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graph symmetry

There are several ways to measure the symmetry of a graph,
e.g. symmetry respect to vertices, edges, arcs, etc.

We will focus on symmetry with respect to arcs.

Information on symmetry of a graph is contained in its
automorphism group.
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Let Γ be a graph.

An automorphism of Γ is a permutation of the vertex set
which preserves adjacency and nonadjacency relations.

The group

Aut(Γ) = {automorphisms of Γ}

under the usual composition of permutations is called the
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arcs and s-arcs

An arc is an oriented edge.

One edge {α, β} gives rise to two arcs (α, β), (β, α).

An s-arc is a sequence

α0, α1, . . . , αs

of s + 1 vertices such that αi , αi+1 are adjacent and
αi−1 6= αi+1.

An oriented path of length s is an s-arc, but the converse is
not true.
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symmetric and highly arc-transitive graphs

Let G ≤ Aut(Γ).

Γ is G -vertex transitive if G is transitive on V (Γ).

Γ is G -symmetric if it is G -vertex transitive and G is transitive
on the set of arcs of Γ.

Γ is (G , s)-arc transitive if it is G -vertex transitive and G is
transitive on the set of s-arcs of Γ.

(G , s)-arc transitivity ⇒ (G , s − 1)-arc transitivity ⇒ · · · ⇒
(G , 1)-arc transitivity (= G -symmetry)
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two observations

Let
Gα := {g ∈ G : g fixes α}

be the stabiliser of α ∈ V (Γ) in G .

Γ is G -symmetric ⇔ G is transitive on V (Γ) and Gα is
transitive on Γ(α) (neighbourhood of α in Γ).

Γ is (G , 2)-arc transitive ⇔ G is transitive on V (Γ) and Gα is
2-transitive on Γ(α).

The analogy is not true when s ≥ 3.
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examples

The dodecahedron graph is A5-arc transitive.

For n ≥ 4, Kn is 2-arc transitive but not 3-arc transitive.

For n ≥ 3, Kn,n is 3-arc transitive but not 4-arc transitive.
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examples

Tutte’s 8-cage is 5-arc transitive. It is a cubic graph of girth 8 with
minimum order (30 vertices).



examples

Cycles are s-arc transitive for any s ≥ 1.



symmetric cubic graphs

Theorem

(Tutte, 1947) For s > 5, there exists no s-arc transitive cubic
graph.

Tutte’s 8-cage is the smallest 5-arc transitive cubic graph.

A lot of work has been done on constructing 5-arc transitive
graphs.

Conder found infinitely many such graphs (for all but finitely
many n, both Sn and An can be automorphism groups of
5-arc transitive cubic graphs).
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highly arc-transitive graphs

Theorem

(Weiss, 1981) For s > 7, there exists no s-arc-transitive graph
other than cycles.

Proof relies on the Classification of Finite Simple Groups.

Conder and Walker (1998) proved that there are infinitely
many 7-arc-transitive graphs (for all but finitely many n ≥ 1,
there exist two connected graphs which admit Sn, An as 7-arc
transitive groups respectively).

A lot of work has been done on 2-arc transitive graphs.
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primitivity v.s. imprimitivity

Let Γ be G -symmetric and H := Gα.

If H is a maximal subgroup of G , then G is primitive on
V (G ); otherwise G is imprimitive on V (G ).

In other words, G is imprimitive iff H < K < G for some K .

Γ is imprimitive if and only if V (Γ) admits a nontrivial
G -invariant partition B, that is, for B ∈ B and g ∈ G ,

Bg := {αg : α ∈ B} ∈ B, 1 < |B| < |V (Γ)|

where αg is the image of α under g .

In the primitive case, O’Nan-Scott Theorem (1979) provides a
very powerful tool.

We focus on the imprimitive case.
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imprimitivity and incidence geometries

Consider an “imprimitive triple” (Γ,G ,B).

ΓB: quotient graph with vertex set B such that B,C ∈ B are
adjacent iff there is at least one edge of Γ between B and C

ΓB is G -symmetric.

