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channel assignment

The area covered by a cellular communication system is divided
into regions, called cells.

Each cell is served by a base station within the cell, where a
transmitter serves customers in the cell.

Interference graph: vertices represent transmitters; two vertices are
adjacent if and only if they ‘interfer’ with each other.

Considering only interference caused by geographical proximity,
two vertices are adjacent in the interference graph if and only if the
corresponding cells have a common boundary.
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(a) (b) 

(a) A cellular system; (b) the corresponding interference graph.
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The available bandwidth is divided into slots, called channels and
represented by integers 0, 1, 2, . . ..

The same channel can be used by different transmitters which are
distant enough geographically.

The channel assignment problem asks for assigning a channel or a
set of channels to each transmitter such that

interference is kept at an acceptable level, and

the span is minimized, where the span is the difference
between the largest and smallest channels used.

There are various models for the channel assignment problem.
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distance labelling

Definition

Let G be a finite or infinite graph.
Let h1, h2, . . . , hd ≥ 0 be integers. (Often we assume
h1 ≥ h2 ≥ · · · ≥ hd .)

An L(h1, h2, . . . , hd)-labelling of G is a mapping

φ : V (G )→ {0, 1, 2, . . .}

such that, for i = 1, 2, . . . , d and u, v ∈ V (G ),

d(u, v) = i ⇒ |φ(u)− φ(v)| ≥ hi .
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Definition

The span of G w.r.t. φ is defined as

sp(G , φ) := max
v∈V (G)

φ(v)− min
v∈V (G)

φ(v).

(We can always assume minv∈V (G) φ(v) = 0.)

The λh1,h2,...,hd -number of G is defined as

λh1,h2,...,hd (G ) := min
φ

sp(G , φ) = min
φ

max
v∈V (G)

φ(v).

Call
λ(G ) := λ2,1(G )

the λ-number of G .
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L(2, 1)-labelling: an example
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L(2, 1)-labelling: an example
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complexity and connection with chromatic number

The decision problem corresponding to λ is NP-complete for
general graphs, and polynomial solvable for trees.

λ1(G ) = χ(G )− 1

λ1,1(G ) = χ(G 2)− 1

...

λ1,...,1(G ) = χ(Gd)− 1



Channel assignment and distance labelling Distance two labelling Distance three labelling Labelling Cayley graphs Summary

complexity and connection with chromatic number

The decision problem corresponding to λ is NP-complete for
general graphs, and polynomial solvable for trees.

λ1(G ) = χ(G )− 1

λ1,1(G ) = χ(G 2)− 1

...

λ1,...,1(G ) = χ(Gd)− 1



Channel assignment and distance labelling Distance two labelling Distance three labelling Labelling Cayley graphs Summary

complexity and connection with chromatic number

The decision problem corresponding to λ is NP-complete for
general graphs, and polynomial solvable for trees.

λ1(G ) = χ(G )− 1

λ1,1(G ) = χ(G 2)− 1

...

λ1,...,1(G ) = χ(Gd)− 1



Channel assignment and distance labelling Distance two labelling Distance three labelling Labelling Cayley graphs Summary

complexity and connection with chromatic number

The decision problem corresponding to λ is NP-complete for
general graphs, and polynomial solvable for trees.

λ1(G ) = χ(G )− 1

λ1,1(G ) = χ(G 2)− 1

...

λ1,...,1(G ) = χ(Gd)− 1



Channel assignment and distance labelling Distance two labelling Distance three labelling Labelling Cayley graphs Summary

∆2-conjecture

Conjecture

(Griggs & Yeh 1992)
For any graph G with ∆ ≥ 2, λ(G ) ≤ ∆2.

