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Quotient FCMs—A Decomposition Theory
for Fuzzy Cognitive Maps

Jian Ying Zhang, Zhi-Qiang Liu, and Sanming Zhou

Abstract—In this paper, we introduce a decomposition theory
for fuzzy cognitive maps (FCMs). First, we partition the set of ver-
tices of an FCM into blocks according to an equivalence relation,
and by regarding these blocks as vertices we construct a quotient
FCM. Second, each block induces a natural sectional FCM of the
original FCM, which inherits the topological structure as well as
the inference from the original FCM. In this way, we decompose the
original FCM into a quotient FCM and some sectional FCMs. As
a result, the analysis of the original FCM is reduced to the analysis
of the quotient and sectional FCMs, which are often much smaller
in size and complexity. Such a reduction is important in analyzing
large-scale FCMs. We also propose a causal algebra in the quotient
FCM, which indicates that the effect that one vertex influences an-
other in the quotient depends on the weights and states of the ver-
tices along directed paths from the former to the latter. To illustrate
the process involved, we apply our decomposition theory to univer-
sity management networks. Finally, we discuss possible approaches
to partitioning an FCM and major concerns in constructing quo-
tient FCMs. The results represented in this paper provide an ef-
fective framework for calculating and simplifying causal inference
patterns in complicated real-world applications.

Index Terms—Artificial intelligence, fuzzy causal network, fuzzy
cognitive map, quotient networks.

I. INTRODUCTION

A FUZZY cognitive map (FCM) is a fuzzy digraph with
feedback [11], [12] that describes the causal relationships

between concepts [13]. There are three kinds of elements in an
FCM, namely the concepts, the causal relationships between
concepts and the effects one concept influences another con-
cept. These elements are represented by vertices, directed arcs
and numerical values (called weights) associated with the arcs,
respectively. Each vertex has a state. Most papers in the litera-
ture consider the two-state cases where the state of a vertex is
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either 1 or 0, corresponding to active or inactive respectively.
The weight of a directed arc measures the strength of the effect
of the initial vertex on the terminal vertex of the arc. This effect
is valid only when the initial vertex is active. In other words, if
the initial vertex is inactive at some time, it is thought to have
no effect on the terminal vertex, even though such an effect is
very strong when the initial vertex is active. The state space of
an FCM is determined initially by an initial condition and then
propagated automatically through the vertex function relative to
a threshold until a static pattern is reached [17]. A causal infer-
ence is achieved when the FCM reaches a stable limit cycle or
fixed point [12], [13]. Recently, the theory of FCM has found
many applications in politics, economics, medicine, military, so-
cial relation and information system,et al. [5], [8], [21], [22],
[25].

To deal with very complicated real-world applications, many
researchers have made modifications to the concept of FCM;
see, e.g., [10], [24]. Most recently, Liu and Miao have proposed
a dynamic cognitive network (DCN) [17], [18]. The DCN al-
lows each vertex to select its own state value according to the
requirements of the system. The value set can be a binary set,
a fuzzy set, or a continuous interval, so the DCN can describe
the strength of causality between two causal concepts as well as
the degree of causal concepts. It is also able to model dynamic
cognitive processes.

Simplifying and calculating causal inference patterns in
FCMs have been a major research activity. Liuet al.have made
some significant attempts [14], [16]–[18]. They investigated
extensively the inference properties of FCM, carried out formal
analysis of the causal inference mechanism of FCM. These
results provide a feasible and effective framework for the anal-
ysis and design of FCM in large-scale real-world applications.
Despite these good results in the literature, the research on
very complicated and large-scale FCMs is insufficient and
many problems remain. Therefore, studying “huge” FCMs has
become one of the most arduous as well as imperative tasks. In
general FCMs are extremely difficult to analyze due to their
large sizes and complex interconnections.