Γ[B,C ]: bipartite subgraph of Γ induced on B ∪ C (with
isolates deleted) for adjacent B,C ∈ B
D(B) = (B, ΓB(B), I): incidence structure with αIC for
α ∈ B and C ∈ ΓB(B) iff α is adjacent to some vertex of C

(Γ,G ,B)→ (ΓB, Γ[B,C ],D(B))

This “geometric approach” (Gardiner and Praeger 1995) is
analogous to the “composition-extension” approach in group
theory.
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example: quotient graph

The dodecahedron is A5-arc transitive and the partition with each
part containing antipodal vertices is A5-invariant. The quotient

graph is isomorphic to Petersen graph.



example: Γ[B ,C ]

B� C�B� C�

An illustration of the bipartite graph Γ[B,C ]



notation and remarks

v = |B| = block size of B

k = size of each part of Γ[B,C ]

r = |{C ∈ B : αIC}|, where α ∈ V (Γ) is fixed

GB = {g ∈ G : Bg = B} ≤ G

Lemma

D(B) is a 1-(v , k , r) design and GB ≤ Aut(D(B)) is transitive on
the point set and block set of D(B).

D(B) may contain repeated blocks.

Various cases for v , k , r can happen.

An ambitious project set up by Praeger is to understand
symmetric graphs via “normal partitions”.

Other invariant partitions are also interesting.
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2-arc transitive quotients

Γ is (G , 2)-arc transitive 6⇒ ΓB is (G , 2)-arc transitive

ΓB may be (G , 2)-arc transitive even if Γ is not.

Question

Under what circumstances is ΓB (G , 2)-arc transitive?

What can we say about Γ if ΓB is (G , 2)-arc transitive?

If Γ is (G , 2)-arc transitive, under what conditions does ΓB
inherit (G , 2)-arc transitivity from Γ?

Answered when k = v − 1 ≥ 2
[Li, Praeger & Z, Math. Proc. Camb. Phil. Soc. 2000]

Answered when k = v − 2 ≥ 1
[Iranmanesh, Praeger & Z, JCT(B) 2005]

Answered when k = 2 [Z, EJC 2008]

When k = v − 2 or 2, results are given in terms of auxiliary
graphs determined by D(B).
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k = v – 2 ≥ 1

〈B,C〉

ΓB := multigraph with vertex set B and (multi)edges 〈B,C 〉

sim(ΓB) := underlying simple graph of ΓB

sim(ΓB) is GB -vertex- and GB -edge-transitive.
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case k = v − 2 ≥ 1

Lemma

(IPZ, 2005) If k = v − 2 ≥ 1, then

(a) ΓB is connected; or

(b) v is even and sim(ΓB) is a perfect matching.

ΓB is (G , 2)-arc transitive (even if Γ is not) iff ΓB is simple
and v = 3, or ΓB = (v/2) · K2.

We know when ΓB inherits (G , 2)-arc transitivity from Γ, and

some information about Γ and ΓB in this case.

We do not know much about Γ and ΓB when ΓB is connected
(except the case v = 3).

Simplest case: sim(ΓB) is a cycle
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case k = v − 2 ≥ 1 and sim(ΓB) is a cycle

Theorem

(Li, Praeger & Z, EJC 2010) If k = v − 2 ≥ 1, ΓB is connected,
and sim(ΓB) is a cycle, then one of the following occurs (for a
certain m):

(a) v = 3 and Γ has degree m;

(b) v = 4, Γ[B,C ] = K2,2, and Γ is connected of degree 4m;

(c) v = 4, Γ[B,C ] = 2 · K2, and Γ has degree 2m.

We construct an infinite family of graphs for each case when
m = 1.

Corollary

There exists an infinite family of connected symmetric graphs Γ of
degree 4 which have a quotient graph ΓB of degree 4 such that Γ is
not a cover of ΓB.

This is the first (infinite) family of graphs with these properties.



case k = v − 2 ≥ 1 and sim(ΓB) is a cycle

Theorem

(Li, Praeger & Z, EJC 2010) If k = v − 2 ≥ 1, ΓB is connected,
and sim(ΓB) is a cycle, then one of the following occurs (for a
certain m):

(a) v = 3 and Γ has degree m;

(b) v = 4, Γ[B,C ] = K2,2, and Γ is connected of degree 4m;

(c) v = 4, Γ[B,C ] = 2 · K2, and Γ has degree 2m.

We construct an infinite family of graphs for each case when
m = 1.

Corollary

There exists an infinite family of connected symmetric graphs Γ of
degree 4 which have a quotient graph ΓB of degree 4 such that Γ is
not a cover of ΓB.

