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Motivation

Question
Which network topologies can assure high performance?

e Answer depends on how we measure performance
e We consider two measures:
e minimum gossiping time
e minimum edge-congestion for all-to-all routing
e What are the ‘most efficient’ graphs (of small valency) with
respect to these measures?



Routing

Design a transmission route (oriented path) for each ordered pair
of vertices in a given network I = (V/, E).

e A set R of such oriented paths is called an all-to-all routing

e Load of an edge = number of paths traversing the edge in
either direction

e Load of an arc = number of paths traversing the arc in its
direction, an arc being an ordered pair of adjacent vertices




Edge- and arc-forwarding indices

L(F',R) = maximum load on an edge
Edge-forwarding index (') = ming L(I', R)
Minimal e.f. index my,(I"): same as 7(I") but use shortest

paths only

%
L (', R) = maximum load on an arc

Arc-forwarding index 7 (I') = ming T(I’,R)
Minimal a.f. index 7 ,(T'): same as 7 (') but use shortest
paths only
In general,
n(F) # (1), 7 m(T) # 7(T)
() # 27 (), wm(F) # 27 m(T)
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Trivial lower bounds

Z(u,v)er %4 d(ua V)

|E|
Equalities < there exists an edge-uniform shortest path routing
Z(u,v)EVXV d(u7 V)

2|E|

Equalities < there exists an arc-uniform shortest path routing

(M) = w(F) >

Tm(l)>7(T) >

Question
A: Which (non-complete) graphs can achieve these bounds?



Gossiping

Every vertex has a distinct message to be sent to all other vertices.
Carry out this in minimum number of time steps. Define

t(I) = minimum time steps

under the store-and-forward, all-port and full-duplex model:

e a vertex must receive a message wholly before transmitting it
to other vertices (‘store-and-forward’);

‘all-neighbour transmission’ at the same time step (‘all-port’);

bidirectional transmission on each edge (‘full-duplex’);

it takes one time step to transmit any message over an arc;

e no two messages over the same arc at the same time



A trivial lower bound

For any graph I with minimum degree k,

() > P‘/'kﬂ .



A trivial lower bound

For any graph I with minimum degree k,
V-1
t(h)y> | ———|.
= |}

Question
B: Which (non-complete) graphs can achieve this bound?



Frobenius groups

e A Frobenius group is a non-regular transitive group such that
only the identity element can fix two points.

e (Thompson 1959) A finite Frobenius group G on V has a
nilpotent normal subgroup K (Frobenius kernel) which is
regular on V. Thus

G = K.H (semidirect product),

where H is the stabiliser of a point of V.

e We may think of G as acting on K in such a way that K acts
on K by right multiplication and H acts on K by conjugation.



Frobenius graphs

Definition
(Solé 94, Fang-Li-Praeger 98) Let G = K.H be a finite Frobenius
group. Call Cay(K,S) a G-Frobenius graph if

af, |H| even or |a] =2 [first-kind]
S =
a"u(a1)", |H| odd and |a| # 2 [second-kind]

for some a € K such that (a'’) = K.



Partial answer

Theorem
(Solé, Fang, Li and Praeger) Let I = Cay(K, S) be a Frobenius
graph. Then

Y uv)evxy (U, v) 25 in;,  [first-kind]
N [E]

()
27:1 inj, [second-kind]

d: diameter of Cay(K, S)
n;: number of H-orbits of vertices at distance i from 1 in
Cay(K,S),i=1,...,d



Theorem
(Z, 06) Let T = Cay(K,S) be a first-kind Frobenius graph. Then

d
(M) =27 (M) =27 m(l) = 7m(T) =2 _in;
i=1

and K| 1
t(r) = ——
(N 5

Moreover, there exist routing and gossiping schemes with ‘nice’
properties.
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How about second-kind F-graphs?

e From now on we assume ' = Cay(K, S) is a second-kind
Frobenius graph, where

e G = K.H is Frobenius such that |H| is odd, S = a" U (a7 1)"
for some a € K with |a| # 2 and (a") = K.



Gossiping in second-kind F-graphs

Theorem
(Fang and Z, 2010)

K| -1 |K| -1
<t < .
2|H]| |H]
If K is abelian, then
|K| =1+ [I(K)|
N <

where |(K) is the set of involutions of K. In particular, if K is
abelian of odd order, then
KI-1

2|H|

t(r) =



Theorem

(cont’d) Moreover, if K is abelian of odd order, then we construct

an optimal, shortest-path gossiping scheme for I' such that the

following hold at any time t =1,2,...,(|K| —1)/2|H|:

(a) each arc of T is used exactly once for data transmission;

(b) for every x € K exactly |S| arcs are used to transmit messages
with source x, and for t > 2 the set A¢(x) of such arcs is a
matching of T';

(¢) K is transitive on the partition {A¢(x) : x € K} of A(T).
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Remarks

e K is always abelian except when |H| is odd and all Sylow
subgroups of H are cyclic.

e The result applies to sharply 2-transitive groups (for them K
is always abelian).

e The proof comes with a gossiping scheme which is optimal
when K is abelian of odd order.