To make the analysis of FCMs feasible, we introduce a de-
composition theory in this paper. We first partition the vertices
of an FCM into several blocks according to an equivalence re-
lation on the set of vertices of the FCM. Then we construct a
quotient FCM relative to this partition. Topologically, the ver-
tices of the quotient FCM are the blocks of the partition, and one
block is joined to another block in the quotient by a directed arc
if and only if there is at least one directed arc of the original
FCM from a vertex in the first block to a vertex in the second
block. Finally we define some rules regarding the vertex state
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and the strength one vertex influences another in the quotient
FCM. In each block of the partition the original FCM induces a
sectional FCM, which inherits the topological structure as well
as the inference from the original FCM. The quotient FCM tells
us the causal relationships and the effects among various blocks
of the partition, and hence provides us the “global” informa-
tion; whereas each sectional FCM gives us “local” information.
Thus, in some sense we “decompose” the original FCM into the
“product” of the quotient FCM and sectional FCMs. In this way,
the analysis of a large FCM can be reduced to that of the quo-
tient and sectional FCMs, which are usually much smaller in
size and complexity.

This paper is organized as follows. In Section II, we give some
basic definitions and preliminary results. In Section III, we dis-
cuss in detail the decomposition theory previously sketched. In
Section IV, we propose a causal algebra in quotient FCMs. In
Section V, we use an example to illustrate the application of our
decomposition theory. Section VI discusses possible ways of
partitioning an FCM and major considerations in constructing
quotient FCMs. In Section VII, we give a short summary.

II. BACKGROUND

A. Definitions and Preliminaries

The topological structure of an FCM is a digraph
, where is the set of vertices of

and the set of arcs (directed edges) of. (The
reader is referred to [3] and [20] for terminology and notation
on graphs and digraphs). As usual we use
to denote the vertices of , where is the number of
vertices of . If there is an arc from to , then we use the
ordered pair to denote this directed arc. Each vertex
stands for a concept of the FCM, and the directed arc
means that the has some influence on . The strength
(weight) of such an influence is usually given by a real number

which, after normalization if necessary, can be assumed
between 1 and 1. If , then has a positive influence
on ; if , then has a negative influence on; and
if , then has no influence on . So the strengths of
influence between adjacent vertices can be viewed as a function

(1)

defined on the arcs of . At each vertex there is a state space.
We use to denote the state of vertex at time ; and for
simplicity we assume that the state takes only binary values 1
and 0 (the case where the state space is not binary can be dealt
with similarly). The state of the FCM at timecan then be rep-
resented conveniently by the vector function

(2)

Now, we can formally define an FCM as follows.
Definition 2.1: Let :

and be as before. We call the triple an FCM
on .

The connectivity of the FCM is represented by the adjacency
matrix

(3)

where the th row of lists the values
emitting from , and the th column lists the values

directing to . So, the total input received by at
time is given by

(4)

Moreover, we have

by the definition of matrix production.
The state of is determined by an initial condition

and given thresholds at vertices . When
receives a series of external input sequences, its next state

will be updated by the following formula:

(5)

where

with the vertex function at defined as follows.
Definition 2.2 [17]: Given a threshold for the th vertex
, thevertex function of is defined by

if
if .

(6)

B. Causal Algebra in FCMs

Extending the idea of Liu and Satur [15], in a recent paper
[19] the first two authors proposed a causal algebra which pro-
vides an object-oriented framework based on different context
levels for interrogating the FCM structure to reveal different
conceptual views. Here, we discuss briefly this causal algebra
since it is essential for the analysis and design of the quotient
FCM in this paper. We first give the definition of a directed path.

Definition 2.3: In an FCM a directed path from
a vertex to a vertex is a sequence of distinct
vertices of such that is an arc of for each

, where and . The integer
is called the length of the path . In the particular case
where , reduces to the arc .

Definition 2.4: Let be distinct vertices of , and
be a directed path from to . We define theeffect

influences at discrete time via as

(7)

where is the set of directed arcs on, is the state
of vertex at time , and is the weight associated with the
directed arc on the path .
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Fig. 1. Vertexv and its in-neighborhoodN (v).

From this definition, it follows that holds only
when all vertices on are active at time; and, in this case,

is equal to the product of the weights of arcs on. This
fact coincides with our intuition.

In order to calculate the total effect with which a vertex
influences another vertex at discrete time, we should con-
sider all directed paths from to . So we need the following
definition.

Definition 2.5:

a) For any vertex of , we define

that is, is the set of vertices of such that there
is an arc from to . We call thein-neighborhood
of the vertex .

b) For any two vertices of , we define to be
the set of all directed paths from to , where

is as in Definition 2.3. For any ,
let denote a directed path fromto which
passes , and define to be the set of all such

.

