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m There are several ways to measure the symmetry of a graph,
e.g. symmetry respect to vertices, edges, arcs, etc.

= We will focus on symmetry with respect to arcs.

m Information on symmetry of a graph is contained in its
automorphism group.
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automorphism group

m Let [ be a graph.

m An automorphism of I is a permutation of the vertex set
which preserves adjacency and nonadjacency relations.

m The group
Aut(') = {automorphisms of '}

under the usual composition of permutations is called the
automorphism group of T.
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arcs and s-arcs

m An arc is an oriented edge.
= One edge {a, 8} gives rise to two arcs (a, (), (8, @).

m An s-arc is a sequence
ap,1,...,0

of s + 1 vertices such that a;, aj;1 are adjacent and
Qi1 # Qjt1-

m An oriented path of length s is an s-arc, but the converse is
not true.
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m Let G < Aut(lN).

m [ is G-vertex transitive if G is transitive on V/(I').

m [ is G-symmetric if it is G-vertex transitive and G is transitive
on the set of arcs of I'.

m [is (G, s)-arc transitive if it is G-vertex transitive and G is
transitive on the set of s-arcs of I'.

m (G, s)-arc transitivity = (G, s — 1)-arc transitivity = - -+ =
(G, 1)-arc transitivity (= G-symmetry)
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two observations

m Let
Gy = {g € G : g fixes a}
be the stabiliser of « € V(I') in G.

m [ is G-symmetric < G is transitive on V(I') and G, is
transitive on I'(«) (neighbourhood of a in I).

m [is (G, 2)-arc transitive < G is transitive on V(') and G, is
2-transitive on I'(«).

m The analogy is not true when s > 3.
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m The dodecahedron graph is As-arc transitive.
m For n > 4, K, is 2-arc transitive but not 3-arc transitive.

m For n > 3, K, 5 is 3-arc transitive but not 4-arc transitive.
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Tutte's 8-cage is 5-arc transitive. It is a cubic graph of girth 8 with
minimum order (30 vertices).



EINES

Cycles are s-arc transitive for any s > 1.
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symmetric cubic graphs

(Tutte, 1947) For s > 5, there exists no s-arc transitive cubic
graph.

m Tutte's 8-cage is the smallest 5-arc transitive cubic graph.
m A lot of work has been done on constructing 5-arc transitive
graphs.

m Conder found infinitely many such graphs (for all but finitely
many n, both S, and A, can be automorphism groups of
5-arc transitive cubic graphs).
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highly arc-transitive graphs

(Weiss, 1981) For s > 7, there exists no s-arc-transitive graph
other than cycles.

m Proof relies on the Classification of Finite Simple Groups.

m Conder and Walker (1998) proved that there are infinitely
many 7-arc-transitive graphs (for all but finitely many n > 1,
there exist two connected graphs which admit S,,, A, as 7-arc
transitive groups respectively).

m A lot of work has been done on 2-arc transitive graphs.
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primitivity v.s. imprimitivity

Let I be G-symmetric and H := G,,.

If H is a maximal subgroup of G, then G is primitive on
V(G); otherwise G is imprimitive on V(G).

In other words, G is imprimitive iff H < K < G for some K.

I is imprimitive if and only if V/(I') admits a nontrivial
G-invariant partition B, that is, for B € B and g € G,

BE :={af:aecB}eB, 1<|B|<|V()]

where a8 is the image of o under g.

In the primitive case, O'Nan-Scott Theorem (1979) provides a
very powerful tool.

m We focus on the imprimitive case.
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imprimitivity and incidence geometries

m Consider an “imprimitive triple” (', G, B).

m [ 3: quotient graph with vertex set B such that B, C € B are
adjacent iff there is at least one edge of I' between B and C

m 5 is G-symmetric.

m [[B, C]: bipartite subgraph of ' induced on BU C (with
isolates deleted) for adjacent B, C € B

®m D(B) = (B,T'5(B),1): incidence structure with aIC for
a € B and C € I'g(B) iff a is adjacent to some vertex of C

» (I,G,B) — (I's, B, C],D(B))

m This “geometric approach” (Gardiner and Praeger 1995) is
analogous to the “composition-extension” approach in group
theory.



example: quotient graph

The dodecahedron is As-arc transitive and the partition with each
p
part containing antipodal vertices is As-invariant. The quotient
graph is isomorphic to Petersen graph.



example: T'[B, C]
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An illustration of the bipartite graph I'[B, C]
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notation and remarks

m v = |B| = block size of B

m k = size of each part of ['[B, C]

mr=|{C e B:alC}|, where o € V(') is fixed
mnGg={geG:BE=B} <G

Lemma

D(B) is a 1-(v, k, r) design and Gg < Aut(D(B)) is transitive on
the point set and block set of D(B).