This has been confirmed for

chordal graphs (Sakai)

outerplanar graphs (multiple authors)

generalized Petersen graphs (Georges & Mauro)

Hamiltonian graphs with ∆ ≤ 3 (Kang)

two families of Hamming graphs (Chang, Lu & Z, Z)
...
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Theorem

For any graph G ,

λ(G ) ≤ ∆2 + 2∆ (Griggs & Yeh 1992)

λ(G ) ≤ ∆2 + ∆ (Chang & Kuo 1996)

λ(G ) ≤ ∆2 + ∆− 1 (Král’ & Škrekovski 2003)

λ(G ) ≤ ∆2 + ∆− 2 (Goncalves 2008)

Theorem

(Havet, Reed & Sereni 2012) For any h ≥ 1, there exists a
constant ∆(h) such that any graph with ∆ ≥ ∆(h) has an
L(h, 1)-labelling with span ≤ ∆2.

In particular, the ∆2-conjecture is true for sufficiently large ∆.
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planar graphs

Theorem

Let G be a planar graph.

λp,q(G ) ≤ (4q − 2)∆ + 10p + 38q − 24
(Heuvel & McGuiness 2003)

λp,q(G ) ≤ (2q − 1)d9∆/5e+ 8p − 8q + 1 if ∆ ≥ 47
(Borodin, Broersma, Glebov & Heuvel 2002)

λp,q(G ) ≤ (2q − 1)∆ + 4p + 4q − 4 if girth ≥ 7
(Wang & Lih 2003)

λp,q(G ) ≤ qd5∆/3e+ 18p + 77q − 18
(Molloy & Salavatipour 2005)

λp,q(G ) ≤ q∆ + 2p − 2 if girth ≥ 7 and ∆ ≥ 190 + 2dp/qe
(Dvǒrák, Kŕal, Nejedlý & Škrekovski 2007+)
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Theorem

(Bella, Kŕal, Mohar & Quittnerová 2007)
The ∆2-conjecture is true for planar graphs with ∆ 6= 3.
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outerplanar graphs

Theorem

(Bodlaender, Kloks, Tan & Leeuwen 2000) For any outerplanar
graph G ,

λ(G ) ≤ ∆ + 8
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Conjecture

(Bodlaender, Kloks, Tan & Leeuwen 2000) For any outerplanar
graph G ,

λ(G ) ≤ ∆ + 2

Theorem

This is

true if ∆ ≥ 15 (Liu & Zhu 2005)

true if ∆ ≥ 8 (Calamoneri & Petreschi 2004)

false if ∆ = 3 (Calamoneri & Petreschi 2004)
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Theorem

(Calamoneri & Petreschi 2004) For outerplanar graphs G with
∆ = 3,

λ(G ) ≤ ∆ + 5.

Question

(Calamoneri & Petreschi 2004) Is the bound

λ(G ) ≤ ∆ + 5

tight for outerplanar graphs with ∆ = 3?
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Theorem

(Li & Z 2011+) For every outerplanar graph G with ∆ = 3,

λ(G ) ≤ ∆ + 3 = 6.

The bound is attainable by infinitely many outerplanar graphs.

……	  

……	  

A family of outerplanar graphs with λ = 6
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idea of the proof

Suppose otherwise. Let G be a smallest counterexample.

G must be 2-connected.

Otherwise we have:

…
…
	  

length	  ≥	  1	  

v1	  v2	  

u1	  

u2	  
B	   C	  

We can ‘extend’ a 6-L(2, 1)-labelling of a ‘short’ path to a
6-L(2, 1)-labelling of G , a contradiction.
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idea of the proof

G contains a face F of length ≥ 4.

…
…
	  F	  

The boundary of F has a ‘good’ 6-L(2, 1)-labelling.
Extend this to a 6-L(2, 1)-labelling of G , a contradiction.
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related results

Conjecture

(Wegner 1977) For any planar graph G ,

χ(G 2) ≤


7, if ∆ = 3

∆ + 5, if 4 ≤ ∆ ≤ 7

b3∆/2c+ 1, if ∆ ≥ 8

Open for general case with best bound 5∆/3 + 77 (Molloy et al)
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Theorem

(Thomassen 2001) Wegner’s conjecture is true for ∆ = 3. That
is, for any planar graph G with ∆ = 3, we have

λ1,1(G ) ≤ 6.

We proved
λ2,1(G ) ≤ 6.