We illustrate the concept of in-neighborhood by Fig. 1. In the
case where , which occurs only when is an arc of

, is taken as the directed path of length 1, that
is, the arc ; in this case this arc is the unique member of

. In general case, if there is no any directed path in
from to via , then of course is an empty set.

Similarly, if there is no directed path fromto , then
is an empty set. From the definition, it follows that

(8)

This simple observation is crucial to the following definition of
the total effect vertex has on vertex at discrete time via all
directed paths from to .

Definition 2.6: For any two vertices of , we define the
total effect has on via all directed paths from to as

(9)

Also, we define and to be thestrongestand
weakest effect influences at time via all directed paths from

to , respectively. In other words, we define

(10)

(11)

In the particular case where there is a unique directed path
from to , it is clear from the definition that

(12)

From (8), one can see that in the definition of total effect all di-
rected paths from to are under our consideration. We should
point out that, even if is an arc of , it will make no
contribution to the effect of on since it is in the opposite
direction. On the other hand, if is an arc of , then it
does make contribution to the effect ofon if is active.
In fact, in this case, we have and con-
tains only one member, namely the directed path
of length 1. Hence ,
and this is contributed to (9). (Of course, in this case other di-
rected paths from to , if existed, make contribution to the
effect of on in an “indirect” way). Note that the values of

, , and all depend on the states
of vertices on some paths from to , and in turn such

depends on the thresholds at vertices .
Thus, when receives a series of external input sequences,
its next state as well as the corresponding values

, , and will
be updated automatically by (7), (9)–(11), respectively. We il-
lustrate the discussion above by the simple example shown in
Fig. 2, where the FCM has nine vertices. The input vertex
(government’s investment) is where the external stimulus can
affect the system, and the directed paths fromto (research
quality) are the channels that carry the causal effect. The adja-
cency matrix of the FCM is

(13)
First, let us calculate the causal inference pattern. In order to

do this, we can simply keep active during the inference cycle

and indicate this as . Now, it is started with the government
investment policy



596 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 11, NO. 5, OCTOBER 2003

Fig. 2. FCM based on the goal “what influence does the government’s investment to a university have on its research quality?”

In the following, we take the thresholds at nine vertices as
, , respec-

tively. Then

Therefore, the state for this FCM at time is determined
by an initial condition and the thresholds given above. When

receives a series of external input sequences, i.e.,

its next states will be updated automatically by the
following processes until the fixed point is reached:

That is

(14)

Second, according to Definition 2.5, we obtain
. From Fig. 2, it is easy to find that, there is one

directed path from to via and another directed path from
to via ; there are two directed paths fromto via

and six directed paths from to via . We can then simulate
the effect that the government’s investment to a university ()
has on the university’s research quality () at different time ,
which are shown in Table I.

Finally, from Table I, it is easy to find that the strongest and
weakest effect influences via all directed paths from to

, for times , are as follows:
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TABLE I
EFFECTSI (t) VERTEX v INFLUENCESVERTEX v AT DIFFERENT

TIME t VIA ALL DIRECTED PATHS P (v ; v )

Furthermore, from Table I, we can obtain that, for

According to (9), we know that the total effect influences
via all directed paths from to is

that is

Therefore, at times are 0, 0.68,
0.932, 0.932, 1.31, 1.31, respectively. The aforementioned re-
sults can be explained in detail as follows.

1) The causal inference pattern indicates that the persistent
vertex (government’s investment) makes (quantity
of qualified researchers), (research fund), (quan-
tity of research faculities) and (quantity of qualified
administrators) active. Next step, the vertex(research
communication) is activated. Then, the next two vertices

(researchers satisfaction) and(retention of best re-
searchers) are activated. Finally, (research quality) is
activated.

2) The values of at different times indicate that
the strongest effect that has on via different di-
rected paths is the effect from to via

(quantity of qualified researchers). This means that
if government’s investment can make the university em-
ploy enough qualified researchers, then these qualified re-
searchers will produce the strongest as well as most di-
rectly impact on the research quality.

Fig. 3. Partitioning a class of students into seven groups.

3) The values of at different times indicate that
the weakest effect that has on via different directed
paths is the effect from to via

(research fund), (research communication), (re-
search satisfaction) and (retention of best researchers).

