Gossiping and routing in second-kind Frobenius graphs

Sanming Zhou

Department of Mathematics and Statistics The University of Melbourne Australia sanming@unimelb.edu.au

Joint work with Xin Gui Fang

SODO 2012, Queenstown, NZ February 13, 2012

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Question

Which network topologies can assure high performance?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question

Which network topologies can assure high performance?

• Answer depends on how we measure performance

Question

Which network topologies can assure high performance?

- Answer depends on how we measure performance
- We consider two measures:
 - minimum gossiping time
 - minimum edge-congestion for all-to-all routing

Question

Which network topologies can assure high performance?

- Answer depends on how we measure performance
- We consider two measures:
 - minimum gossiping time
 - minimum edge-congestion for all-to-all routing
- What are the 'most efficient' graphs (of small valency) with respect to these measures?

Routing

Design a transmission route (oriented path) for each ordered pair of vertices in a given network $\Gamma = (V, E)$.

- A set ${\mathcal R}$ of such oriented paths is called an all-to-all routing
- Load of an edge = number of paths traversing the edge in either direction
- Load of an arc = number of paths traversing the arc in its direction, an arc being an ordered pair of adjacent vertices

Edge- and arc-forwarding indices

- $L(\Gamma, \mathcal{R}) = maximum \text{ load on an edge}$
- Edge-forwarding index $\pi(\Gamma) = \min_{\mathcal{R}} L(\Gamma, \mathcal{R})$
- Minimal e.f. index π_m(Γ): same as π(Γ) but use shortest paths only
- $\overrightarrow{L}(\Gamma, \mathcal{R}) = maximum \text{ load on an arc}$
- Arc-forwarding index $\overrightarrow{\pi}(\Gamma) = \min_{\mathcal{R}} \overrightarrow{\mathcal{L}}(\Gamma, \mathcal{R})$
- Minimal a.f. index $\overrightarrow{\pi}_m(\Gamma)$: same as $\overrightarrow{\pi}(\Gamma)$ but use shortest paths only
- In general,

$$\pi_m(\Gamma) \neq \pi(\Gamma), \overrightarrow{\pi}_m(\Gamma) \neq \overrightarrow{\pi}(\Gamma)$$
$$\pi(\Gamma) \neq 2\overrightarrow{\pi}(\Gamma), \pi_m(\Gamma) \neq 2\overrightarrow{\pi}_m(\Gamma)$$

Trivial lower bounds

$$\pi_m(\Gamma) \geq \pi(\Gamma) \geq \frac{\sum_{(u,v) \in V \times V} d(u,v)}{|E|}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Equalities \Leftrightarrow there exists an edge-uniform shortest path routing

Trivial lower bounds

$$\pi_m(\Gamma) \ge \pi(\Gamma) \ge \frac{\sum_{(u,v) \in V \times V} d(u,v)}{|E|}$$

Equalities \Leftrightarrow there exists an edge-uniform shortest path routing

$$\overrightarrow{\pi}_m(\Gamma) \geq \overrightarrow{\pi}(\Gamma) \geq \frac{\sum_{(u,v)\in V\times V} d(u,v)}{2|E|}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Equalities \Leftrightarrow there exists an arc-uniform shortest path routing

Trivial lower bounds

$$\pi_m(\Gamma) \ge \pi(\Gamma) \ge \frac{\sum_{(u,v) \in V \times V} d(u,v)}{|E|}$$

Equalities \Leftrightarrow there exists an edge-uniform shortest path routing

$$\overrightarrow{\pi}_m(\Gamma) \geq \overrightarrow{\pi}(\Gamma) \geq \frac{\sum_{(u,v)\in V\times V} d(u,v)}{2|E|}$$

Equalities \Leftrightarrow there exists an arc-uniform shortest path routing Question

A: Which (non-complete) graphs can achieve these bounds?

Gossiping

Every vertex has a distinct message to be sent to all other vertices. Carry out this in minimum number of time steps. Define

 $t(\Gamma) =$ minimum time steps

under the store-and-forward, all-port and full-duplex model:

- a vertex must receive a message wholly before transmitting it to other vertices ('store-and-forward');
- 'all-neighbour transmission' at the same time step ('all-port');
- bidirectional transmission on each edge ('full-duplex');
- it takes one time step to transmit any message over an arc;
- no two messages over the same arc at the same time

A trivial lower bound

For any graph Γ with minimum degree k,

$$t(\Gamma) \geq \left\lceil rac{|V|-1}{k}
ight
ceil.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A trivial lower bound

For any graph Γ with minimum degree k,

$$t(\Gamma) \ge \left\lceil \frac{|V|-1}{k} \right\rceil$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

B: Which (non-complete) graphs can achieve this bound?