Since λ1,1 ≤ λ2,1, our result can be viewed as a generalisation of
Thomassen’s result for outerplanar graphs.
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distance three labelling for trees

In the following we will focus on distance three labellings.

Definition

Define
∆2(G ) := max

uv∈E(G)
(d(u) + d(v)).

If G is infinite, then ∆2(G ) =∞ iff {d(u)}u∈V (G) is unbounded,
and in this case λh,1,1(G ) =∞.

We only consider finite trees and infinite trees with ∆ finite.

We always use T to denote a finite tree with diameter at least 3 or
an infinite tree with a finite maximum degree.
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bounds

Theorem

(King, Ras & Z 2010) For any h ≥ 1, we have

max
{

maxuv∈E(T ) min{d(u), d(v)}+ h − 1,∆2(T )− 1
}

≤ λh,1,1(T ) ≤ ∆2(T ) + h − 1

Moreover, the lower bound is attainable for any h ≥ 1 and the
upper bound is attainable for any h ≥ 3.
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improving the upper bound

Define
δ∗(T ) = min

u∈V (T ), d(u)≥2
d(u).

Theorem

(King, Ras & Z 2010) If h ≤ δ∗(T ), then

λh,1,1(T ) ≤ ∆2(T ) + h − 2.

The condition h ≤ δ∗(T ) is sufficient but not necessary to ensure
the upper bound.

E.g. the upper bound is valid if T has only one ‘heavy’ edge.
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Theorem

(King, Ras & Z 2010) Let T be a finite caterpillar of diameter at
least three or an infinite caterpillar of finite maximum degree. If
h ≥ 2, then

λh,1,1(T ) ≤ ∆2(T ) + h − 2

and the bound is sharp.

Moreover, if there exists no vertex on the spine with degree
∆2(T )− 2, then

λh,1,1(T ) ≤ ∆2(T ) + h − 3;

if there exist consecutive vertices u, v ,w on the spine such that
d(u) = d(w) = ∆2 − 2 and d(v) = 2, then

λh,1,1(T ) = ∆2(T ) + h − 2.
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(King, Ras & Z 2010) Let T be a finite caterpillar of diameter at
least three or an infinite caterpillar of finite maximum degree. If
h ≥ 2, then

λh,1,1(T ) ≤ ∆2(T ) + h − 2

and the bound is sharp.

Moreover, if there exists no vertex on the spine with degree
∆2(T )− 2, then

λh,1,1(T ) ≤ ∆2(T ) + h − 3;

if there exist consecutive vertices u, v ,w on the spine such that
d(u) = d(w) = ∆2 − 2 and d(v) = 2, then

λh,1,1(T ) = ∆2(T ) + h − 2.



Channel assignment and distance labelling Distance two labelling Distance three labelling Labelling Cayley graphs Summary

Since δ∗(T ) ≥ 2, we have

Corollary

(King, Ras & Z 2010)

∆2(T )− 1 ≤ λ2,1,1(T ) ≤ ∆2(T ).

This is the counterpart of

∆(T ) + 1 ≤ λ2,1(T ) ≤ ∆(T ) + 2

(Griggs & Yeh 1992).
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Corollary

χ(T 3) = λ1,1,1(G ) + 1 = ∆2(T ).

If T is finite, this can also be deduced from the following facts:
(1) T 3 is chordal with clique number ∆2(T );
(2) for chordal graphs, chromatic number = clique number
(G chordal and n odd ⇒ Gn chordal. Since a finite tree T is
chordal, T 3 is chordal.)
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proving the upper bound

choose a heavy edge uv , i.e. d(u) + d(v) = ∆2(T )