Routing in second-kind F-graphs

Theorem

(Fang and Z, 2010) If K is abelian, then there exists a
shortest-path routing which is G-edge-transitive, edge-uniform and
optimal for w(I") = mm,(T") simultaneously. If in addition |K| is odd,
then 7 (F) = 7 m(T) = () /2 and this routing is arc-uniform and
optimal for 7 and 7, as well.
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Paley graphs

e Let g =1 (mod 4) be a prime.

e Paley graph P(q): Cayley graph on (Fg, +) w.r.t. the set of
non-zero squares in Fq, i.e. x,y € Fy are adjacent iff x — y is
a non-zero square.

e P(q) is a Frobenius graph (Solé).
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Generalized Paley graphs

e A near field is like a field except that multiplication may not
be commutative and there is only a one-sided distributive law.

e For any near field (F,+,-), we have (F,+) = Zj.

Theorem

Let (F,+,-) be a finite near field of odd order. Let 3 € F* and let
H # 1 be a subgroup of (F*,-) of odd order.

If the left coset BH of H in (F*,-) is a generating set of (F,+),
then Cay((F,+), 8H U (—BH)) is a second-kind Frobenius graph.



Corollary
Let T = Cay((F,+),8BH U (—SH)) be as above. Then

t(l) = (p" = 1)/2|H]|

and there exist optimal gossiping schemes for [ such that

(a) at any time t each arc of I' is used exactly once for data
transmission;

(b) for each x € K, exactly 2|H| arcs are used to transmit
messages with source x, and for t > 2 the set A¢(x) of such
arcs is a matching of T,

(c) the group of translations induced by (F,+) is transitive on
the partition {A¢(x) : x € K} of A(T').
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Lim and Praeger’s generalized Paley graphs

g = p": prime power

k > 2: a divisor of g — 1 such that either g or (¢ — 1)/k is
even

A: subgroup of (Fy,-) of order (¢ — 1)/k

GPaley(q, (g — 1)/k): Cayley graph Cay(F,, A) on (Fg, +)
(Lim and Praeger)

If g =1 (mod 4), then GPaley(q, (9 —1)/2) = P(q).
GPaley(q, (g — 1)/k) is connected iff k is not a multiple of
(g —1)/(p™ — 1) for any proper divisor m of n.

If g is odd and GPaley(q, (g — 1)/k) is connected, then
GPaley(q, (g — 1)/k) is the second-kind Frobenius graph
Cay((Fq, +), 1AU (~14)).



Corollary
For connected Lim-Praeger graphs GPaley(q,(q — 1)/k), we have

t(GPaley(q, (q — 1)/k)) = k

and there exists an optimal gossiping scheme having properties
(a)-(c) in the previous corollary.
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An example

3 is a primitive element of [Fig

H = (3%) = {3% = 7,3'2 = 11,38 = 1} (unique subgroup of
[Fig of order 3)

3H={7-3=2,11-3 = 14,3} is a generating set of (Fig,+)
3H U (=3H) = {2,14,3,17,5,16}

I = Cay(Z19,{2,14,3,17,5,16}) is a second-kind
Z19.Z3-Frobenius graph (not a Lim-Praeger graph)

(M) =27(N =27 (M) =7m(MN =1-24+2-4=10
tr)=(19-1)/(2-3) =3



/7 , 4 7 ...."‘. AN ) N N
‘d“e| e b [ &&& [eiee
4 9 6 7 11 1 12 8 18 15 10 13
4H* 7H* -7H* —4H*

A routing and gossiping tree for Cay(Z19, {2, 14,3,17,5,16}) at root 0.
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Second-kind F-graphs with small valency and large order

Question
Are there ‘large’ second-kind F-graphs with ‘small’ valency?

Corollary

For any even integer r > 4, there exist infinitely many odd primes
p such that there is a second-kind Frobenius graph (connected
generalized Paley graph) of order p> and valency r with the kernel
of the underlying Frobenius group abelian.

Proof: Dirichlet theorem: J infinitely many primes in
—14+r,—1+4+2r,—1+3r,...

Let p = —1 + tr be such an odd prime, k = t(p — 1) and q = p.
Then r = (g —1)/k and r is not a divisor of p — 1.

GPaley(p?, r) is a second-kind Frobenius graph of order p? and
valency r whose underlying Frobenius group has an abelian kernel.



Summary: second-kind Frobenius graphs

Properties Any K.H K abelian K abelian
& |K| odd
Hamiltonian? Conjecture Yes M Yes M
T Best possible FLP ? ?
T Best possible FLP ? ?
Optimal routing Unknown Fz Fz
for m and 7,7
K Unknown Unknown | Best possible FZ
T m Unknown Unknown | Best possible FZ
Optimal routing Unknown Unknown FZ

for @ and ?m?

Gossiping time

< 2-(trivial bound)

Best possible FZ

Gossiping
algorithm

2-Factor

approximation
FZ

Exact algorithm
Nice properties
FZ




