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Abstract

A first kind Frobenius graph is a Cayley graph Cay(K, S) on the Frobenius kernel of a
Frobenius group K o H such that S = aH for some a ∈ K with 〈aH〉 = K, where H is of
even order or a is an involution. It is known that such graphs admit ‘perfect’ routing and
gossiping schemes. A circulant graph is a Cayley graph on a cyclic group of order at least
three. Since circulant graphs are widely used as models for interconnection networks, it is
thus highly desirable to characterize those of them which are Frobenius of the first kind. In
this paper we first give such a characterization for connected 4-valent circulant graphs, and
then describe optimal routing and gossiping schemes for those of them which are first kind
Frobenius graphs. Examples of such graphs include the 4-valent circulant graph with a given
diameter and maximum possible order.
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1 Introduction

There is a long history in searching for ‘good’ graphs to model interconnection networks. It
is widely believed [1, 2, 9] that Cayley graphs, in particular circulant graphs [8, 22], are good
candidates. (A Cayley graph on a group K is a graph Cay(K, S) with vertex set K such that
x, y ∈ K are adjacent if and only if xy−1 ∈ S, where the connection set S ⊆ K \ {1} is closed
under taking inverse. A circulant graph is a Cayley graph on a cyclic group of order at least
three.) In [19], Solé proved that for a certain class of graphs, called orbital-regular graphs, there
exists an all-to-all shortest path routing such that the load on all edges is uniform and hence the
edge-forward index [11] achieves the minimum. Here an all-to-all routing (or a routing for short)
of a graph Γ is a set of oriented paths such that there is exactly one path between each ordered
pair of vertices; the load of an edge is the number of times it is traversed by such paths in either
direction; the load of a routing is the maximum load on an edge; and the edge-forward index
π(Γ) is [11] the minimum load over all possible all-to-all routings of Γ. The arc-forwarding index
−→π is defined similarly by taking into account the direction when counting the number of times
an arc is traversed, where an arc is an ordered pair of adjacent vertices. A routing is called a
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shortest path routing if all paths in it are shortest paths. The minimal edge- and arc-forwarding
indices [9], πm, −→π m, are defined by restricting to shortest path routings in the definitions of π

and −→π respectively. A routing under which all edges have the same load is called edge-uniform.
Arc-uniform routings are understood similarly.

In [7], Fang, Li and Praeger proved that a graph is orbital-regular if and only if it is a cycle, a
star, or a Frobenius graph. A group G acting transitively but not regularly on a set V such that
only the identity element of G can fix two points of V is called [6, 18] a Frobenius group. It is
well-known [6, Section 3.4] that a finite Frobenius group G has a nilpotent normal subgroup K,
called the Frobenius kernel of G, which is regular on V . Hence G = K o H (semidirect product
of K by H), where H is the stabiliser of a point of V and is called a Frobenius complement for
K in G. Since K is regular on V , we may identify V with K in such a way that K acts on
itself by right multiplication, and we choose H to be the stabiliser of 1 (identity element of K)
so that H acts on K by conjugation. A G-Frobenius graph [7] is a Cayley graph Γ = Cay(K, S)
on K, where

S =

{
aH , if |H| is even or |a| = 2

aH ∪ (a−1)H , if |H| is odd and |a| 6= 2

for some a ∈ K satisfying 〈aH〉 = K, where xH = {h−1xh : h ∈ H} for x ∈ K and |a| is the
order of a. We call Γ a first or second kind [25] Frobenius graph, respectively, if S is as in the
first or second line above. Since 〈aH〉 = K, Γ is always connected. As examples, Paley graphs
are Frobenius [19], and those Hamming graphs H(d, q) which are Frobenius are classified in
[14], where q is a prime power. It is known that π(Γ) =

∑
u,v∈K d(u, v)/|E(Γ)| = 2

∑d
i=1 ini or∑d

i=1 ini [7], depending on whether Γ is of the first or second kind, where d(u, v) is the distance
in Γ between u and v, d is the diameter of Γ, and ni is the number of H-orbits contained in the
set of vertices at distance i from 1. (n1, n2, . . . , nd) is called [7] the type of Γ.

Besides the forwarding indices above, another important measure of performance of a network
is its behavior with respect to gossiping. Here by gossiping we mean an information dissemination
process for which each vertex has a distinct message to be sent to all other vertices. In this paper
we consider the store-and-forward, all-port and full-duplex model [3]: a vertex must receive a
message wholly before retransmitting it to other vertices; a vertex can exchange messages (which
may be different) with all of its neighbours at each time step; messages can traverse an edge in
both directions simultaneously; no two messages can transmit over the same arc at the same
time; and it takes one time step to transmit any message over an arc. A gossiping scheme is a
procedure fulfilling the gossiping under these constraints, and the minimum gossip time [3] of a
graph Γ, t(Γ), is the minimum number of time steps required by such a scheme.

