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Abstract

The computer programs SnapPea by Weeks and Geo by Casson have proven

to be powerful tools in the study of hyperbolic 3-manifolds. Manifolds are special

examples of spaces called orbifolds, which are modelled locally on R
n modulo fi-

nite groups of symmetries. SnapPea can also be used to study orbifolds but it is

restricted to those whose singular set is a link.

One goal of this thesis is to lay down the theory for a computer program that

can work on a much larger class of 3-orbifolds. The work of Casson is generalized

and implemented in a computer program Orb which should provide new insight

into hyperbolic 3-orbifolds.

The other main focus of this work is the study of 2-handle additions. Given

a compact 3-manifold M and an essential simple closed curve α on ∂M , then we

define M [α] to be the manifold obtained by gluing a 2-handle to ∂M along α. If α

lies on a torus boundary component, we cap off the spherical boundary component

created and the result is just Dehn filling.

The case when α lies on a boundary surface of genus ≥ 2 is examined and

conditions on α guaranteeing that M [α] is hyperbolic are found. This uses a lemma

of Scharlemann and Wu, an argument of Lackenby, and a theorem of Marshall

and Martin on the density of strip packings. A method for performing 2-handle

additions is then described and employed to study two examples in detail.

This thesis concludes by illustrating applications of Orb in studying orbifolds

and in the classification of knotted graphs. Hyperbolic invariants are used to

distinguish the graphs in Litherland’s table of 90 prime θ-curves and provide access

to new topological information including symmetry groups. Then by prescribing

cone angles along the edges of knotted graphs, tables of low volume orbifolds are

produced.
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Preface

Section 1.1 and 1.2 largely review known theory. Section 1.3 gives new results,

building upon previous work of Thurston ([61]) and Ushijima ([66]).

Section 2.1 gives basic background on orbifolds. Section 2.2, 2.3 and 2.4 produce

new results extending the work of Casson ([12]). In Section 2.5, the work of Frigerio

and Petronio ([23]) is translated into the setting of Section 2.2.

Section 3.1 was inspired by the work of Scharlemann and Wu ([58]) and Lack-

enby ([41]) while Section 3.2 and 3.3 consist entirely of original work.

In Section 4.1 the knotted graphs in [43] and [47] are distinguished using hy-

perbolic invariants. Section 4.2 produces new tables of low volume hyperbolic

3-orbifolds.

The Appendix outlines an algorithm for triangulating 3-orbifolds based on the

author’s Honours project [30].
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Introduction

The classification of 2-manifolds is something well understood. The classifica-

tion of 3-manifolds is a much harder problem. We do not even have conjectural list

of all 3-manifolds.

If Thurston’s Geometrization Conjecture is confirmed, which seems more and

more likely due to the work of Perelman, then we would have a complete set of

topological invariants. In particular, for irreducible atoroidal 3-manifolds, with

the exception of lens spaces, the fundamental group would be a complete invariant.

Unfortunately the fundamental group alone does not provide us a practical method

of distinguishing 3-manifolds.

To this end, topologists have been relying heavily on geometry to distinguish

between 3-manifolds. A geometric structure on a manifold is a complete, locally

homogeneous Riemannian metric. In particular, a hyperbolic manifold is a Rie-

mannian manifold with constant sectional curvature −1. Hyperbolic 3-manifolds

are the most interesting, and most abundant, while non-hyperbolic 3-manifolds are

largely understood.

In [61], Thurston introduced hyperbolic Dehn surgery, a method for continu-

ously deforming the topology and geometry of a hyperbolic 3-manifold to a different

3-manifold. The computer program SnapPea ([69]), developed by Weeks, allows

the user to explore this process. Manifolds are special examples of spaces called

orbifolds, which are modelled locally on R
n modulo finite groups of symmetries.

One goal of this thesis is to extend the ideas used in SnapPea to the class of 3-

orbifolds. These concepts are implemented in a computer program Orb. As with

SnapPea, Orb should provide invaluable information on hyperbolic 3-orbifolds and

aid future theoretical work.

The first chapter is a review of some hyperbolic geometry and a discussion of

“generalized tetrahedra”. Generalized tetrahedra arise when we allow tetrahedra

that have vertices ‘at’ and ‘beyond’ the boundary of 3-dimensional hyperbolic space

H
3. Combinatorially, a generalized tetrahedron is just a tetrahedron with some of

its vertices sliced off. Such a tetrahedron can be realized geometrically in H
3 by

slicing any hyperinfinite vertices off along their corresponding dual hyperplanes.

See Section 1.2 for more details. We can use the hyperboloid model of hyper-

bolic space to position any generalized tetrahedron ∆′ in Lorentzian space E
1,3. If
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2 INTRODUCTION

v1,v2,v3,v4 ∈ E
1,3 are the vertices of ∆′, then the vertex Gram matrix of ∆′ is the

symmetric 4 × 4 matrix of Lorentzian inner products G = (〈vi,vj〉). The matrix

G completely determines ∆′ up to isometry and so it can be used to recover its

dihedral angles and edge lengths.

In [61], Thurston devised a way of subdividing the figure-eight knot complement

into two regular ideal hyperbolic tetrahedra. Weeks has drawn upon this approach

to develop the computer program SnapPea which can subdivide the complement

of a link in S
3 into ideal tetrahedra. It can then search for tetrahedra so that

the sum of the dihedral angles around each edge in the triangulation is 2π. This

determines a hyperbolic structure on the manifold, giving access to a vast array

of geometric invariants. Casson has also developed a program Geo ([12]) that

computes geometric structures on closed 3-manifolds by subdividing them into

finite tetrahedra. Although both these programs have proven invaluable in studying

3-manifolds, they are limited by the kind of tetrahedra they use.

Thurston also suggested that this method could be extended to work on graph

complements. He showed in [62] that the complement of the knotted Y could be

subdivided into two regular generalized tetrahedra. Frigerio and Petronio proposed

one way of implementing this approach in [23] using the dihedral angles of the

generalized tetrahedra as parameters. This has been implemented with Martelli in

the computer program ographs ([21]).

The second chapter develops an alternative method for parametrizing general-

ized triangulations, using vertex Gram matrices of the generalized tetrahedra as

parameters in an approach similar to that of Casson in Geo. The shapes of the gen-

eralized tetrahedra in a triangulation T can be completely determined by |T 0|+|T 1|
parameters, where |T i| is the number of i-cells in T , significantly fewer parameters

than required by the approach in [23].

