on a st Then,p
is reflexive<= (Vz)(z € S = (z, z) € p).

0.932, 0.932, 1.31, 1.31, respectively. The aforementioned re; js symmetric—> Vz)Vy)(z €S, yeS, (z,y)€p=>

sults can be explained in detail as follows.

(y, z) € p).

1) The causal inference pattern indicates that the persistenp is transitive<= (Vz)(Vy)(Vz)(z € S,y € S,z € S,

vertexv; (government’s investment) makes (quantity
of qualified researchers);3 (research fund)y, (quan-

(z,y) €p, (y,2) € p= (z, 2) € p).
A binary relationp which is reflexive, symmetric and transi-

tity of research faculities) and; (quantity of qualified tive is called arequivalence relation

administrators) active. Next step, the vertgxresearch

We can illustrate an important feature of the equivalence re-

communication) is activated. Then, the next two verticdation by a simple example as shown in Fig. 3. ISebe the set

vy (researchers satisfaction) angd(retention of best re-

of students in a class. Define an equivalence relation S by

searchers) are activated. Finally, (research quality) is “xpy < z sits in the same row asin the class.” If the students

activated.

sit along seven rows and if the students sitting in the same row

2)

The values Oﬂfvl,w)(t) at different times indicate that are grouped together, theéhcan be divided into seven groups
the strongest effect that; has onwvg via different di- in such a way that every student in the class belongs to one and
rected paths is the effeét,, ., .,)(t) fromv; tovg via only one group. Similar result can be extended to any equiva-
ve (quantity of qualified researchers). This means th&nce relation on any set. For this we need the following defini-
if government’s investment can make the university ention which is basic to constructing our quotient FCMs.

ploy enough qualified researchers, then these qualified re-Definition 2.9: A partition of a set S is a family
searchers will produce the strongest as well as most #i- = {By, ..., B} of nonempty subset®,, ..., B, of
rectly impact on the research quality. S satisfying the following conditions:
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Fig. 4. Quotient FCM relative to a partition.

a) BiUByU---UB = S; Definition 3.2: Let U andB be as in Definition 3.1. For each
b) B; N B; = () whenever # j. V; € B, let E; denote the set of arcs &fwith both end-vertices
In this case, eacB; is called ablockof the partition3. in V;. We callU; = (V;, E;) thesectional fuzzy cognitive map

It is well known (see, e.g., [9]) that any equivalence relatiopf U on V;, or simply the sectional FCM oF;. The state of a
p on a setS induces a partitiol8 of S such that two elements vertex and the strength with which one vertedininfluences
of S are in the same block @ if and only if they are equivalent another vertex if; are defined to be the same as thatin
underp. Conversely, any partitioB of S induces an equivalence  The definitions above can be illustrated by Fig. 4, where the
relationp on .S in which two elements of have relatiorp if and left part is an FCM which has been partitioned into six sectional

only if they are in the same block d. FCMs (blocks). We regard the set of vertices of each sectional
FCM as a new vertex, and construct the quotient FCM based on
Il. QUOTIENT FCM ::h_eSf1 new vertices. Such a quotient is shown in the right part of

ig. 4.

FCM is powerful and flexible in representing structured The following theorem tells us the relationship between the

knowledge and in combining knowledge from different humagyiginal FCM and its sectional FCMs together with “intersec-

experts. However, in real-world applications, the FCM usualljpnal” connections.
contains a large number of vertices with very complicated con-Theorem 3.1:Supposel = (V, E) is an FCM, and3 =

nections among them. As a consequence, itis eitherimpossible . ;1 is a partition of the vertex se. Let Uz =
or difficult to analyze such FCMs directly. To make the analysig/,; £) be the quotient FCM relative to the partitish Then
feasible, we construct a quotient FCM relative to a partition of
vertices. In this section, we introduce the construction of the

uotient FCM as well as sectional FCMs. F bk
a U= <U U) ul U U Bw;, )
A. Topological Structure =t =t
We first discuss the topological structures of the quotient and _ ) )
sectional FCMs. whereU; = (V;, E;) is the sectional FCM oB induced onV;
Definition 3.1: Supposé} = (V, E) is an FCM withn ver- and
tices, andB = {Vi, ..., Vi } is a partition of the vertex set