4) The values of at different times indicate that
the total effect with which influences via all pos-
sible paths from to equals the sum of the strongest
effects that has on via the directed paths through the
in-neighbor of .

Note that the final stable state may be quite different if we
choose different thresholds at the nine vertices of Fig. 2. For
example, if we set for each , then will not be
activated even if the initial condition remains the same, and as
a result will have no influence on .

C. Partition of the Vertices of an FCM

In order to construct a quotient FCM, we need to partition the
set of vertices of the original FCM. For this purpose, we first
introduce the concept of equivalence relation on a set.

Definition 2.7: Given two sets and , abinary relation
between and is a subset of the Cartesian product . If

, then we say that and have the binary relation
, and we denote this fact by . In particular, for a set , a

binary relation on (the set of ordered pairs of elements of
) is called a binary relation on.
Definition 2.8: Let be a binary relation on a set. Then,

is reflexive .
is symmetric

.
is transitive

.
A binary relation which is reflexive, symmetric and transi-

tive is called anequivalence relation.
We can illustrate an important feature of the equivalence re-

lation by a simple example as shown in Fig. 3. Letbe the set
of students in a class. Define an equivalence relationon by
“ sits in the same row asin the class.” If the students
sit along seven rows and if the students sitting in the same row
are grouped together, thencan be divided into seven groups
in such a way that every student in the class belongs to one and
only one group. Similar result can be extended to any equiva-
lence relation on any set. For this we need the following defini-
tion which is basic to constructing our quotient FCMs.

Definition 2.9: A partition of a set is a family
of nonempty subsets of

satisfying the following conditions:
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Fig. 4. Quotient FCM relative to a partition.

a) ;
b) whenever .

In this case, each is called ablockof the partition .
It is well known (see, e.g., [9]) that any equivalence relation
on a set induces a partition of such that two elements

of are in the same block of if and only if they are equivalent
under . Conversely, any partition of induces an equivalence
relation on in which two elements of have relation if and
only if they are in the same block of.

III. QUOTIENT FCM

FCM is powerful and flexible in representing structured
knowledge and in combining knowledge from different human
experts. However, in real-world applications, the FCM usually
contains a large number of vertices with very complicated con-
nections among them. As a consequence, it is either impossible
or difficult to analyze such FCMs directly. To make the analysis
feasible, we construct a quotient FCM relative to a partition of
vertices. In this section, we introduce the construction of the
quotient FCM as well as sectional FCMs.

A. Topological Structure

We first discuss the topological structures of the quotient and
sectional FCMs.

Definition 3.1: Suppose is an FCM with ver-
tices, and is a partition of the vertex set

. Define a new FCM with vertices the blocks ofsuch that
is an arc if and only if there exists at least one arc of

initiating at a vertex in and terminating at a vertex in . We
call this new FCM thequotient fuzzy cognitive mapof relative
to the partition , or simply a quotient FCM, and denote it by

.
We point out that, in a quotient FCM, just as in a usual FCM,

pointing back arcs are allowed. That is, there may exist blocks
such that both and are arcs of the quo-

tient . This will cause no problem in our analysis of quotient
FCMs. Also, we should point out that the way of partitioning
an FCM should match with (and is often determined by) our
interest and purpose, see the discussion in Section VI-B and
at the end of Section V. In a sense, the quotient FCM tells us
“globe” information about the original FCM. However, it does
not contain “local” information about interaction among ver-
tices within the same block. Such information is contained in
the corresponding sectional FCM, defined as follows. The anal-
ysis of the original FCM is thus reduced to the analysis of the
quotient FCM and sectional FCMs.

Definition 3.2: Let and be as in Definition 3.1. For each
, let denote the set of arcs ofwith both end-vertices

in . We call thesectional fuzzy cognitive map
of on , or simply the sectional FCM on . The state of a
vertex and the strength with which one vertex ininfluences
another vertex in are defined to be the same as that in.

The definitions above can be illustrated by Fig. 4, where the
left part is an FCM which has been partitioned into six sectional
FCMs (blocks). We regard the set of vertices of each sectional
FCM as a new vertex, and construct the quotient FCM based on
these new vertices. Such a quotient is shown in the right part of
Fig. 4.

The following theorem tells us the relationship between the
original FCM and its sectional FCMs together with “intersec-
tional” connections.