In [25] the second-named author devised optimal routing and gossiping schemes with attrac-
tive features for any first kind Frobenius graph. The results in [25] suggest that not only does
such a graph has smallest possible forwarding indices π, −→π , πm and −→π m, but also it attains the
minimum possible gossip time under the model above. In some sense, first kind Frobenius graphs
admit ‘perfect’ routing and gossiping schemes, and hence they are ‘perfect’ for interconnection
networks as far as routing and gossiping are concerned.

Being studied extensively, circulant graphs (or undirected multi-loop networks [8] as used
in theoretic computer science) have been recognized as strong candidates for interconnection
networks. It is known that some circulant graphs are first kind Frobenius graphs. For instance,

2



in [20] the authors prove that all 6-valent circulant graphs with a given diameter and maximum
possible order are Frobenius of the first kind. Because of the importance of circulant graphs
(especially in the case of small valencies) in network design and very attractive properties of
first kind Frobenius graphs with respect to routing and gossiping, the following problem arises
naturally.

Problem 1 Classify all first kind Frobenius circulant graphs.

In this paper we solve this problem in the case of valency four, and then we describe optimal
routing and gossiping schemes for 4-valent first kind Frobenius circulant graphs. Let n ≥ 5 be
an integer, and let 1 ≤ a, b ≤ n− 1 be distinct integers such that a, b 6= n/2 and a + b 6= n. Let
Zn be the additive group of integers modulo n and [x] ∈ Zn the residue class containing x. Then

DLn(a, b) = Cay(Zn, S), where S = {[a],−[a], [b],−[b]}

is a 4-valent circulant graph. It is connected if and only if gcd(a, b, n) = 1 (see e.g. [8, 21]). In the
literature DLn(a, b) is also called a double-loop network, justifying our notation, a double-loop
fixed step graph [23], or a chordal ring of degree four [15]. As we will see in Lemma 5, we may
assume without loss of generality that one of a, b is equal to 1.

A complete rotation [3, 9, 10] of a Cayley graph Cay(K, S) is a group automorphism of K

which fixes S setwise and induces a cyclic permutation on S. A connected graph Γ is said to be
G-arc transitive if G ≤ Aut(Γ) is transitive on Arc(Γ), the set of arcs of Γ. Let Z∗n = {[m] : 0 <

m < n, gcd(m,n) = 1} be the multiplicative group of units of ring Zn. The first result of this
paper is the following theorem.

Theorem 2 Let n ≥ 5 be an integer. If n is even, then there exists no first kind Frobenius
circulant graph of order n and valency four. If n is odd, then the following statements are
equivalent:

(a) there exists 1 < h < n− 1 such that DLn(1, h) is a first kind Frobenius graph;

(b) the quadratic congruence equation x2 + 1 ≡ 0 mod n has a solution;

(c) each prime factor of n is congruent to 1 modulo 4.

Moreover, if one of these occurs, then the following hold:

(d) each solution h to x2 + 1 ≡ 0 mod n gives rise to a first kind Frobenius circulant graph
DLn(1, h), and vice versa, and in this case DLn(1, h) is a Zn o H-arc transitive Zn o H-
Frobenius graph which admits [h] and −[h] as complete rotations, where H = 〈[h]〉 =
{[1], [h], [h2], [h3]} = {[1], [h],−[1],−[h]} ≤ Z∗n;

(e) there are exactly 2l−1 pairwise non-isomorphic first kind Frobenius circulant graphs with
order n and valency four, where l is the number of distinct prime factors of n, and each
of them is isomorphic to DLn(1, h) for some h as above.

In particular, for any prime p ≡ 1 mod 4 and integer e ≥ 1, there is a unique first kind Frobenius
circulant graph with order pe and valency four.
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The equivalence of (b) and (c) above can be easily derived from known results in number
theory. That DLn(1, h) is Zn o H-arc transitive follows from a general result [25, Lemma 2.1].
The enumeration in (e) relies on known results on circulant CI-graphs (see [13] for a survey).
Note that H (as a set) is identical to the connection set of DLn(1, h).

A routing of a graph Γ is G-arc transitive [14] if G ≤ Aut(Γ) is transitive on Arc(Γ) and
leaves the routing invariant. The next theorem summarizes routing and gossiping properties
of first kind Frobenius circulant graphs of valency four. Note that the value of t(DLn(1, h))
is independent of h and that

∑r
i=0 xi(xi + 2i + 1) is another form of

∑
u,v∈V (Γ) d(u, v)/|E(Γ)|,

where r, x0, x1, . . . , xr will be defined in Section 3.

Theorem 3 Let n ≥ 5 be an integer with each prime factor congruent to 1 modulo 4. Let h be
a solution to x2 + 1 ≡ 0 mod n and H = {[1], [h],−[1],−[h]}. Then

π(DLn(1, h)) = 2−→π (DLn(1, h)) = 2−→π m(DLn(1, h)) = πm(DLn(1, h)) =
r∑

i=0

xi(xi + 2i + 1) (1)

t(DLn(1, h)) =
n− 1

4
. (2)

Moreover, there exists a shortest path routing of DLn(1, h) which is Zn o H-arc transitive, edge-
and arc-uniform, and optimal for π, −→π , −→π m and πm simultaneously.