This technique for finding hyperbolic structures can also be used on closed and

cusped 3-manifolds and on 3-manifolds with geodesic boundary. It can also be

used to find structures on a very large class of 3-orbifolds. We can do this by

relaxing the edge condition by allowing the cone angle around each edge to be 2π
n

,

for some n ≥ 1. Since orientable 3-orbifolds ‘look like’ orientable 3-manifolds with

embedded trivalent graphs as singular loci, a very large class of orbifolds can be

dealt with in this way.

Orb is a computer program which implements this method for parametrizing

triangulations. It can start with a projection of a graph embedded in S
3, and

produce and simplify a triangulation with some prescribed subgraph as part of

the 1-skeleton and the remainder of the graph drilled out. (This is described
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in the Appendix.) Orb then uses the vertex Gram matrices to parametrize the

triangulation and solve for a hyperbolic structure using Newton’s method.

Given a compact 3-manifold M and an essential simple closed curve α on ∂M ,

we define M [α] to be the manifold obtained by gluing a 2-handle to ∂M along

α. If α lies on a torus boundary component, we cap off the spherical boundary

component created and the result is just Dehn filling.

Suppose T is a torus boundary component of ∂M , α ⊂ T , and suppose M

is hyperbolic. By Thurston’s Hyperbolic Dehn Surgery Theorem ([62]), there are

only a finite number of slopes α with non-hyperbolic M [α]. Thurston and Gromov

([28],[6]) also showed that if the length of α, as measured in the Euclidean metric

on the boundary of a horoball neighbourhood of the cusp, is at least 2π then

M [α] is negatively curved. Agol ([3]) and Lackenby ([42]) have independently

shown that if the length of α (measured as above) is at least 6 then M [α] is

irreducible, atoroidal and not Seifert fibered, and has an infinite, word hyperbolic

fundamental group. Hodgson and Kerckhoff ([32]) have shown that the number of

non-hyperbolic fillings is bounded by a number independent of M .

The third chapter examines the case when α lies on a boundary surface of genus

≥ 2. Using a lemma of Scharlemann and Wu ([58]), an argument of Lackenby ([41])

and a theorem on the density of strip packings, due to Marshall and Martin ([44]),

the following result is proven.

Theorem 3.1 Let M be an orientable compact finite volume hyperbolic 3-

manifold with non-empty geodesic boundary. Suppose α is a simple closed geodesic

on a boundary component S, with genus greater than one. Let

c(S) = 6ArcCosh






1 +

2
√

1 − 4/χ(S)
(

√

1 − 4/χ(S) − 1
)2






.

Then M [α] is hyperbolic provided that, if α is separating then

Length(α) > c(S),

and if α is non-separating, then all curves α′ coplanar to α have

Length(α′) > c(S).

Two curves α and β on surface S are coplanar if some component of S−(α∪β)

is an annulus or a 3-punctured sphere. If M is hyperbolic and M [α] is not then α

is called an exceptional curve.

The study of 2-handle additions concludes by enumerating exceptional curves

on the boundary of two of the eight lowest volume hyperbolic 3-manifolds with

geodesic boundary determined by Fujii in [24]. This is done by producing an

algorithm which starts with a triangulated 3-manifold M with a curve α ⊂ ∂M
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and creates a triangulation for M [α]. These examples turn out to be very different,

one having a finite list and the other an infinite list of exceptional curves.

The enumeration and classification of knots and links has benefited greatly

from the information that hyperbolic structures provide. Mostow-Prasad rigidity

implies that a complete hyperbolic structure is a complete invariant of a finite vol-

ume hyperbolic 3-manifold ([48],[52]). This result means that knots and links with

hyperbolic complements can be distinguished by their geometric structures. Hy-

perbolic structures can be used in a similar fashion to distinguish between knotted

graphs in S
3.

A θ-curve is a spatial graph in S
3 consisting of two vertices and three edges,

where each edge joins the two vertices. Litherland ([43]) and later Moriuchi ([47])

enumerated all prime θ-curves with up to seven crossings. The same spatial graph

can be embedded in many different ways, so invariants are needed to build up a

complete list of graphs without repetition. Litherland used the Alexander polyno-

mial to distinguish between spatial graphs while Moriuchi employed the Yamada

polynomial.

The final chapter shows how the prime θ-curves with up to seven crossings can

be completely distinguished by using hyperbolic structures alone. This is done by

considering natural geometric structures associated with each graph, including the

unique hyperbolic structure of the manifold with geodesic boundary produced by

making the meridians of the edges of the graph parabolic. The same ideas have

recently been used by Chiodo, Heard, Hodgson, Saunderson and Sheridan in [15]

to extend the work of Litherland and Moriuchi and enumerate all prime two and

four vertex trivalent spatial graphs with up to seven crossings.

Spatial graphs also give us access to a huge range of 3-orbifolds. By starting

with a trivalent spatial graph, and varying the cone angles along the edges, we

can produce an infinite family of orbifolds. This study concludes by compiling

two large tables of low volume hyperbolic 3-orbifolds using the spatial graphs from

[15]. The first fourteen low volume orbifolds were already known and appear in a

paper of Zimmerman ([73]). After that, new low volume orbifolds begin to appear.

These tables should provide useful in guiding future theoretical work on hyperbolic

3-orbifolds.



CHAPTER 1

Generalized tetrahedra and their Gram matrices

In [61] Thurston devised a method for placing hyperbolic structures on cusped

hyperbolic 3-manifolds by subdividing them into ideal tetrahedra. The computer

program SnapPea ([69]) has had great success implementing this approach on knot

and link complements in S
3 and on closed 3-manifolds obtained from these by Dehn

filling. SnapPea has proven to be invaluable in the enumeration and study of cusped

and closed hyperbolic 3-manifolds ([31], [33]), enumeration of knots and links ([2],

[35]) and the study of hyperbolic Dehn surgery (e.g. [34]).

In the case of 3-manifolds with higher genus boundary components, Thurston

suggested that partially truncated tetrahedra could be used to find a hyperbolic

structure with (totally) geodesic boundary. Later, Kojima ([39], [40]) showed that

Epstein and Penner’s canonical cell decomposition ([19]) of cusped hyperbolic 3-

manifolds could be naturally extended to this case. Capitalizing on this, Frigerio

and Petronio ([23]) have constructed a census of hyperbolic 3-manifolds with ge-

odesic boundary. Parametrizing their “generalized triangulations” using dihedral

angles they have implemented many of these ideas in a computer program ographs

[21] by Frigerio, Martelli and Petronio.

In this chapter we examine generalized tetrahedra and show they are completely

determined (up to isometry) by their vertex Gram matrices. These tetrahedra are

the building blocks of our generalized triangulations in Chapter 2.