This is the first (infinite) family of graphs with these properties.



case k = v − 2 ≥ 1 and sim(ΓB) is a cycle

Question

(LPZ, 2010) If k = v − 2 and ΓB is connected, is v bounded by
some function of the degree of sim(ΓB)?

Theorem

(Xu & Z, BAustM 2010) If k = v − 2 ≥ 1, ΓB is connected and
sim(ΓB) is connected with degree d ≥ 2, then either

(a) sim(ΓB) ∼= Kv , v = d + 1, b = m(v − 1)v/2, and GB is
2-homogeneous on B; or

(b) sim(ΓB) ∼= Kv/2,v/2, v = 2d, and b = mv2/4.

Problem

Study the structure of Γ and ΓB in each case.
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2-arc transitive quotients (cont’d)

Suppose ΓB is (G , 2)-arc transitive.

Then GB is 2-transitive on ΓB(B).

Let X ,Y (⊆ B) be distinct blocks of D(B) and

λ := |X ∩ Y |, λ := |X ∩ Y |.

λ = 0 ⇒ multicovers

λ = 0 ⇒ 3-arc graph construction

λ ≥ 1, λ ≥ 1 ⇒ the dual D∗(B) of D(B) is a 2-(b, r , λ)
design with GB 2-transitive on points and transitive on blocks

Question

Which 2-point-transitive and block-transitive 2-designs can be
represented as D∗(B)?

Question

If D∗(B) is known, can we determine Γ and / or ΓB?
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a degenerate case: (λ, r) = (1, 2)

Input: Σ – regular graph, ∆ – self-paired subset of 3-arcs of Σ

Output: Γ = Γ2(Σ,∆), defined by

V (Γ) = {2-paths of Σ}

E (Γ) = {{τστ ′, ηεη′} : σ ∈ {η, η′}, ε ∈ {τ, τ ′}, two 3-arcs in ∆}

!"

#" = $"%" &" = !"%"

$"

!"#"!"%" $"&"$"%"

(a) (b) 

This is just the 2-path graph construction but restricted to ∆.
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a degenerate case: (λ, r) = (1, 2)

Theorem

(Lu & Z, JGT 2007)

(a) Let Σ be (G , 2)-arc transitive with degree ≥ 3. Let ∆ be a
self-paired G -orbit on the set of 3-arcs of Σ.

Then Γ := Γ2(Σ,∆) is G -symmetric admitting a G -invariant
B such that ΓB is (G , 2)-arc transitive and not multi-covered
by Γ and that (λ, r) = (1, 2).

(b) Any Γ such that ΓB is (G , 2)-arc transitive and not
multicovered by Γ and (λ, r) = (1, 2), is isomorphic to
Γ2(ΓB,∆) for a self-paired G -orbit ∆ on the set of 3-arcs of
ΓB.



a classification theorem

Theorem

(Z, DM 2009) All G -symmetric Γ such that ΓB ∼= Kb+1 is
(G , 2)-arc transitive and (λ, r) = (1, 2) are classified: either each
component of Γ is K3 and G is an arbitrary 3-transitive group, or
one of the following holds.

(a) Γ is the 2-path graph of Kb+1, and G = Sb+1 (b ≥ 3), Ab+1

(b ≥ 5), or Mb+1 (b = 10, 11, 22, 23).

(b) Γ is a second-type cross ratio graph.

(c) Γ is a second-type twisted cross ratio graph.

(d) Γ is one of two “affine graphs” associated with AG(d , 2)
(where d ≥ 2), b = 2d − 1, and either G = AGL(d , 2), or
d = 4 and G = Z 4

2 .A7.

(e) G = M11, b = 11, and Γ is one of two graphs from M11.

(f) G = M22, b = 21, and Γ is one of two graphs from M22.



second-type cross ratio graphs

Vertices: wuy (= yuw), where w , u, y are distinct points of

PG(1, b) = GF(b) ∪ {∞}

Adjacency: wuy ∼ uyz iff the cross ratio

c(u,w ; y , z) =
(u − y)(w − z)

(u − z)(w − y)

belongs to a certain subset of GF(b)



flag graphs

Definition

(Z, EJC 2002) Let D be a G -point- and G -block-transitive
1-design. Let Ω(σ) be the set of flags of D with point entry σ.

