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Motivation

» Question: Which network topologies can assure high
performance?
» Answer depends on how we measure performance:
» Degree/diameter problem
» Expandability, etc.
» We consider two measures:
P> minimum gossiping time
» minimum edge-congestion for all-to-all routing
» What are the ‘most efficient’ graphs (of small degree) with
respect to these measures?



Routing

Design a transmission route (oriented path) for each ordered pair
of vertices in a given network ' = (V, E).

» A set R of such oriented paths is called an all-to-all routing.

» Load of an edge = number of paths traversing the edge in
either direction

» Load of an arc = number of paths traversing the arc in its
direction, an arc being an ordered pair of adjacent vertices






Edge- and arc-forwarding indices

» L(I',R) = maximum load on an edge
» Edge-forwarding index m(IN) = ming L(I',R)
» Minimal e.f. index 7, (I"): same as (') but use shortest

paths only

%
L(I',R) = maximum load on an arc

> Arc-forwarding index 7 (I') = ming L (T, R)
> Minimal a.f. index 7 ,(T): same as 7 () but use shortest
paths only
» In general,
Tm(F) # (1), @ m(T) # 7 (T)
m(F) # 27 (1), () # 27 m(T)
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Trivial lower bounds

Z(u,v)EVX % d(“? V)
|E|

Equalities < there exists an edge-uniform shortest path routing
Z(U,V)GVXV d(u’ V)
2|E|

Equalities <> there exists an arc-uniform shortest path routing

(M) 2 7(l) >

Tm(h) > 7(N) >

Question
A: Which graphs can achieve these bounds?



Gossiping

Every vertex has a distinct message to be sent to all other vertices.
Carry out this in minimum number of time steps.

t(l') = minimum time steps

under the store-and-forward, all-port and full-duplex model:

> a vertex must receive a message wholly before transmitting it
to other vertices ('store-and-forward’);

‘all-neighbour transmission’ at the same time step (‘all-port’);

>

> bidirectional transmission on each edge (‘full-duplex’);

> it takes one time step to transmit any message over an arc;
>

no two messages over the same arc at the same time



A trivial lower bound

For any graph I with minimum degree k,

10 = Wk_ 1} |




A trivial lower bound

For any graph I with minimum degree k,

10 = Wk_ 1} |

Question
B: Which graphs can achieve this bound?



Frobenius groups

» A Frobenius group is a non-regular transitive group such that
only the identity element can fix two points.

» (Thompson 1959) A finite Frobenius group G on V has a
nilpotent normal subgroup K (Frobenius kernel) which is
regular on V. Thus

G = K.H (semidirect product),

where H is the stabiliser of a point of V.

» We may think of G as acting on K in such a way that K acts
on K by right multiplication and H acts on K by conjugation.



Frobenius graphs

Definition
(Solé 94, Fang-Li-Praeger 98) Let G = K.H be a finite Frobenius
group. Call Cay(K,S) a G-Frobenius graph if
af, |H| even or |a] =2 [first-kind]
S =
au(a=')f, |H| odd and |a| # 2 [second-kind]

for some a € K such that (a'’) = K.



Partial answer to Question A

d: diameter of Cay(K,S)
n;: number of H-orbits of vertices at distance i from 1 in

Cay(K,S),i=1,...,d
Theorem

(Solé, Fang, Li and Praeger) Let T = Cay(K,S) be a Frobenius
graph. Then

d - ) .
_ E(u,v)EVde(u: v) B 237 1ini,  [first-kind]

(r)

- Sy inj, [second-kind]



Theorem
(Z, 06) Let T = Cay(K,S) be a first-kind Frobenius graph. Then

there exists a routing which is

(a) a shortest path routing;

(b) G-arc transitive;

(c) both edge- and arc-uniform;

(d) optimal for , s ?m, Tm Simultaneously.

Moreover, if the H-orbits on K are known, we can construct such
routings (not unique) in polynomial time. Furthermore, we have

d
m(M) =27 (M) =27 m(F) = () =2 _ in;.
i=1



The formula for 7 ,, and a result of Diaconis-Stroock imply:
Corollary

Let I',d, n; be as above. Then

K|

(M) <|H|l - ———.
2( )—| ’ dz;f:lini



Partial answer to Question B

Theorem
(Z, 06) Let T = Cay(K,S) be a first-kind Frobenius graph. Then

K[ -1

t(N = 5]

Moreover, there exist optimal gossiping schemes such that
(a) messages are always transmitted along shortest paths;
(b) at any time every arc is used exactly once;

(c) at any time > 2 and for any vertex g, the set A(g) of arcs
transmitting the message originated from g is a matching of
I, and {A(g) : g € K} is a partition of the arcs of T
Furthermore, if we know the H-orbits on K, then we can construct
such schemes (not unique) in polynomial time.