1.1. Hyperbolic space

This section gives a brief introduction to hyperbolic space. The reader is re-

ferred to [62], [54] or [5] for a more thorough account.

The (n+ 1)-dimensional Lorentzian space E
1,n is the real vector space R

n+1 of

dimension n + 1 equipped with the Lorentzian inner product

(1.1) 〈x,y〉 := −x0y0 + x1y1 + ...+ xnyn,

where x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn). Let

H− := {x ∈ E
1,n|〈x,x〉 = −1, x0 > 0}

be the upper half sheet of the two sheeted hyperboloid. The restriction of the

quadratic form induced by 〈·, ·〉 on E
1,n to the tangent space of H− is positive

definite and so it gives a Riemannian metric on H− producing the hyperboloid

5



6 1. GENERALIZED TETRAHEDRA AND THEIR GRAM MATRICES

model of n-dimensional hyperbolic space H
n. (See Figure 1.1.) Under this metric

the hyperbolic distance d between two points x,y ∈ H− ⊂ E
1,n can be calculated

by the following formula:

(1.2) 〈x,y〉 = − cosh d.

P
n
1

L+

H+

H−

x

P(x)

xi

x0

Figure 1.1. The real vector space R
n+1 equipped with the

Lorentzian inner product is (n + 1)-dimensional Lorentzian space

E
1,n. Taking the upper sheet of the standard two sheeted hyper-

boloid with the induced metric gives n-dimensional hyperbolic space.

Let

L := {x ∈ E
1,n|〈x,x〉 = 0}

be the “light cone” and let

L+ := {x ∈ E
1,n|〈x,x〉 = 0, x0 > 0}

be its upper half. Then a ray in L+ starting at the origin corresponds to a point

on boundary of H
n. The set of such rays form the sphere at infinity S

n−1
∞ = ∂H

n.

An arbitrary point u in L+, defines a horosphere

hu := {x ∈ H
n|〈x,u〉 = −1〉},

which inherits a Euclidean structure.

Let us denote by P the radial projection from {x ∈ E
1,n|x0 6= 0} to the affine

hyperplane

P
n
1 := {x ∈ E

1,n|x0 = 1}
along the rays through the origin. The projection P is a homeomorphism from H−

onto the n-dimensional open unit ball B
n in P

n
1 centered at the origin (1, 0, 0, . . . , 0)

of P
n
1 , which gives the projective model of H

n. The affine hyperplane P
n
1 contains
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B
n and its set theoretic boundary ∂B

n in P
n
1 , which is identified with S

n−1
∞ . Define

Bn = B
n ∪ ∂B

n.

The one sheeted hyperboloid H+ is defined to be

H+ := {x ∈ E
1,n|〈x,x〉 = 1}.

For an arbitrary point u in H+ define the geodesic hyperplane u⊥ as

u⊥ := {x ∈ H
n|〈x,u〉 = 0}.

A point u in H+ also defines a half-space in H
n given by

Πu = {x ∈ H
n|〈x,u〉 ≤ 0}.

Definition 1.1. The signed distance d between a horosphere and a hyperplane

(resp. point, horosphere) is the distance by which the horosphere extends past the

hyperplane (resp. point, horosphere). The distance d may be positive, negative or

zero, as shown in Figure 1.2.

d = 0

hx y⊥

d < 0 d > 0

Figure 1.2. The signed distance from a hyperplane to a horosphere

is the distance d by which the horosphere extends past the hyper-

plane.

The following theorem describes the relationship between the Lorentzian inner

product and the geometry of points, hyperplanes and horospheres in H
n. It is an

extension of Propositions 2.1, 2.2 and 2.3 in [66] and Proposition 2.45 in [62].

Theorem 1.2. The inner product of two points x,y ∈ H− ∪ L+ ∪ H+ can be

interpreted as follows:

(1) If x,y ∈ H− then the hyperbolic distance d between them is given by

〈x,y〉 = − cosh d.

(2) If x,y ∈ H+ then one of the following holds:
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(a) The two geodesic hyperplanes x⊥ and y⊥ intersect in H
n if and only

if |〈x,y〉| < 1. In this case the hyperbolic angle θ between them,

measured in Πx and Πy, is given by

(1.3) 〈x,y〉 = − cos θ.

(b) The two geodesic hyperplanes x⊥ and y⊥ do not intersect in Hn =

H
n ∪ ∂H

n if and only if |〈x,y〉| > 1. In this case the hyperbolic

distance d between them is given by

(1.4) |〈x,y〉| = cosh d.

(c) Two geodesic hyperplanes x⊥ and y⊥ do not intersect in H
n but in-

tersect in ∂H
n if and only if |〈x,y〉| = 1. In this case the hyperbolic

distance and angle between them are both 0.

(3) Let x ∈ H− and y ∈ H+. Then the hyperbolic distance d between x and

y⊥ is given by

(1.5) |〈x,y〉| = sinh d.

(4) Let x ∈ H+ and y ∈ L+. Then the signed distance d between x⊥ and hy

is given by

(1.6) |〈x,y〉| = e−d.

(5) Let x ∈ H− and y ∈ L+. Then the signed distance d between x and hy is

given by

(1.7) 〈x,y〉 = −e−d.

(6) Let x,y ∈ L+. Then the signed distance d between hx and hy is given by

(1.8) 〈x,y〉 = −2e−d.

Proof. Note that the first equation is precisely (1.2). Here we prove equations

(1.6), (1.7) and (1.8). The reader should refer to [62] for the remainder of the proof.

It is enough to prove equation (1.6) in H
2. By an isometry of E

1,2 we can arrange

that x⊥ is contained in the x0x2-plane and the closest point on x⊥ to hy is the origin.

Then the unique geodesic that minimizes the distance between x⊥ and hy must

be contained in the x0x1-plane. (Refer to Figure 1.3.) So we can assume that

y = (s, s, 0) ∈ L+, for some s > 0, and that x = (0,±1, 0) ∈ H+ (where the sign is

determined by the sign of 〈x,y〉). Then the point on hy that realizes the distance

from x⊥ to hy is (cosh(−d), sinh(−d), 0). Since (cosh(−d), sinh(−d), 0) ∈ hy,

〈(cosh(−d), sinh(−d), 0), (s, s, 0)〉 = −1,
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giving s = e−d. Hence,

〈x,y〉 = 〈(0,±1, 0), (e−d, e−d, 0)〉 = ±e−d,

as required.

x⊥
(cosh(−d), sinh(−d), 0)

d
hy

Figure 1.3. The picture in P
2
1.