Furthermore, there exists an optimal gossiping scheme for DLn(1, h) such that: (a) the
message originating from any vertex is transmitted along shortest paths to other vertices; (b)
for each vertex [w] of DLn(1, h), at any time t ≥ 1 precisely four arcs are used to transmit the
message originating from [w], and for t ≥ 2 these four arcs form a matching of DLn(1, h); (c)
at any time each arc of DLn(1, h) is used exactly once for message transmission.

In general, such routing and gossiping schemes are not unique, and we give a systematic way
of constructing them explicitly.

The existence of these routing and gossiping schemes and the formulae above are corollaries
of Theorem 2 and some general results [25, Theorems 5.1 and 6.1] for any Frobenius graph of
the first kind. In this paper we thus emphasize construction of routing and gossiping with the
properties above. To this end we require detailed information about the H-orbits on Zn \ {[0]},
and this will be derived in Section 3. With such information we then obtain the promised
schemes by specifying certain procedures in [25]. Due to the importance of circulant graphs, we
feel that it is necessary to include such specifications for potential practical applications. As we
will see in the last section, Theorem 2 implies that the unique 4-valent circulant graph with a
given diameter and maximum possible order is a first kind Frobenius graph. For this graph we
recover certain known results [15, 23] as consequences of Theorems 2 and 3.

The reader is referred to [6, 18] and [4] respectively for group- and graph-theoretic terminol-
ogy used in the paper.

2 Proof of Theorem 2

It is well known (see e.g. [18, Section 5.7]) that Aut(Zn) ∼= Z∗n. As the automorphism group
of Zn, Z∗n acts on Zn by usual multiplication: [x][m] = [xm], [m] ∈ Z∗n, [x] ∈ Zn. Zn o Z∗n acts
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on Zn in such a way that Zn acts by addition and Z∗n acts by multiplication. In other words,
[x]([z],[m]) = [(x + z)m] for [x] ∈ Zn and ([z], [m]) ∈ Zn o Z∗n, where [z] ∈ Zn and [m] ∈ Z∗n. We
identify Zn o Aut(Zn) with Zn o Z∗n in the following.

Lemma 4 A subgroup H of Z∗n is semiregular on Zn \ {[0]} if and only if [h − 1] ∈ Z∗n for all
[h] ∈ H \ {[1]}.

Proof H is semiregular on Zn \ {[0]} ⇔ for any [x] ∈ Zn \ {[0]} and [h] ∈ H, [hx] = [x] implies
[h] = [1] ⇔ [(h− 1)x] 6= [0] for any [x] ∈ Zn \ {[0]} and any [h] ∈ H \ {[1]} ⇔ gcd(h− 1, n) = 1
for all [h] ∈ H \ {[1]} ⇔ [h− 1] ∈ Z∗n for all [h] ∈ H \ {[1]}.

Lemma 5 Let n ≥ 5 be an integer. If DLn(a, b) is a first kind Frobenius graph, then the
following hold:

(a) There exists a cyclic subgroup H of Z∗n with order four such that DLn(a, b) is a Zn o H-
Frobenius graph;

(b) at least one of a, b is coprime to n, and there exists an integer b′ with 1 < b′ < n− 1 and
b′ 6= n/2 such that DLn(a, b) ∼= DLn(1, b′).

Proof Since DLn(a, b) is a first kind Frobenius graph, there exists a Frobenius group G = ZnoH

with Frobenius kernel Zn such that DLn(a, b) is a first kind G-Frobenius graph. Hence S is an
H-orbit (under the action of H on Zn), H is regular on S = {[a],−[a], [b],−[b]} and semiregular
on Zn \ {[0]}. Thus |H| = |S| = 4, and so either H ∼= Z4 or H ∼= Z2 × Z2. Note that H is
isomorphic to a subgroup of Aut(Zn) ∼= Z∗n and hence we may take H as a subgroup of Z∗n.

Since H is transitive on S, there exists an element [m] ∈ H such that [am] = [b]. Note that
[m] 6= [1] as [a] 6= [b]. Since every element of Z2 × Z2 other than the identity is an involution,
if H ∼= Z2 × Z2, then [bm] = [a] and hence [(a + b)m] = [a + b], which is a contradiction
because [a + b] 6= [0], [m] 6= [1] and H is semiregular on Zn \ {[0]}. Therefore, H ∼= Z4 and so
H = {[1], [h], [h2], [h3]} for some [h] ∈ H.