T − uv has two components, denoted by Tu,Tv

Li (u) := {w ∈ V (Tu) : d(u,w) = i}, i = 0, 1, . . . ,

Li (v) := {w ∈ V (Tv ) : d(v ,w) = i}, i = 0, 1, . . . ,

index the vertices of Tu such that the unique path between u
and a vertex a1a2 · · · ai−1ai ∈ Li (u) is

u, a1, a1a2, a1a2a3, . . . , a1a2 · · · ai−1ai

index the vertices of Tv such that the unique path between v
and a vertex b1b2 · · · bi−1ai ∈ Li (v) is

u, b1, b1b2, b1b2b3, . . . , b1b2 · · · bi−1bi



Channel assignment and distance labelling Distance two labelling Distance three labelling Labelling Cayley graphs Summary

proving the upper bound

choose a heavy edge uv , i.e. d(u) + d(v) = ∆2(T )

T − uv has two components, denoted by Tu,Tv

Li (u) := {w ∈ V (Tu) : d(u,w) = i}, i = 0, 1, . . . ,

Li (v) := {w ∈ V (Tv ) : d(v ,w) = i}, i = 0, 1, . . . ,

index the vertices of Tu such that the unique path between u
and a vertex a1a2 · · · ai−1ai ∈ Li (u) is

u, a1, a1a2, a1a2a3, . . . , a1a2 · · · ai−1ai

index the vertices of Tv such that the unique path between v
and a vertex b1b2 · · · bi−1ai ∈ Li (v) is

u, b1, b1b2, b1b2b3, . . . , b1b2 · · · bi−1bi



Channel assignment and distance labelling Distance two labelling Distance three labelling Labelling Cayley graphs Summary

proving the upper bound

choose a heavy edge uv , i.e. d(u) + d(v) = ∆2(T )

T − uv has two components, denoted by Tu,Tv

Li (u) := {w ∈ V (Tu) : d(u,w) = i}, i = 0, 1, . . . ,

Li (v) := {w ∈ V (Tv ) : d(v ,w) = i}, i = 0, 1, . . . ,

index the vertices of Tu such that the unique path between u
and a vertex a1a2 · · · ai−1ai ∈ Li (u) is

u, a1, a1a2, a1a2a3, . . . , a1a2 · · · ai−1ai

index the vertices of Tv such that the unique path between v
and a vertex b1b2 · · · bi−1ai ∈ Li (v) is

u, b1, b1b2, b1b2b3, . . . , b1b2 · · · bi−1bi



Channel assignment and distance labelling Distance two labelling Distance three labelling Labelling Cayley graphs Summary

proving the upper bound

choose a heavy edge uv , i.e. d(u) + d(v) = ∆2(T )

T − uv has two components, denoted by Tu,Tv

Li (u) := {w ∈ V (Tu) : d(u,w) = i}, i = 0, 1, . . . ,

Li (v) := {w ∈ V (Tv ) : d(v ,w) = i}, i = 0, 1, . . . ,

index the vertices of Tu such that the unique path between u
and a vertex a1a2 · · · ai−1ai ∈ Li (u) is

u, a1, a1a2, a1a2a3, . . . , a1a2 · · · ai−1ai

index the vertices of Tv such that the unique path between v
and a vertex b1b2 · · · bi−1ai ∈ Li (v) is

u, b1, b1b2, b1b2b3, . . . , b1b2 · · · bi−1bi



Channel assignment and distance labelling Distance two labelling Distance three labelling Labelling Cayley graphs Summary

proving the upper bound

choose a heavy edge uv , i.e. d(u) + d(v) = ∆2(T )

T − uv has two components, denoted by Tu,Tv

Li (u) := {w ∈ V (Tu) : d(u,w) = i}, i = 0, 1, . . . ,

Li (v) := {w ∈ V (Tv ) : d(v ,w) = i}, i = 0, 1, . . . ,

index the vertices of Tu such that the unique path between u
and a vertex a1a2 · · · ai−1ai ∈ Li (u) is

u, a1, a1a2, a1a2a3, . . . , a1a2 · · · ai−1ai

index the vertices of Tv such that the unique path between v
and a vertex b1b2 · · · bi−1ai ∈ Li (v) is

u, b1, b1b2, b1b2b3, . . . , b1b2 · · · bi−1bi



Channel assignment and distance labelling Distance two labelling Distance three labelling Labelling Cayley graphs Summary

initialization

Define
φ(u) = 0

φ(v) = ∆2 + h − 1

φ(a1) = ∆2 + h − 1− a1, a1 = 1, 2, . . . , d(u)− 1

φ(b1) = b1, b1 = 1, 2, . . . , d(v)− 1

Since ∆2 + h − 1− (d(u)− 1) = d(v) + h, we have

φ(N(u) \ {v}) = [d(v) + h,∆2 + h − 2]