The proof of equation (1.7) is similar. It can be assumed that x is positioned

at (1, 0, 0) and y is at (e−d, e−d, 0). The result immediately follows.

For equation (1.8) it can be assumed that x = (t,−t, 0) ∈ L+, for some t > 0,

and that the closest point on hx to hy is (1, 0, 0). With this positioning y =

(s, s, 0) ⊂ L+, for some s > 0, and the point (cosh(−d), sinh(−d), 0) must be the

closest point on hy to hx. Since (1, 0, 0) ∈ hx,

〈(1, 0, 0), (t,−t, 0)〉 = −1

and so t = 1. On the other hand, because

〈(s, s, 0), (cosh(−d), sinh(−d), 0)〉 = −1,

it follows that s = e−d. Therefore,

〈x,y〉 = 〈(1,−1, 0), (e−d, e−d, 0)〉 = −2e−d,

as required. �

1.2. Generalized tetrahedra

Hyperbolic space is unique because unlike in spherical and Euclidean space, in

hyperbolic space a tetrahedron can have vertices ‘at’ and ‘beyond’ the sphere at

infinity. This is easiest to see in the projective model by moving the vertices from

B
3 to ∂B

3, and then outside ∂B
3. This section defines a generalized tetrahedron

and gives other related definitions. In the next chapter these will be the geometric

building blocks used to find hyperbolic structures.
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Definition 1.3. If v ∈ E
1,n then we define the normalized vector in the direction

of v as

v̂ =







v√
|〈v,v〉|

, if 〈v,v〉 6= 0;

v, otherwise.

Definition 1.4. ([66]) Let ∆ be a simplex in P
n
1 . Suppose each codimension 2

face of ∆ intersects Bn.

(1) Let v be a vertex of ∆ outside Bn. The truncation at vertex v is the

operation of deleting the open neighbourhood of v bounded by P(v⊥). The

new face created P(v⊥) ∩ ∆ is called a truncation face.

(2) The truncated simplex say, ∆′, is the polyhedron in B
n obtained by trun-

cating ∆ at all its vertices lying outside Bn and omitting any vertices in

∂B
n.

(3) A generalized hyperbolic simplex in B
n is a polyhedron which is either a

simplex in the ordinary sense or a truncated simplex as described above.

By a face of ∆′ we mean a face of the polyhedron which is not a truncation

face.

By ∆̂ we denote the projection of ∆′ to H−. When n = 3 this defines a generalized

hyperbolic tetrahedron. Refer to Figure 1.4 for more detail.

v

v⊥

Figure 1.4. A tetrahedron in P
3
1 with one vertex in B

3, one vertex

in ∂B
3 and two vertices outside B3. Truncation produces a gener-

alized tetrahedron with one finite vertex, one ideal vertex and two

truncation faces corresponding to hyperinfinite vertices.

By a generalized tetrahedron we will mean a generalized hyperbolic tetrahedron

unless otherwise stated.

As in [66], we regard the vertices of ∆′ as those of ∆. Any vertex of ∆′

lying outside B3 is no longer a vertex in the ordinary sense, but we will call it a
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hyperinfinite vertex of ∆′. Any vertex of ∆′ lying in B
3 (resp. ∂B

3) is also a vertex

of ∆′ in the ordinary sense and we well call it a finite (resp. ideal) vertex of ∆′.

Let ∆′ be a generalized tetrahedron in P
3
1 with vertices v1,v2,v3,v4 in P

3
1.

Then we also regard u1,u2,u3,u4 ∈ E
1,3 as a set of vertices for ∆′ if P(ui) = vi

for i = 1, 2, 3, 4. The i-th face of ∆′ is the face opposite vi.

Denote the truncation triangle in H
3 at each hyperinfinite vertex vi ∈ E

1,3 by

∆vi = ∆̂∩ v⊥
i . Also denote by ∆vi = ∆̂∩ hvi

the horospherical Euclidean triangle

in H− at each ideal vertex of vi ∈ E
1,3. Note that the definition of ∆vi , for an ideal

vertex vi, is affected by the rescaling of vi.

A length-0 edge is an edge of ∆′ that meets B3 only at ∂B
3. The dihedral angle

formed between the faces at such an edge is 0. See Figure 1.5 and refer to [23] for

more detail.

e′e

Figure 1.5. The edge e of ∆ meets B3 only at ∂B
3. After truncation

e becomes a length-0 edge e′.

1.3. Gram matrices

Let ∆′ be a generalized tetrahedron with vertices v1,v2,v3,v4 in E
1,3. Let V

be the matrix with the vi as columns and denote by J the 4 × 4 matrix

J =











−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











.

Then we define the vertex Gram matrix of ∆′ to be the symmetric 4 × 4 matrix

(1.9) G = V tJV =











v11 v12 v13 v14

v12 v22 v23 v24

v13 v23 v33 v34

v14 v24 v34 v44











,
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where vij = 〈vi,vj〉. It will be shown in Theorem 1.5 that G completely determines

∆′ up to hyperbolic isometry. Moreover, it also specifies a horospherical triangle

∆vi = {x ∈ H
3|〈vi,x〉 = −1} ∩ ∆′ in the link of every ideal vertex vi of ∆′.

Given ∆′ and some choice of vertices, we can define a unique choice of normals

to faces w1,w2,w3,w4 by the equation

(1.10) V tJW =
√

− det(G)I,

where the wi make up the columns of W . (Note that det(G) < 0.) Thus, given ∆′

and its vertices, we can define the normal Gram matrix of ∆′

G∗ = W tJW =











w11 w12 w13 w14

w12 w22 w23 w24

w13 w23 w33 w34

w14 w24 w34 w44











,

where wij = 〈wi,wj〉. According to Theorem 1.2 the dihedral angle θij between

the i-th and j-th faces of ∆′ is given by

cos θij =
−wij√
wiiwjj

.

Since

GG∗ = V tJV W tJW

= V t(W t)−1(W tJV )W tJW

=
√

− det(G)V tJW

= − det(G)I,

we have,

(1.11) G∗ = − det(G)G−1.

So the dihedral angles between the faces of ∆′ can be computed from the entries of

G alone. Let Gij be the matrix obtained by deleting the i-th row and j-th column

of G. Then denote by cij the (i, j)-th cofactor of G,

cij = (−1)i+j det(Gij).

Equation (1.11) asserts that

(1.12) cij = −wij ,

so

(1.13) cos θij =
cij√
ciicjj

.
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Remark: Thurston used similar calculations to express the angles between faces

of generalized triangles in terms their edge lengths. Using this, he derived versions

of the hyperbolic sine and cosine laws. See [61] or [62] for more details.

