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perfect codes

Definition
Let V be an alphabet of size q, and let 1 ≤ t ≤ n be integers.

Denote by V n the set of words of length n over V .

A perfect t-code of length n is a subset C ⊂ V n such that every
codeword in V n is at Hamming-distance at most t from a unique
codeword in C .

A perfect 1-code is usually called a perfect code.

If a perfect t-code exists, then a certain polynomial of degree t has
t distinct zeros among 1, 2, . . . , n.

This was proved by Lloyd when q is a prime power and Lenstra
(1972) for all q.
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perfect codes

Definition
A binary code of length n = 2r − 1, r ≥ 2, with an r × (2r − 1)
parity checking matrix H is called a binary Hamming code if the
columns of H are all nonzero vectors of Fr

2.

That is, the codewords of a binary Hamming code are precisely
vectors v ∈ Fn

2 such that Hv = 0.

Hamming codes are linear, i.e. subspaces of linear spaces.

Theorem
(Tietäväinen 1973, Leontiev & Zinoviev 1973)
When q is a prime power, the only linear perfect t-codes are

(a) the binary Hamming codes (t = 1),

(b) the trivial perfect codes (n = t, or n = 2t + 1 and q = 2), and

(c) the two Golay codes ((n, q, t) = (11, 3, 2) or (23, 2, 3)).
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perfect codes in graphs

Definition
(N. Biggs 1973)
Let G be a graph. A subset C of V (G ) is a perfect t-code in G if
for any v ∈ V (G ) there exists exactly one vertex in C whose
distance to v is at most t.

That is, the subsets

Nt(u) := {v ∈ V (G ) : d(u, v) ≤ t}, u ∈ C ,

form a partition of V (G ).

A perfect 1-code is called a perfect code.

A perfect t-code in G must be an independent set of G .

Question
When does a graph admit a perfect t-code or perfect code?
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perfect codes in distance-transitive graphs

Theorem
(N. Biggs 1973)
Let G be a distance-transitive graph of diameter k .

If G has a perfect t-code, then 1 + v1(λ) + · · ·+ vt(λ) divides
1 + v1(λ) + · · ·+ vk(λ) in Q(λ),

where v1(λ), . . . , vk(λ) are certain polynomials defined in terms of
the intersection matrix of G .

This generalises LLoyd’s necessary condition.

Theorem
(Biggs 1973)
A d-regular graph of order n admits a perfect code only when

(a) d + 1 divides n, and

(b) −1 is an eigenvalue of the adjacency matrix of the graph.
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perfect codes in graphs

Existence of perfect t-codes has been studied for

I hypercubes (Hamming codes)

I cube-connected cycles (Livingston & Stout 1990)

I meshes and tori (Livingston & Stout 1990)

I de Bruijn graphs (Livingston & Stout 1990)

I antipodal distance-transitive graphs (antipodal:
d(u, v) = d(u,w) = k (diameter) ⇒ v = w or d(v ,w) = k)

I odd graphs (Hammond & Smith 1975)

I . . .
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terminology used by graph theorists

I efficient dominating set = perfect 1-code
(Bange, Barkauskas and Slater 1987)

I perfect t-dominating set = perfect t-code



perfect codes in odd graphs

Definition
The odd graph O(k) is defined to have vertices the k-subsets of
[2k + 1] such that two vertices are adjacent iff they are disjoint.

It is known that O(3) and O(5) have perfect codes.

No perfect code is known in other odd graphs.

It is believed that no more exist.

Theorem
(Hammond & Smith 1975)
A set of k-subsets of [2k + 1] is a perfect code in O(k) if and only
if it is a 1-(2k + 1, k , k − 1) design.
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perfect codes in a family of distance-regular graphs

Perfect 1-codes in an infinite class of distance-regular graphs were
constructed by Cameron, Thas and Payne (1976) using generalized
hexagons.

A generalized hexagon of order (s, t) is a point-line geometry
whose incidence graph has girth 12 and diameter 6, and such that
each line (point) is incident with exactly s + 1 points (t + 1 lines).
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perfect codes in direct products of cycles

Definition
The direct product G × H is defined to have vertex set
V (G )× V (H) such that (u1, v1) ∼ (u2, v2) if and only if u1 ∼ u2
in G and v1 ∼ v2 in H.

Theorem
(Žerovnik 2008)
The direct product ×n

i=1C`i , `i ≥ 2t + 2, contains a perfect t-code
if and only if every `i is a multiple of tn + (t + 1)n.

Partial results were obtained earlier by Klavžar, Špacapan and
Žerovnik (Adv. Appl. Math. 2006).
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perfect codes in product graphs

Perfect codes have been studied for

I direct product (Klavžar, Špacapan and Žerovnik 06)

I Cartesian product (M. Mollard 11)

I lexicographic product (D. T. Taylor 09)



E-chains in Cayley graphs

Definition
Let X be a group and S ⊆ X − {1} be such that S−1 = S .

The Cayley graph Cay(X , S) is defined to have vertex set X in
which x ∼ y iff x−1y ∈ S .

Definition
(Dejter & Serra 2003)
A family of graphs

{G1,G2, . . . ,Gi ,Gi+1, . . .}

is called an E-chain if each Gi is an induced subgraph of Gi+1 and
each Gi has an perfect code.