Frobenius groups

- A Frobenius group is a non-regular transitive group such that only the identity element can fix two points.
- (Thompson 1959) A finite Frobenius group G on V has a nilpotent normal subgroup K (Frobenius kernel) which is regular on V. Thus

G = K.H (semidirect product),

where H is the stabiliser of a point of V.

• We may think of G as acting on K in such a way that K acts on K by right multiplication and H acts on K by conjugation.

Frobenius graphs

Definition

(Solé 94, Fang-Li-Praeger 98) Let G = K.H be a finite Frobenius group. Call Cay(K, S) a G-Frobenius graph if

$$S = \begin{cases} a^{H}, & |H| \text{ even or } |a| = 2 \text{ [first-kind]} \\ \\ a^{H} \cup (a^{-1})^{H}, & |H| \text{ odd and } |a| \neq 2 \text{ [second-kind]} \end{cases}$$

for some $a \in K$ such that $\langle a^H \rangle = K$.

Partial answer

Theorem

(Solé, Fang, Li and Praeger) Let $\Gamma = \operatorname{Cay}(K,S)$ be a Frobenius graph. Then

$$\pi(\Gamma) = \frac{\sum_{(u,v)\in V\times V} d(u,v)}{|E|} = \begin{cases} 2\sum_{i=1}^{d} in_i, & [first-kind] \\ \\ \sum_{i=1}^{d} in_i, & [second-kind] \end{cases}$$

d: diameter of Cay(K, S)*n_i*: number of *H*-orbits of vertices at distance *i* from 1 in Cay(K, S), i = 1, ..., d

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Theorem (*Z*, 06) Let $\Gamma = Cay(K, S)$ be a first-kind Frobenius graph. Then

$$\pi(\Gamma) = 2\overrightarrow{\pi}(\Gamma) = 2\overrightarrow{\pi}_m(\Gamma) = \pi_m(\Gamma) = 2\sum_{i=1}^d in_i$$

and

$$t(\Gamma)=\frac{|\mathcal{K}|-1}{|\mathcal{S}|}.$$

Moreover, there exist routing and gossiping schemes with 'nice' properties.

How about second-kind F-graphs?

 From now on we assume Γ = Cay(K, S) is a second-kind Frobenius graph, where

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How about second-kind F-graphs?

- From now on we assume Γ = Cay(K, S) is a second-kind Frobenius graph, where
- G = K.H is Frobenius such that |H| is odd, S = a^H ∪ (a⁻¹)^H for some a ∈ K with |a| ≠ 2 and ⟨a^H⟩ = K.

Gossiping in second-kind F-graphs

Theorem (Fang and Z, 2010)

$$rac{|\mathcal{K}|-1}{2|\mathcal{H}|} \leq t(\Gamma) \leq rac{|\mathcal{K}|-1}{|\mathcal{H}|}$$

If K is abelian, then

$$t(\Gamma) \leq \frac{|\mathcal{K}| - 1 + |I(\mathcal{K})|}{2|\mathcal{H}|}$$

where I(K) is the set of involutions of K. In particular, if K is abelian of odd order, then

$$t(\Gamma)=\frac{|K|-1}{2|H|}.$$

Theorem

(cont'd) Moreover, if K is abelian of odd order, then we construct an optimal, shortest-path gossiping scheme for Γ such that the following hold at any time t = 1, 2, ..., (|K| - 1)/2|H|:

- (a) each arc of Γ is used exactly once for data transmission;
- (b) for every $x \in K$ exactly |S| arcs are used to transmit messages with source x, and for $t \ge 2$ the set $A_t(x)$ of such arcs is a matching of Γ ;

(c) *K* is transitive on the partition $\{A_t(x) : x \in K\}$ of $A(\Gamma)$.

Remarks

• *K* is always abelian except when |*H*| is odd and all Sylow subgroups of *H* are cyclic.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remarks

- *K* is always abelian except when |*H*| is odd and all Sylow subgroups of *H* are cyclic.
- The result applies to sharply 2-transitive groups (for them *K* is always abelian).

Remarks

- K is always abelian except when |H| is odd and all Sylow subgroups of H are cyclic.
- The result applies to sharply 2-transitive groups (for them *K* is always abelian).
- The proof comes with a gossiping scheme which is optimal when *K* is abelian of odd order.