A G -orbit Ω on the flags of D is feasible with respect to G if

(1) |Ω(σ)| ≥ 3;

(2) L ∩ N = {σ}, for distinct (σ, L), (σ,N) ∈ Ω(σ);

(3) Gσ,L is transitive on L \ {σ}, for (σ, L) ∈ Ω; and

(4) Gστ is transitive on Ω(σ) \ {(σ, L)}, for (σ, L) ∈ Ω and
τ ∈ L \ {σ}.

((σ, L), (τ,N)) ∈ Ω× Ω is called compatible with Ω if

(5) σ 6∈ N, τ 6∈ L but σ ∈ N ′, τ ∈ L′ for some (σ, L′), (τ,N ′) ∈ Ω.

Definition

If Ψ := ((σ, L), (τ,N))G is self-paired, call Γ(D,Ω,Ψ) = (Ω,Ψ) the
G -flag graph of D wrt (Ω,Ψ).
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(2) L ∩ N = {σ}, for distinct (σ, L), (σ,N) ∈ Ω(σ);

(3) Gσ,L is transitive on L \ {σ}, for (σ, L) ∈ Ω; and

(4) Gστ is transitive on Ω(σ) \ {(σ, L)}, for (σ, L) ∈ Ω and
τ ∈ L \ {σ}.

((σ, L), (τ,N)) ∈ Ω× Ω is called compatible with Ω if

(5) σ 6∈ N, τ 6∈ L but σ ∈ N ′, τ ∈ L′ for some (σ, L′), (τ,N ′) ∈ Ω.

Definition

If Ψ := ((σ, L), (τ,N))G is self-paired, call Γ(D,Ω,Ψ) = (Ω,Ψ) the
G -flag graph of D wrt (Ω,Ψ).



flag graphs

Theorem

(Z, EJC 2002) The case k = v − 1 ≥ 2 occurs iff Γ ∼= Γ(D,Ω,Ψ)
for some (D,Ω,Ψ).

Corollary

(Z, EJC 2002) The following statements are equivalent.

(a) (Γ,G ,B) is such that k = v − 1 ≥ 2 and ΓB is a complete
graph.

(b) Γ ∼= Γ(D,Ω,Ψ) for a G -doubly point-transitive and
G -block-transitive 2-(v , k , λ) design D and some (Ω,Ψ).

The flag graph construction above is a special case of a
general construction.

Both versions were used to characterise / classify some
families of symmetric graphs.
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classification problems

Problem

Classify all graphs (Γ,G ,B) such that k = v − 1 ≥ 2 and ΓB is
complete.

Problem

Classify such graphs Γ when the design involved is a linear space.

(A linear space is a 2-design with λ = 1.)

Done when it is a trivial linear space (i.e. complete graph)

All nontrivial 2-point-transitive linear spaces are known (Kantor
1985, CFSG used).

The corresponding group G is

almost simple (that is, G has a nonabelian simple normal
subgroup N such that N E G ≤ Aut(N)); or

contains a regular normal subgroup which is elementary
abelian.
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2-point-transitive linear spaces

Theorem

(Kantor 1985) All 2-point-transitive linear spaces are known. In
the almost simple case, they are:

(a) D = PG(d − 1, q), N = PSL(d , q), d ≥ 3;

(b) D = UH(q), N = PSU(3, q), q > 2 a prime power;

(c) D = Ree unital UR(q), N = 2G2(q) is the Ree group,
q = 32s+1 ≥ 3;

(d) D = PG(3, 2), N = A7.



a classification result

Theorem

(Giulietti, Marcugini, Pambianco & Z 2010)

Let (Γ,G ,B) be such that k = v − 1 ≥ 2, ΓB is complete and the
design involved is a nontrivial linear space. Suppose G is almost
simple. Then one of the following occurs:

(a) Γ is isomorphic to one of the two graphs associated with
PG(d − 1, q), and PSL(d , q) E G ≤ PΓL(d , q), for some
d ≥ 3 and prime power q;

(b) Γ is isomorphic to a unitary graph and
PGU(3, q) E G ≤ PΓU(3, q), for a prime power q > 2;

(c) Γ is isomorphic to one of four graphs from PG(3, 2) with
order 105.



unitary groups and Hermitian unitals

q = pe > 2, p a prime

V (3, q2): 3-dimensional vector space over Fq2

σ : x 7→ xq = x̄ defines an automorphism of Fq2

β : V (3, q2)× V (3, q2)→ Fq2 : nondegenerate σ-Hermitian
form, i.e.