The following theorem determines the set of all vertex Gram matrices:

Theorem 1.5. Let G be a real symmetric 4 × 4 matrix. Then G = (vij) is a

vertex Gram matrix for some generalized hyperbolic tetrahedron ∆′ if and only if

(1) G has one negative and three positive eigenvalues,

(2) cii < 0 for all i,

(3) c2ij ≤ ciicjj for all i and j,

where the (i, j)-th cofactor of G is cij.

Furthermore, every such G represents a unique ∆′ in E
1,3 up to isometry.

In a sense this result is ‘dual’ to Theorem 3.2 in [66]. Recognizing the signifi-

cance of the eigenvalues of the vertex Gram matrix provides a cleaner proof.

Proof. Let G be a real symmetric 4×4 matrix satisfying the above conditions.

Then G has eigenvalues λ0, λ1, λ2, λ3 where λ0 < 0 < λ1 ≤ λ2 ≤ λ3. There exists

an orthogonal matrix U (whose columns are eigenvectors) such that

G = UΛU t,

where Λ = diagonal(λ0, λ1, λ2, λ3) is the diagonal matrix with diagonal entries

λ0, λ1, λ2 and λ3. Now define “
√

Λ” to be the matrix

√
Λ =











√
−λ0 0 0 0

0
√
λ1 0 0

0 0
√
λ2 0

0 0 0
√
λ3











.

Then if V =
√

ΛU t we see that

G = V tJV.

The goal is to show that the columns of V , say vi, are the vertices of some

generalized tetrahedron ∆′. Since (1) holds, det(V ) 6= 0. So {v1,v2,v3,v4} is

linearly independent and thus gives a basis for E
1,3. Moreover, the convex hull C

of the vi is a tetrahedron. All that remains to show is that each edge eij , between

vertices vi and vj, passes through H
3 ∪ ∂H

3.

Let W be the matrix such that

V tJW =
√

− det(G)I;
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then the columns of W are normal to the faces of C. It follows from equation (1.12)

that

G∗ = W tJW = (−cij),
and since cii < 0 we have wii > 0, and so each face of C intersects H

3. Furthermore,

because c2ij ≤ ciicjj, |〈ŵi, ŵj〉| ≤ 1, for all i, j. Therefore Theorem 1.2 shows that

each edge eij passes through H
3 ∪ ∂H

3.

Conversely, let ∆′ be a generalized tetrahedron with vertex Gram matrix G.

Then since the vi form a basis for E
1,3, det(V ) 6= 0. By applying Sylvester’s inertia

law to equation (1.9), it is apparent that G has one negative and three positive

eigenvalues [29]. The second and third conditions follow from Theorem 1.2 and

equation (1.12).

For the last part of the theorem, assume that the vertex Gram matrices of two

generalized tetrahedra ∆′
1,∆

′
2 ⊂ E

1,3 are equal. Let Vi be the matrix with the

vertices of ∆′
i as columns. Then we have

(1.14) V t
1JV1 = V t

2 JV2.

We wish to find a hyperbolic isometry which extends to E
1,3 and maps the vertices

of ∆′
1 to the vertices of ∆′

2. Since V1 is invertible, it is enough to show that

g = V2V
−1
1 is the extension of a hyperbolic isometry. Equivalently, we must show

that g ∈ O(1, 3) and g sends the upper half of E
1,3 to itself.

It follows immediately from equation (1.14), that

gtJg = (V2V
−1
1 )tJ(V2V

−1
1 ) = J,

hence g is in O(1, 3). To show g sends the upper half space of E
1,3 to itself, note

that by multiplying the vertices of ∆′
1 and ∆′

2 by −1 we can assume that the x0

coordinate of each of the vertices is positive. Let v1
i be the first vertex of ∆′

i. Then

since v1
1 is mapped to v2

1 the entire upper half of E
1,3 must be mapped to itself by

g. �

The proof of Theorem 1.5 provides a method for realizing a tetrahedron from

its vertex Gram matrix.

Example 1.6. Consider the vertex Gram matrix of the form

G =











t a b c

a t c b

b c t a

c b a t











with a, b, c < 0. Then G has eigenvalues

λ0 = a+ b+ c+ t, λ1 = a− b− c+ t, λ2 = −a+ b− c+ t and λ3 = −a− b+ c+ t,
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with corresponding orthonormal eigenvectors (with respect to the Euclidean inner

product),

u0 =
1

2











1

1

1

1











,u1 =
1

2











1

1

−1

−1











,u2 =
1

2











1

−1

1

−1











and u3 =
1

2











1

−1

−1

1











.

According to condition (1) of Theorem 1.5 in order for G to be the vertex Gram

matrix of some generalized tetrahedron the eigenvalues must satisfy the inequalities

λ0 < 0 and λi > 0,

for i = 1, 2, 3. Given a, b, c < 0, this can only happen when t satisfies

(1.15) max(b+ c− a, a+ c− b, a+ b− c) < t < −a− b− c.

As in the proof, the columns of the matrix

V =
1

2











√
−λ0

√
−λ0

√
−λ0

√
−λ0√

λ1

√
λ1 −

√
λ1 −

√
λ1√

λ2 −
√
λ2

√
λ2 −

√
λ2√

λ3 −
√
λ3 −

√
λ3

√
λ3











give the vertices of a tetrahedron, say ∆. Notice that by realizing the tetrahedron

√

−λ1

λ0

√

−λ2

λ0

√

−λ3

λ0

x3

x1 x2

Figure 1.6. ∆ inscribed in a rectangular box centered at the origin

with sides of length
√

−λ1

λ0
,
√

−λ2

λ0
,
√

−λ3

λ0
parallel to the x1, x2, x3

axes.

through this method, ∆ is inscribed in a rectangular box centered at the origin as

shown in Figure 1.6. Conditions (2) and (3) of Theorem 1.5 require that the edges

of ∆ meet the closed unit ball. Using Figure 1.6 this can be ensured more directly.
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With this description it is clear that the midpoints of the edges of ∆ must intersect

the closed unit ball, which can only happen if

(1.16) −λi

λ0

≤ 4

for i = 1, 2, 3. Combining equations (1.15) and (1.16) gives a non-empty convex

set of (a, b, c, t) parametrizing generalized tetrahedra.

In Figure 1.6 it is also easy to see that as λi → 0 for some i > 0, ∆ flattens

into the plane defined by two coordinate axes, and its vertices become linearly

dependent. Section 2.3 will establish a method of dealing with this issue and also

allow tetrahedra to turn inside out — becoming negatively oriented. Until then

assume all the tetrahedra are positively oriented, with dihedral angles lying in the

interval (0, π).