V. Define a new FCM with vertices the blocks Bfsuch that — p(u5,, ;) = { {(vi, vj)lvi € Vi, v € Vi), Fi#
(V;, V;) isan arc if and only if there exists at least one artjof 0, if i = .
initiating at a vertex ir¥; and terminating at a vertex ;. We
call this new FCM theyuotient fuzzy cognitive mayh U relative The proof of this theorem is similar to that of [17, Th. 2] and is
to the partition, or simply a quotient FCM, and denote it byomitted. Furthermore, from the definition of the sectional FCM
Up = (Vg, Ep). and the remark at the end of Section 1I-C we have the following
We point out that, in a quotient FCM, just as in a usual FCMproperties:
pointing back arcs are allowed. That is, there may exist blocks
Vi, Vj such that bottiV;, V;) and(Vj,.Vi) are arcs of the quo- V(U)NV(U,) =0, i
tientU. This will cause no problem in our analysis of qqotlgnt E(U)NEU,) =0 i # .
FCMs. Also, we should point out that the way of partitioning
an FCM should match with (and is often determined by) our
interest and purpose, see the discussion in Section VI-B and
at the end of Section V. In a sense, the quotient FCM tells Bs
“globe” information about the original FCM. However, it does In the aforementioned discussion, we just define the topo-
not contain “local” information about interaction among verlogical structure of the quotient FCR4;. This is not enough
tices within the same block. Such information is contained Bince we need to define the states of the vertices (blocks) and
the corresponding sectional FCM, defined as follows. The andéte strength each vertex (block) influences each of its neigh-
ysis of the original FCM is thus reduced to the analysis of tH#oring vertices (blocks). As before, for the sake of simplicity
guotient FCM and sectional FCMs. and without loss of generality, we focus only on binary vertex

States of Vertices in the Quotient
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states. The case of real-value states can be dealt with similarl ~ V; e M
Let us first discuss the vertex stateldf.

Definition 3.3: Let U andB be as in Definition 3.1, and let
Us = (Vp, Ep) be the quotient FCM relative . Letz? () =

18 (U) stand for the state of the verték of Uy at timet, and

let Fig. 5. Strength of an arc in the quotient FCM.
b, (1) = (1), ..., 2R (1)) (15)  Obviously, these s satisfy

stand for the state vector &fs at timet. We definez? (¢) such ¢

thatz?(t) = 1 if and only if there is at least one vertex € V; d &=L

with z;(t) = 1, and for such a; there exists at least one arc k=1

(vj, ve) fromw; to another blocR (1 < £ < k, £ # i), where

as beforer(t) is the state ofy; at timet. In other words, we In addition, if all weights;, ;, are nonnegative, we have also

define
& €10, 1], 1<k<Ut.
2B (t) = max z;(t) (16) ) o
v ;§l§k7l§i0 s From the previous definition, one can prove thdt < f;; < 1.

vi €V, (vg, ve) €B(U:, Oe) Hence, we have the following weight function for the quotient

foreachi =1, ..., k. FCM Ug:
This definition indicates that the state valug(¢) of vertex

V; at timet is determined by the state values of those vertices wys: Ep — [-1, 1]
of V; having at least one out-going directed arc to other blocks. Vi, Vi) ¥ fij. (29)
C. Weights of Arcs in the Quotient This definition can be illustrated by Fig. 5. Suppose in the

To complete the construction of the quotient FCM we ald§ft-hand side of Fig. 5 there are four arcs fraito V; with
need to define the weightt; of the arc(V;, V;) of Ug. For this  Values
purpose, we use the techniques for aggregating fuzzy subsets
and a number of useful methods in the literature (e.g., [6], Cirin = 0-2; €irjo = 0.6, iy, = 0.8, ei,5, = 0.4.
[7], [27], and [28]). Among these methods, theorm and )
t-conorm, which generate the intersection and union operatioh§€n, We obtain

are the two basic classes of aggregation operators. Averaging 0.2 0.6
operators are useful for global evaluation of an action as lying 1= -5 = 0.1 &= 5 = 0.3
between the worst and the best local ratings or the conflicting 0.8 0.4
goals [28]. In the following, we use the ordered-weighted &3 = -5 = 0.4 &= 5 = 0.2.

averaging (OWA) operators introduced in [27].
Definition 3.4: Let U and B be as in Definition 3.1, and Thus, according to Definition 3.4, we have
Us = (Vs, Ep) be the quotient FCM relative t#. Sup-
pose there aré arcs fromV; to V; in U, whose weights are  fi; = (0.2, 0.6, 0.8, 0.4)
iy -+ €ij,- Then, the strengtlf;; the vertexV; influences —0.8-014+06-03+04-04+02-0.2=0.46.
the vertexV; in Ug is a function