» D(B) may contain repeated blocks.
m Various cases for v, k, r can happen.

m An ambitious project set up by Praeger is to understand
symmetric graphs via “normal partitions”.

m Other invariant partitions are also interesting.
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2-arc transitive quotients

m [is (G, 2)-arc transitive % 5 is (G, 2)-arc transitive
m [ may be (G, 2)-arc transitive even if I is not.

» Under what circumstances is [ (G, 2)-arc transitive?

m What can we say about I if T is (G, 2)-arc transitive?

m IfT is (G, 2)-arc transitive, under what conditions does I3
inherit (G, 2)-arc transitivity from I'?

m Answered when k=v —12>2
[Li, Praeger & Z, Math. Proc. Camb. Phil. Soc. 2000]

m Answered when k=v —-22>1
[Iranmanesh, Praeger & Z, JCT(B) 2005]

m Answered when k =2 [Z, EJC 2008]

m When kK = v — 2 or 2, results are given in terms of auxiliary
graphs determined by D(B).
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o= °

k=v-221 3 o
=S

: .

B c

m B := multigraph with vertex set B and (multi)edges (B, C)
u sim(FB) := underlying simple graph of &
m sim(FB) is Gg-vertex- and Gg-edge-transitive.
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case k=v—-22>1

(IPZ, 2005) Ifk = v —2 > 1, then
(a) TB is connected; or

(b) v is even and sim(T'B) is a perfect matching.

m I3 is (G,2)-arc transitive (even if I is not) iff [Z is simple
and v =3, or T8 = (v/2) - Ka.

m We know when [z inherits (G, 2)-arc transitivity from I, and

m some information about I' and 'z in this case.

m We do not know much about I and 'z when B is connected
(except the case v = 3).

= Simplest case: sim(I'8) is a cycle
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Theorem

(Li, Praeger & Z, EJC 2010) If k = v — 2 > 1, g is connected,
and sim(TB) is a cycle, then one of the following occurs (for a

certain m):

(a) v=3andT has degree m;

(b) v=4,T[B,C] = K2, and T is connected of degree 4m;
(c) v=4,T[B,C] =2 Ky, and T has degree 2m.

We construct an infinite family of graphs for each case when
m=1.



case k = v —2 > 1 and sim(['B) is a cycle

Theorem

(Li, Praeger & Z, EJC 2010) If k = v — 2 > 1, g is connected,
and sim(TB) is a cycle, then one of the following occurs (for a

certain m):

(a) v=3andT has degree m;

(b) v=4,T[B,C] = K2, and T is connected of degree 4m;
(c) v=4,T[B,C] =2- Ky, and T has degree 2m.

We construct an infinite family of graphs for each case when
m=1.

Corollary

There exists an infinite family of connected symmetric graphs I' of
degree 4 which have a quotient graph I'g of degree 4 such that I is
not a cover of ['z.

This is the first (infinite) family of graphs with these properties.
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case k = v —2 > 1 and sim(['B) is a cycle

Question

(LPZ, 2010) If k = v — 2 and T8 is connected, is v bounded by
some function of the degree of sim(I'8)?

Theorem

(Xu & Z, BAustM 2010) If k = v —2 > 1, T'g is connected and
sim(T'B) is connected with degree d > 2, then either

(a) sim(Tr’) = K,,v=d+1, b=m(v—1)v/2, and Gg is
2-homogeneous on B; or
(b) sim(FB) = Kv/2,vj2, v =2d, and b = mv? /4.

Study the structure of I and ' in each case.
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m Suppose 5 is (G, 2)-arc transitive.
m Then Gg is 2-transitive on [3(B).
m Let X, Y (C B) be distinct blocks of D(B) and

A= XNY|, X:=[XNY|

m A = 0 = multicovers

® A = 0 = 3-arc graph construction

® A>1,\>1= the dual D*(B) of D(B) is a 2-(b,r, \)
design with Gg 2-transitive on points and transitive on blocks

Which 2-point-transitive and block-transitive 2-designs can be
represented as D*(B)?

