Symmetric graphs and transitive block designs

Sanming Zhou

Department of Mathematics and Statistics The University of Melbourne Australia

October 30, 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

1 Symmetric graphs

2 2-Arc transitive quotients

3 Flag graphs

4 Unitary graphs

There are several ways to measure the symmetry of a graph, e.g. symmetry respect to vertices, edges, arcs, etc.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

There are several ways to measure the symmetry of a graph, e.g. symmetry respect to vertices, edges, arcs, etc.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

• We will focus on symmetry with respect to arcs.

There are several ways to measure the symmetry of a graph, e.g. symmetry respect to vertices, edges, arcs, etc.

イロト 不得 トイヨト イヨト ヨー ろくぐ

- We will focus on symmetry with respect to arcs.
- Information on symmetry of a graph is contained in its automorphism group.

Let Γ be a graph.

- Let Γ be a graph.
- An automorphism of Γ is a permutation of the vertex set which preserves adjacency and nonadjacency relations.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

- Let Γ be a graph.
- An automorphism of Γ is a permutation of the vertex set which preserves adjacency and nonadjacency relations.
- The group

 $\operatorname{Aut}(\Gamma) = \{ \operatorname{automorphisms} \text{ of } \Gamma \}$

イロト 不得 トイヨト イヨト ヨー ろくぐ

under the usual composition of permutations is called the automorphism group of Γ .

An arc is an oriented edge.

- An arc is an oriented edge.
- One edge $\{\alpha, \beta\}$ gives rise to two arcs (α, β) , (β, α) .

・ロト・日本・モト・モー・ シック

- An arc is an oriented edge.
- One edge $\{\alpha, \beta\}$ gives rise to two arcs (α, β) , (β, α) .
- An s-arc is a sequence

 $\alpha_0, \alpha_1, \ldots, \alpha_s$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

of s + 1 vertices such that α_i, α_{i+1} are adjacent and $\alpha_{i-1} \neq \alpha_{i+1}$.

- An arc is an oriented edge.
- One edge $\{\alpha, \beta\}$ gives rise to two arcs (α, β) , (β, α) .
- An s-arc is a sequence

$$\alpha_0, \alpha_1, \ldots, \alpha_s$$

of s + 1 vertices such that α_i, α_{i+1} are adjacent and $\alpha_{i-1} \neq \alpha_{i+1}$.

An oriented path of length s is an s-arc, but the converse is not true.

・ロト・日本・モト・モー・ シックの

• Let $G \leq \operatorname{Aut}(\Gamma)$.

• Let $G \leq \operatorname{Aut}(\Gamma)$.

• Γ is *G*-vertex transitive if *G* is transitive on $V(\Gamma)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

- Let $G \leq \operatorname{Aut}(\Gamma)$.
- Γ is *G*-vertex transitive if *G* is transitive on $V(\Gamma)$.
- Γ is G-symmetric if it is G-vertex transitive and G is transitive on the set of arcs of Γ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Let $G \leq \operatorname{Aut}(\Gamma)$.
- Γ is *G*-vertex transitive if *G* is transitive on $V(\Gamma)$.
- Γ is G-symmetric if it is G-vertex transitive and G is transitive on the set of arcs of Γ.

イロト 不得 トイヨト イヨト ヨー ろくぐ

• Γ is (G, s)-arc transitive if it is G-vertex transitive and G is transitive on the set of s-arcs of Γ .

- Let $G \leq \operatorname{Aut}(\Gamma)$.
- Γ is *G*-vertex transitive if *G* is transitive on $V(\Gamma)$.
- Γ is G-symmetric if it is G-vertex transitive and G is transitive on the set of arcs of Γ.
- Γ is (G, s)-arc transitive if it is G-vertex transitive and G is transitive on the set of s-arcs of Γ .
- (G, s)-arc transitivity \Rightarrow (G, s 1)-arc transitivity $\Rightarrow \cdots \Rightarrow$ (G, 1)-arc transitivity (= G-symmetry)

$$G_{\alpha} := \{ g \in G : g \text{ fixes } \alpha \}$$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖▶ 圖 のへで

be the stabiliser of $\alpha \in V(\Gamma)$ in G.

$$G_{\alpha} := \{g \in G : g \text{ fixes } \alpha\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

be the stabiliser of $\alpha \in V(\Gamma)$ in G.

■ Γ is G-symmetric \Leftrightarrow G is transitive on V(Γ) and G_α is transitive on Γ(α) (neighbourhood of α in Γ).

$$G_{\alpha} := \{ g \in G : g \text{ fixes } \alpha \}$$

be the stabiliser of $\alpha \in V(\Gamma)$ in G.

- Γ is G-symmetric \Leftrightarrow G is transitive on V(Γ) and G_α is transitive on Γ(α) (neighbourhood of α in Γ).
- Γ is (G, 2)-arc transitive $\Leftrightarrow G$ is transitive on $V(\Gamma)$ and G_{α} is 2-transitive on $\Gamma(\alpha)$.

$$G_{\alpha} := \{g \in G : g \text{ fixes } \alpha\}$$

be the stabiliser of $\alpha \in V(\Gamma)$ in G.

- Γ is G-symmetric \Leftrightarrow G is transitive on V(Γ) and G_α is transitive on Γ(α) (neighbourhood of α in Γ).
- Γ is (G, 2)-arc transitive \Leftrightarrow G is transitive on V(Γ) and G_α is 2-transitive on Γ(α).

イロト 不得 トイヨト イヨト ヨー ろくぐ

• The analogy is not true when $s \ge 3$.

• The dodecahedron graph is A₅-arc transitive.

examples

- The dodecahedron graph is A₅-arc transitive.
- For $n \ge 4$, K_n is 2-arc transitive but not 3-arc transitive.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

examples

- The dodecahedron graph is A₅-arc transitive.
- For $n \ge 4$, K_n is 2-arc transitive but not 3-arc transitive.
- For $n \ge 3$, $K_{n,n}$ is 3-arc transitive but not 4-arc transitive.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

examples

Tutte's 8-cage is 5-arc transitive. It is a cubic graph of girth 8 with minimum order (30 vertices).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Cycles are *s*-arc transitive for any $s \ge 1$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

(Tutte, 1947) For s > 5, there exists no s-arc transitive cubic graph.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

(Tutte, 1947) For s > 5, there exists no s-arc transitive cubic graph.

- Tutte's 8-cage is the smallest 5-arc transitive cubic graph.
- A lot of work has been done on constructing 5-arc transitive graphs.

イロト 不得 トイヨト イヨト ヨー ろくぐ

(Tutte, 1947) For s > 5, there exists no s-arc transitive cubic graph.

- Tutte's 8-cage is the smallest 5-arc transitive cubic graph.
- A lot of work has been done on constructing 5-arc transitive graphs.
- Conder found infinitely many such graphs (for all but finitely many n, both S_n and A_n can be automorphism groups of 5-arc transitive cubic graphs).

イロト 不得 トイヨト イヨト ヨー ろくぐ

(Weiss, 1981) For s > 7, there exists no s-arc-transitive graph other than cycles.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

(Weiss, 1981) For s > 7, there exists no s-arc-transitive graph other than cycles.

- Proof relies on the Classification of Finite Simple Groups.
- Conder and Walker (1998) proved that there are infinitely many 7-arc-transitive graphs (for all but finitely many $n \ge 1$, there exist two connected graphs which admit S_n , A_n as 7-arc transitive groups respectively).

イロト 不得 トイヨト イヨト ヨー ろくぐ

(Weiss, 1981) For s > 7, there exists no s-arc-transitive graph other than cycles.