Example

{Q2r−1 : r ≥ 2} is an E-chain.
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E-chains in Cayley graphs

Dejter and Serra (2003) gave a methodology for constructing
E-chains of Cayley graphs.

They used this method to construct E-chains of Cayley graphs on
symmetric groups, including the family of star graphs (Arumugam
and Kala 1996).



perfect codes in Cayley graphs

Theorem
(J. Lee 2001)
Let C be a normal subset of a finite group X (i.e. xC = Cx for all
x ∈ X ). Then the following are equivalent:

(a) C is a perfect code in a connected Cayley graph Cay(X ,S);

(b) there exists a covering Cay(X ,S)→ K|S |+1 such that
p−1(v) = C for some vertex v of K|S |+1;

(c) |C |(|S |+ 1) = |X | and C ∩ [C (S2
0 − {1})] = ∅, where

S0 = S ∪ {1}.



total perfect codes

Definition
A subset C of V (G ) is called a total perfect t-code in G if for
every u ∈ V (G ) there is exactly one v ∈ C such that d(u, v) ≤ t.

A total perfect 1-code is called a total perfect code (Klostermeyer
& Goldwasser 2006).

0000	   0100	  

0010	  

0110	  

1010	  

1100	  

1110	  

0001	   0101	  

1000	  

0011	   0111	  

1101	  

1011	  

1111	  

1001	  

Total perfect codes in Q4.



total perfect codes

Characterisations of the grid graphs that have total perfect codes
were given by Klostermeyer and Goldwasser (2006).

The direct product of any number of simple graphs has a total
perfect code iff each factor has a total perfect code
(Abay-Asmerom et al 2008).

The Cartesian product Cm�Cn has a total perfect code iff both m
and n are multiples of 4 (Dejter 2008).
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total perfect codes in Cayley graphs

Definition
A graph H is called a pseudocover of a graph G if there exists a
surjective mapping p : V (H)→ V (G ) such that H[p−1(v)] is a
matching for all v ∈ V (G ) and deleting all such matching from H
results in a cover of G with p the covering projection.

Theorem
(Z 2011) Let C be a normal subset of a group X . Then the
following are equivalent:

(a) C ⊆ X is a total perfect code of Cay(X ,S);

(b) There exists a pseudocovering p : Cay(X , S)→ K|S | such that
Cs is a vertex-fibre of p for at least one element s ∈ S ;

(c) C satisfies

|C ||S | = |X |, C ∩ [C (S2 − {1})] = ∅.
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total perfect codes in Cayley graphs

Corollary

Let C be a normal subgroup of X . The following are equivalent:

(a) C is a total perfect code of Cay(X , S);

(b) Cay(X ,S) is a C -pseudocovering graph of K|S|;

(c) C satisfies
|X : C | = |S |, C ∩ S2 = {1}.

Definition
A pseudocovering p : H → G is called an A-pseudocovering if A is
a subgroup of Aut(H) and there exists an isomorphism
h : G → HPA

such that the quotient map H → HPA
is the

composition of p and h, where HPA
is the quotient graph of H

with respect to the partition PA of V (H) into A-orbits.
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Corollary

Let X be an abelian group. Then C ⊂ X is a total perfect code in
Cay(X ,S) iff

|C ||S | = |X | and (C − C ) ∩ (S + S) = {0}.

In particular, a subgroup C ≤ X is a total perfect code iff
|C ||S | = |X | and C ∩ (S + S) = {0}.



an example

Example

The circulant Cay(Zn, S) has a total perfect code which is a
subgroup of Zn if and only if |S | = m is a divisor of n and for any
s, s ′ ∈ S , s + s ′ is not a multiple of m unless s + s ′ ≡ 0 mod n.

In this case C = {[km] : k ∈ Z} is such a total perfect code.

If n ≥ 3 is odd, then no Cay(Zn,S) has a total perfect code which
is a subgroup of Zn.

Cay(Z18, {[1], [9], [17]}) admits C = {[0], [3], [6], [9], [12], [15]} as
a total perfect code because |S | divides 18 and the only common
element of C and S + S = {[0], [2], [8], [10], [16]} is [0].



a family of Cayley graphs having total perfect codes

Theorem
(Z 2011) Suppose G is a connected graph such that Aut(G )
contains a vertex-transitive abelian subgroup. Then G has total
perfect codes iff its degree d is of the form d = 2n for some n ≥ 1.

We give an explicit construction of total perfect codes in G when
d = 2n.

Corollary

(van Wee 1988) Qd has a total perfect code iff d = 2n for some
n ≥ 1. Moreover, if d = 2n, then for every n × d matrix M over
GF(2) with rank n and pairwise distinct columns, the null space of
M is a total perfect code.

Conjecture

(I. Gorodezky 2007) If d = 2n, n ≥ 3, then every minimum
dominating set of Qd is a total perfect code in Qd .
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work in progress

I Existence and construction of total perfect codes in specific
families of Cayley graphs

I Cartesian product of graphs

I Cartesian product of complete graphs (of non-uniform sizes)

I Cartesian product of cycles

I Direct product of cycles
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two useful survey papers

J. H. van Lint, A survey of perfect codes, Rocky Mountain J.
Math. 5 (1975), 199–224.

O. Heden, A survey of perfect codes, Advances Math. Commun. 2
(2008), 223–247.
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