Question

If D*(B) is known, can we determine I and / or ['3?



a degenerate case: (A, r) = (1,2)
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a degenerate case: (A, r) = (1,2)

m Input: ¥ — regular graph, A — self-paired subset of 3-arcs of ¥
m Output: ' =T,(X,A), defined by

V(I) = {2-paths of X}

E(N)={{ror’,nen'} : 0 € {n,n'},e € {7, 7'}, two 3-arcs in A}

(b)

This is just the 2-path graph construction but restricted to A.



a degenerate case: (A, r) = (1,2)

(Lu & Z, JGT 2007)

()

Let ¥ be (G, 2)-arc transitive with degree > 3. Let A be a
self-paired G-orbit on the set of 3-arcs of X..

Then T :=Ty(X, A) is G-symmetric admitting a G-invariant
B such that ' is (G, 2)-arc transitive and not multi-covered
by I' and that (A, r) = (1,2).

Any I such that T'g is (G, 2)-arc transitive and not
multicovered by I and (X, r) = (1,2), is isomorphic to
M2(Fp, A) for a self-paired G-orbit A on the set of 3-arcs of
5.



a classification theorem

Theorem

(Z, DM 2009) All G-symmetric I such that Tg = Kpi1 is

(G, 2)-arc transitive and (X, r) = (1,2) are classified: either each

component of [ is K3 and G is an arbitrary 3-transitive group, or

one of the following holds.

(a) T is the 2-path graph of Kp11, and G = Spi1 (b >3), Aps1
(b>5), or Mpy1 (b=10,11,22,23).

(b) T is a second-type cross ratio graph.

(c) T is a second-type twisted cross ratio graph.

(d) T is one of two “affine graphs” associated with AG(d, 2)
(where d >2), b=29 — 1, and either G = AGL(d, 2), or
d=4and G =Z}Ar.

(e) G = Mjy1, b=11, and T is one of two graphs from Mj;.
(f) G =My, b=21, and T is one of two graphs from M.



second-type cross ratio graphs

Vertices: wuy (= yuw), where w, u, y are distinct points of

PG(1, b) = GF(b) U {oc}

Adjacency: wuy ~ uyz iff the cross ratio

(u—y)(w—2)

LD = (=)

belongs to a certain subset of GF(b)



flag graphs

Definition

(Z, EJC 2002) Let D be a G-point- and G-block-transitive

1-design. Let Q(o) be the set of flags of D with point entry o.

A G-orbit Q on the flags of D is feasible with respect to G if

(1) 19(e)| = 3;

(2) LN N = {o}, for distinct (o, L), (o, N) € Q(0);

(3) Gy, is transitive on L\ {c}, for (o,L) € Q; and

(4) Ggyr is transitive on Q(o) \ {(o, L)}, for (o, L) € Q2 and
Te L\ {0}

((o, L), (m,N)) € Q x Q is called compatible with Q if

(5) o &N, ¢ Lbuto e N, el forsome (o,L),(r,N') e Q.




flag graphs

Definition

(Z, EJC 2002) Let D be a G-point- and G-block-transitive

1-design. Let Q(o) be the set of flags of D with point entry o.

A G-orbit Q on the flags of D is feasible with respect to G if

(1) 19(e)| = 3;

(2) LN N = {o}, for distinct (o, L), (o, N) € Q(0);

(3) Gy, is transitive on L\ {c}, for (o,L) € Q; and

(4) Ggyr is transitive on Q(o) \ {(o, L)}, for (o, L) € Q2 and
Te L\ {0}

((o, L), (m,N)) € Q x Q is called compatible with Q if

(5) o &N, ¢ Lbuto e N, el forsome (o,L),(r,N') e Q.

If W:=((a,L),(r, N))C is self-paired, call [(D,Q, V) = (Q, V) the
G-flag graph of D wrt (Q, V).




flag graphs

(Z, EJC 2002) The case k = v — 1> 2 occurs iff T = (D, Q, V)
for some (D,Q, V).




flag graphs

(Z, EJC 2002) The case k = v — 1> 2 occurs iff T = (D, Q, V)
for some (D,Q, V).

Corollary

(Z, EJC 2002) The following statements are equivalent.

(a) (T, G,B) is such that k = v —1 > 2 and I'g is a complete
graph.

(b) T =T (D,Q,V) for a G-doubly point-transitive and
G-block-transitive 2-(v, k, \) design D and some (2, V).




flag graphs

(Z, EJC 2002) The case k = v — 1> 2 occurs iff T = (D, Q, V)
for some (D,Q, V).

Corollary

(Z, EJC 2002) The following statements are equivalent.

(a) (T, G,B) is such that k = v —1 > 2 and I'g is a complete
graph.