Routing in second-kind F-graphs

Theorem

(Fang and Z, 2010) If K is abelian, then there exists a shortest-path routing which is G-edge-transitive, edge-uniform and optimal for $\pi(\Gamma) = \pi_m(\Gamma)$ simultaneously. If in addition |K| is odd, then $\overrightarrow{\pi}(\Gamma) = \overrightarrow{\pi}_m(\Gamma) = \pi(\Gamma)/2$ and this routing is arc-uniform and optimal for $\overrightarrow{\pi}$ and $\overrightarrow{\pi}_m$ as well.

Paley graphs

• Let $q \equiv 1 \pmod{4}$ be a prime.

Paley graphs

- Let $q \equiv 1 \pmod{4}$ be a prime.
- Paley graph P(q): Cayley graph on (𝔽_q, +) w.r.t. the set of non-zero squares in 𝔽_q, i.e. x, y ∈ 𝔽_q are adjacent iff x − y is a non-zero square.

Paley graphs

- Let $q \equiv 1 \pmod{4}$ be a prime.
- Paley graph P(q): Cayley graph on (𝔽_q, +) w.r.t. the set of non-zero squares in 𝔽_q, i.e. x, y ∈ 𝔽_q are adjacent iff x − y is a non-zero square.

• *P*(*q*) is a Frobenius graph (Solé).

Generalized Paley graphs

 A near field is like a field except that multiplication may not be commutative and there is only a one-sided distributive law.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generalized Paley graphs

 A near field is like a field except that multiplication may not be commutative and there is only a one-sided distributive law.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• For any near field $(F, +, \cdot)$, we have $(F, +) \cong \mathbb{Z}_p^n$.

Generalized Paley graphs

- A near field is like a field except that multiplication may not be commutative and there is only a one-sided distributive law.
- For any near field $(F, +, \cdot)$, we have $(F, +) \cong \mathbb{Z}_p^n$.

Theorem

Let $(F, +, \cdot)$ be a finite near field of odd order. Let $\beta \in F^*$ and let $H \neq 1$ be a subgroup of (F^*, \cdot) of odd order.

If the left coset βH of H in (F^*, \cdot) is a generating set of (F, +), then $Cay((F, +), \beta H \cup (-\beta H))$ is a second-kind Frobenius graph.

Corollary Let $\Gamma = Cay((F, +), \beta H \cup (-\beta H))$ be as above. Then $t(\Gamma) = (p^n - 1)/2|H|$

and there exist optimal gossiping schemes for Γ such that

- (a) at any time t each arc of Γ is used exactly once for data transmission;
- (b) for each x ∈ K, exactly 2|H| arcs are used to transmit messages with source x, and for t ≥ 2 the set A_t(x) of such arcs is a matching of Γ;
- (c) the group of translations induced by (F, +) is transitive on the partition $\{A_t(x) : x \in K\}$ of $A(\Gamma)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• $q = p^n$: prime power

- $q = p^n$: prime power
- $k \ge 2$: a divisor of q-1 such that either q or (q-1)/k is even

- $q = p^n$: prime power
- $k \ge 2$: a divisor of q-1 such that either q or (q-1)/k is even

• A: subgroup of (\mathbb{F}_q^*, \cdot) of order (q-1)/k

- $q = p^n$: prime power
- k ≥ 2: a divisor of q − 1 such that either q or (q − 1)/k is even
- A: subgroup of (\mathbb{F}_q^*, \cdot) of order (q-1)/k
- GPaley(q, (q − 1)/k): Cayley graph Cay(𝔽_q, A) on (𝔽_q, +) (Lim and Praeger)

- $q = p^n$: prime power
- k ≥ 2: a divisor of q − 1 such that either q or (q − 1)/k is even
- A: subgroup of (\mathbb{F}_q^*, \cdot) of order (q-1)/k
- GPaley(q, (q − 1)/k): Cayley graph Cay(𝔽_q, A) on (𝔽_q, +) (Lim and Praeger)

• If $q \equiv 1 \pmod{4}$, then $\operatorname{GPaley}(q, (q-1)/2) = P(q)$.

- $q = p^n$: prime power
- k ≥ 2: a divisor of q − 1 such that either q or (q − 1)/k is even
- A: subgroup of (\mathbb{F}_q^*, \cdot) of order (q-1)/k
- GPaley(q, (q − 1)/k): Cayley graph Cay(𝔽_q, A) on (𝔽_q, +) (Lim and Praeger)
- If $q \equiv 1 \pmod{4}$, then $\operatorname{GPaley}(q, (q-1)/2) = P(q)$.
- GPaley(q, (q 1)/k) is connected iff k is not a multiple of (q 1)/(p^m 1) for any proper divisor m of n.