φ(N(v) \ {u}) = [1, d(v)− 1].
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labelling Tu

Prove the following for i ≥ 1 by induction:

(a) if i is odd, then for all a1 · · · ai−1 ∈ Li−1(u) we can label
independently the vertices of N(a1 · · · ai−1) \ {a1 · · · ai−2} by
the d(a1 · · · ai−1)− 1 largest available integers in

[∆2 + h − 1− d(a1 · · · ai−1),∆2 + h − 1]

such that the L(h, 1, 1)-conditions are satisfied among vertices
of Tu up to level Li (u);

(b) if i is even, then for all a1 · · · ai−1 ∈ Li−1(u) we can label
independently the vertices of N(a1 · · · ai−1) \ {a1 · · · ai−2} by
the d(a1 · · · ai−1)− 1 smallest available integers in

[0, d(a1 · · · ai−1)]

such that the L(h, 1, 1)-conditions are satisfied among vertices
of Tu up to level Li (u).
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labelling Tv

Prove the following for i ≥ 1 by induction:

(c) if i is odd, then for all b1 · · · bi−1 ∈ Li−1(v) we can label
independently the vertices of N(b1 · · · bi−1) \ {b1 · · · bi−2} by
the d(b1 · · · bi−1)− 1 smallest available integers in

[0, d(a1 · · · ai−1)]

such that the L(h, 1, 1)-conditions are satisfied among vertices
of Tv up to level Li (v);

(d) if i is even, then for all b1 · · · bi−1 ∈ Li−1(v) we can label
independently the vertices of N(b1 · · · bi−1) \ {b1 · · · bi−2} by
the d(b1 · · · bi−1)− 1 largest available integers in

[∆2 + h − 1− d(b1 · · · bi−1),∆2 + h − 1]

such that the L(h, 1, 1)-conditions are satisfied among vertices
of Tv up to level Li (v).
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questions and conjecture

Question

(King, Ras & Z 2010)

(a) Given h ≥ 3, characterise those finite trees T with diameter at
least three such that λh,1,1(T ) = ∆2(T ) + h − 1.

(b) Characterise finite trees T with diameter at least three such
that λ2,1,1(T ) = ∆2(T ).
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N(n): # pairwise non-isomorphic trees with n vertices and
diameter at least three
N1(n): # such trees with λ2,1,1 = ∆2 − 1

Conjecture

(King, Ras & Z 2010) limn→∞
N1(n)
N(n) = 1.

Question

(King, Ras & Z 2010) For a fixed integer h ≥ 2, is the problem of
determining λh,1,1 for finite trees solvable in polynomial time?
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L(2, 1, 1)-labeling with fixed span

L(i , j , k)-Labeling:

Instance: a graph G and an integer λ
Question: does G have an L(i , j , k)-labelling with span λ?

Theorem

(Fiala, Golovach, Kratochv́ıl, Lidický & Paulusmab 2011)
L(2, 1, 1)-Labeling is NP-complete for every fixed λ ≥ 5 and is
solvable in linear time for all λ ≤ 4.
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L(2, 1, 1)-labeling for graphs of bounded treewidth

Theorem

(B. Courcelle 1990) Every problem definable in Monadic
Second-Order Logic (MSOL) can be solved in linear time on
graphs of bounded treewidth.

Theorem

(FGKLP 2011) L(2, 1, 1)-Labeling for every fixed λ is solvable
in linear time for graphs of bounded treewidth.

In particular, L(2, 1, 1)-Labeling for trees can be solved in linear
time if λ is fixed (i.e. not part of the input).