Two families of first-kind Frobenius graphs

‘Double-loop’ network DL,(a, b):
Vertex set Z,, x ~ x + a,x ~ x = b (mod n), where
n>51<a#b<n-1ab+#n/2;a+b#n.

‘Triple-loop" network TLu(a, b,1): Similar



Theorem

(Thomson and Z, 08) If n > 6 is even, then there exists no first
kind Frobenius circulant graph of order n and valency four. If
n=pi---p;’ >5is odd, the following are equivalent:

(a) 3h such that DL,(1, h) is a first kind Frobenius graph;

(b) x>+ 1=0 mod n has a solution;

(¢) pi=1 mod 4 for each i.

Moreover, if one of these holds, then

(d) each solution h to x> +1 =0 mod n gives rise to a first kind
Frobenius DL,(1, h), and vice versa;

(e) there are exactly 2'=1 pairwise non-isomorphic 4-valent first
kind Frobenius circulant graphs with order n, and each of
them is isomorphic to some DL,(1, h).
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Optimal gossiping and routing in DLs3(1,23).




Corollary

Let T = DL,,(1,2d + 1) be the unique connected 4-valent
circulant graph of diameter d > 2 and maximum order
ng = 2d? + 2d + 1 (Yebra-Fiol-Morillo-Alegre).

Then T is a Zn,.H(d)-Frobenius graph, where
H(d) = {[1], [2d + 1], —[1], —[2d + 1]}.

Moreover,

d(d +1)(2d + 1)

m() =27 (1) = 27 (1) = () =



Theorem

(Thomson and Z, 09-10) There exists a 6-valent first kind
Frobenius circulant TL,(a, b, 1) of order n = pf* --- p;' > 7 if and
onlyifn=1 mod 6 and

x> —x+1=0 mod n

has a solution. Moreover, if these conditions hold, then

(a) each solution a to the equation above gives rise to a first kind
Frobenius TL,(a, b,1), and vice versa, and in this case
b=a—1 mod n;

(b) there are exactly 2'=1 pairwise non-isomorphic 6-valent first
kind Frobenius circulants of order n, and each of them is
isomorphic to some TL,(a,a—1,1).



Corollary

The unique connected 6-valent circulant graph

TL,,(3d +1,1,—(3d + 2)) of diameter d > 2 and maximum order
ng = 3d? + 3d + 1 (Yebra-Fiol-Morillo-Alegre) is a first kind
Frobenius graph.

Moreover,

_d(d+1)(2d +1)




Broadcasting time

Theorem

(a) (Z, 10) The broadcasting time of a Frobenius DL,(1, h) is
equal to diam(DL,(1, h)) + 2.

(b) (Thomson and Z, 09-10) The broadcasting time of a Frobenius
TLy(a,a —1,1) is equal to diam(DL,(1, h)) + 2 or
diam(DL,(1, h)) + 3, and both cases can occur.



Gaussian graphs

Definition
(Martinez, Beivide and Gabidulin 07) Let

Zli)={a+bi:a,beZ}
Zlila = Z[i]/(a), 0 # a = a+ bi, gcd(a,b) =1

da([Blas [Vla) = min{|x| + |y| : [8 = o = [x + yi]a}

The Gaussian graph G, is defined to have vertex set Z[i], such
that [B]a ~ [fy]a iff da([/B]om [V]a) =1
Thus

G = CaY((Z[i]aa Jr)? Ha)

where Hy = {[1]a, —[1]a; [las —[/]a}



Lemma
(Z, 10) When the norm N(a) = a* + b? is odd, G, is a 4-valent
Frobenius circulant, and vice versa.

Theorem
(MBG 07; Thomson for odd N(«)) Suppose 0 < a < b in
a=a-+ bi wlo.g Then

b, if N(«) is even

diam(G,) =
(Co) { b—1, if N(«) is odd.



Eisenstein-Jacobi graphs

Definition
(Martinez, Beivide and Gabidulin 07) Let

p=(1+V3i)/2
Zlpl ={x+yp:x,y €L}
a=c+dpeZlp], ged(c,d) =1, N(a)=c*>+cd+d*>5

The EJ-graph EJ, is defined as the Cayley graph on (Z[p]a, +)
with respect to {£[1]a, £[p]a; £[p?]a}-



Lemma
(Z, 10) The Frobenius circulant TL,(a,a —1,1) is an EJ-graph.