- $q = p^n$: prime power
- k ≥ 2: a divisor of q − 1 such that either q or (q − 1)/k is even
- A: subgroup of (\mathbb{F}_q^*, \cdot) of order (q-1)/k
- GPaley(q, (q − 1)/k): Cayley graph Cay(𝔽_q, A) on (𝔽_q, +) (Lim and Praeger)
- If $q \equiv 1 \pmod{4}$, then $\operatorname{GPaley}(q, (q-1)/2) = P(q)$.
- GPaley(q, (q 1)/k) is connected iff k is not a multiple of (q 1)/(p^m 1) for any proper divisor m of n.
- If q is odd and $\operatorname{GPaley}(q, (q-1)/k)$ is connected, then $\operatorname{GPaley}(q, (q-1)/k)$ is the second-kind Frobenius graph $\operatorname{Cay}((\mathbb{F}_q, +), 1A \cup (-1A)).$

Corollary

For connected Lim-Praeger graphs GPaley(q, (q-1)/k), we have

$$t(\operatorname{GPaley}(q,(q-1)/k))=k$$

and there exists an optimal gossiping scheme having properties (a)-(c) in the previous corollary.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• 3 is a primitive element of \mathbb{F}_{19}

- 3 is a primitive element of \mathbb{F}_{19}
- $H = \langle 3^6 \rangle = \{3^6=7, 3^{12}=11, 3^{18}=1\}$ (unique subgroup of \mathbb{F}^*_{19} of order 3)

- 3 is a primitive element of \mathbb{F}_{19}
- $H = \langle 3^6 \rangle = \{3^6 = 7, 3^{12} = 11, 3^{18} = 1\}$ (unique subgroup of \mathbb{F}^*_{19} of order 3)
- $3H = \{7 \cdot 3 = 2, 11 \cdot 3 = 14, 3\}$ is a generating set of $(\mathbb{F}_{19}, +)$

- 3 is a primitive element of \mathbb{F}_{19}
- $H = \langle 3^6 \rangle = \{3^6 = 7, 3^{12} = 11, 3^{18} = 1\}$ (unique subgroup of \mathbb{F}^*_{19} of order 3)
- $3H = \{7 \cdot 3 = 2, 11 \cdot 3 = 14, 3\}$ is a generating set of $(\mathbb{F}_{19}, +)$

• $3H \cup (-3H) = \{2, 14, 3, 17, 5, 16\}$

- 3 is a primitive element of \mathbb{F}_{19}
- $H = \langle 3^6 \rangle = \{3^6 = 7, 3^{12} = 11, 3^{18} = 1\}$ (unique subgroup of \mathbb{F}^*_{19} of order 3)
- $3H = \{7 \cdot 3 = 2, 11 \cdot 3 = 14, 3\}$ is a generating set of $(\mathbb{F}_{19}, +)$

•
$$3H \cup (-3H) = \{2, 14, 3, 17, 5, 16\}$$

• $\Gamma = \operatorname{Cay}(\mathbb{Z}_{19}, \{2, 14, 3, 17, 5, 16\})$ is a second-kind $\mathbb{Z}_{19}.\mathbb{Z}_3$ -Frobenius graph (not a Lim-Praeger graph)

- 3 is a primitive element of \mathbb{F}_{19}
- $H = \langle 3^6 \rangle = \{3^6 = 7, 3^{12} = 11, 3^{18} = 1\}$ (unique subgroup of \mathbb{F}^*_{19} of order 3)
- $3H = \{7 \cdot 3 = 2, 11 \cdot 3 = 14, 3\}$ is a generating set of $(\mathbb{F}_{19}, +)$

•
$$3H \cup (-3H) = \{2, 14, 3, 17, 5, 16\}$$

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_{19}, \{2, 14, 3, 17, 5, 16\})$ is a second-kind $\mathbb{Z}_{19}.\mathbb{Z}_3$ -Frobenius graph (not a Lim-Praeger graph)
- $\pi(\Gamma) = 2\overrightarrow{\pi}(\Gamma) = 2\overrightarrow{\pi}_m(\Gamma) = \pi_m(\Gamma) = 1 \cdot 2 + 2 \cdot 4 = 10$

- 3 is a primitive element of \mathbb{F}_{19}
- $H = \langle 3^6 \rangle = \{3^6 = 7, 3^{12} = 11, 3^{18} = 1\}$ (unique subgroup of \mathbb{F}^*_{19} of order 3)
- $3H = \{7 \cdot 3 = 2, 11 \cdot 3 = 14, 3\}$ is a generating set of $(\mathbb{F}_{19}, +)$