Theorem 3.1:Suppose is an FCM, and
is a partition of the vertex set . Let

be the quotient FCM relative to the partition. Then

where is the sectional FCM of induced on
and

if
if

The proof of this theorem is similar to that of [17, Th. 2] and is
omitted. Furthermore, from the definition of the sectional FCM
and the remark at the end of Section II-C we have the following
properties:

B. States of Vertices in the Quotient

In the aforementioned discussion, we just define the topo-
logical structure of the quotient FCM . This is not enough
since we need to define the states of the vertices (blocks) and
the strength each vertex (block) influences each of its neigh-
boring vertices (blocks). As before, for the sake of simplicity
and without loss of generality, we focus only on binary vertex
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states. The case of real-value states can be dealt with similarly.
Let us first discuss the vertex state of .

Definition 3.3: Let and be as in Definition 3.1, and let
be the quotient FCM relative to. Let

stand for the state of the vertex of at time , and
let

(15)

stand for the state vector of at time . We define such
that if and only if there is at least one vertex
with , and for such a there exists at least one arc

from to another block , where
as before is the state of at time . In other words, we
define

(16)

for each .
This definition indicates that the state value of vertex
at time is determined by the state values of those vertices

of having at least one out-going directed arc to other blocks.

C. Weights of Arcs in the Quotient

To complete the construction of the quotient FCM we also
need to define the weight of the arc of . For this
purpose, we use the techniques for aggregating fuzzy subsets
and a number of useful methods in the literature (e.g., [6],
[7], [27], and [28]). Among these methods, the-norm and
-conorm, which generate the intersection and union operations,

are the two basic classes of aggregation operators. Averaging
operators are useful for global evaluation of an action as lying
between the worst and the best local ratings or the conflicting
goals [28]. In the following, we use the ordered-weighted
averaging (OWA) operators introduced in [27].

Definition 3.4: Let and be as in Definition 3.1, and
be the quotient FCM relative to . Sup-

pose there are arcs from to in , whose weights are
. Then, the strength the vertex influences

the vertex in is a function

of , and is defined by

(17)

where

(18)

and is the th largest element of the multi-set
.

Fig. 5. Strength of an arc in the quotient FCM.

Obviously, these s satisfy

In addition, if all weights are nonnegative, we have also

From the previous definition, one can prove that .
Hence, we have the following weight function for the quotient
FCM :

(19)

This definition can be illustrated by Fig. 5. Suppose in the
left-hand side of Fig. 5 there are four arcs fromto with
values

Then, we obtain

Thus, according to Definition 3.4, we have

In general, from Definition 3.4, we have the following prop-
erties a)–d) for the strengths previously defined.

a) Boundary: Let and be the minimal and maximal
value of , respectively. Then

b) Commutativity: Let be any permuta-
tion of . Then

c) Monotonicity: Let and
be two collections of aggregations

such that for each . Then



600 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 11, NO. 5, OCTOBER 2003

d) Idempotency: If for all
, then

We should emphasize that the strength defined in (17)
relies on the particular choice of s. In our definition above,
we chose s as given by (18). We may also choose different

satisfying , and this will result in
different weight function and (17) will give rise to a dif-
ferent set of aggregation values. The following are three impor-
tant special cases of the aggregation procedure.

i) : In this case, we choose .
Then

ii) : In this case, we choose .
Then

iii) : In this case, we choose
. Then

D. Connectedness of the Quotient FCM

We conclude this section by proving the following property
(Theorem 3.2) regarding the (weak) connectedness of the quo-
tient FCM, which is important since it ensures that the FCM is
not separated into several irrelevant pieces. First, we give the
following definition.

Definition 3.5: A network is called (weak)connectedif any
two vertices in the network can be joined by an undirected path
of the network, where an undirected path is a sequence of arcs,
regardless of their directions, such that any two consecutive arcs
in the sequence share one common vertex and that no vertex
along these arcs appears more than once.

Without loss of generality, we may always assume that the
original FCM under consideration is connected.1 A fundamental
problem relating to our theory of quotient FCM is as follows: If
the original FCM is connected, whether the quotient FCM is
connected as well? The answer to this question is affirmative,
as we prove in the following theorem.

Theorem 3.2:Suppose is an FCM, and
is a partition of the vertex set of . If is

connected, then the quotient FCM is connected
as well.