- Proof relies on the Classification of Finite Simple Groups.
- Conder and Walker (1998) proved that there are infinitely many 7-arc-transitive graphs (for all but finitely many $n \ge 1$, there exist two connected graphs which admit S_n , A_n as 7-arc transitive groups respectively).

イロト 不得 トイヨト イヨト ヨー ろくぐ

• A lot of work has been done on 2-arc transitive graphs.

• Let Γ be *G*-symmetric and $H := G_{\alpha}$.

- Let Γ be *G*-symmetric and $H := G_{\alpha}$.
- If *H* is a maximal subgroup of *G*, then *G* is primitive on *V*(*G*); otherwise *G* is imprimitive on *V*(*G*).

- Let Γ be *G*-symmetric and $H := G_{\alpha}$.
- If *H* is a maximal subgroup of *G*, then *G* is primitive on *V*(*G*); otherwise *G* is imprimitive on *V*(*G*).
- In other words, G is imprimitive iff H < K < G for some K.

イロト 不得 トイヨト イヨト ヨー ろくぐ

- Let Γ be *G*-symmetric and $H := G_{\alpha}$.
- If *H* is a maximal subgroup of *G*, then *G* is primitive on *V*(*G*); otherwise *G* is imprimitive on *V*(*G*).
- In other words, G is imprimitive iff H < K < G for some K.
- Γ is imprimitive if and only if V(Γ) admits a nontrivial G-invariant partition B, that is, for B ∈ B and g ∈ G,

$$B^{g} := \{ \alpha^{g} : \alpha \in B \} \in \mathcal{B}, \ 1 < |B| < |V(\Gamma)|$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

where α^{g} is the image of α under g.
primitivity v.s. imprimitivity

- Let Γ be *G*-symmetric and $H := G_{\alpha}$.
- If *H* is a maximal subgroup of *G*, then *G* is primitive on *V*(*G*); otherwise *G* is imprimitive on *V*(*G*).
- In other words, G is imprimitive iff H < K < G for some K.
- Γ is imprimitive if and only if V(Γ) admits a nontrivial *G*-invariant partition \mathcal{B} , that is, for $B \in \mathcal{B}$ and $g \in G$,

$$B^{g} := \{ \alpha^{g} : \alpha \in B \} \in \mathcal{B}, \ 1 < |B| < |V(\Gamma)|$$

where α^{g} is the image of α under g.

In the primitive case, O'Nan-Scott Theorem (1979) provides a very powerful tool.

primitivity v.s. imprimitivity

- Let Γ be *G*-symmetric and $H := G_{\alpha}$.
- If *H* is a maximal subgroup of *G*, then *G* is primitive on *V*(*G*); otherwise *G* is imprimitive on *V*(*G*).
- In other words, G is imprimitive iff H < K < G for some K.
- Γ is imprimitive if and only if V(Γ) admits a nontrivial *G*-invariant partition \mathcal{B} , that is, for $B \in \mathcal{B}$ and $g \in G$,

$$B^{g} := \{ \alpha^{g} : \alpha \in B \} \in \mathcal{B}, \ 1 < |B| < |V(\Gamma)|$$

where α^{g} is the image of α under g.

- In the primitive case, O'Nan-Scott Theorem (1979) provides a very powerful tool.
- We focus on the imprimitive case.

• Consider an "imprimitive triple" (Γ , G, \mathcal{B}).

- Consider an "imprimitive triple" (Γ, G, \mathcal{B}) .
- $\Gamma_{\mathcal{B}}$: quotient graph with vertex set \mathcal{B} such that $B, C \in \mathcal{B}$ are adjacent iff there is at least one edge of Γ between B and C

- Consider an "imprimitive triple" (Γ , G, \mathcal{B}).
- $\Gamma_{\mathcal{B}}$: quotient graph with vertex set \mathcal{B} such that $B, C \in \mathcal{B}$ are adjacent iff there is at least one edge of Γ between B and C

イロト 不得 トイヨト イヨト ヨー ろくぐ

• $\Gamma_{\mathcal{B}}$ is *G*-symmetric.

- Consider an "imprimitive triple" (Γ , G, \mathcal{B}).
- $\Gamma_{\mathcal{B}}$: quotient graph with vertex set \mathcal{B} such that $B, C \in \mathcal{B}$ are adjacent iff there is at least one edge of Γ between B and C

- $\Gamma_{\mathcal{B}}$ is *G*-symmetric.
- $\Gamma[B, C]$: bipartite subgraph of Γ induced on $B \cup C$ (with isolates deleted) for adjacent $B, C \in B$

- Consider an "imprimitive triple" (Γ , G, \mathcal{B}).
- $\Gamma_{\mathcal{B}}$: quotient graph with vertex set \mathcal{B} such that $B, C \in \mathcal{B}$ are adjacent iff there is at least one edge of Γ between B and C
- $\Gamma_{\mathcal{B}}$ is *G*-symmetric.
- $\Gamma[B, C]$: bipartite subgraph of Γ induced on $B \cup C$ (with isolates deleted) for adjacent $B, C \in B$
- $\mathcal{D}(B) = (B, \Gamma_{\mathcal{B}}(B), I)$: incidence structure with αIC for $\alpha \in B$ and $C \in \Gamma_{\mathcal{B}}(B)$ iff α is adjacent to some vertex of C

- Consider an "imprimitive triple" (Γ , G, \mathcal{B}).
- $\Gamma_{\mathcal{B}}$: quotient graph with vertex set \mathcal{B} such that $B, C \in \mathcal{B}$ are adjacent iff there is at least one edge of Γ between B and C
- $\Gamma_{\mathcal{B}}$ is *G*-symmetric.
- $\Gamma[B, C]$: bipartite subgraph of Γ induced on $B \cup C$ (with isolates deleted) for adjacent $B, C \in B$
- $\mathcal{D}(B) = (B, \Gamma_{\mathcal{B}}(B), I)$: incidence structure with αIC for $\alpha \in B$ and $C \in \Gamma_{\mathcal{B}}(B)$ iff α is adjacent to some vertex of C

イロト 不得 トイヨト イヨト ヨー ろくぐ

• $(\Gamma, G, \mathcal{B}) \rightarrow (\Gamma_{\mathcal{B}}, \Gamma[B, C], \mathcal{D}(B))$

- Consider an "imprimitive triple" (Γ , G, \mathcal{B}).
- $\Gamma_{\mathcal{B}}$: quotient graph with vertex set \mathcal{B} such that $B, C \in \mathcal{B}$ are adjacent iff there is at least one edge of Γ between B and C
- $\Gamma_{\mathcal{B}}$ is *G*-symmetric.
- $\Gamma[B, C]$: bipartite subgraph of Γ induced on $B \cup C$ (with isolates deleted) for adjacent $B, C \in B$
- $\mathcal{D}(B) = (B, \Gamma_{\mathcal{B}}(B), I)$: incidence structure with αIC for $\alpha \in B$ and $C \in \Gamma_{\mathcal{B}}(B)$ iff α is adjacent to some vertex of C
- $(\Gamma, G, \mathcal{B}) \rightarrow (\Gamma_{\mathcal{B}}, \Gamma[B, C], \mathcal{D}(B))$
- This "geometric approach" (Gardiner and Praeger 1995) is analogous to the "composition-extension" approach in group theory.

example: quotient graph

The dodecahedron is A_5 -arc transitive and the partition with each part containing antipodal vertices is A_5 -invariant. The quotient graph is isomorphic to Petersen graph.

example: $\Gamma[B, C]$

An illustration of the bipartite graph $\Gamma[B, C]$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

•
$$v = |B| =$$
block size of \mathcal{B}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- $v = |B| = \text{block size of } \mathcal{B}$
- $k = \text{size of each part of } \Gamma[B, C]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