Question: In [66], Ushijima gives a formula for computing the volume of a gener-

alized tetrahedron ∆′ in terms of dihedral angles. Is there a formula for computing

the volume of ∆′ in terms of its vertex Gram matrix G?

This question has been resolved in the case of a finite hyperbolic tetrahedron

by Murakami and Ushijima in [49].



CHAPTER 2

Finding hyperbolic structures on 3-orbifolds

The collection of all manifolds is a subset of the collection of all orbifolds.

Roughly speaking, an orbifold is modelled on Euclidean space modulo a finite

group of symmetries. Orbifolds were first introduced by Thurston, and his lecture

notes ([61]) still provide one of the best resources on the topic.

The section that follows is a brief introduction to orbifolds. For more detail

the reader should refer to [8], [9], [10] or [61]. The definitions are as in [16] which

provides an excellent reference. In practice the precise definition of an orbifold is

not used, instead Theorem 2.1 is employed which asserts that a 3-orbifold looks

like a 3-manifold containing a singular graph.

The remainder of the chapter outlines a new method for computing hyperbolic

structures on 3-orbifolds. In general this process is too difficult to do by hand, so

topologists rely heavily on computer programs such as SnapPea ([69]). SnapPea

allows the user to perform orbifold surgeries on knot and links in S
3. If the singular

set of a 3-orbifold is more complicated than a link, then there has been no general

tool available — until now. Orb is a computer program that implements this new

method, allowing easy computation of many geometric and topological invariants

on a large class of 3-orbifolds. Chapter 4 illustrates the application of this new

tool.

2.1. Orbifolds

The precise definition of a (smooth) orbifold is quite complicated. It looks

similar to the definition of a (smooth) manifold except that each point in an orbifold

has a neighbourhood that looks like Euclidean space divided out by a finite group

of diffeomorphisms.

A local model is a pair (Ũ , G), where Ũ is an open subset of R
n and G is a

finite group of diffeomorphisms of Ũ . It is often convenient to abuse notation and

refer to the quotient space U = Ũ/G as the local model. An orbifold map between

local models is a pair (ψ̃, γ) where ψ̃ : Ũ → Ũ ′ is smooth and, γ : G → G′ is a

homomorphism such that ψ̃(gx̃) = γ(g)ψ̃(x̃) for all g ∈ G and x ∈ Ũ . Such a

map ψ̃ induces a map ψ : Ũ/G → Ũ ′/G′ and if γ is a monomorphism and ψ,ψ̃

are injective we say that ψ is an orbifold isomorphism. These local models are the

17
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building blocks for an orbifold whilst the orbifold maps indicate how the pieces fit

together. (Refer to Figures 2.1 and 2.2.)

C4

4

Figure 2.1. One possible model is given by dividing an open disc

by a rotational symmetry. The result is a cone whose tip is called a

cone point. If the cone is the quotient by a cyclic group of order n

then the cone point is labelled n and the cone angle is 2π
n

.

D2

2

Figure 2.2. Another possible local model is given by dividing an

open disc out by the dihedral group Dn of order 2n. The result is a

sector of a disc with a corner point with angle π
n
. Mirrors are shaded

in the picture while the corner point is labelled n.

An n-dimensional orbifold Q consists of a pair (XQ,U) where XQ is the un-

derlying space which is a Hausdorff, paracompact, topological space and U is an

orbifold atlas. The atlas consists of a collection of coordinate charts (Ui, φi) where

the sets Ui form an open cover for XQ such that every non-empty intersection of

any pair of sets is also in the cover. For each chart there is a local model Ũi/Gi

and a homeomorphism φi : Ui → Ũi/Gi. These charts must satisfy the compat-

ibility conditions that whenever Ui ⊂ Uj the inclusion map is an orbifold local

isomorphism. (See Figure 2.3.)

The local group Gx at a point x in a local model Ũ/G is the stabilizer of any

point x̃ ∈ Ũ projecting to x. The singular locus Σ(Q) of Q is defined to be

{x ∈ XQ : Gx 6= {1}}. Thus an orbifold is a manifold precisely when Σ(Q) = ∅.
An orbifold is locally orientable if it has an atlas {(Ui, φi)} where each local

model is given by a quotient Ui = Ũi/Gi where Gi is an orientation preserving

group. It is orientable if in addition the inclusion maps Ui ⊂ Uj are induced by

orientation preserving maps Ũi → Ũj .
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XQ

φi

Ui

Ũi/Gi φj

Uj

Ũj/Gj

Figure 2.3. The open sets U cover XQ. Each set Ui ∈ U has a chart

φi and a local model Ũi/Gi. The compatibility conditions imply that

two overlapping sets Ui and Uj have local models that agree.

It is often easiest to describe low dimensional orbifolds pictorially. On the left

of Figure 2.4 is a torus with one cone point labelled 3. The torus is the underlying

space of the orbifold and the 3 indicates that the local group at the cone point is

C3; the cyclic group of order 3. The notation we use to denote such an orbifold

is T(3). More generally, we denote an orientable 2-orbifold Q by XQ(c1, . . . , cn)

where XQ is the underlying space and c1, . . . , cn indicate the cyclic groups at the

cone points.

3

3

2

4

Figure 2.4. The 2-orbifolds T(3) and S
2(2, 3, 4).

An orbifold with boundary Q is defined similarly by replacing R
n by the closed

half space R
n
+. The orbifold boundary ∂orbQ of Q corresponds to the points in the

boundary of R
n
+ in the local models. Thus a point x is in ∂orbQ if there is a

coordinate chart φ : U → Ũ/G with x ∈ U such that φ(x) ∈ (Ũ ∩ ∂R
n
+)/G. An

orbifold is closed if it is compact and the orbifold boundary is empty.

Note that the orbifold boundary is generally not the same as the boundary

of the underlying space. The set of points in the singular locus of an orbifold Q

which are locally modelled on the quotient of R
n by reflection, is called the mirror

singular locus Σmirror(Q). The boundary of the underlying space is ∂topXQ =

∂orbQ ∪ Σmirror(Q).
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Let X be a Riemannian manifold and G a group acting transitively on X.

Then a (G,X)-orbifold is locally modelled on X modulo finite subgroups of G.

In particular an orbifold is hyperbolic if X = H
n and G = Isom(X). Similarly, if

X = E
n or S

n and G = Isom(X) then the orbifold is Euclidean or spherical. Such

orbifolds have more structure as they inherit metrics from X. We say an orbifold

is complete if it is complete as a metric space.

