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Motivation

Question
Which network topologies can assure high performance?

• Answer depends on how we measure performance

• We consider two measures:
• minimum gossiping time

• minimum edge-congestion for all-to-all routing

• What are the ‘most efficient’ graphs (of small valency) with
respect to these measures?
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Routing
Design a transmission route (oriented path) for each ordered pair
of vertices in a given network Γ = (V ,E ).

• A set R of such oriented paths is called an all-to-all routing

• Load of an edge = number of paths traversing the edge in
either direction

• Load of an arc = number of paths traversing the arc in its
direction, an arc being an ordered pair of adjacent vertices
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Edge- and arc-forwarding indices

• L(Γ,R) = maximum load on an edge

• Edge-forwarding index π(Γ) = minR L(Γ,R)

• Minimal e.f. index πm(Γ): same as π(Γ) but use shortest
paths only

•
−→
L (Γ,R) = maximum load on an arc

• Arc-forwarding index −→π (Γ) = minR
−→
L (Γ,R)

• Minimal a.f. index −→π m(Γ): same as −→π (Γ) but use shortest
paths only

• In general,
πm(Γ) 6= π(Γ),−→π m(Γ) 6= −→π (Γ)

π(Γ) 6= 2−→π (Γ), πm(Γ) 6= 2−→π m(Γ)



Trivial lower bounds

πm(Γ) ≥ π(Γ) ≥
∑

(u,v)∈V×V d(u, v)

|E |
Equalities ⇔ there exists an edge-uniform shortest path routing

−→π m(Γ) ≥ −→π (Γ) ≥
∑

(u,v)∈V×V d(u, v)

2|E |
Equalities ⇔ there exists an arc-uniform shortest path routing

Question
A: Which (non-complete) graphs can achieve these bounds?
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Gossiping

Every vertex has a distinct message to be sent to all other vertices.
Carry out this in minimum number of time steps. Define

t(Γ) = minimum time steps

under the store-and-forward, all-port and full-duplex model:

• a vertex must receive a message wholly before transmitting it
to other vertices (‘store-and-forward’);

• ‘all-neighbour transmission’ at the same time step (‘all-port’);

• bidirectional transmission on each edge (‘full-duplex’);

• it takes one time step to transmit any message over an arc;

• no two messages over the same arc at the same time



A trivial lower bound

For any graph Γ with minimum degree k ,

t(Γ) ≥
⌈
|V | − 1

k

⌉
.

Question
B: Which (non-complete) graphs can achieve this bound?
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Frobenius groups

• A Frobenius group is a non-regular transitive group such that
only the identity element can fix two points.

• (Thompson 1959) A finite Frobenius group G on V has a
nilpotent normal subgroup K (Frobenius kernel) which is
regular on V . Thus

G = K .H (semidirect product),

where H is the stabiliser of a point of V .

• We may think of G as acting on K in such a way that K acts
on K by right multiplication and H acts on K by conjugation.



Frobenius graphs

Definition
(Solé 94, Fang-Li-Praeger 98) Let G = K .H be a finite Frobenius
group. Call Cay(K ,S) a G -Frobenius graph if

S =

 aH , |H| even or |a| = 2 [first-kind]

aH ∪ (a−1)H , |H| odd and |a| 6= 2 [second-kind]

for some a ∈ K such that 〈aH〉 = K .



Partial answer

Theorem
(Solé, Fang, Li and Praeger) Let Γ = Cay(K , S) be a Frobenius
graph. Then

π(Γ) =

∑
(u,v)∈V×V d(u, v)

|E |
=

 2
∑d

i=1 ini , [first-kind]∑d
i=1 ini , [second-kind]

d : diameter of Cay(K ,S)
ni : number of H-orbits of vertices at distance i from 1 in
Cay(K , S), i = 1, . . . , d



Theorem
(Z, 06) Let Γ = Cay(K ,S) be a first-kind Frobenius graph. Then

π(Γ) = 2−→π (Γ) = 2−→π m(Γ) = πm(Γ) = 2
d∑

i=1

ini

and

t(Γ) =
|K | − 1

|S |
.

Moreover, there exist routing and gossiping schemes with ‘nice’
properties.



How about second-kind F-graphs?

• From now on we assume Γ = Cay(K , S) is a second-kind
Frobenius graph, where

• G = K .H is Frobenius such that |H| is odd, S = aH ∪ (a−1)H

for some a ∈ K with |a| 6= 2 and 〈aH〉 = K .
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Gossiping in second-kind F-graphs

Theorem
(Fang and Z, 2010)

|K | − 1

2|H|
≤ t(Γ) ≤ |K | − 1

|H|
.

If K is abelian, then

t(Γ) ≤ |K | − 1 + |I (K )|
2|H|

where I (K ) is the set of involutions of K . In particular, if K is
abelian of odd order, then

t(Γ) =
|K | − 1

2|H|
.



Theorem
(cont’d) Moreover, if K is abelian of odd order, then we construct
an optimal, shortest-path gossiping scheme for Γ such that the
following hold at any time t = 1, 2, . . . , (|K | − 1)/2|H|:
(a) each arc of Γ is used exactly once for data transmission;

(b) for every x ∈ K exactly |S | arcs are used to transmit messages
with source x, and for t ≥ 2 the set At(x) of such arcs is a
matching of Γ;

(c) K is transitive on the partition {At(x) : x ∈ K} of A(Γ).



Remarks

• K is always abelian except when |H| is odd and all Sylow
subgroups of H are cyclic.

• The result applies to sharply 2-transitive groups (for them K
is always abelian).