(b) T =T (D,Q,V) for a G-doubly point-transitive and
G-block-transitive 2-(v, k, \) design D and some (2, V).

m The flag graph construction above is a special case of a
general construction.

m Both versions were used to characterise / classify some
families of symmetric graphs.
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Classify all graphs (T', G, B) such that k =v —1>2 and T is
complete.
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classification problems

Classify all graphs (T', G, B) such that k =v —1>2 and T is
complete.

Problem
Classify such graphs ' when the design involved is a linear space.

(A linear space is a 2-design with A = 1.)
Done when it is a trivial linear space (i.e. complete graph)

All nontrivial 2-point-transitive linear spaces are known (Kantor
1985, CFSG used).

The corresponding group G is
m almost simple (that is, G has a nonabelian simple normal
subgroup N such that N < G < Aut(N)); or
m contains a regular normal subgroup which is elementary
abelian.



2-point-transitive linear spaces

Theorem

(Kantor 1985) All 2-point-transitive linear spaces are known. In
the almost simple case, they are:

(a) D=PG(d —1,q), N = PSL(d, q), d > 3;
(b) D= Uy(q), N=PSU(3,q), g > 2 a prime power;

(c) D = Ree unital Ur(q), N = 2Gy(q) is the Ree group,
q= 32s+1 > 3;

(d) D=PG(3,2), N = A;.



a classification result

Theorem
(Giulietti, Marcugini, Pambianco & Z 2010)

Let (T', G, B) be such that k = v —1 > 2, I'g is complete and the
design involved is a nontrivial linear space. Suppose G is almost
simple. Then one of the following occurs:
(a) T is isomorphic to one of the two graphs associated with
PG(d —1,q), and PSL(d, q) < G < PT'L(d, q), for some
d > 3 and prime power q;
(b) T is isomorphic to a unitary graph and
PGU(3,q) < G < PI'U(3, q), for a prime power q > 2;
(¢) T is isomorphic to one of four graphs from PG(3,2) with
order 105.
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unitary groups and Hermitian unitals

mg=p®>2 paprime
= V(3,¢?): 3-dimensional vector space over F
m 0 x — x9 = X defines an automorphism of I

m (3:V(3,¢%) x V(3,¢%) — Fg2: nondegenerate o-Hermitian
form, i.e.
= Bu+u',v) = B(u,v) + B0, v)
m (B(au, bv) = abi(u,v)
m B(u,v) = B(v,u)?



unitary groups and Hermitian unitals

g = p®>2, paprime

V(3, g?): 3-dimensional vector space over F o

o : x — x9 = X defines an automorphism of F

B:V(3,¢%) x V(3,¢%) — [Fp2: nondegenerate o-Hermitian
form, i.e.

L 5(“ + U/,V) = ﬂ(u’v) + B(U/,V)

m (B(au, bv) = abi(u,v)

m B(u,v) = B(v,u)?
GU(3, q): group of nonsingular linear transformations of
V(3, g°) leaving 3 invariant
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unitary groups and Hermitian unitals

g = p®>2, paprime

V(3, g?): 3-dimensional vector space over F o

o : x — x9 = X defines an automorphism of F

B:V(3,¢%) x V(3,¢%) — Fg2: nondegenerate o-Hermitian
form, i.e.

L ﬂ(u + U/,V) = ﬂ(u’v) + B(U/,V)

m (B(au, bv) = abi(u,v)

m B(u,v) = B(v,u)?
GU(3, q): group of nonsingular linear transformations of
V(3, g°) leaving 3 invariant
PGU(3,q) = GU(3,q)/Z, where Z is the center of GU(3, q)
PT'U(3,q) := PGU(3, q) x (1), where ¢ : x = xP, x € F 2
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where (x,y, z) is the 1-dim subspace spanned by (x, y, z).
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unitary groups and Hermitian unitals

up, up are othogonal if S(ug,up) =0

u is isotropic if S(u,u) = 0 and nonisotropic otherwise

Choosing an appropriate basis for V/(3, %), the set of 1-dim
subspaces spanned by isotropic vectors is given by

X ={(x,y,2) 1 x,y,z € Fop,x" = yz9 + 2y%}

where (x,y, z) is the 1-dim subspace spanned by (x, y, z).
Elements of X are called absolute points

(X|=¢q>+1

PGU(3, q) is 2-transitive on X
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unitary groups and Hermitian unitals

® ug,uy isotropic = (uj,uy) contains exactly g + 1 absolute
points

m Un(q): Hermitian unital, with point set X, a block (line) is
the set of absolute points contained in some (up, uy)