Since DLn(a, b) is a Frobenius graph, it must be connected and hence gcd(a, b, n) = 1. We
claim that at least one of a, b is coprime to n. Suppose otherwise, then since S is invariant
under the action of H, we have [ha] = ±[a] or ±[b]. If [ha] = −[a], then [h2a] = −[ha] = [a]
and hence H is intransitive on S, a contradiction. Note that gcd(a, n) = d > 1 since a is not
coprime to n by our assumption. If [ha] = [b], then since d | a and d | n we have d | b, which
contradicts gcd(a, b, n) = 1. Similarly, [ha] = −[b] can not happen. If [ha] = [a], then since
H is regular on S we must have [h] = [1] and so H = {[1]}, again a contradiction. Thus, we
have proved that at least one of a, b is coprime to n. Without loss of generality we may assume
gcd(a, n) = 1. Then [a] ∈ Z∗n and hence DLn(a, b) ∼= DLn(1, b′) via the automorphism [a] of Zn,
where [b′] = [a]−1[b] 6= ±[1] with [a]−1 the inverse of [a] in Z∗n. We may assume 1 < b′ < n− 1.
Since DLn(a, b) has valency four, we have b′ 6= n/2. 2

Proof of Theorem 2 Suppose DLn(1, h) is a first kind Frobenius graph, where 1 < h < n

and h 6= n/2. Then by Lemma 5(a) there exists a cyclic subgroup H = 〈[h0]〉 of Z∗n with
order four such that DLn(1, h) is a Zn o H-Frobenius graph. Hence H is regular on S =
{[1],−[1], [h],−[h]} and semiregular on Zn \ {[0]}. Since [1] ∈ S, the regularity of H on S
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implies S = H = {[1], [h0], [h0]2, [h0]3}, and in particular −[1] ∈ H. Clearly, −[1] 6= [h0], and
if −[1] = [h0]3 then [1] = [h0]6 = [h0]2 and so H = {[1],−[1]}, a contradiction. So the only
possibility is that [h0]2 = −[1], that is, h0 is a solution to x2 + 1 ≡ 0 mod n. It follows that
H = {[1],−[1], [h0],−[h0]} = S. We may assume [h0] = [h] for otherwise we replace h by n− h.
Hence h is a solution to x2 + 1 ≡ 0 mod n and therefore (a) implies (b). Moreover, since H is
semiregular on Zn \ {[0]}, by Lemma 4 we should have [h2 − 1] = [−2] ∈ Z∗n, which occurs only
when n is odd. Thus, if n is even, then there exists no first kind Frobenius circulant graph of
order n and valency four.

In the remainder of this proof we assume that n = pe1
1 pe2

2 . . . pel
l is odd, where p1, p2, . . . , pl

are distinct odd primes and e1, e2, . . . , el are positive integers. Suppose (b) holds and let h be a
solution to x2 + 1 ≡ 0 mod n. Then by the discussion in [16, Section 2.5] h is also a solution to
the system of congruences x2 + 1 ≡ 0 mod pei

i , 1 ≤ i ≤ l. Hence each pi is a divisor of h2 + 1. It
follows that none of pi’s can be a divisor of h. Therefore, gcd(h, n) = 1 and so [h] ∈ Z∗n. Since
h2 ≡ −1 mod n, it follows that H = 〈[h]〉 = {[1], [h], [h]2, [h]3} = {[1],−[1], [h],−[h]} is a cyclic
subgroup of Z∗n of order four. Consider DLn(1, h) = Cay(Zn, S), where S = H. Clearly, H is
regular on S. Since n is odd, [h2− 1] = [−2] ∈ Z∗n. If [h− 1] 6∈ Z∗n, then there exists some i such
that pi is a divisor of h− 1, and hence pi is a divisor of h2 − 1. Since pi is a divisor of h2 + 1, it
follows that pi is a divisor of 2, a contradiction. Hence we must have [h−1] ∈ Z∗n. Similarly, one
can show that [h3− 1] = [−h− 1] ∈ Z∗n. Therefore, by Lemma 4, H is semiregular on Zn \ {[0]}.
Consequently, Zn o H is a Frobenius group (see e.g. [17, pp.211]) and DLn(1, h) is a first kind
Zn o H-Frobenius graph. Thus, (b) implies (a).

For an integer m ≥ 1, let N(m) denote the number of solutions to x2 + 1 ≡ 0 mod m. Then
N(n) =

∏l
i=1 N(pei

i ) by [16, Theorem 2.18]. Since each pi is odd, by [12, Proposition 4.2.3],
N(pei

i ) ≥ 1 if and only if N(pi) ≥ 1, which is true if and only if pi ≡ 1 mod 4 ([16, Theorem
2.11]). Thus, N(n) ≥ 1 if and only if each prime factor of n is congruent to 1 modulo 4. That
is, (b) and (c) are equivalent for odd integers n.

Suppose that one of (a)-(c) holds, so that each pi is congruent to 1 modulo 4. The proof above
shows that every solution h to x2 + 1 ≡ 0 mod n gives rise to a first kind Frobenius circulant
graph DLn(1, h), and vice versa, and in this case DLn(1, h) is a Zn o H-Frobenius graph, where
H = 〈[h]〉 = {[1],−[1], [h],−[h]} ≤ Z∗n. Clearly, [h] and −[h] are complete rotations of DLn(1, h).
Also, ZnoH ≤ Aut(DLn(1, h)) and ZnoH is transitive on the vertices of DLn(1, h). Let ([x], [y])
and ([u], [v]) be arcs of DLn(1, h). Then [x−y], [u−v] ∈ S = H. Since H is transitive on S, there
exists [m] ∈ H such that [x− y][m] = [u− v]. Let [z] = [v][m]−1− [y], where [m]−1 is the inverse
element of [m] in Z∗n, so that [(y + z)m] = [v]. Then ([x], [y])([z],[m]) = ([(x + z)m], [(y + z)m]) =
([(y + z)m + (u− v)], [(y + z)m]) = ([u], [v]). Therefore, DLn(1, h) is Zn o H-arc transitive and
(d) is established.