In general, from Definition 3.4, we have the following prop-

iR —R erties a)—d) for the strengttfs; previously defined.
(€irjis s €irje) — fij a) Boundary: Letn and M be the minimal and maximal
value of{e;, j,, -- -, €i,j, }» respectively. Then
of €;,5,, -.., €i,j,, and is defined by
m S f(eiljl, ey 61'”() S M.
L
fiz = f(eivjrs - os €irj,) = kabk (17) b) Commutativity: Let{d;,;,, ..., di,j,} be any permuta-
k=1 tion of {e;, 1, .-, €5, }- Then
where f(e’hjw vey einjﬂ) = f(diljlv cey dln]{)
_ Ciggy
&= (18) c) Monotonicity: Let  {diji, -, dij} and
];1 Cirjn {€ijss .-+, €i,j, } e two collections of aggregations
B such that;, ;, > e;, ; foreachk =1, ..., ¢. Then

and b, is the kth largest element of the multi-set
{eiljn vy eiejc}' f(di1j17 ceey diije) > f(eiljn sy eiajz)'
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d) Idempotency: Ife;, ;, = e;; = constant for all &k = path ofU to any vertex inV. This contradicts with our assump-
1,..., 4, then tion thatU is connected. Therefor&; must be connected]
feivjis -y €igj) = €ije IV. CAUSAL ALGEBRA IN QUOTIENT FCMS

We should emphasize that the strengih defined in (17) As ment|oned before, FCM s a kind of mferencg n.et
. . . - work. Designing an FCM structure for a real-world application

relies on the particular choice gfs. In our definition above, : . . ;
roblem is only the first step. The main purpose for constructing

we choset,s as given by (18). We may also choose differe . .
(610, &) satisfyingZizlfk — 1, and this will result in '&e FCM is to calculate the inference pattern, so that we can

different weight functionsy,. and (17) will give rise to a dif- provide a decision-support for scientists, decision-makers and
B

. : : olicy proponents. Therefore, for a quotient FCM, calculating
ferent set of aggregation values. The following are three impar- : .
. . accurately the inference pattern is also a fundamental and
tant special cases of the aggregation procedure.

o ) important issue. In this section, we provide a causal algebra for
i) /*:Inthis case, we choosg:, ..., &) = (1, ..., 0).  quotient FCM by extending the causal algebra of the original

Then FCM into the quotient FCM. First, we extend some definitions
o o o vy relative to the former to that of the latter.
Fi(Cirjys ---» €igj) = max{esjy, - eij = M. Let (U, wy, ¢i;) be an FCM as in Definition 2.1, where

U = (V, E), ws is as in (1) andgg;(¢) is as in (2). Let

) f.: In this case, we choos@y, ..., &) = (0, ..., 1). B = {Vi,..., Vi} be a partition of the vertex sét of U,

Then and let the triple(U, wy,, ¢u,) be the quotient FCM 08
o N — i v relative to3, whereUg is as defined in Section Ill-Apg,, is
Pelissur s €inie) = minfei g, oo inse} = m. given by (15) in Definition 3.3, andiys,, is as in (19) withf;;
i) fa. In this case, we chooseé, ..., &) = defined in Definition 3.4. Then, the adjacency matrix of the
(1/¢, ..., 1/¢). Then Y quotient FCM can be expressed as
o
faleijys - €ige) = 7 Zevﬁm- Wog =1 fii | (20)
Pt

_ In order to decide how the next statg,, (¢t + 1) of Ug be up-
D. Connectedness of the Quotient FCM dated automatically, we define the thresh®fd (i = 1, ..., k)

We conclude this section by proving the following propert@it vertexV; for the quotient FCM as follows.
(Theorem 3.2) regarding the (weak) connectedness of the quoDefinition 4.1: Let(U, wy, ¢15) be an FCM as in Definition
tient FCM, which is important since it ensures that the FCM &1. LetB = {V1, ..., Vi.} be a partition of the vertex sét of
not separated into several irrelevant pieces. First, we give feand let(Us, wy,, ¢u,;) be the quotient FCM relative t6.
following definition. We define the threshold@” at vertexV; as the maximum of all
Definition 3.5: A network is called (weakjonnectedf any the thresholdd’; of thosev; € V; such that there is at least
two vertices in the network can be joined by an undirected pa@R€ arc(v;, v) from v; to some vertex, in another block/,
of the network, where an undirected path is a sequence of afds< £ < k, £ # 4). In other words, the thresholt}® at vertex
regardless of their directions, such that any two consecutive atedn the quotient FCM is defined by
in the sequence share one common vertex and that no vertex