Theorem
(Flahive and Bose 10) Suppose a > b > 0 w.l.o.g. Then

2a+ b
diam(EJ,) = a; .




How about second-kind F-graphs?

Let
= Cay(K,S)

be a second-kind Frobenius graph, where G = K.H is Frobenius
such that |H| is odd, S = a" U (a71)" for some a € K with
la| # 2 and (a') = K.

Theorem

(Fang and Z, 10) When K is abelian of odd order, T admits
‘perfect’ routing and gossiping schemes.

Otherwise, we only obtain an upper bound on the gossiping time
and a 2-factor approximation algorithm.

It is known that K is always abelian except when |H| is odd and all
Sylow subgroups of H are cyclic.



Paley graphs

Definition
Let g =1 (mod 4) be a prime. The Paley graph P(q) is the Cayley
graph on (g, +) w.r.t. the set of non-zero squares in Fg.

P(q) is a Frobenius graph (Solé).



Near fields

A near field is like a field except that multiplication may not be
commutative and there is only a one-sided distributive law.

A field is a near field, but the converse is not true.

For any near field (F,+,-), (F,+) is an elementary abelian group
Zp. In particular, |F| = p" is a prime power.



Generalized generalized Paley graphs

Theorem
(Fang and Z, 10) Let (F,+,-) be a finite near field of odd order.
Let 5 € F* and let H # 1 be a subgroup of (F*,-) of odd order.

If the left coset SH of H in (F*,-) is a generating set of (F,+),
then Cay((F,+),8H U (—BH)) is a second-kind Frobenius graph.



Generalized Paley graphs

Definition

(Lim and Praeger 09) Let g = p" and k > 2 be a divisor of g — 1
such that either g or (g —1)/k is even. Let A < (7, ) with order
(g — 1)/k. Define

GPaley(q, (g —1)/k) = Cay((Fq, +), A).

If g =1 (mod 4), then GPaley(q, (¢ —1)/2) = P(q).
If g is odd and GPaley(q, (g — 1)/k) is connected, then
GPaley(q, (q — 1)/K) = Cay((Fq, +), 1AU (—14))

which is a second-kind Frobenius graph. (Lim and Praeger: We
know exactly when GPaley(q, (g — 1)/k) is connected.)



Corollary

(Fang and Z, 10) Let I = Cay((F,+), BH U (—FH)) be as before.
Then

t(M) = (p" — 1)/2|H]
and there exist optimal gossiping schemes for I such that

(a) at any time t each arc of T is used exactly once for data
transmission;

(b) for each x € K, exactly 2|H| arcs are used to transmit
messages with source x, and when t > 2 the set A¢(x) of such
arcs form a matching of I.

In particular,
t(GPaley(q, (g — 1)/k)) = k
and (a)-(b) hold for GPaley(q,(q — 1)/k).



An example
Let H= (3% = {3°=7,312 =11,318 = 1} <}, (3 is a primitive
element of F1g). Then
3H={7-3=2,11-3=14,3}
is a generating set of (Fi9,+). So
I = Cay(Z19,3H U (—3H)) = Cay(Z19,{2,14,3,17,5,16})

is a second-kind Z19.Z3-Frobenius graph (but not a Lim-Praeger
graph).
(M) =27(MN =27 m(N =7m(lN) =1-24+2-4=10
t(N)=(19-1)/(2-3)=3
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Proposition

(a) For any even integer A > 2,

N3(A,2) > =(A +2)%

1

4

(b) For any 0 < e < 1, there exist infinitely many odd integers A
of the form q*(q9=2 — 1)/(q — 1), where q is an odd prime
power and d > 3/¢ is an odd integer, such that

NT(A,2) > A2 4 2A5 4 A5 43,
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Proposition

(a) For any even integer A > 2,

N3(A,2) > =(A +2)%

1
4
(b) For any 0 < e < 1, there exist infinitely many odd integers A

of the form q*(q9=2 — 1)/(q — 1), where q is an odd prime
power and d > 3/¢ is an odd integer, such that

NT(A,2) > A2 4 2A5 4 A5 43,

Question
Are there infinitely many integers A > 2 such that

NE(A,2) > A% — f(A)

for some function f with f(x)/x?> = 0 as x —00?