• The proof comes with a gossiping scheme which is optimal
when K is abelian of odd order.
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Routing in second-kind F-graphs

Theorem
(Fang and Z, 2010) If K is abelian, then there exists a
shortest-path routing which is G-edge-transitive, edge-uniform and
optimal for π(Γ) = πm(Γ) simultaneously. If in addition |K | is odd,
then −→π (Γ) = −→π m(Γ) = π(Γ)/2 and this routing is arc-uniform and
optimal for −→π and −→π m as well.



Paley graphs

• Let q ≡ 1 (mod 4) be a prime.

• Paley graph P(q): Cayley graph on (Fq,+) w.r.t. the set of
non-zero squares in Fq, i.e. x , y ∈ Fq are adjacent iff x − y is
a non-zero square.

• P(q) is a Frobenius graph (Solé).
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Generalized Paley graphs

• A near field is like a field except that multiplication may not
be commutative and there is only a one-sided distributive law.

• For any near field (F ,+, ·), we have (F ,+) ∼= Zn
p.

Theorem
Let (F ,+, ·) be a finite near field of odd order. Let β ∈ F ∗ and let
H 6= 1 be a subgroup of (F ∗, ·) of odd order.

If the left coset βH of H in (F ∗, ·) is a generating set of (F ,+),
then Cay((F ,+), βH ∪ (−βH)) is a second-kind Frobenius graph.
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Corollary

Let Γ = Cay((F ,+), βH ∪ (−βH)) be as above. Then

t(Γ) = (pn − 1)/2|H|

and there exist optimal gossiping schemes for Γ such that

(a) at any time t each arc of Γ is used exactly once for data
transmission;

(b) for each x ∈ K , exactly 2|H| arcs are used to transmit
messages with source x, and for t ≥ 2 the set At(x) of such
arcs is a matching of Γ;

(c) the group of translations induced by (F ,+) is transitive on
the partition {At(x) : x ∈ K} of A(Γ).



Lim and Praeger’s generalized Paley graphs

• q = pn: prime power

• k ≥ 2: a divisor of q − 1 such that either q or (q − 1)/k is
even

• A: subgroup of (F∗q, ·) of order (q − 1)/k

• GPaley(q, (q − 1)/k): Cayley graph Cay(Fq,A) on (Fq,+)
(Lim and Praeger)

• If q ≡ 1 (mod 4), then GPaley(q, (q − 1)/2) = P(q).

• GPaley(q, (q − 1)/k) is connected iff k is not a multiple of
(q − 1)/(pm − 1) for any proper divisor m of n.

• If q is odd and GPaley(q, (q − 1)/k) is connected, then
GPaley(q, (q − 1)/k) is the second-kind Frobenius graph
Cay((Fq,+), 1A ∪ (−1A)).
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Corollary

For connected Lim-Praeger graphs GPaley(q, (q − 1)/k), we have

t(GPaley(q, (q − 1)/k)) = k

and there exists an optimal gossiping scheme having properties
(a)-(c) in the previous corollary.



An example

• 3 is a primitive element of F19

• H = 〈36〉 = {36 = 7, 312 = 11, 318 = 1} (unique subgroup of
F∗19 of order 3)

• 3H = {7 · 3 = 2, 11 · 3 = 14, 3} is a generating set of (F19,+)

• 3H ∪ (−3H) = {2, 14, 3, 17, 5, 16}
• Γ = Cay(Z19, {2, 14, 3, 17, 5, 16}) is a second-kind
Z19.Z3-Frobenius graph (not a Lim-Praeger graph)

• π(Γ) = 2−→π (Γ) = 2−→π m(Γ) = πm(Γ) = 1 · 2 + 2 · 4 = 10

• t(Γ) = (19− 1)/(2 · 3) = 3
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0

2 14 3 17 5 16

4 9 6 7 11 1 12 8 18 15 10 13

3H* −3H*

4H* 7H* −7H* −4H*

A routing and gossiping tree for Cay(Z19, {2, 14, 3, 17, 5, 16}) at root 0.



Second-kind F-graphs with small valency and large order

Question
Are there ‘large’ second-kind F-graphs with ‘small’ valency?

Corollary

For any even integer r ≥ 4, there exist infinitely many odd primes
p such that there is a second-kind Frobenius graph (connected
generalized Paley graph) of order p2 and valency r with the kernel
of the underlying Frobenius group abelian.

Proof: Dirichlet theorem: ∃ infinitely many primes in

−1 + r ,−1 + 2r ,−1 + 3r , . . .

Let p = −1 + tr be such an odd prime, k = t(p − 1) and q = p2.
Then r = (q − 1)/k and r is not a divisor of p − 1.
GPaley(p2, r) is a second-kind Frobenius graph of order p2 and
valency r whose underlying Frobenius group has an abelian kernel.
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Let p = −1 + tr be such an odd prime, k = t(p − 1) and q = p2.
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Summary: second-kind Frobenius graphs

Properties Any K .H K abelian K abelian
& |K | odd

Hamiltonian? Conjecture Yes M Yes M
π Best possible FLP ? ?
πm Best possible FLP ? ?

Optimal routing Unknown FZ FZ
for π and πm?

−→π Unknown Unknown Best possible FZ
−→π m Unknown Unknown Best possible FZ

Optimal routing Unknown Unknown FZ
for −→π and −→π m?
Gossiping time ≤ 2·(trivial bound) – Best possible FZ

Gossiping 2-Factor – Exact algorithm
algorithm approximation Nice properties

FZ FZ