For each i, we have N(pei
i ) = N(pi) = 2, where the first equality is from [12, Proposition

4.2.3] and the second one from [16, Corollary 2.28]. Hence N(n) =
∏l

i=1 N(pei
i ) = 2l. By

part (b) of Lemma 5, every first kind Frobenius circulant graph of order n and valency four
is isomorphic to some DLn(1, h), where h is a solution to x2 + 1 ≡ 0 mod n. Note that
−h is also a solution to this congruence equation and it gives rise to the same graph. Since
N(n) = 2l, it follows that there are at most 2l−1 pairwise non-isomrphic first kind Frobenius
circulant graphs with order n and valency four. To establish (e) it remains to prove that, for
distinct solutions h1, h2 to x2 + 1 ≡ 0 mod n such that h1 6≡ ±h2 mod n, we have DLn(1, h1) 6∼=
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DLn(1, h2). In fact, if DLn(1, h1) ∼= DLn(1, h2), then since every cyclic group is a 4-CI group
(see e.g. [13]), there exists [m] ∈ Z∗n such that S1[m] = S2, where S1 = {[1],−[1], [h1],−[h1]}
and S2 = {[1],−[1], [h2],−[h2]}. From the proof above H1 = 〈[h1]〉 = S1 and H2 = 〈[h2]〉 = S2

are subgroups of Z∗n. Since [1] ∈ S2, there exists [x] ∈ S1 such that [xm] = [1], and this implies
[m] ∈ H1. Thus, S2 = S1[m] = H1[m] = H1 = S1, which contradicts the assumption that
h1 6≡ ±h2 mod n. 2

Remark 6 Let n = pe1
1 pe2

2 . . . pel
l be as above. All solutions to x2 + 1 ≡ 0 mod n can be

computed by using known results in number theory. In fact, since pi ≡ 1 mod 4, from the proof
of [16, Theorem 2.11],

∏(pi−1)/2
j=1 j mod pi and pi −

∏(pi−1)/2
j=1 j mod pi are the two solutions to

x2 + 1 ≡ 0 mod pi. Based on these we obtain the two solutions to x2 + 1 ≡ 0 mod pei
i by

applying the procedure in the proof of [12, Proposition 4.2.3]. Using the method in the proof of
[16, Theorem 2.18], we then obtain all 2l solutions to x2 + 1 ≡ 0 mod n and hence all 2l−1 first
kind Frobenius circulant graphs of order n and valency four.

3 Optimal routing and gossiping

Let n ≥ 5 be an integer with each prime factor congruent to 1 modulo 4, and let h be a solution
to x2 + 1 ≡ 0 mod n. Then h 6= n/2. Let Γ = DLn(1, h), H = 〈[h]〉 = {[1],−[1], [h],−[h]}, and
let d be the diameter and (n1, n2, . . . , nd) the type of Γ. Let Γi[u] = {[v] ∈ Zn : d([u], [v]) = i}
for [u] ∈ Zn and 1 ≤ i ≤ d, where d([u], [v]) is the distance in Γ between [u] and [v]. Then Γi[0]
is a union of ni H-orbits; in particular, Γ1[0] = H (as a set) and n1 = 1. Since by Theorem 2,
H ≤ Z∗n is semiregular on Zn \ {[0]}, all H-orbits on Zn \ {[0]} contain four vertices of Γ.

  4 9         5 0           5 1         5 2             0               1             2               3             4 

1 9         2 0           2 1         2 2           2 3         2 4           2 5         2 6 

2 7           2 8         2 9           3 0         3 1           3 2         3 3           3 4 

4 2         4 3           4 4         4 5         4 6           4 7         4 8 

5             6               7             8               9           1 0           1 1 

1 5         1 6           1 7         1 8 

3 5           3 6         3 7           3 8 

3 9           4 0         4 1 

1 2           1 3         1 4 

x 

y 

( a ) ( b ) 

  4 9         5 0           5 1         5 2             0               1             2               3               4 

1 9         2 0           2 1         2 2           2 3         2 4           2 5         2 6 

4 2         4 3         4 4           4 5         4 6         4 7           4 8 

1 5         1 6           1 7         1 8 

3 9         4 0           4 1 

2 7           2 8         2 9           3 0         3 1           3 2         3 3           3 4 

5             6               7             8                 9           1 0           1 1 