- $v = |B| = \text{block size of } \mathcal{B}$
- $k = \text{size of each part of } \Gamma[B, C]$
- $r = |\{C \in \mathcal{B} : \alpha IC\}|$, where $\alpha \in V(\Gamma)$ is fixed

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$v = |B| = \text{block size of } \mathcal{B}$$

•
$$k = \text{size of each part of } \Gamma[B, C]$$

•
$$r = |\{C \in \mathcal{B} : \alpha IC\}|$$
, where $\alpha \in V(\Gamma)$ is fixed

$$G_B = \{g \in G : B^g = B\} \le G$$

Lemma

 $\mathcal{D}(B)$ is a 1-(v, k, r) design and $G_B \leq \operatorname{Aut}(\mathcal{D}(B))$ is transitive on the point set and block set of $\mathcal{D}(B)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

$$v = |B| =$$
block size of \mathcal{B}

•
$$k = \text{size of each part of } \Gamma[B, C]$$

•
$$r = |\{C \in \mathcal{B} : \alpha IC\}|$$
, where $\alpha \in V(\Gamma)$ is fixed

$$G_B = \{g \in G : B^g = B\} \le G$$

Lemma

 $\mathcal{D}(B)$ is a 1-(v, k, r) design and $G_B \leq \operatorname{Aut}(\mathcal{D}(B))$ is transitive on the point set and block set of $\mathcal{D}(B)$.

• $\mathcal{D}(B)$ may contain repeated blocks.

$$v = |B| = block size of B$$

•
$$k = \text{size of each part of } \Gamma[B, C]$$

•
$$r = |\{C \in \mathcal{B} : \alpha IC\}|$$
, where $\alpha \in V(\Gamma)$ is fixed

$$G_B = \{g \in G : B^g = B\} \le G$$

Lemma

 $\mathcal{D}(B)$ is a 1-(v, k, r) design and $G_B \leq \operatorname{Aut}(\mathcal{D}(B))$ is transitive on the point set and block set of $\mathcal{D}(B)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 シへ⊙

- $\mathcal{D}(B)$ may contain repeated blocks.
- Various cases for v, k, r can happen.

$$v = |B| = block size of B$$

•
$$k = \text{size of each part of } \Gamma[B, C]$$

•
$$r = |\{C \in \mathcal{B} : \alpha IC\}|$$
, where $\alpha \in V(\Gamma)$ is fixed

$$G_B = \{g \in G : B^g = B\} \le G$$

Lemma

 $\mathcal{D}(B)$ is a 1-(v, k, r) design and $G_B \leq \operatorname{Aut}(\mathcal{D}(B))$ is transitive on the point set and block set of $\mathcal{D}(B)$.

- $\mathcal{D}(B)$ may contain repeated blocks.
- Various cases for v, k, r can happen.
- An ambitious project set up by Praeger is to understand symmetric graphs via "normal partitions".

•
$$v = |B| = \text{block size of } \mathcal{B}$$

•
$$k = \text{size of each part of } \Gamma[B, C]$$

•
$$r = |\{C \in \mathcal{B} : \alpha IC\}|$$
, where $\alpha \in V(\Gamma)$ is fixed

$$G_B = \{g \in G : B^g = B\} \le G$$

Lemma

 $\mathcal{D}(B)$ is a 1-(v, k, r) design and $G_B \leq \operatorname{Aut}(\mathcal{D}(B))$ is transitive on the point set and block set of $\mathcal{D}(B)$.

- $\mathcal{D}(B)$ may contain repeated blocks.
- Various cases for v, k, r can happen.
- An ambitious project set up by Praeger is to understand symmetric graphs via "normal partitions".
- Other invariant partitions are also interesting.

• Γ is (G, 2)-arc transitive $\neq \Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive

(ロ)、

Γ is (G,2)-arc transitive ≠ Γ_B is (G,2)-arc transitive
Γ_B may be (G,2)-arc transitive even if Γ is not.

・ロト・日本・モト・モー・ シックの

■ Γ is (G, 2)-arc transitive $\Rightarrow \Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive ■ $\Gamma_{\mathcal{B}}$ may be (G, 2)-arc transitive even if Γ is not.

Question

• Under what circumstances is $\Gamma_{\mathcal{B}}(G, 2)$ -arc transitive?

• Γ is (G, 2)-arc transitive $\neq \Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive • $\Gamma_{\mathcal{B}}$ may be (G, 2)-arc transitive even if Γ is not.

Question

- Under what circumstances is $\Gamma_{\mathcal{B}}$ (G,2)-arc transitive?
- What can we say about Γ if $\Gamma_{\mathcal{B}}$ is (G,2)-arc transitive?

■ Γ is (G, 2)-arc transitive $\Rightarrow \Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive ■ $\Gamma_{\mathcal{B}}$ may be (G, 2)-arc transitive even if Γ is not.

Question

- Under what circumstances is Γ_B (G, 2)-arc transitive?
- What can we say about Γ if Γ_B is (G,2)-arc transitive?
- If Γ is (G,2)-arc transitive, under what conditions does Γ_B inherit (G,2)-arc transitivity from Γ?

■ Γ is (G, 2)-arc transitive $\Rightarrow \Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive ■ $\Gamma_{\mathcal{B}}$ may be (G, 2)-arc transitive even if Γ is not.

Question

- Under what circumstances is Γ_B (G, 2)-arc transitive?
- What can we say about Γ if Γ_B is (G, 2)-arc transitive?
- If Γ is (G,2)-arc transitive, under what conditions does Γ_B inherit (G,2)-arc transitivity from Γ?
- Answered when $k = v 1 \ge 2$ [Li, Praeger & Z, Math. Proc. Camb. Phil. Soc. 2000]

■ Γ is (G, 2)-arc transitive $\Rightarrow \Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive ■ $\Gamma_{\mathcal{B}}$ may be (G, 2)-arc transitive even if Γ is not.

Question

- Under what circumstances is Γ_B (G, 2)-arc transitive?
- What can we say about Γ if Γ_B is (G, 2)-arc transitive?
- If Γ is (G,2)-arc transitive, under what conditions does Γ_B inherit (G,2)-arc transitivity from Γ?
- Answered when $k = v 1 \ge 2$ [Li, Praeger & Z, Math. Proc. Camb. Phil. Soc. 2000]

イロト 不得 トイヨト イヨト ヨー ろくぐ

Answered when $k = v - 2 \ge 1$ [Iranmanesh, Praeger & Z, JCT(B) 2005]

■ Γ is (G, 2)-arc transitive $\Rightarrow \Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive ■ $\Gamma_{\mathcal{B}}$ may be (G, 2)-arc transitive even if Γ is not.

Question

- Under what circumstances is Γ_B (G, 2)-arc transitive?
- What can we say about Γ if Γ_B is (G, 2)-arc transitive?
- If Γ is (G,2)-arc transitive, under what conditions does Γ_B inherit (G,2)-arc transitivity from Γ?
- Answered when $k = v 1 \ge 2$ [Li, Praeger & Z, Math. Proc. Camb. Phil. Soc. 2000]
- Answered when k = v − 2 ≥ 1 [Iranmanesh, Praeger & Z, JCT(B) 2005]
- Answered when k = 2 [Z, EJC 2008]

■ Γ is (G, 2)-arc transitive $\Rightarrow \Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive ■ $\Gamma_{\mathcal{B}}$ may be (G, 2)-arc transitive even if Γ is not.