= Up(q)isa2-(q®+1,qg+1,1) design

m Can represent a line of Uy(q) by the homogenous equation of
a line of PG(2, ¢°), e.g.

x+0y—-—z=0

m Aut(Up(q)) = PT'U(3, q)



unitary groups and Hermitian unitals

® ug,uy isotropic = (uj,uy) contains exactly g + 1 absolute
points

Un(q): Hermitian unital, with point set X, a block (line) is
the set of absolute points contained in some (up, uy)

Un(q) is a 2-(¢®> +1,q +1,1) design

Can represent a line of Uy(q) by the homogenous equation of
a line of PG(2, ¢°), e.g.

x+0y—z=0

Aut(Un(q)) = PT'U(3, q)
Un(q) is (G, 2)-point-transitive, G-block transitive and G-flag
transitive, where G = PGU(3, q) x (")



unitary groups and Hermitian unitals

® ug,uy isotropic = (uj,uy) contains exactly g + 1 absolute
points

m Un(q): Hermitian unital, with point set X, a block (line) is
the set of absolute points contained in some (up, uy)

m Uy(q)isa2-(q®+1,qg+1,1) design

m Can represent a line of Uy(q) by the homogenous equation of
a line of PG(2, ¢°), e.g.

x+0y—z=0

m Aut(Up(q)) = PT'U(3, q)

m Un(q) is (G, 2)-point-transitive, G-block transitive and G-flag
transitive, where G = PGU(3,q) x (¢)")

m Flag = incident point-line pair



unitary graphs

Definition
g = p¢ > 2; r>1 adivisor of 2e
A€ F,: Aisin the (¢")-orbit on FF 2 containing A

Unitary graph ', x(q):
Vertex set = set of flags of Uy(q)

((a1, b1, c1), L1) ~ ((az, b2, c2), Lp) iff there exist 0 < i < 2e/r and
nonisotropic (ap, by, co) € V/(3, g?) orthogonal to both (a1, by, c1)
and (a2, b2, ¢p) such that L; and L, are given by:

X ap ap+ a
L1:y b1 b()—|-b2 =0
Z € C+ o

X a ag+ )\qp’:'al
Ly:|y b bo—i-)\qp"rbl =0
z C© -+ \P" c1



problems

Problem (restated)

Study the following problems for various subfamilies of symmetric
graphs (e.g. k=v—32>1, k=3, etc.):

» Under what circumstances is [ (G, 2)-arc transitive?

m What can we say about I if Tz is (G, 2)-arc transitive?

u When does I'g inherit (G, 2)-arc transitivity from I'?

In the third question we may assume k < v/2 for otherwise the
answer is affirmative (Praeger 1985).




Problem (restated)

Study the following problems for various subfamilies of symmetric
graphs (e.g. k=v—32>1, k=3, etc.):

m Under what circumstances is Iz (G, 2)-arc transitive?

m What can we say about I if [ is (G, 2)-arc transitive?

u When does I'g inherit (G, 2)-arc transitivity from I'?

In the third question we may assume k < v/2 for otherwise the
answer is affirmative (Praeger 1985).

Problem (restated)

Study the structure of T and 'z when k = v — 2 > 1 and sim(T'B)
is connected with degree > 2.

Recall that sim(F8) = K, or K, , ».



problems (cont'd)

Problem (restated)

Classify (I', G, B) such that k = v —1 > 2 and I'g is complete.

Major tools:

m flag graph construction

m classification of 2-transitive groups:
PSL(n,q) < G < PTL(n,q);
Spag(2) (d > 2);
PSU(3,q) < G < PSL(3, ¢°);
Suz(q) (q = 2" > 2);
Ree(q) (q = 3% > 3);



problems (cont'd)

Problem (restated)
Classify (T', G, B) such that k = v —1 > 2 and ' is complete.

Major tools:

m flag graph construction

m classification of 2-transitive groups:
PSL(n,q) < G < PTL(n,q);
Sp2y(2) (d = 2);

PSU(3,q) < G < PSL(3, ¢%);
Suz(q) (q = 2" > 2);

Ree(q) (g = 3% > 3);

Problem

In particular, complete the classification of [ such that
k=v—12>2, g iscomplete, and the design involved is a linear
space (affine case remaining).



problems (cont'd)

Investigate those I' such that I'p is (G, 2)-arc transitive and D*(B)
is symmetric.




problems (cont'd)

Investigate those I' such that I'p is (G, 2)-arc transitive and D*(B)
is symmetric.

Problem

In particular, classify such graphs I such that D*(B) is a linear
space.
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