3 5           3 6         3 7           3 8 

1 2           1 3         1 4 

Figure 1: Geometric representations of DL53(1, 23) by (a) a plane tessellation and (b) an integer lattice.
For this graph, r = x0 = 4, x1 = 3, x2 = x3 = x4 = 2, X consists of those vertices connected by solid
lines, and lines with arrows form the part T 1

0 of a shortest path spanning tree T0 in the first quadrant.
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Geometrically, we may represent Γ by a plane tessellation of squares [8, 22, 21] or integer
lattice [24]. See Figure 1 for an illustration. Let Z2 be the 2-dimensional integer lattice. Then
each (x, y) ∈ Z2 represents a vertex [x + yh] of Γ, and this defines a mapping from Z2 to Zn. By
the definition of Γ, for 0 ≤ v ≤ n− 1, we have

d([0], [v]) = min{|x|+ |y| : (x, y) ∈ Z2, v ≡ x + yh mod n} ≤ v.

Let r be the largest v such that d([0], [v]) = v. Since d([0], [1]) = 1, r is well-defined. Since
the H-orbit containing [v] is [v]H = {[v], [vh],−[v],−[vh]}, r is also the largest v such that
d([0], [vh]) = v (d([0],−[v]) = v, d([0],−[vh]) = v, respectively). Hence 1 ≤ r ≤ (n − 1)/4.
Moreover, for 0 ≤ k ≤ r, we have

d([0], [k]) = d([0], [kh]) = d([0],−[k]) = d([0],−[kh]) = k. (3)

In fact, since H ≤ Aut(Γ) fixes [0], the four distances above must be equal. If d([0], [k]) ≤ k− 1,
then there exist (x, y) ∈ Z2 such that k ≡ x + yh mod n and d([0], [k]) = |x|+ |y| ≤ k− 1. Thus
r = k + (r− k) ≡ x + yh + (r− k) mod n and so r = d([0], [r]) ≤ |x|+ |y|+ (r− k) ≤ r− 1. This
contradiction proves (3).

In general, for 0 ≤ k ≤ r let xk ≥ 0 be the largest integer such that d([0], [xk +kh]) = xk +k.
Note that xk is well-defined because of (3). Let

X = {[j + kh] : 1 ≤ j ≤ xk, 0 ≤ k ≤ r}.

Since the H-orbit containing [j +kh] ∈ X is [j +kh]H = {[j +kh], [−k+ jh], [−j−kh], [k− jh]},
the image of X under the action of H (namely ∪[j+kh]∈X [j + kh]H) is given by

XH = {[j + kh], [−k + jh], [−j − kh], [k − jh] : 1 ≤ j ≤ xk, 0 ≤ k ≤ r}.

The following results can be verified easily and hence we omit their proofs.

Lemma 7 With the notation above, the following hold:

(a) for [j+kh] ∈ X, d([0], [j+kh]) = d([0], [−k+jh]) = d([0], [−j−kh]) = d([0], [k−jh]) = j+k;

(b) (n− 1)/4 ≥ r = x0 ≥ x1 ≥ · · · ≥ xr;

(c) XH = Zn \ {[0]} and each element of Zn \ {[0]} appears in XH exactly once;

(d) d = max{xk + k : 0 ≤ k ≤ r}, XH ⊆ {[x + yh] : (x, y) ∈ Z2, |x| + |y| ≤ d}, and if
d = xk∗ + k∗ then xk ≤ xk∗ − (k − k∗) for 0 ≤ k ≤ r;

(e) for 1 ≤ i ≤ d, ni = |{[j + kh] ∈ X : j + k = i}| and Γi[0] = ∪[j+kh]∈X, j+k=i[j + kh]H.

Remark 8 (a) XH is an algebraic expression of the minimum distance diagram [8, 22, 21] of Γ.
In the current situation this diagram is symmetric and the group H permutes the four parts of
XH cyclically: The part in the first quadrant is X, and the parts in the other three quadrants
are X[h],−X,−X[h] successively. The lattice Z2 is covered by copies of XH periodically, and
XH induces a subgraph of Γ in which each ‘interior vertex’ is fully connected to four vertices
of Γ.
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(b) In general, it is hard to give a formula for xk in terms of n and h, 0 ≤ k ≤ r, because
for otherwise we could get a formula for the diameter of Γ. The latter task is very difficult as
shown in the literature [8, 24]. The minimum distance diagram XH can be constructed [22] by
labelling the vertices (x, y) ∈ Z2 by |x|+ |y| in increasing order of |x|+ |y|, discarding repeated
labels, until all integers 0, 1, . . . , n − 1 are present. We obtain all xk easily once we find the
minimum distance diagram.

(c) In [24] an O(log n) algorithm for computing the diameter of any circulant graph of valency
four was given. This can be used to compute the diameter d of Γ.