β(u + u′, v) = β(u, v) + β(u′, v)
β(au, bv) = abqβ(u, v)
β(u, v) = β(v,u)q

GU(3, q): group of nonsingular linear transformations of
V (3, q2) leaving β invariant

PGU(3, q) = GU(3, q)/Z , where Z is the center of GU(3, q)

PΓU(3, q) := PGU(3, q) o 〈ψ〉, where ψ : x 7→ xp, x ∈ Fq2
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unitary groups and Hermitian unitals

u1,u2 are othogonal if β(u1,u2) = 0

u is isotropic if β(u,u) = 0 and nonisotropic otherwise

Choosing an appropriate basis for V (3, q2), the set of 1-dim
subspaces spanned by isotropic vectors is given by

X = {〈x , y , z〉 : x , y , z ∈ Fq2 , x
q+1 = yzq + zyq}

where 〈x , y , z〉 is the 1-dim subspace spanned by (x , y , z).

Elements of X are called absolute points

|X | = q3 + 1

PGU(3, q) is 2-transitive on X
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unitary groups and Hermitian unitals

u1,u2 isotropic ⇒ 〈u1,u2〉 contains exactly q + 1 absolute
points

UH(q): Hermitian unital, with point set X , a block (line) is
the set of absolute points contained in some 〈u1,u2〉
UH(q) is a 2-(q3 + 1, q + 1, 1) design

Can represent a line of UH(q) by the homogenous equation of
a line of PG(2, q2), e.g.

x + 0y − z = 0

Aut(UH(q)) = PΓU(3, q)

UH(q) is (G , 2)-point-transitive, G -block transitive and G -flag
transitive, where G = PGU(3, q) o 〈ψr 〉
Flag = incident point-line pair
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unitary graphs

Definition

q = pe > 2; r ≥ 1 a divisor of 2e
λ ∈ F∗q2 : λq is in the 〈ψr 〉-orbit on Fq2 containing λ

Unitary graph Γr ,λ(q):
Vertex set = set of flags of UH(q)

(〈a1, b1, c1〉, L1) ∼ (〈a2, b2, c2〉, L2) iff there exist 0 ≤ i < 2e/r and
nonisotropic (a0, b0, c0) ∈ V (3, q2) orthogonal to both (a1, b1, c1)
and (a2, b2, c2) such that L1 and L2 are given by:

L1 :

∣∣∣∣∣∣
x a1 a0 + a2
y b1 b0 + b2

z c1 c0 + c2

∣∣∣∣∣∣ = 0

L2 :

∣∣∣∣∣∣∣
x a2 a0 + λqp

ir
a1

y b2 b0 + λqp
ir

b1

z c2 c0 + λqp
ir

c1

∣∣∣∣∣∣∣ = 0



problems

Problem (restated)

Study the following problems for various subfamilies of symmetric
graphs (e.g. k = v − 3 ≥ 1, k = 3, etc.):

Under what circumstances is ΓB (G , 2)-arc transitive?

What can we say about Γ if ΓB is (G , 2)-arc transitive?

When does ΓB inherit (G , 2)-arc transitivity from Γ?

In the third question we may assume k ≤ v/2 for otherwise the
answer is affirmative (Praeger 1985).

Problem (restated)

Study the structure of Γ and ΓB when k = v − 2 ≥ 1 and sim(ΓB)
is connected with degree ≥ 2.

Recall that sim(ΓB) ∼= Kv or Kv/2,v/2.
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problems (cont’d)

Problem (restated)

Classify (Γ,G ,B) such that k = v − 1 ≥ 2 and ΓB is complete.

Major tools:

flag graph construction

classification of 2-transitive groups:

PSL(n, q) ≤ G ≤ PΓL(n, q);
Sp2d(2) (d ≥ 2);
PSU(3, q) ≤ G ≤ PSL(3, q2);
Suz(q) (q = 22a+1 > 2);
Ree(q) (q = 32a+1 > 3);
. . .

Problem

In particular, complete the classification of Γ such that
k = v − 1 ≥ 2, ΓB is complete, and the design involved is a linear
space (affine case remaining).
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problems (cont’d)

Problem

Investigate those Γ such that ΓB is (G , 2)-arc transitive and D∗(B)
is symmetric.

Problem

In particular, classify such graphs Γ such that D∗(B) is a linear
space.
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