Question

- Under what circumstances is $\Gamma_{\mathcal{B}}$ (G,2)-arc transitive?
- What can we say about Γ if Γ_B is (G, 2)-arc transitive?
- If Γ is (G,2)-arc transitive, under what conditions does Γ_B inherit (G,2)-arc transitivity from Γ?
- Answered when $k = v 1 \ge 2$ [Li, Praeger & Z, Math. Proc. Camb. Phil. Soc. 2000]
- Answered when k = v − 2 ≥ 1 [Iranmanesh, Praeger & Z, JCT(B) 2005]
- Answered when k = 2 [Z, EJC 2008]
- When k = v 2 or 2, results are given in terms of auxiliary graphs determined by $\mathcal{D}(B)$.

• $\Gamma^B :=$ multigraph with vertex set *B* and (multi)edges $\langle B, C \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Γ^B := multigraph with vertex set B and (multi)edges (B, C)
 sim(Γ^B) := underlying simple graph of Γ^B

Γ^B := multigraph with vertex set B and (multi)edges (B, C)
sim(Γ^B) := underlying simple graph of Γ^B
sim(Γ^B) is G_B-vertex- and G_B-edge-transitive.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Lemma

(IPZ, 2005) If
$$k = v - 2 \ge 1$$
, then

- (a) Γ^B is connected; or
- (b) v is even and $sim(\Gamma^B)$ is a perfect matching.

Γ_B is (G, 2)-arc transitive (even if Γ is not) iff Γ^B is simple and v = 3, or Γ^B = (v/2) ⋅ K₂.

Lemma

(IPZ, 2005) If
$$k = v - 2 \ge 1$$
, then

- (a) Γ^B is connected; or
- (b) v is even and $sim(\Gamma^B)$ is a perfect matching.
 - Γ_B is (G, 2)-arc transitive (even if Γ is not) iff Γ^B is simple and v = 3, or Γ^B = (v/2) · K₂.
 - We know when $\Gamma_{\mathcal{B}}$ inherits (G, 2)-arc transitivity from Γ , and

Lemma

(IPZ, 2005) If
$$k = v - 2 \ge 1$$
, then

- (a) Γ^B is connected; or
- (b) v is even and $sim(\Gamma^B)$ is a perfect matching.
 - Γ_B is (G, 2)-arc transitive (even if Γ is not) iff Γ^B is simple and v = 3, or Γ^B = (v/2) · K₂.
 - We know when $\Gamma_{\mathcal{B}}$ inherits (*G*, 2)-arc transitivity from Γ , and

some information about Γ and Γ_B in this case.

Lemma

(IPZ, 2005) If
$$k = v - 2 \ge 1$$
, then

- (a) Γ^B is connected; or
- (b) v is even and $sim(\Gamma^B)$ is a perfect matching.
 - Γ_B is (G, 2)-arc transitive (even if Γ is not) iff Γ^B is simple and v = 3, or Γ^B = (v/2) ⋅ K₂.
 - We know when $\Gamma_{\mathcal{B}}$ inherits (G, 2)-arc transitivity from Γ , and
 - **some information about** Γ and $\Gamma_{\mathcal{B}}$ in this case.
 - We do not know much about Γ and Γ_B when Γ^B is connected (except the case v = 3).
Lemma

(IPZ, 2005) If
$$k = v - 2 \ge 1$$
, then

- (a) Γ^B is connected; or
- (b) v is even and $sim(\Gamma^B)$ is a perfect matching.
 - Γ_B is (G, 2)-arc transitive (even if Γ is not) iff Γ^B is simple and v = 3, or Γ^B = (v/2) ⋅ K₂.
 - We know when $\Gamma_{\mathcal{B}}$ inherits (G, 2)-arc transitivity from Γ , and
 - **some information about** Γ and $\Gamma_{\mathcal{B}}$ in this case.
 - We do not know much about Γ and Γ_B when Γ^B is connected (except the case v = 3).
 - Simplest case: sim(Γ^B) is a cycle

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ⊙

Theorem

(Li, Praeger & Z, EJC 2010) If $k = v - 2 \ge 1$, Γ_B is connected, and sim(Γ^B) is a cycle, then one of the following occurs (for a certain m):

(a) v = 3 and Γ has degree m;

(b) v = 4, $\Gamma[B, C] = K_{2,2}$, and Γ is connected of degree 4m;

(c) v = 4, $\Gamma[B, C] = 2 \cdot K_2$, and Γ has degree 2m.

We construct an infinite family of graphs for each case when m = 1.

イロト 不得 トイヨト イヨト ヨー うへつ

Theorem

(Li, Praeger & Z, EJC 2010) If $k = v - 2 \ge 1$, $\Gamma_{\mathcal{B}}$ is connected, and sim(Γ^{B}) is a cycle, then one of the following occurs (for a certain m):

(a) v = 3 and Γ has degree m;

(b) v = 4, $\Gamma[B, C] = K_{2,2}$, and Γ is connected of degree 4m;

(c) v = 4, $\Gamma[B, C] = 2 \cdot K_2$, and Γ has degree 2m.

We construct an infinite family of graphs for each case when m = 1.

Corollary

There exists an infinite family of connected symmetric graphs Γ of degree 4 which have a quotient graph $\Gamma_{\mathcal{B}}$ of degree 4 such that Γ is not a cover of $\Gamma_{\mathcal{B}}$.

This is the first (infinite) family of graphs with these properties.

Question

(LPZ, 2010) If k = v - 2 and Γ^B is connected, is v bounded by some function of the degree of $sim(\Gamma^B)$?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Question

(LPZ, 2010) If k = v - 2 and Γ^B is connected, is v bounded by some function of the degree of $sim(\Gamma^B)$?

Theorem

(Xu & Z, BAustM 2010) If $k = v - 2 \ge 1$, Γ_B is connected and sim(Γ^B) is connected with degree $d \ge 2$, then either (a) sim(Γ^B) $\cong K_v$, v = d + 1, b = m(v - 1)v/2, and G_B is 2-homogeneous on B; or (b) sim(Γ^B) $\cong K_{v/2,v/2}$, v = 2d, and $b = mv^2/4$.

イロト 不得 トイヨト イヨト ヨー うへつ

Question

(LPZ, 2010) If k = v - 2 and Γ^B is connected, is v bounded by some function of the degree of $sim(\Gamma^B)$?

Theorem

(Xu & Z, BAustM 2010) If $k = v - 2 \ge 1$, $\Gamma_{\mathcal{B}}$ is connected and $sim(\Gamma^{B})$ is connected with degree $d \ge 2$, then either (a) $sim(\Gamma^{B}) \cong K_{v}$, v = d + 1, b = m(v - 1)v/2, and G_{B} is 2-homogeneous on B; or

イロト 不得 トイヨト イヨト ヨー ろくで

(b)
$$sim(\Gamma^B) \cong K_{v/2,v/2}, v = 2d$$
, and $b = mv^2/4$.

Problem

Study the structure of Γ and $\Gamma_{\mathcal{B}}$ in each case.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ∽ ��?

Suppose $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive.