B __ .

along these arcs appears more than once. 1" = LIS h i ;. (21)

Without loss of generality, we may always assume that the v; €V:, (vj,00)€B(U:,U¢)
original FCM under consideration is connecteifundamental

. X : . We denote by
problem relating to our theory of quotient FCM is as follows: |
the original FCM is connected, whether the quotient FCM is T8 = (T8 )
. . . . . - 1551k

connected as well? The answer to this question is affirmative,
as we prove in the following theorem. the vector of such thresholds.

Theorem 3.2:Supposel = (V, F) is an FCM, and3 = The total inputu; received byV; is given by the formula

{V1, ..., Vi } is a partition of the vertex st of U. If U is .

connected, then the quotient F = (Vg, Fg)isconnected

as well a @k = (Ve Bs) wi = o (Vi) =Y fii- 2 (0). (22)
Proof: Suppose to the contrary th@is is not connected. =t

Then we can find two vertices Iz, sayVy, V2, such thatthere From this and from (20) and (15), it follows that

is no path ofJ 5 joining them. From this and the definition of the

quotient FCM, it follows that any vertex ivi; is not joined by a b (t) X Wi = (1, -+, po)-

IThe reason lies in that, if an FCR is not connected, then the connectedp . .
components oB are irrelevant with each other. Since these irrelevant compo* nce we have computed for eachi, we then use the following

nents induce irrelevant sectional FCMs, we can study them separately.  definition to determine the vertex functigfys (1) atVv;.
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Definition 4.2: Given the threshold@’? of V; as defined in directed pathP. Then, from (7) in Definition 2.4, we can

(21), thevertex functionfys of V; is defined by calculatelp(t) by using the formula
_ B e
Fro (i) = 1, if pu; >TF (23) Ip(t) = H ry(t) - frz (25)
TzB i) = 07 |f i < TiB‘ (Y, Z)EE(P)

where E(P) is the set of directed arcs on the directed p&th

It is obvious that the statéy, (t) of Up at timet is deter- 25 (¢) is the state of verteX at timet and fy  is the weight

mined by an initial condition and the thresholf§ at vertices associated with the directed &f, Z) on the pathP. If P con-

Vi, 1 <i < k. Wheng¢y, (t) receives a series of external inpusists of distinct vertices sequendés= V1, ..., V, = V, then
sequences, its next statg,, (¢ + 1) is determined according to this effect ofU on V at timet via P can be written as

the following formula:

r—1
Ip(t) = Iy, vs, . v (1) = H zl(t) - fiin
i=1

bvs(t +1) = frs(Pos(t) X Woy) (24)
where wherez?(t) is given by (16) and; ;11 is as defined in (17). For
each vertel of Ug, let N=(V) = {U | U € V3, (U, V) €
Er} be the set of vertice& of Ug such that there is an arc
Jrs(dus () x W) = (frs(ua), -, frs(u))- from U to V, that is, N~ (V) is the in-neighborhood (as de-

fined in Definition 2.5) of the verteX in the quotient FCM. For
The following theorem gives some properties aboutthe cauggle N~ (V), let P(U, U;, V) denote a directed path frobi

algebra of the quotient FCM. to V passing the vertel;, and letP (U, U;, V') be the set of alll
Theorem 4.1:Let (U, wy, ¢s) be an FCM. Let suchpaths. L&y, v (t), Ity v (t) andLy, v (t) be the total,
B = {Vi,...,Vi} be a partition of the vertex set df, strongestand weakest effect thainfluencesV via all directed

let (Ug, wy,, ¢u,) be the quotient FCM relative to the parti-paths fromU to V, respectively. Then, from (9)—(11), we can
tion B3, and letZ’” be the threshold at vertéX of the quotient compute the values of these effects by the following formulas:
FCM as in Definition 4.1. Then, the following properties hold

at any timet. | | o Tovyt)= > PePI(I[l]i?,)éhV)Ip(t) (26)
a) If the vertexV; in the quotient FCM is active, then there UieN=(V)
exists at least one vertex € V; such thaw; is active, Iy () = Perlgl(é}}v)fp(t) (27)
and for such a; there is at least one af¢;, v,) directing . L
to another block (1 < ¢ < k, £ # i) of B. L) = PeP (U V)Ip(t)' (28)

b) If any vertexv; of V; in the FCM is active, where; satis- . ) ) ) )
fies the condition set in a), then the verféxin the quo- !N particular, if there is a unique directed path= P(U, V)
tient FCM is definitely active. from U to V, then all these effects are equal, that is