Now we construct a spanning tree T0 of Γ rooted at [0] by using XH. The branch T 1
0 of T0

in the first quadrant can be chosen as any subtree of Γ with vertex set X ∪{[0]} and containing
the edge between [0] and [1] such that, for 1 ≤ i < d, each vertex in Γi+1[0] ∩ X is adjacent
to exactly one vertex in Γi[0] ∩ X. To obtain the branches of T0 in the other three quadrants
we rotate T 1

0 by 90o, 180o, 270o respectively. In other words, these branches have vertex sets
X[h] ∪ {[0]}, −X ∪ {[0]}, −X[h] ∪ {[0]} and edges {[uh], [vh]}, {−[u],−[v]}, {−[uh],−[vh]}
respectively with {[u], [v]} running over all edges of T 1

0 . It is clear that T0 is a shortest path
spanning tree of Γ with root [0], that is, the unique path in T0 between [0] and any vertex is
a shortest path in Γ. Consequently, for 0 ≤ i ≤ d, the set T0(i) of vertices distant i apart
from [0] in T0 is identical to Γi[0]. Let A1,1 be the set of four arcs from [0] to Γ1[0], namely
A1,1 = {([0], [1]), ([0], [h]), ([0],−[1]), ([0],−[h])}. For 0 ≤ i < d, since |Γi+1[0] ∩ X| = ni+1, we
may denote the vertices in Γi+1[0] ∩ X by [vi+1,j ], 1 ≤ j ≤ ni+1; then for each 1 ≤ j ≤ ni+1

let Ai+1,j be the image of the unique arc of T0 from a vertex of Γi[0] ∩X to [vi+1,j ] under the
action of H. Thus the set of arcs of T0 from T0(i) to T0(i + 1) is ∪1≤j≤ni+1Ai+1,j . Since H is
semiregular on Zn \ {[0]}, for 1 ≤ i < d and 1 ≤ j ≤ ni+1, Ai+1,j is a matching of four arcs.

Given [u] ∈ Zn, W ⊆ Zn and A ⊆ Zn × Zn, denote W + [u] = {[w + u] : [w] ∈ W} and
A + [u] = {([x + u], [y + u]) : ([x], [y]) ∈ A}. Define Tu to be the tree with vertex set Zn and arc
set Arc(T0) + [u], that is, Tu is obtained from T0 by translation by [u]. Since Zn acts on itself
(by translation) as a group of automorphisms of Γ, Tu is a shortest path spanning tree of Γ with
root [u]. Let

P = {Puv : [u], [v] ∈ Zn, [u] 6= [v]} (4)

where Puv is the unique path in Tu from [u] to [v]. The following algorithm gives the promised
optimal gossiping scheme as we will see soon.

Algorithm 9 Let Mu denote the message originating at [u] ∈ Zn.
Phase 1: Initially, Mu is transmitted from [u] to T0(1) + [u] (= H + [u]) along the four arcs

of A1,1 + [u], and this is carried out for all [u] ∈ Zn simultaneously.
Phase i + 1: Do the following for i = 1, 2, . . . , d − 1 successively: for j = 1, 2, . . . , ni+1, in

the jth step of the (i+1)th phase, for all [u] ∈ Zn transmit Mu from T0(i)+ [u] to T0(i+1)+ [u]
along the four arcs of Ai+1,j + [u] at the same time step.

Proof of Theorem 3 Since each Tu is a shortest path spanning tree, P as defined in (4) is a
shortest path routing of Γ. Since T0 is invariant under H, Zn o H leaves {Tu : [u] ∈ Zn} and
hence P invariant. Since Γ is Zn oH-arc transitive (Theorem 2(d)), P is a Zn oH-arc transitive
routing. Thus, P is arc- and hence edge-uniform. Consequently, π(Γ) = 2−→π (Γ) = 2−→π m(Γ) =
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πm(Γ) and P is optimal for the four indices simultaneously. Moreover, by Lemma 7 we have
π(Γ) =

∑
[u],[v]∈Zn

d([u], [v])/|E(Γ)| = 4n
∑r

k=0

∑xk
j=1(j + k)/2n =

∑r
k=0 xk(xk + 2k + 1).

Clearly, {A1,1 + [u] : [u] ∈ Zn} is a partition of Arc(Γ). For 1 ≤ i < d, 1 ≤ j ≤ ni+1, since
Γ is Zn o H-arc transitive and Ai+1,j is invariant under H, each arc of Arc(Γ) is contained in
at least one Ai+1,j + [u], [u] ∈ Zn. Since

∑
[u]∈Zn

|Ai+1,j + [u]| = 4n = |Arc(Γ)|, it follows that
{Ai+1,j + [u] : [u] ∈ Zn} is a partition of Arc(Γ). Hence Algorithm 9 is a gossiping scheme such
that at any time each arc is used exactly once. Clearly, it requires |X| = (n− 1)/4 time steps.
However, t(Γ) ≥ (n− 1)/4, because n− 1 messages are to be sent to [0], and at any time [0] can
process at most four messages. Therefore, t(Γ) = (n − 1)/4 and Algorithm 9 gives an optimal
gossiping scheme. Obviously, it has the features described in (a)-(c) of Theorem 3. 2

4 Concluding remarks

It is known [21] that the maximum order of a connected 4-valent circulant graph with a given
diameter d ≥ 2 is nd = 2d2 +2d+1. Moreover, up to isomorphism there is a unique connected 4-
valent circulant graph [21] with diameter d and order nd, namely DLnd