Proof: Suppose to the contrary that is not connected.
Then we can find two vertices in , say , such that there
is no path of joining them. From this and the definition of the
quotient FCM, it follows that any vertex in is not joined by a

1The reason lies in that, if an FCM is not connected, then the connected
components of are irrelevant with each other. Since these irrelevant compo-
nents induce irrelevant sectional FCMs, we can study them separately.

path of to any vertex in . This contradicts with our assump-
tion that is connected. Therefore, must be connected.

IV. CAUSAL ALGEBRA IN QUOTIENT FCMS

As mentioned before, FCM is a kind of inference net-
work. Designing an FCM structure for a real-world application
problem is only the first step. The main purpose for constructing
the FCM is to calculate the inference pattern, so that we can
provide a decision-support for scientists, decision-makers and
policy proponents. Therefore, for a quotient FCM, calculating
accurately the inference pattern is also a fundamental and
important issue. In this section, we provide a causal algebra for
quotient FCM by extending the causal algebra of the original
FCM into the quotient FCM. First, we extend some definitions
relative to the former to that of the latter.

Let be an FCM as in Definition 2.1, where
, is as in (1) and is as in (2). Let

be a partition of the vertex set of ,
and let the triple be the quotient FCM of
relative to , where is as defined in Section III-A, is
given by (15) in Definition 3.3, and is as in (19) with
defined in Definition 3.4. Then, the adjacency matrix of the
quotient FCM can be expressed as

(20)

In order to decide how the next state of be up-
dated automatically, we define the threshold
at vertex for the quotient FCM as follows.

Definition 4.1: Let be an FCM as in Definition
2.1. Let be a partition of the vertex set of

, and let be the quotient FCM relative to.
We define the threshold at vertex as the maximum of all
the thresholds of those such that there is at least
one arc from to some vertex in another block

. In other words, the threshold at vertex
in the quotient FCM is defined by

(21)

We denote by

the vector of such thresholds.
The total input received by is given by the formula

(22)

From this and from (20) and (15), it follows that

Once we have computed for each , we then use the following
definition to determine the vertex function at .
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Definition 4.2: Given the threshold of as defined in
(21), thevertex function of is defined by

if
if .

(23)

It is obvious that the state of at time is deter-
mined by an initial condition and the thresholds at vertices

. When receives a series of external input
sequences, its next state is determined according to
the following formula:

(24)

where

The following theorem gives some properties about the causal
algebra of the quotient FCM.

Theorem 4.1:Let be an FCM. Let
be a partition of the vertex set of ,

let be the quotient FCM relative to the parti-
tion , and let be the threshold at vertex of the quotient
FCM as in Definition 4.1. Then, the following properties hold
at any time .

a) If the vertex in the quotient FCM is active, then there
exists at least one vertex such that is active,
and for such a there is at least one arc directing
to another block of .

b) If any vertex of in the FCM is active, where satis-
fies the condition set in a), then the vertexin the quo-
tient FCM is definitely active.

Proof:

a) Assume that the vertex in the quotient FCM is active.
Then according to Definition 3.3. From (16),
we have

Hence, there exists at least one vertexin such that
, where satisfies the condition specified in

a). It follows that this vertex is also active.
b) Assume that any vertex of is active, that is, its state

value . From the expression of , we can
obtain immediately that , which means that the
vertex of the quotient FCM is active.

We can also extend the mechanism of the strongest, weakest
and total effects that one vertex has on another vertex in the FCM
to the associated quotient FCMs.

For distinct vertices of the quotient FCM , let
denote a directed path of from to . Let
denote the set of all such directed paths

from to . For , let denote the effect
with which vertex influences vertex at time via the

directed path . Then, from (7) in Definition 2.4, we can
calculate by using the formula

(25)

where is the set of directed arcs on the directed path,
is the state of vertex at time and is the weight

associated with the directed arc on the path . If con-
sists of distinct vertices sequences , then
this effect of on at time via can be written as

where is given by (16) and is as defined in (17). For
each vertex of , let

be the set of vertices of such that there is an arc
from to , that is, is the in-neighborhood (as de-
fined in Definition 2.5) of the vertex in the quotient FCM. For

, let denote a directed path from
to passing the vertex , and let be the set of all
such paths. Let and be the total,
strongest and weakest effect thatinfluences via all directed
paths from to , respectively. Then, from (9)–(11), we can
compute the values of these effects by the following formulas:

(26)

(27)

(28)

In particular, if there is a unique directed path
from to , then all these effects are equal, that is

(29)

Note that, in general, the values of , ,
and at time are determined by an initial condition
and the thresholds at vertices , for . When

receives a series of external input sequences, their next
values will be updated according to (25)–(28), respectively, until
the static states are reached. This is consistent with the general
theory for ordinary FCMs discussed in Section II-B.