The same results hold for the L(h1, . . . , hd)-Labelling Problem.
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L(2, 1, 1)-labeling when λ is part of the input

Theorem

(FGKLP 2011) L(2, 1, 1)-Labeling is NP-complete for the class
of trees.

This together with

∆2(T )− 1 ≤ λ2,1,1(T ) ≤ ∆2(T )

implies:

Corollary

Unless NP = P, there is no good (i.e. polynomial time verifiable)
characterisation of finite graphs T with λ2,1,1(T ) = ∆2(T ).
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elegant labelling

The proof of our upper bound ∆2(T ) + h − 1 is by construction of
an L(h, 1, 1)-labelling with some extra property.

This motivated FGKLP to introduce the following concept.

Definition

(FGKLP 2011) An L(h1, h2, . . . , hd)-labelling φ of G with span λ
is called elegant if for every vertex u there exists an interval Iu mod
(λ+ 1) such that φ(N(u)) ⊆ Iu, and for every edge uv ∈ E (G ),
Iu ∩ Iv = ∅.
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L(h1, h2, h3)-labelling of hypercubes

The d-dimensional cube Qd has 01-words of length d as its
vertices such that two words are adjacent iff they differ at exactly
one position.

Denote
p = p(d) := dlog2(d + 1)e

q = q(d) := max{d + 1 + dlog2(d + 1)e − 2dlog2(d+1)e, 0}.

Then q ≤ p and
2p−1 ≤ d ≤ 2p − 1.

Note that d is a power of 2 iff d = 2p−1.
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Theorem

(Z 2008) For any d ≥ 3 and h1 ≥ h2 ≥ h3 ≥ 1,

h2(d − 1) + h1 ≤ λh1,h2,h3(Qd)

≤

{
2p(h3 + n) + 2q(h1 − n)− h1, d 6= 2p−1

(2p − 2)n + h1, d = 2p−1

where n := max{h2, dh1/2e}. Moreover, we give ‘balanced’
L(h1, h2, h3)-labellings of Qd using 2dlog2 de+1 labels whose spans
are equal to the upper bound above. In addition, if h1 ≤ 2, then

λh1,h2,h3(Qd) ≥ 2(d − 1) + h1.

Proof:
LB: Relatively easy; UB: A little bit group theory
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Corollary

(Z 2008) Let d ≥ 3. If d 6= 2p−1, then

2d ≤ λ2,1,1(Qd) ≤ 2p+1 + 2q − 2;

if d = 2p−1, then
λ2,1,1(Qd) = 2d

and Qd admits a balanced L(2, 1, 1)-labelling with span 2d and
exactly one hole.
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labelling Cayley graphs

Let Γ(G ,X ) denote the Cayley graph on a group G with respect to
a connection set X .

Definition

A subgroup H ≤ G is said to avoid X if

H ∩ X = ∅, H ∩ X 2 = {1},

where X 2 = {xx ′ : x , x ′ ∈ X}.

The trivial subgroup {1} avoids every connection set of G .
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Assume j ≥ k ≥ 1 in the following.

Theorem

(Z 2006) Let G be a finite abelian group. For any connection set
X of G and any subgroup H of G which avoids X , we have

λj ,k(Γ(G ,X )) ≤ |G : H|max{k , dj/2e}+

|G : 〈G − HX 〉|min{j − k , bj/2c} − j .

In particular,

λ(Γ(G ,X )) ≤ |G : H|+ |G : 〈G − HX 〉| − 2.
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Corollary

Under the same condition as above, if in addition G − HX
generates G , then

λj ,k(Γ(G ,X )) ≤ (|G : H| − 1) max{k , dj/2e};

in particular,
λ(Γ(G ,X )) ≤ |G : H| − 1

and Γ(G ,X ) admits a ‘no-hole’ L(2, 1)-labelling which uses |G : H|
labels.
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Hamming graphs and hypercubes

The results above were used to produce upper bounds or exact
values of λj ,k for hypercubes and Hamming graphs.

Their applications to other families of Cayley graphs have not been
explored.