Proof: "
TU, A4 (t) == I T (t) — Iy U, Vv (t) == IP U,V (t) (29)
a) Assume that the verté in the quotient FCM is active. @ () V) V)

Thenz?(t) = 1 according to Definition 3.3. From (16), Note that, in general, the values b(t), T, v)(t), Ity V)(t)

we have andl,y, v)(t) at timet are determined by an initial condition
and the threshold%” at verticesV;, for 1 < i < k. When
2B (t) = max zi(t). ¢u (t) receives a series of external input sequences, their next

ISESk b values will be updated according to (25)—(28), respectively, until
v; €Vi, (vj,v0)€B(0i,0r) . . : .
the static states are reached. This is consistent with the general

Hence, there exists at least one vertgin V; such that theory for ordinary FCMs discussed in Section 1I-B.

z;(t) = 1, wherev; satisfies the condition specified in
a). It follows that this vertex; is also active.

b) Assume that any vertex of V; is active, that is, its state ~ As a demonstration we now use our decomposition theory to
valuex;(t) = 1. From the expression aff (¢), we can analyze a university management network. Obviously, the de-
obtain immediately that?(¢) = 1, which means that the cision-makers at a university have to modify and adjust their
vertexV; of the quotient FCM is active. [0 policies from time to time in order to attract more good students

We can also extend the mechanism of the strongest, weakesivell as maintain a high retention rate. The retention rate is

and total effects that one vertex has on another vertex in the F@fen thought to indicate students’ satisfaction with their uni-
to the associated quotient FCMs. versity program, and influences potentially the quality and rep-

For distinct verticesU, V' of the quotient FCMUg, let utation of the university. What actions can the university take

P(U, V) denote a directed path dfz from U to V. Let to achieve the above goal? The decision-makers need to collect
P(U, V) denote the set of all such directed patAslU, V) feedbacks from the staff. In this case, it is very difficult for the
fromU to V. ForP € P(U, V), let Ip(t) denote the effect decision-makers to deal directly with staff individually. A nat-
with which vertexU influences vertexV at time ¢ via the ural approach would be to collect feedbacks from different units

V. EXAMPLE
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academic staff administive staff

="
. FI
OENO

decision-makers

b
< o logistic staff odd staff
.
The original FCM representing the choatic Five sectional FCMs representing five groups A quotient FCM based on five
personal relations at an university subsectional FCMs

Fig. 6. University management network and its quotient and sectional FCMs.

of the university. In general, we can partition the staff into sev- VI. DISCUSSION
eral blocks based on their official duties. Now let us simuIatR
the university management network by using the scheme intro- ) ) _ N
duced in the previous two sections. Thus far, we have introduced in detail the decomposition
First, we define the original FCM for the decision-maker§heory for fuzzy cognitive maps. ,AS we mentioned_ before, the
Letv; stand for a staff member of the university. For simplicitﬁ,heory can be used as a tool to simplify the analysis and design
we use the same notation to denote the feedback given toy of fuzzy cognitive maps, which is important in practical prob-
IL}ems. In general, to analyze a complex real-world problem, we

some policies. Let;; stand for the causal strength from sta ol h 44 ition th foll
membery; to staff membem;. Then, the FCMO = (V, E) can implement the proposed decomposition theory as follows.

Procedures for Constructing a Quotient FCM

models the university management network, wHére: {v;|v; 1) Model the original FCM for the real-world problem.

is a staff member of the universitand & = {e;jle;; is the 2) Define an appropriate equ!v_alenc.e relatipnon the
causal strength from,; to v, }. Note that, for brevity, here we vertex setV, and then partitionV” into some blocks
use the same notatidii for both the arc set and the entire effect B = {W,...,Vs} according to this equivalence

of arcs. This applies also to the quotient FCM constructed in  relation.
the following. We take the vertex state valugas 1 or 0, whicn ~ 3) Regard each block; as a new vertex, and construct a
means respectively that has response or no response to these  quotient FCM based on these new vertices.

disjoint blocks by the following equivalence relation arcs relative to the quotient FCM. Then, analyze the

. . ) . causal inference of the quotient FCM, which can provide
vipvj < v; is responsible for the same official duty as the “global” information of the original FCM.