V. EXAMPLE

As a demonstration we now use our decomposition theory to
analyze a university management network. Obviously, the de-
cision-makers at a university have to modify and adjust their
policies from time to time in order to attract more good students
as well as maintain a high retention rate. The retention rate is
often thought to indicate students’ satisfaction with their uni-
versity program, and influences potentially the quality and rep-
utation of the university. What actions can the university take
to achieve the above goal? The decision-makers need to collect
feedbacks from the staff. In this case, it is very difficult for the
decision-makers to deal directly with staff individually. A nat-
ural approach would be to collect feedbacks from different units
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Fig. 6. University management network and its quotient and sectional FCMs.

of the university. In general, we can partition the staff into sev-
eral blocks based on their official duties. Now let us simulate
the university management network by using the scheme intro-
duced in the previous two sections.

First, we define the original FCM for the decision-makers.
Let stand for a staff member of the university. For simplicity,
we use the same notation to denote the feedback given byto
some policies. Let stand for the causal strength from staff
member to staff member . Then, the FCM
models the university management network, where
is a staff member of the universityand is the
causal strength from to . Note that, for brevity, here we
use the same notation for both the arc set and the entire effect
of arcs. This applies also to the quotient FCM constructed in
the following. We take the vertex state valueas 1 or 0, which
means respectively that has response or no response to these
policies. Second, we partition the vertex setinto nonempty
disjoint blocks by the following equivalence relation

“ is responsible for the same official duty as
at the university.”

Then the staff at the university can be partitioned into five
blocks, i.e., decision-makers, academic staff, administra-
tive staff, logistic staff, and odd staff. We denote them
by , respectively. Third, we re-
gard each as a new vertex and define a
quotient FCM based on these new ver-
tices, where , and

stands for the entire
effect of blocks on blocks . The vertex state values and
the weights on the arcs of the quotient FCM can be calculated
by Definitions 3.3 and 3.4. Finally, each block induces a
sectional FCM. The analysis of a very complicated university
management network is thus reduced to the analysis of a
quotient network and some sectional FCMs, which is much
easier to manage, see Fig. 6. Due to the limit of space, we will
not go into details.

Note that, for the same university management network
above, if the policy makers would like to make some policies
to promote the multiculturalism in the university to attract
more international students, the partition may be based on
ethnic backgrounds, so that the policy-makers can get accurate
feedbacks from different cultural backgrounds. In the next
section, we will discuss general methods of partitioning an
FCM together with related concerns.

VI. DISCUSSION

A. Procedures for Constructing a Quotient FCM

Thus far, we have introduced in detail the decomposition
theory for fuzzy cognitive maps. As we mentioned before, the
theory can be used as a tool to simplify the analysis and design
of fuzzy cognitive maps, which is important in practical prob-
lems. In general, to analyze a complex real-world problem, we
can implement the proposed decomposition theory as follows.

1) Model the original FCM for the real-world problem.
2) Define an appropriate equivalence relationon the

vertex set , and then partition into some blocks
according to this equivalence

relation.
3) Regard each block as a new vertex, and construct a

quotient FCM based on these new vertices.
4) Calculate the vertex state values and the weights of the

arcs relative to the quotient FCM. Then, analyze the
causal inference of the quotient FCM, which can provide
the “global” information of the original FCM.

5) Each block induces a sectional FCM, which keeps the
topological structure as well as the inference of the orig-
inal FCM. Such sectional FCMs can provide the “local”
information of the original FCM.

In applying our decomposition theory, if it is still difficult to
analyze the quotient FCM and the sectional FCM due to their
large sizes, we may implement the scheme recursively until a
satisfactory solution is reached.