X = E
2

X/G

S
2(2, 2, 2, 2)

22

22

τ1

τ2

α1

α2

Figure 2.5. The 2-orbifold S
2(2, 2, 2, 2) is Euclidean. It can be

created by dividing E
2 by the group generated by the two rotations

α1, α2 and the two translations τ1, τ2 of the Euclidean plane.

It turns out that if a given orbifold Q is 2-dimensional there is an easy way to

determine if it has a hyperbolic, Euclidean or spherical structure. This identifi-

cation relies on the orbifold Euler characteristic χ(Q). To evaluate χ(Q), first Q

must be decomposed into open cells so the local group associated to the interior

points of any cell is constant. Then χ(Q) is defined by the formula

χ(Q) =
∑

ci

(−1)dim(ci)
1

|Gci
|

where ci ranges over the cells and |Gci
| is the order of the group Gci

associated to

the cell.

Apart from orbifolds of the type S
2(n) and S

2(n,m) (n > m ≥ 2) every closed

orientable 2-orbifold Q has a spherical, Euclidean or hyperbolic structure deter-

mined by the sign of χ(Q):

• Q is spherical if and only if χ(Q) > 0;

• Q is Euclidean if and only if χ(Q) = 0;

• Q is hyperbolic if and only if χ(Q) < 0;

It is then easy to show that the only closed orientable Euclidean 2-orbifolds are

the torus, S
2(2, 2, 2, 2), S

2(2, 3, 6), S
2(2, 4, 4) and S

2(3, 3, 3). The only closed ori-

entable spherical 2-orbifolds are S
2, S

2(2, 3, 3), S
2(2, 3, 4), S

2(2, 3, 5), S
2(n, n) and

S
2(2, 2, n), for n ≥ 2.

Let Q1 = H
n/G1 and Q2 = H

n/G2 be two complete hyperbolic n-orbifolds

of finite volume (n ≥ 3). Then Mostow-Prasad rigidity says that Q1 and Q2 are
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isomorphic orbifolds if and only if the groups G1 and G2 are conjugate in Isom(Hn).

Hence, geometric invariants of complete hyperbolic 3-orbifolds are also topological

invariants. See [48] or [52] for more detail.

Let Q be an n-orbifold and let x ∈ Q. Since n-orbifolds are locally modelled

on R
n modulo finite subgroups of O(n), x has a neighbourhood which is a cone on

a spherical (n− 1)-orbifold S
n−1/G. This gives us an extremely convenient way of

describing 3-orbifolds:

Theorem 2.1. [61] Let Q be an orientable 3-orbifold. Then the underlying

space XQ is an orientable 3-manifold and the singular set consists of edges of or-

der k ≥ 2 and vertices where 3 edges meet. At a vertex the three edges have orders

corresponding to the cone points on a compact orientable spherical 2-orbifold. Con-

versely, every such labelled graph in an orientable 3-manifold describes an orientable

3-orbifold.

The remainder of this chapter will avoid local models, charts and atlases by

using this result. We will regard an orientable 3-orbifold as a 3-manifold containing

a labelled singular graph that satisfies the conditions of Theorem 2.1. (See Figure

2.6.)

6

2

3 4

Figure 2.6. Consider this labelled knotted graph Γ as the singular

set of a 3-orbifold with underlying space S
3. By relabelling the edges

in a manner that agrees with Theorem 2.1, a family of 3-orbifolds

can be created. The numbers along the edges of Γ describe the local

groups.

2.2. The parameters and equations

Let M be a closed 3-manifold and Γ ⊂ M a labelled graph satisfying the

conditions of Theorem 2.1. Then we can define a 3-orbifold Q by the pair (M,Γ).

For orientable hyperbolic 3-orbifolds with finite volume the scope of the labelling

on Γ can be increased to allow for vertices coned on closed orientable Euclidean 2-

orbifolds. A hyperbolic structure can be placed on Q by removing any such vertex

from M , creating a cusp. We can also allow vertices coned on closed orientable
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hyperbolic 2-orbifolds. In this case we can slice a neighbourhood of the vertex off,

creating a 3-orbifold with (totally) geodesic boundary. (See [23], [24], [61].)

Let Γ be a graph in a closed 3-manifold M with vertices of degree 3 and edges

labelled by integers ≥ 2. A triangulation T of Q = (M,Γ) is a decomposition of

M into “topological generalized tetrahedra” with

• Σ(Q) contained in the 1-skeleton of T , and

• one vertex for each vertex of Γ.

An algorithm for finding such a triangulation when M = S
3 and Γ is represented

by a projection is described in the Appendix.

The labelling on the edges Σ(Q) induces a labelling on the edges of T . Let ne

denote the labelling on an edge e of T , taking ne to be 1 if e does not contain an

edge of Σ(Q). Denote the orbifold in the link of vertex v by Sv.

Then to place a complete hyperbolic structure with geodesic boundary on Q

we need to replace this topological triangulation by a triangulation realized by

generalized hyperbolic tetrahedra so that:

(1) The gluing maps are hyperbolic isometries.

(2) The sum of the dihedral angles of the tetrahedra incident to each edge e

in T is 2π
ne

.

(3) For each vertex v of T with χ(Sv) ≤ 0 we have:

(a) If v is ideal then the cusp produced by omitting v has a horospherical

cross-section.

(b) If v is hyperinfinite then the boundary component of ∂Q produced by

removing a neighbourhood is (totally) geodesic.

Condition (2) is known as the edge condition. Conditions (1) and (2) are enough

to give a hyperbolic structure. Conditions (3a) and (3b) guarantee completeness

and geodesic boundary.

We now examine what happens if we replace condition (1) above by the condi-

tion:

(1′) We can realize the tetrahedra of T in Lorentzian space so that the gluing

maps are Lorentzian isometries.

With this stronger hypothesis consider the link of a cusp C of Q. Choose a

generalized tetrahedron ∆′
1 ⊂ E

1,3 whose vertex v1 maps into C. Since v1 lies

on the light cone it specifies a preferred horospherical triangle in H
3 given by

∆v1 = {x ∈ H
3|〈x,v1〉 = −1} ∩ ∆′

1. Let ∆′
f1

⊂ E
1,3 denote one of the faces of ∆′

1

incident to v1. Then

∆v1

f1
= {x ∈ H

3|〈x,v1〉 = −1} ∩ ∆′
f1

= ∆v1 ∩ ∆′
f1

is a preferred horocycle for ∆′
f1

. Note that this is just the restriction of ∆v1 to ∆′
f1

.
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Let ∆′
2 ⊂ E

1,3 be a generalized tetrahedron neighbouring ∆′
1 in T whose vertex

v2 maps into cusp C. Let ∆′
f2

denote the face of ∆′
2 that is glued to ∆′

f1
. Then by

the same argument as above, the restriction of the preferred horospherical triangle

∆v2 to ∆′
f2

gives the preferred horocycle ∆v2

f2
of ∆′

f2
at v2 (Figure 2.7).