- Suppose $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive.
- Then G_B is 2-transitive on $\Gamma_{\mathcal{B}}(B)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

- Suppose $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive.
- Then G_B is 2-transitive on $\Gamma_{\mathcal{B}}(B)$.
- Let $X, Y (\subseteq B)$ be distinct blocks of $\mathcal{D}(B)$ and

$$\lambda := |X \cap Y|, \ \overline{\lambda} := |\overline{X} \cap \overline{Y}|.$$

- Suppose $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive.
- Then G_B is 2-transitive on $\Gamma_{\mathcal{B}}(B)$.
- Let $X, Y (\subseteq B)$ be distinct blocks of $\mathcal{D}(B)$ and

$$\lambda := |X \cap Y|, \ \overline{\lambda} := |\overline{X} \cap \overline{Y}|.$$

•
$$\lambda = 0 \Rightarrow$$
 multicovers

- Suppose $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive.
- Then G_B is 2-transitive on $\Gamma_{\mathcal{B}}(B)$.
- Let $X, Y \ (\subseteq B)$ be distinct blocks of $\mathcal{D}(B)$ and

$$\lambda := |X \cap Y|, \ \overline{\lambda} := |\overline{X} \cap \overline{Y}|.$$

•
$$\lambda = 0 \Rightarrow$$
 multicovers
• $\overline{\lambda} = 0 \Rightarrow$ 3-arc graph construction

- Suppose $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive.
- Then G_B is 2-transitive on $\Gamma_{\mathcal{B}}(B)$.
- Let $X, Y (\subseteq B)$ be distinct blocks of $\mathcal{D}(B)$ and

 $\lambda := |X \cap Y|, \ \overline{\lambda} := |\overline{X} \cap \overline{Y}|.$

λ = 0 ⇒ multicovers
λ̄ = 0 ⇒ 3-arc graph construction
λ ≥ 1, λ̄ ≥ 1 ⇒ the dual D*(B) of D(B) is a 2-(b, r, λ) design with G_B 2-transitive on points and transitive on blocks

- Suppose $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive.
- Then G_B is 2-transitive on $\Gamma_{\mathcal{B}}(B)$.
- Let $X, Y (\subseteq B)$ be distinct blocks of $\mathcal{D}(B)$ and

 $\lambda := |X \cap Y|, \ \overline{\lambda} := |\overline{X} \cap \overline{Y}|.$

λ = 0 ⇒ multicovers
λ̄ = 0 ⇒ 3-arc graph construction
λ ≥ 1, λ̄ ≥ 1 ⇒ the dual D*(B) of D(B) is a 2-(b, r, λ) design with G_B 2-transitive on points and transitive on blocks

Question

Which 2-point-transitive and block-transitive 2-designs can be represented as $\mathcal{D}^*(B)$?

- Suppose $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive.
- Then G_B is 2-transitive on $\Gamma_{\mathcal{B}}(B)$.
- Let $X, Y (\subseteq B)$ be distinct blocks of $\mathcal{D}(B)$ and

 $\lambda := |X \cap Y|, \ \overline{\lambda} := |\overline{X} \cap \overline{Y}|.$

λ = 0 ⇒ multicovers
λ̄ = 0 ⇒ 3-arc graph construction
λ ≥ 1, λ̄ ≥ 1 ⇒ the dual D*(B) of D(B) is a 2-(b, r, λ) design with G_B 2-transitive on points and transitive on blocks

Question

Which 2-point-transitive and block-transitive 2-designs can be represented as $\mathcal{D}^*(B)$?

Question

If $\mathcal{D}^*(B)$ is known, can we determine Γ and / or $\Gamma_{\mathcal{B}}$?

Input: Σ – regular graph, Δ – self-paired subset of 3-arcs of Σ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

- Input: Σ regular graph, Δ self-paired subset of 3-arcs of Σ
- Output: $\Gamma = \Gamma_2(\Sigma, \Delta)$, defined by

 $V(\Gamma) = \{2\text{-paths of }\Sigma\}$ $E(\Gamma) = \{\{\tau \sigma \tau', \eta \varepsilon \eta'\} : \sigma \in \{\eta, \eta'\}, \varepsilon \in \{\tau, \tau'\}, \text{ two 3-arcs in }\Delta\}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Input: Σ regular graph, Δ self-paired subset of 3-arcs of Σ
- Output: $\Gamma = \Gamma_2(\Sigma, \Delta)$, defined by

 $V(\Gamma) = \{2\text{-paths of }\Sigma\}$ $E(\Gamma) = \{\{\tau \sigma \tau', \eta \varepsilon \eta'\} : \sigma \in \{\eta, \eta'\}, \varepsilon \in \{\tau, \tau'\}, \text{ two 3-arcs in }\Delta\}$

This is just the 2-path graph construction but restricted to Δ .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theorem

(Lu & Z, JGT 2007)

(a) Let Σ be (G, 2)-arc transitive with degree ≥ 3 . Let Δ be a self-paired G-orbit on the set of 3-arcs of Σ .

Then $\Gamma := \Gamma_2(\Sigma, \Delta)$ is G-symmetric admitting a G-invariant \mathcal{B} such that $\Gamma_{\mathcal{B}}$ is (G,2)-arc transitive and not multi-covered by Γ and that $(\lambda, r) = (1, 2)$.

(b) Any Γ such that Γ_B is (G, 2)-arc transitive and not multicovered by Γ and (λ, r) = (1, 2), is isomorphic to Γ₂(Γ_B, Δ) for a self-paired G-orbit Δ on the set of 3-arcs of Γ_B.

Theorem

(Z, DM 2009) All G-symmetric Γ such that $\Gamma_{\mathcal{B}} \cong K_{b+1}$ is (G,2)-arc transitive and $(\lambda, r) = (1, 2)$ are classified: either each component of Γ is K_3 and G is an arbitrary 3-transitive group, or one of the following holds.

- (a) Γ is the 2-path graph of K_{b+1} , and $G = S_{b+1}$ ($b \ge 3$), A_{b+1} ($b \ge 5$), or M_{b+1} (b = 10, 11, 22, 23).
- (b) Γ is a second-type cross ratio graph.
- (c) Γ is a second-type twisted cross ratio graph.
- (d) Γ is one of two "affine graphs" associated with AG(d,2) (where $d \ge 2$), $b = 2^d - 1$, and either G = AGL(d,2), or d = 4 and $G = Z_2^4 \cdot A_7$.

(e) $G = M_{11}$, b = 11, and Γ is one of two graphs from M_{11} .

(f) $G = M_{22}$, b = 21, and Γ is one of two graphs from M_{22} .

Vertices: wuy (= yuw), where w, u, y are distinct points of $PG(1, b) = GF(b) \cup \{\infty\}$

Adjacency: wuy \sim uyz iff the cross ratio

$$c(u,w;y,z) = \frac{(u-y)(w-z)}{(u-z)(w-y)}$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

belongs to a certain subset of GF(b)

Definition

(Z, EJC 2002) Let \mathcal{D} be a G-point- and G-block-transitive 1-design. Let $\Omega(\sigma)$ be the set of flags of \mathcal{D} with point entry σ . A G-orbit Ω on the flags of \mathcal{D} is feasible with respect to G if (1) $|\Omega(\sigma)| > 3;$ (2) $L \cap N = \{\sigma\}$, for distinct $(\sigma, L), (\sigma, N) \in \Omega(\sigma)$; (3) $G_{\sigma,L}$ is transitive on $L \setminus \{\sigma\}$, for $(\sigma, L) \in \Omega$; and (4) $G_{\sigma\tau}$ is transitive on $\Omega(\sigma) \setminus \{(\sigma, L)\}$, for $(\sigma, L) \in \Omega$ and $\tau \in L \setminus \{\sigma\}.$ $((\sigma, L), (\tau, N)) \in \Omega \times \Omega$ is called compatible with Ω if (5) $\sigma \notin N, \tau \notin L$ but $\sigma \in N', \tau \in L'$ for some $(\sigma, L'), (\tau, N') \in \Omega$.