Hamming graph: Hn1,n2,...,nd = Kn1�Kn2� · · ·�Knd

V (Hn1,n2,...,nd ) = Zn1 × Zn2 × · · · × Znd ; two d-tuples in
Zn1 × Zn2 × · · · × Znd are adjacent if and only if they differ in
exactly one coordinate.

Hypercube: Qd = H2,2,...,2 (d factors)

d ≤ 5: λ(Qd) is known

d ≥ 5: d + 3 ≤ λ(Qd) ≤ 2d (Griggs & Yeh + Jonas)
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Denote
n = 1 + blog2 dc, t = min{2n − d − 1, n}

Theorem

(Z, 2006) Let Γ be a connected d-regular graph whose
automorphism group contains a vertex-transitive abelian subgroup.
Then, for any j ≥ k ≥ 1,

λj ,k(Γ) ≤ 2n max{k , dj/2e}+ 2n−t min{j − k , bj/2c} − j .

In particular, if 2k ≥ j , then

λj ,k(Γ) ≤ 2nk + 2n−t(j − k)− j .

Thus,
λ(Γ) ≤ 2n + 2n−t − 2.
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Corollary

For any d ≥ 1 and j ≥ k ≥ 1,

λj ,k(Qd) ≤ 2n max{k , dj/2e}+ 2n−t min{j − k, bj/2c} − j .

In particular, if 2k ≥ j , then

λj ,k(Qd) ≤ 2nk + 2n−t(j − k)− j .

Taking j = 2, k = 1, we get

λ(Qd) ≤ 2n + 2n−t − 2

(Whittlesey, Georges & Mauro, 1995)
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Convention: n1 ≥ n2 ≥ · · · ≥ nd ≥ 2, d ≥ 2

Theorem

(Z 2006) Suppose n1 > d ≥ 2, n2 divides n1, and each prime
factor of n1 is no less than d. Then, for any n3, . . . , nd ≤ n2 and
j , k with 2k ≥ j ≥ k ≥ 1,

λj ,k(Hn1,n2,...,nd ) = (n1n2 − 1)k ;

in particular,
λ(Hn1,n2,...,nd ) = n1n2 − 1.
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Corollary

Let n = pr1
1 pr2

2 · · · p
rt
t .

If 2 ≤ d ≤ pi for each i and
∑t

i=1(pi − d + ri ) ≥ 2, then for any
j , k with 2k ≥ j ≥ k ≥ 1,

λj ,k(Hn,n,...,n) = (n2 − 1)k .

This implies a result of Georges, Mauro & Stein (2000) as a special
case.
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a sandwich theorem

Theorem

(Chang, Lu and Z 2009) If n1 ≥ N(n2, . . . , nd) is sufficiently
large (where N(n2, . . . , nd) is a specific function), then for any
graph G such that

Hn1,n2 ⊆ G ⊆ Hn1,n2,...,nd ,

we have

λ(G ) = λ1,1(G ) (= χ(G )− 1) = n1n2 − 1.

In fact, we proved that for G the values of 8 invariants are equal to
n1n2 − 1, and we give a labelling of G which is optimal for all
these invariants simultaneously.
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recent progress

Consider a group Γ = 〈S |R〉.

The presentation 〈S |R〉 is called N-balanced if for every s ∈ S and
(w = 1) ∈ R, exps(w) ≡ 0 mod N, where exps(w) is the sum of
the exponents (positive or negative) on occurrences of s in w .

Theorem

(Bahls 2011) If ss ′ 6= 1 for all s, s ′ ∈ S and the presentation
Γ = 〈S |R〉 is (2(n + h)− 1)-balanced, then

λ(Γ(G ,S)) ≤ 2(n + h − 1)

and equality holds if h ≤ 2n.
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summary

There are many interesting topics in the area of distance
labelling.

There are nice connections with chromatic number and theory
of colourings.

Combinatorial, probabilistic and algebraic approaches have
been used to solve problems pertaining to distance labelling.

A number of papers have been published in this area, but for
sure more will be produced in future.
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Thank you!
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