vj at the university. 5) Each block/; induces a sectional FCM, which keeps the

Then the staff at the university can be partitioned into five  topological structure as well as the inference of the orig-
blocks, i.e., decision-makers, academic staff, administra- inal FCM. Such sectional FCMs can provide the “local”
tive staff, logistic staff, and odd staff. We denote them  information of the original FCM.
by B = {Vi, Vs, V3, V4, V5}, respectively. Third, we re-  In applying our decomposition theory, if it is still difficult to
gard eachV;(: = 1,...,5) as a new vertex and define aanalyze the quotient FCM and the sectional FCM due to their
quotient FCMUz = (Vs, Eg) based on these new ver-large sizes, we may implement the scheme recursively until a
tices, whereVy = V(Ug) = {Vi, Vo, V3, V4, V5}, and satisfactory solution is reached.
Eg = E(Up) = {fijli,j = 1, ..., 5} stands for the entire o
effect of blocksV; on blocksV;. The vertex state values andB- Partitioning an FCM
the weights on the arcs of the quotient FCM can be calculatedt is obvious that partitioning appropriately the vertex set of
by Definitions 3.3 and 3.4. Finally, each block induces an FCM into nonempty disjoint blocks is the first step for con-
sectional FCM. The analysis of a very complicated universistructing a quotient FCM of the original FCM. In doing so we
management network is thus reduced to the analysis ofmast consider the interest and purpose of the particular FCM
guotient network and some sectional FCMs, which is muamder consideration. Even for the same practical application
easier to manage, see Fig. 6. Due to the limit of space, we willoblem, if the interest we are concerned with is different, we
not go into details. may need to choose a different partition procedure; and this will
Note that, for the same university management networ&sult in a quite different quotient FCM as well as causal infer-
above, if the policy makers would like to make some policiesnce pattern. We have encountered this at the end of the previous
to promote the multiculturalism in the university to attracsection. In a number of cases, it might be very efficient to par-
more international students, the partition may be based ftition an FCM into “clusters,” that is, subsets of vertices within
ethnic backgrounds, so that the policy-makers can get accunatdéch there are many interconnections. In the language of graph
feedbacks from different cultural backgrounds. In the nexteory, this is to say that each block induces a very “dense” sub-
section, we will discuss general methods of partitioning agraph, meaning that the ratio of the number of arcs to the number
FCM together with related concerns. of vertices is large.
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A lot of fuzzy events in real-world applications can be natalgebra in quotient FCMs and proved that the strongest, weakest
urally partitioned into different blocks according to their inand total effects that one vertex has on another vertex in the quo-
trinsic characteristics or the role they play in the applicatioiient FCM also depend on the weights and the states of the ver-
[4], and this is the case in our example in Section V. Alsdices along the directed paths from the first vertex to the second
many useful techniques regarding how to partition many chaotiertex. Each quotient FCM is based on different hypotheses,
events into some regular blocks have been found in the litememises and epistemological perspectives, and deals with dif-
ture, e.g., PROCFIN [1], production rulgs;nearest neighbor, ferent aspects of real-world problems. We have presented our
multi-layer perception and logistic regression (e.qg., [2], [6], [7]nitial attempt to establish a decomposition theory that enables
[23], and [26]). Among these techniques, a very popular aps to break a complex, large FCM into quotient FCMs. This ef-
proach is to prepartition a certain fuzzy set into several blockart is similar to the study of separation theory in Bayesian net-
based on a fuzzy scoring function, which represents the closesirks, which has laid a solid foundation for the application of
resemblance with an event. We may then apply the majorityne Bayesian networks in many areas. We believe that, in order
voting rule to assessing each ambiguous case in an appropriatd-CM to be of practical use, it is necessary to carefully study
block [7]. The results presented in the literature are encouragiitgystructural properties.
and have shown the usefulness in resolving medical classificaFinally, we point out that, although we concentrated on
tion, social relation and networks managemehgl. However, the case of binary states in the discussion, our decomposition
we must point out that some events in some very complicatégeory can be generalized without any difficulty to the case of
practical applications possess very ambiguous intrinsic charagal-value states, which appear in many real-world applications.
teristics, or are extremely uncertain. As a result, it is very diffAlso, the theory can be generalized to the analysis of dynamic
cult to decide which block they should belong to. In this case,ébgnitive networks introduced recently in [18].
is inappropriate to construct a quotient FCM subjectively.
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