Definition

(Z, EJC 2002) Let \mathcal{D} be a G-point- and G-block-transitive 1-design. Let $\Omega(\sigma)$ be the set of flags of \mathcal{D} with point entry σ . A G-orbit Ω on the flags of \mathcal{D} is feasible with respect to G if (1) $|\Omega(\sigma)| > 3;$ (2) $L \cap N = \{\sigma\}$, for distinct $(\sigma, L), (\sigma, N) \in \Omega(\sigma)$; (3) $G_{\sigma,L}$ is transitive on $L \setminus \{\sigma\}$, for $(\sigma, L) \in \Omega$; and (4) $G_{\sigma\tau}$ is transitive on $\Omega(\sigma) \setminus \{(\sigma, L)\}$, for $(\sigma, L) \in \Omega$ and $\tau \in L \setminus \{\sigma\}.$ $((\sigma, L), (\tau, N)) \in \Omega \times \Omega$ is called compatible with Ω if (5) $\sigma \notin N, \tau \notin L$ but $\sigma \in N', \tau \in L'$ for some $(\sigma, L'), (\tau, N') \in \Omega$.

Definition

If $\Psi := ((\sigma, L), (\tau, N))^G$ is self-paired, call $\Gamma(\mathcal{D}, \Omega, \Psi) = (\Omega, \Psi)$ the *G*-flag graph of \mathcal{D} wrt (Ω, Ψ) .

Theorem

(Z, EJC 2002) The case $k = v - 1 \ge 2$ occurs iff $\Gamma \cong \Gamma(\mathcal{D}, \Omega, \Psi)$ for some $(\mathcal{D}, \Omega, \Psi)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

(Z, EJC 2002) The case $k = v - 1 \ge 2$ occurs iff $\Gamma \cong \Gamma(\mathcal{D}, \Omega, \Psi)$ for some $(\mathcal{D}, \Omega, \Psi)$.

Corollary

(Z, EJC 2002) The following statements are equivalent.

- (a) (Γ, G, B) is such that $k = v 1 \ge 2$ and Γ_B is a complete graph.
- (b) $\Gamma \cong \Gamma(\mathcal{D}, \Omega, \Psi)$ for a G-doubly point-transitive and G-block-transitive 2- (v, k, λ) design \mathcal{D} and some (Ω, Ψ) .

Theorem

(Z, EJC 2002) The case $k = v - 1 \ge 2$ occurs iff $\Gamma \cong \Gamma(\mathcal{D}, \Omega, \Psi)$ for some $(\mathcal{D}, \Omega, \Psi)$.

Corollary

(Z, EJC 2002) The following statements are equivalent.

- (a) (Γ, G, B) is such that $k = v 1 \ge 2$ and Γ_B is a complete graph.
- (b) $\Gamma \cong \Gamma(\mathcal{D}, \Omega, \Psi)$ for a G-doubly point-transitive and G-block-transitive 2- (v, k, λ) design \mathcal{D} and some (Ω, Ψ) .
 - The flag graph construction above is a special case of a general construction.
 - Both versions were used to characterise / classify some families of symmetric graphs.

Problem

Classify all graphs (Γ , G, \mathcal{B}) such that $k = v - 1 \ge 2$ and $\Gamma_{\mathcal{B}}$ is complete.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Problem

Classify all graphs (Γ , G, \mathcal{B}) such that $k = v - 1 \ge 2$ and $\Gamma_{\mathcal{B}}$ is complete.

Problem

Classify such graphs Γ when the design involved is a linear space.

イロト 不得 トイヨト イヨト ヨー ろくぐ

(A linear space is a 2-design with $\lambda = 1$.)

Problem

Classify all graphs (Γ , G, \mathcal{B}) such that $k = v - 1 \ge 2$ and $\Gamma_{\mathcal{B}}$ is complete.

Problem

Classify such graphs Γ when the design involved is a linear space.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

(A linear space is a 2-design with $\lambda = 1$.)

Done when it is a trivial linear space (i.e. complete graph)

Problem

Classify all graphs (Γ , G, \mathcal{B}) such that $k = v - 1 \ge 2$ and $\Gamma_{\mathcal{B}}$ is complete.

Problem

Classify such graphs Γ when the design involved is a linear space.

(A linear space is a 2-design with $\lambda = 1$.)

Done when it is a trivial linear space (i.e. complete graph)

All nontrivial 2-point-transitive linear spaces are known (Kantor 1985, CFSG used).

Problem

Classify all graphs (Γ , G, \mathcal{B}) such that $k = v - 1 \ge 2$ and $\Gamma_{\mathcal{B}}$ is complete.

Problem

Classify such graphs Γ when the design involved is a linear space.

(A linear space is a 2-design with $\lambda = 1$.)

Done when it is a trivial linear space (i.e. complete graph)

All nontrivial 2-point-transitive linear spaces are known (Kantor 1985, CFSG used).

The corresponding group G is

- almost simple (that is, G has a nonabelian simple normal subgroup N such that $N \trianglelefteq G \le Aut(N)$); or
- contains a regular normal subgroup which is elementary abelian.

Theorem

(Kantor 1985) All 2-point-transitive linear spaces are known. In the almost simple case, they are:

(a)
$$\mathcal{D} = PG(d-1,q), N = PSL(d,q), d \ge 3;$$

(b) $\mathcal{D} = U_H(q)$, N = PSU(3, q), q > 2 a prime power;

(c)
$$\mathcal{D} = \text{Ree unital } U_R(q), N = {}^2G_2(q) \text{ is the Ree group,} q = 3^{2s+1} \ge 3;$$

イロト 不得 トイヨト イヨト ヨー ろくで

(d) $\mathcal{D} = PG(3, 2), N = A_7.$

Theorem

(Giulietti, Marcugini, Pambianco & Z 2010)

Let (Γ, G, \mathcal{B}) be such that $k = v - 1 \ge 2$, $\Gamma_{\mathcal{B}}$ is complete and the design involved is a nontrivial linear space. Suppose G is almost simple. Then one of the following occurs:

- (a) Γ is isomorphic to one of the two graphs associated with PG(d-1,q), and $PSL(d,q) \leq G \leq P\Gamma L(d,q)$, for some $d \geq 3$ and prime power q;
- (b) Γ is isomorphic to a unitary graph and $\operatorname{PGU}(3,q) \trianglelefteq G \le \operatorname{P}\Gamma\operatorname{U}(3,q)$, for a prime power q > 2;
- (c) Γ is isomorphic to one of four graphs from $\mathrm{PG}(3,2)$ with order 105.
•
$$q = p^e > 2$$
, p a prime

$$q = p^e > 2, p a prime$$

• $V(3, q^2)$: 3-dimensional vector space over \mathbb{F}_{q^2}

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …のへで

- $q = p^e > 2$, p a prime
- $V(3, q^2)$: 3-dimensional vector space over \mathbb{F}_{q^2}
- $\sigma: x \mapsto x^q = \bar{x}$ defines an automorphism of \mathbb{F}_{q^2}

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

$$q = p^e > 2, p a prime$$

- $V(3, q^2)$: 3-dimensional vector space over \mathbb{F}_{q^2}
- $\sigma: x \mapsto x^q = \bar{x}$ defines an automorphism of \mathbb{F}_{q^2}
- $\beta: V(3,q^2) \times V(3,q^2) \rightarrow \mathbb{F}_{q^2}$: nondegenerate σ -Hermitian form, i.e.