(1, 2d+1). (In fact, for any
such graph DLnd

(a, b), we have a(d+1)−bd ≡ 0, ad+b(d+1) ≡ 0 mod nd by [21, Eq. (3)] and so
a ≡ b(2d+1) mod nd. Thus, since DLnd

(a, b) is connected, we have gcd(b, nd) = gcd(a, b, nd) = 1.
Hence [b] ∈ Z∗nd

and DLnd
(a, b) ∼= DLnd

(b(2d + 1), b) ∼= DLnd
(1, 2d + 1).) From the discussion

in [21], DLnd
(1, 2d + 1) has type (1, 2, . . . , d), and hence r = d and xk = d − k for 0 ≤ k ≤ d.

Since 2d + 1 is a solution to x2 + 1 ≡ 0 mod nd, we obtain the following corollary of Theorems
2 and 3.

Corollary 10 Let d ≥ 2 be an integer, and let Γ = DLnd
(1, 2d + 1) be the unique connected

4-valent circulant graph of diameter d and maximum order nd = 2d2 + 2d + 1. Then Γ is a
Znd

oH(d)-arc transitive Znd
oH(d)-Frobenius graph, where H(d) = {[1], [2d+1],−[1],−[2d+1]},

and

π(Γ) = 2−→π (Γ) = 2−→π m(Γ) = πm(Γ) =
d(d + 1)(2d + 1)

3

t(Γ) =
d(d + 1)

2
.

Moreover, we can give explicitly optimal routing and gossiping schemes (not unique) for Γ with
the properties described in Theorem 3.

That −→π (DLnd
(1, 2d + 1)) = d(d + 1)(2d + 1)/6 was obtained in [15] by pure combinatorial

arguments. Here we recovered this formula as a special case of a general result. Moreover,
instead of giving only one specific optimal routing [15], by choosing different shortest path
spanning trees T0 and using the algorithms in the previous section we can give a number of
optimal routing and gossiping schemes for DLnd

(1, 2d+1). (An example of T0 is given in Figure
2.) Furthermore, each T0 gives rise to a near optimal broadcasting scheme: at time t = 1, 2, 3, 4
send the message at [0] to [1], [h],−[1],−[h] via the arcs of A1,1 successively; inductively, since
ni = ni−1 +1, assume without loss of generality that Ai,1, Ai,2 are joined to the same H(d)-orbit
in T0(i − 1) (1 < i ≤ d); after all vertices in T0(i) have received the message, for i = 2, . . . , d

at time i + 3 transmit the message along the arcs of Ai,1, Ai−1,2, . . . , Ai−1,i−1 simultaneously,
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  3 7         3 8           3 9         4 0             0             1               2             3               4 

  6               7             8               9           1 0           1 1         1 2 

2 9           3 0         3 1           3 2         3 3           3 4         3 5 

1 6         1 7           1 8         1 9           2 0 

2 1         2 2           2 3         2 4           2 5 

2 6           2 7         2 8 

1 3           1 4         1 5 

3 6 

5 
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y 

( a ) ( b ) 

3 6 

2 6           2 7         2 8 

1 6         1 7           1 8         1 9           2 0 

  6               7             8               9           1 0           1 1         1 2 

  3 7         3 8           3 9         4 0               0             1               2               3               4 

2 9           3 0         3 1           3 2         3 3           3 4         3 5 

2 1         2 2           2 3         2 4           2 5 

1 3         1 4           1 5 

5 

Figure 2: Part of a shortest path spanning tree of DL41(1, 9) in the first quadrant.

and at time d + 4 send the message along the arcs of Ad,2, . . . , Ad,d simultaneously. This is
a broadcasting scheme which requires d + 4 time steps. It is near optimal since by [23] the
minimum broadcasting time is d + 2.

Besides the ‘optimal’ double-loop networks DLnd
(1, 2d + 1) above, there are other first kind

Frobenius circulant graphs of valency four for which we can describe optimal routing and gossip-
ing schemes explicitly. Consider Γm = DLn(1, 2m) for example, where m ≥ 1 and n = 4m2 + 1.
Since 2m is a solution to x2 + 1 ≡ 0 mod n, by Theorem 2, Γm is a Zn o H-arc transitive
Zn o H-Frobenius graph, where H = {[1], [2m],−[1],−[2m]}. For this graph we can easily find
out r, x0, x1, . . . , xr and hence give explicitly optimal routing and gossiping schemes by invoking
the algorithms in the previous section.

The following problems arise naturally from our study in this paper. Note that problem
(a) is different from the one of determining the minimum diameter among all 4-valent circulant
graphs of order n, the latter being solved in [5].

Problem 11 Given an integer n ≥ 5 with each of its prime factors congruent to 1 modulo 4,
determine (a) the minimum diameter of DLn(1, h), and (b) the minimum edge-forwarding index
of DLn(1, h), for h running over all solutions to x2 + 1 ≡ 0 mod n.
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