B. Partitioning an FCM

It is obvious that partitioning appropriately the vertex set of
an FCM into nonempty disjoint blocks is the first step for con-
structing a quotient FCM of the original FCM. In doing so we
must consider the interest and purpose of the particular FCM
under consideration. Even for the same practical application
problem, if the interest we are concerned with is different, we
may need to choose a different partition procedure; and this will
result in a quite different quotient FCM as well as causal infer-
ence pattern. We have encountered this at the end of the previous
section. In a number of cases, it might be very efficient to par-
tition an FCM into “clusters,” that is, subsets of vertices within
which there are many interconnections. In the language of graph
theory, this is to say that each block induces a very “dense” sub-
graph, meaning that the ratio of the number of arcs to the number
of vertices is large.
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A lot of fuzzy events in real-world applications can be nat-
urally partitioned into different blocks according to their in-
trinsic characteristics or the role they play in the applications
[4], and this is the case in our example in Section V. Also,
many useful techniques regarding how to partition many chaotic
events into some regular blocks have been found in the litera-
ture, e.g., PROCFIN [1], production rules,-nearest neighbor,
multi-layer perception and logistic regression (e.g., [2], [6], [7],
[23], and [26]). Among these techniques, a very popular ap-
proach is to prepartition a certain fuzzy set into several blocks
based on a fuzzy scoring function, which represents the closest
resemblance with an event. We may then apply the majority-
voting rule to assessing each ambiguous case in an appropriate
block [7]. The results presented in the literature are encouraging
and have shown the usefulness in resolving medical classifica-
tion, social relation and networks management,et al.However,
we must point out that some events in some very complicated
practical applications possess very ambiguous intrinsic charac-
teristics, or are extremely uncertain. As a result, it is very diffi-
cult to decide which block they should belong to. In this case, it
is inappropriate to construct a quotient FCM subjectively.

C. Major Concerns in Constructing Quotient FCMs

Constructing an appropriate quotient FCM is not an easy task.
Many factors can lead to an inappropriate quotient FCM, which
then results in inaccurate or even unreliable causal inferences.
In the following, we discuss three major factors that may lead
to problems.

1) Inappropriate original FCM model
In many real-world applications, the specialist may

have vague or ambiguous ideas about their expectations
or goals. This may lead to an inappropriate original FCM.

2) Inappropriate partition of vertices
As discussed in Section VI-B, sometimes intrinsic

characteristics of vertices in the original FCM is not
well-defined. Partitioning can be a difficult task, as there
may exist several partitions that all make sense. This
might result in an inaccurate and inconsistent inference
pattern.

3) Inappropriate multiedges aggregation
The aggregation procedure for the arcs of the quotient

FCM plays an important role in obtaining an accurate
causal inference result. Each method of aggregation has
its own merits and disadvantages, and it is difficult to
find a unifying approach which suits all cases. For ex-
ample, although the aggregation technique introduced in
this paper has a satisfactory effect on the performance in
many situations, it may not be universally applicable to
all applications.

VII. CONCLUSION

In this paper, we have proposed the theory of quotient FCMs
and sectional FCMs for a fuzzy cognitive map. The main re-
sult is that if the vertex set of an FCM can be partitioned into
blocks, then the analysis of the original FCM can be reduced to
that of the quotient FCM and the sectional FCMs relative to the
partition. Similar to the original FCM, we proposed the causal

algebra in quotient FCMs and proved that the strongest, weakest
and total effects that one vertex has on another vertex in the quo-
tient FCM also depend on the weights and the states of the ver-
tices along the directed paths from the first vertex to the second
vertex. Each quotient FCM is based on different hypotheses,
premises and epistemological perspectives, and deals with dif-
ferent aspects of real-world problems. We have presented our
initial attempt to establish a decomposition theory that enables
us to break a complex, large FCM into quotient FCMs. This ef-
fort is similar to the study of separation theory in Bayesian net-
works, which has laid a solid foundation for the application of
the Bayesian networks in many areas. We believe that, in order
for FCM to be of practical use, it is necessary to carefully study
its structural properties.

Finally, we point out that, although we concentrated on
the case of binary states in the discussion, our decomposition
theory can be generalized without any difficulty to the case of
real-value states, which appear in many real-world applications.
Also, the theory can be generalized to the analysis of dynamic
cognitive networks introduced recently in [18].
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