イロト 不得 トイヨト イヨト ヨー ろくぐ

$$\beta(\mathbf{u} + \mathbf{u}', \mathbf{v}) = \beta(\mathbf{u}, \mathbf{v}) + \beta(\mathbf{u}', \mathbf{v})$$

$$\beta(a\mathbf{u}, b\mathbf{v}) = ab^q \beta(\mathbf{u}, \mathbf{v})$$

$$\beta(\mathbf{u}, \mathbf{v}) = \beta(\mathbf{v}, \mathbf{u})^q$$

•
$$q = p^e > 2$$
, p a prime

- $V(3, q^2)$: 3-dimensional vector space over \mathbb{F}_{q^2}
- $\sigma: x \mapsto x^q = \bar{x}$ defines an automorphism of \mathbb{F}_{q^2}
- $\beta: V(3,q^2) \times V(3,q^2) \rightarrow \mathbb{F}_{q^2}$: nondegenerate σ -Hermitian form, i.e.

$$\beta(\mathbf{u} + \mathbf{u}', \mathbf{v}) = \beta(\mathbf{u}, \mathbf{v}) + \beta(\mathbf{u}', \mathbf{v})$$
$$\beta(a\mathbf{u}, b\mathbf{v}) = ab^{q}\beta(\mathbf{u}, \mathbf{v})$$

$$\beta(\mathbf{u},\mathbf{v}) = \beta(\mathbf{v},\mathbf{u})^q$$

GU(3, q): group of nonsingular linear transformations of V(3, q²) leaving β invariant

・ロト・日本・モート モー うへの

$$q = p^e > 2, p a prime$$

- $V(3, q^2)$: 3-dimensional vector space over \mathbb{F}_{q^2}
- $\sigma: x \mapsto x^q = \bar{x}$ defines an automorphism of \mathbb{F}_{q^2}
- $\beta: V(3,q^2) \times V(3,q^2) \rightarrow \mathbb{F}_{q^2}$: nondegenerate σ -Hermitian form, i.e.

$$\beta(\mathbf{u} + \mathbf{u}', \mathbf{v}) = \beta(\mathbf{u}, \mathbf{v}) + \beta(\mathbf{u}', \mathbf{v})$$
$$\beta(a\mathbf{u}, b\mathbf{v}) = ab^q \beta(\mathbf{u}, \mathbf{v})$$

- $\beta(\mathbf{u},\mathbf{v}) = \beta(\mathbf{v},\mathbf{u})^q$
- GU(3, q): group of nonsingular linear transformations of V(3, q²) leaving β invariant
- PGU(3,q) = GU(3,q)/Z, where Z is the center of GU(3,q)

$$q = p^e > 2, p a prime$$

- $V(3, q^2)$: 3-dimensional vector space over \mathbb{F}_{q^2}
- $\sigma: x \mapsto x^q = \bar{x}$ defines an automorphism of \mathbb{F}_{q^2}
- $\beta: V(3,q^2) \times V(3,q^2) \rightarrow \mathbb{F}_{q^2}$: nondegenerate σ -Hermitian form, i.e.

$$\beta(\mathbf{u} + \mathbf{u}', \mathbf{v}) = \beta(\mathbf{u}, \mathbf{v}) + \beta(\mathbf{u}', \mathbf{v})$$

$$\beta(a\mathbf{u}, b\mathbf{v}) = ab^q \beta(\mathbf{u}, \mathbf{v})$$

$$\beta(\mathbf{u}, \mathbf{v}) = \beta(\mathbf{v}, \mathbf{u})^q$$

- GU(3, q): group of nonsingular linear transformations of V(3, q²) leaving β invariant
- PGU(3,q) = GU(3,q)/Z, where Z is the center of GU(3,q)
- $\mathrm{PFU}(3,q) := \mathrm{PGU}(3,q) \rtimes \langle \psi \rangle$, where $\psi : x \mapsto x^p, x \in \mathbb{F}_{q^2}$

• $\mathbf{u}_1, \mathbf{u}_2$ are othogonal if $\beta(\mathbf{u}_1, \mathbf{u}_2) = 0$

- $\mathbf{u}_1, \mathbf{u}_2$ are othogonal if $\beta(\mathbf{u}_1, \mathbf{u}_2) = 0$
- **u** is isotropic if $\beta(\mathbf{u}, \mathbf{u}) = 0$ and nonisotropic otherwise

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへぐ

- **u**₁, **u**₂ are othogonal if $\beta(\mathbf{u}_1, \mathbf{u}_2) = 0$
- **u** is isotropic if $\beta(\mathbf{u}, \mathbf{u}) = \mathbf{0}$ and nonisotropic otherwise
- Choosing an appropriate basis for V(3, q²), the set of 1-dim subspaces spanned by isotropic vectors is given by

$$X = \{ \langle x, y, z \rangle : x, y, z \in \mathbb{F}_{q^2}, x^{q+1} = yz^q + zy^q \}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

where $\langle x, y, z \rangle$ is the 1-dim subspace spanned by (x, y, z).

- **u**₁, **u**₂ are othogonal if $\beta(\mathbf{u}_1, \mathbf{u}_2) = 0$
- **u** is isotropic if $\beta(\mathbf{u}, \mathbf{u}) = \mathbf{0}$ and nonisotropic otherwise
- Choosing an appropriate basis for V(3, q²), the set of 1-dim subspaces spanned by isotropic vectors is given by

$$X = \{ \langle x, y, z \rangle : x, y, z \in \mathbb{F}_{q^2}, x^{q+1} = yz^q + zy^q \}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

where ⟨x, y, z⟩ is the 1-dim subspace spanned by (x, y, z).
■ Elements of X are called absolute points

- **u**₁, **u**₂ are othogonal if $\beta(\mathbf{u}_1, \mathbf{u}_2) = 0$
- **u** is isotropic if $\beta(\mathbf{u}, \mathbf{u}) = \mathbf{0}$ and nonisotropic otherwise
- Choosing an appropriate basis for V(3, q²), the set of 1-dim subspaces spanned by isotropic vectors is given by

$$X = \{ \langle x, y, z \rangle : x, y, z \in \mathbb{F}_{q^2}, x^{q+1} = yz^q + zy^q \}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

where ⟨x, y, z⟩ is the 1-dim subspace spanned by (x, y, z).
■ Elements of X are called absolute points

$$|X| = q^3 + 1$$

- **u**₁, **u**₂ are othogonal if $\beta(\mathbf{u}_1, \mathbf{u}_2) = 0$
- **u** is isotropic if $\beta(\mathbf{u}, \mathbf{u}) = \mathbf{0}$ and nonisotropic otherwise
- Choosing an appropriate basis for V(3, q²), the set of 1-dim subspaces spanned by isotropic vectors is given by

$$X = \{ \langle x, y, z \rangle : x, y, z \in \mathbb{F}_{q^2}, x^{q+1} = yz^q + zy^q \}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

where $\langle x, y, z \rangle$ is the 1-dim subspace spanned by (x, y, z).

Elements of X are called absolute points

$$|X| = q^3 + 1$$

PGU(3, q) is 2-transitive on X

u₁, **u**₂ isotropic $\Rightarrow \langle$ **u**₁, **u**₂ \rangle contains exactly *q* + 1 absolute points

- $\mathbf{u}_1, \mathbf{u}_2$ isotropic $\Rightarrow \langle \mathbf{u}_1, \mathbf{u}_2 \rangle$ contains exactly q + 1 absolute points
- $U_H(q)$: Hermitian unital, with point set X, a block (line) is the set of absolute points contained in some $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

- **u**₁, **u**₂ isotropic $\Rightarrow \langle$ **u**₁, **u**₂ \rangle contains exactly *q* + 1 absolute points
- $U_H(q)$: Hermitian unital, with point set X, a block (line) is the set of absolute points contained in some $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$

・ロト・日本・モート モー うへの

• $U_H(q)$ is a 2- $(q^3 + 1, q + 1, 1)$ design

- **u**₁, **u**₂ isotropic $\Rightarrow \langle$ **u**₁, **u**₂ \rangle contains exactly *q* + 1 absolute points
- $U_H(q)$: Hermitian unital, with point set X, a block (line) is the set of absolute points contained in some $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$
- $U_H(q)$ is a 2- $(q^3 + 1, q + 1, 1)$ design
- Can represent a line of $U_H(q)$ by the homogenous equation of a line of $PG(2, q^2)$, e.g.