•
$$3H \cup (-3H) = \{2, 14, 3, 17, 5, 16\}$$

- $\Gamma = \operatorname{Cay}(\mathbb{Z}_{19}, \{2, 14, 3, 17, 5, 16\})$ is a second-kind $\mathbb{Z}_{19}.\mathbb{Z}_3$ -Frobenius graph (not a Lim-Praeger graph)
- $\pi(\Gamma) = 2\overrightarrow{\pi}(\Gamma) = 2\overrightarrow{\pi}_m(\Gamma) = \pi_m(\Gamma) = 1 \cdot 2 + 2 \cdot 4 = 10$

•
$$t(\Gamma) = (19-1)/(2 \cdot 3) = 3$$

A routing and gossiping tree for $Cay(\mathbb{Z}_{19}, \{2, 14, 3, 17, 5, 16\})$ at root 0.

Question

Are there 'large' second-kind F-graphs with 'small' valency?

Question

Are there 'large' second-kind F-graphs with 'small' valency?

Corollary

For any even integer $r \ge 4$, there exist infinitely many odd primes p such that there is a second-kind Frobenius graph (connected generalized Paley graph) of order p^2 and valency r with the kernel of the underlying Frobenius group abelian.

Question

Are there 'large' second-kind F-graphs with 'small' valency?

Corollary

For any even integer $r \ge 4$, there exist infinitely many odd primes p such that there is a second-kind Frobenius graph (connected generalized Paley graph) of order p^2 and valency r with the kernel of the underlying Frobenius group abelian.

Proof: Dirichlet theorem: \exists infinitely many primes in

$$-1+r, -1+2r, -1+3r, \ldots$$

Question

Are there 'large' second-kind F-graphs with 'small' valency?

Corollary

For any even integer $r \ge 4$, there exist infinitely many odd primes p such that there is a second-kind Frobenius graph (connected generalized Paley graph) of order p^2 and valency r with the kernel of the underlying Frobenius group abelian.

Proof: Dirichlet theorem: \exists infinitely many primes in

$$-1+r, -1+2r, -1+3r, \ldots$$

Let p = -1 + tr be such an odd prime, k = t(p - 1) and $q = p^2$.

Question

Are there 'large' second-kind F-graphs with 'small' valency?

Corollary

For any even integer $r \ge 4$, there exist infinitely many odd primes p such that there is a second-kind Frobenius graph (connected generalized Paley graph) of order p^2 and valency r with the kernel of the underlying Frobenius group abelian.

Proof: Dirichlet theorem: \exists infinitely many primes in

$$-1 + r, -1 + 2r, -1 + 3r, \ldots$$

Let p = -1 + tr be such an odd prime, k = t(p - 1) and $q = p^2$. Then r = (q - 1)/k and r is not a divisor of p - 1.

Question

Are there 'large' second-kind F-graphs with 'small' valency?

Corollary

For any even integer $r \ge 4$, there exist infinitely many odd primes p such that there is a second-kind Frobenius graph (connected generalized Paley graph) of order p^2 and valency r with the kernel of the underlying Frobenius group abelian.

Proof: Dirichlet theorem: \exists infinitely many primes in

$$-1 + r, -1 + 2r, -1 + 3r, \ldots$$

Let p = -1 + tr be such an odd prime, k = t(p-1) and $q = p^2$. Then r = (q-1)/k and r is not a divisor of p-1. GPaley (p^2, r) is a second-kind Frobenius graph of order p^2 and valency r whose underlying Frobenius group has an abelian kernel.

Summary: second-kind Frobenius graphs

Properties	Any K.H	K abelian	K abelian
			& <i>K</i> odd
Hamiltonian?	Conjecture	Yes M	Yes M
π	Best possible FLP	?	?
π_m	Best possible FLP	?	?
Optimal routing	Unknown	FZ	FZ
for π and π_m ?			
$\overrightarrow{\pi}$	Unknown	Unknown	Best possible FZ
$\overrightarrow{\pi}_{m}$	Unknown	Unknown	Best possible FZ
Optimal routing	Unknown	Unknown	FZ
for $\overrightarrow{\pi}$ and $\overrightarrow{\pi}_m$?			
Gossiping time	$\leq 2 \cdot (trivial bound)$	-	Best possible FZ
Gossiping	2-Factor	-	Exact algorithm
algorithm	approximation		Nice properties
	FZ		FZ