$$x + 0y - z = 0$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

- **u**₁, **u**₂ isotropic $\Rightarrow \langle$ **u**₁, **u**₂ \rangle contains exactly *q* + 1 absolute points
- $U_H(q)$: Hermitian unital, with point set X, a block (line) is the set of absolute points contained in some $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$
- $U_H(q)$ is a 2- $(q^3 + 1, q + 1, 1)$ design
- Can represent a line of $U_H(q)$ by the homogenous equation of a line of $PG(2, q^2)$, e.g.

$$x + 0y - z = 0$$

イロト 不得 トイヨト イヨト ヨー ろくぐ

• $\operatorname{Aut}(U_H(q)) = \operatorname{P}\Gamma \operatorname{U}(3,q)$

- $\mathbf{u}_1, \mathbf{u}_2$ isotropic $\Rightarrow \langle \mathbf{u}_1, \mathbf{u}_2 \rangle$ contains exactly q + 1 absolute points
- $U_H(q)$: Hermitian unital, with point set X, a block (line) is the set of absolute points contained in some $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$
- $U_H(q)$ is a 2- $(q^3 + 1, q + 1, 1)$ design
- Can represent a line of $U_H(q)$ by the homogenous equation of a line of $PG(2, q^2)$, e.g.

$$x + 0y - z = 0$$

• $\operatorname{Aut}(U_H(q)) = \operatorname{P}\Gamma \operatorname{U}(3,q)$

U_H(q) is (G, 2)-point-transitive, G-block transitive and G-flag transitive, where G = PGU(3, q) ⋊ ⟨ψ^r⟩

- **u**₁, **u**₂ isotropic $\Rightarrow \langle$ **u**₁, **u**₂ \rangle contains exactly *q* + 1 absolute points
- $U_H(q)$: Hermitian unital, with point set X, a block (line) is the set of absolute points contained in some $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle$
- $U_H(q)$ is a 2- $(q^3 + 1, q + 1, 1)$ design
- Can represent a line of $U_H(q)$ by the homogenous equation of a line of $PG(2, q^2)$, e.g.

$$x + 0y - z = 0$$

• $\operatorname{Aut}(U_H(q)) = \operatorname{P}\Gamma \operatorname{U}(3,q)$

- U_H(q) is (G, 2)-point-transitive, G-block transitive and G-flag transitive, where G = PGU(3, q) ⋊ ⟨ψ^r⟩
- Flag = incident point-line pair

unitary graphs

Definition

 $q = p^e > 2; r \ge 1$ a divisor of 2e $\lambda \in \mathbb{F}_{q^2}^*: \lambda^q$ is in the $\langle \psi^r \rangle$ -orbit on \mathbb{F}_{q^2} containing λ

Unitary graph $\Gamma_{r,\lambda}(q)$: Vertex set = set of flags of $U_H(q)$

 $(\langle a_1, b_1, c_1 \rangle, L_1) \sim (\langle a_2, b_2, c_2 \rangle, L_2)$ iff there exist $0 \le i < 2e/r$ and nonisotropic $(a_0, b_0, c_0) \in V(3, q^2)$ orthogonal to both (a_1, b_1, c_1) and (a_2, b_2, c_2) such that L_1 and L_2 are given by:

$$L_1: \begin{vmatrix} x & a_1 & a_0 + a_2 \\ y & b_1 & b_0 + b_2 \\ z & c_1 & c_0 + c_2 \end{vmatrix} = 0$$

$$L_{2}: \begin{vmatrix} x & a_{2} & a_{0} + \lambda^{qp^{ir}} a_{1} \\ y & b_{2} & b_{0} + \lambda^{qp^{ir}} b_{1} \\ z & c_{2} & c_{0} + \lambda^{qp^{ir}} c_{1} \end{vmatrix} = 0$$

problems

Problem (restated)

Study the following problems for various subfamilies of symmetric graphs (e.g. $k = v - 3 \ge 1$, k = 3, etc.):

- Under what circumstances is $\Gamma_{\mathcal{B}}$ (G,2)-arc transitive?
- What can we say about Γ if $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive?
- When does $\Gamma_{\mathcal{B}}$ inherit (G,2)-arc transitivity from Γ ?

In the third question we may assume $k \le v/2$ for otherwise the answer is affirmative (Praeger 1985).

イロト 不得 トイヨト イヨト ヨー ろくぐ

problems

Problem (restated)

Study the following problems for various subfamilies of symmetric graphs (e.g. $k = v - 3 \ge 1$, k = 3, etc.):

- Under what circumstances is $\Gamma_{\mathcal{B}}$ (G,2)-arc transitive?
- What can we say about Γ if Γ_B is (G, 2)-arc transitive?
- When does $\Gamma_{\mathcal{B}}$ inherit (G,2)-arc transitivity from Γ ?

In the third question we may assume $k \le v/2$ for otherwise the answer is affirmative (Praeger 1985).

Problem (restated)

Study the structure of Γ and $\Gamma_{\mathcal{B}}$ when $k = v - 2 \ge 1$ and $sim(\Gamma^{\mathcal{B}})$ is connected with degree ≥ 2 .

Recall that $sim(\Gamma^B) \cong K_v$ or $K_{v/2,v/2}$.

problems (cont'd)

Problem (restated)

Classify (Γ, G, \mathcal{B}) such that $k = v - 1 \ge 2$ and $\Gamma_{\mathcal{B}}$ is complete.

イロト 不得 トイヨト イヨト ヨー ろくぐ

Major tools:

- flag graph construction
- classification of 2-transitive groups:

$$\begin{array}{l} \operatorname{PSL}(n,q) \leq G \leq \operatorname{P\GammaL}(n,q); \\ \operatorname{Sp}_{2d}(2) \ (d \geq 2); \\ \operatorname{PSU}(3,q) \leq G \leq \operatorname{PSL}(3,q^2); \\ \operatorname{Suz}(q) \ (q = 2^{2a+1} > 2); \\ \operatorname{Ree}(q) \ (q = 3^{2a+1} > 3); \\ \end{array}$$

Problem (restated)

Classify (Γ, G, \mathcal{B}) such that $k = v - 1 \ge 2$ and $\Gamma_{\mathcal{B}}$ is complete.

Major tools:

- flag graph construction
- classification of 2-transitive groups:

$$\begin{array}{l} \operatorname{PSL}(n,q) \leq G \leq \operatorname{P\GammaL}(n,q); \\ \operatorname{Sp}_{2d}(2) \ (d \geq 2); \\ \operatorname{PSU}(3,q) \leq G \leq \operatorname{PSL}(3,q^2); \\ \operatorname{Suz}(q) \ (q = 2^{2a+1} > 2); \\ \operatorname{Ree}(q) \ (q = 3^{2a+1} > 3); \\ \end{array}$$

Problem

In particular, complete the classification of Γ such that $k = v - 1 \ge 2$, $\Gamma_{\mathcal{B}}$ is complete, and the design involved is a linear space (affine case remaining).

Problem

Investigate those Γ such that $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive and $\mathcal{D}^*(B)$ is symmetric.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Problem

Investigate those Γ such that $\Gamma_{\mathcal{B}}$ is (G, 2)-arc transitive and $\mathcal{D}^*(B)$ is symmetric.

Problem

In particular, classify such graphs Γ such that $\mathcal{D}^*(B)$ is a linear space.

イロト 不得 トイヨト イヨト ヨー ろくで