Glue
∆v2

f2 ∆v1

f1

Figure 2.7. In the link of the cusp the preferred horospherical tri-

angles match up at the same height.

But since (1′) holds the horocycles ∆v1

f1
and ∆v2

f2
are identified under the gluing

map. So in Q the horospherical triangles ∆v1 and ∆v2 match up at precisely the

same height. Applying the same argument to the neighbouring tetrahedra we see

that the cusp C has a horospherical cross-section. That is, if condition (1) is

replaced by (1′) then condition (3a) is automatic. A similar argument also shows

that if condition (1) is replaced by (1′) then condition (3b) is automatic. This gives

the result:

Lemma 2.2. Let Q be triangulated 3-orbifold such that:

(1′) We can realize the tetrahedra of T by generalized hyperbolic tetrahedra

in Lorentzian space so that the gluing maps are Lorentzian isometries.

(2) The sum of the dihedral angles of the tetrahedra incident to each edge

e in T is 2π
ne

.

Then Q admits a complete hyperbolic structure (with totally geodesic boundary).

From Section 1.3 we know that a generalized hyperbolic tetrahedron is com-

pletely determined (up to Lorentzian isometry) by the 10 entries in its vertex

Gram matrix. So, a triangulation can be completely parametrized by entries of

the vertex Gram matrices. At first glance this might seem like a large number of

parameters (10 per tetrahedron) however condition (1′) creates considerable redun-

dancy amongst these parameters. Using a 2-dimensional version of Theorem 1.5,

we can force faces paired by gluing maps to be Lorentzian isometric by requiring

their vertex Gram matrices to match. This leaves one parameter per vertex and one

parameter per edge of T that completely determine the shapes of the tetrahedra

of T .



24 2. FINDING HYPERBOLIC STRUCTURES ON 3-ORBIFOLDS

We define a parameter αv associated to each vertex v of T , and a parameter βe

associated to each edge e as follows. Let ∆′
n ⊂ E

1,3 represent the n-th tetrahedron

of T . Denote the i-th vertex of ∆′
n by vn

i , and let fn
i be the face opposite vn

i , en
ij

the edge running between vn
i and vn

j , and Gn = (vn
ij) the vertex Gram matrix of

∆′
n. If the i-th vertex of ∆′

n projects to a vertex v of triangulation T , then vn
ii = αv.

If the edge (i, j) of ∆′
n projects to an edge e of T , then vn

ij = βe. We illustrate

these parameters with an example.

Γ: 3

2

42 2

Figure 2.8. This 3-orbifold Q = (S3,Γ) can be triangulated by two tetrahedra.

Example 2.3. Consider the orbifold Q = (S3,Γ), where Γ is depicted in Figure

2.8. We can produce a triangulation T for Q with three vertices, five edges and

two tetrahedra (see Figure 2.9.)

∆1: 1

2

3
4

∆2: 1

2

3
4

Figure 2.9. These two tetrahedra identified via the gluing patterns

give a triangulation for the 3-orbifold in Figure 2.8.

Then since f 1
3 is glued to f 2

4 in T , condition (1′) requires that these faces are

isometric under the gluing map

v1
1 ↔ v2

1, v1
2 ↔ v2

2, v1
4 ↔ v2

3.

Let Gn
i denote the vertex Gram matrices of the generalized (hyperbolic) trian-

gles fn
i . Note that Gn

i can be obtained deleting the i-th row and column of Gn.
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So

G1
3 =







v1
11 v1

12 v1
14

v1
12 v1

22 v1
24

v1
14 v1

24 v1
44






G2

4 =







v2
11 v2

12 v2
13

v2
12 v2

22 v2
23

v2
13 v2

23 v2
33







Since generalized triangles, like generalized tetrahedra, are completely determined

(up to Lorentzian isometry) by their vertex Gram matrices, we can fix f 1
3 and f 2

4

to be Lorentzian isometric by setting G1
3 = G2

4. We can make this identification

of G1
3 and G2

4 because the entry (i, j) in G1
3 represents the same edge or vertex as

entry (i, j) in G2
4. In general some relabelling of vertices may be required to ensure

this.

Repeating this process for all the faces identified in T , the vertex Gram matrices

G1 and G2 can be rewritten as

G1 =











α1 β1 β2 β3

β1 α1 β2 β3

β2 β2 α2 β4

β3 β3 β4 α3











and G2 =











α1 β1 β3 β2

β1 α1 β3 β2

β3 β3 α2 β5

β2 β2 β5 α3











,

where the variables α1, α2, α3, β1, β2, β3, β4 and β5 parametrize T . We are left

with one parameter per vertex (α1, α2 and α3) and one parameter for each edge of

T (β1, β2, β3, β4 and β5).

If we know that Q is a closed orbifold then we can do away with the αv by

setting them all equal to −1. This equivalent to fixing all the vertices of T to lie on

H−. This leaves us with one parameter for every edge in T . This closely resembles

the approach used by Casson in Geo ([12]) to calculate hyperbolic structures on

closed 3-manifolds. Casson used the internal edge lengths in the triangulation as

parameters.

Similarly, if every vertex of Γ produces geodesic boundary we can fix the αv

equal to 1. The significance of the αv is they allow for transitions between fi-

nite, ideal and hyperinfinite vertices. This allows for computation of hyperbolic

structures on

• closed hyperbolic 3-orbifolds;

• cusped hyperbolic 3-orbifolds;

• hyperbolic 3-orbifolds with geodesic boundary

and continuous deformation between them.

Combining lemma 2.2 with our choice of parameters gives the following result:

Lemma 2.4. Let Q be a 3-orbifold. Assume that we can find vertex and edge

parameters for the triangulation T of Q such that:
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(i) The vertex Gram matrix for each tetrahedron defines a generalized hy-

perbolic tetrahedron.

(ii) The sum of the dihedral angles of the tetrahedra incident to each edge

e in T is 2π
ne
.

Then this defines a complete hyperbolic structure on Q (with totally geodesic bound-

ary).

Remark: It also follows from the assumptions of the lemma that for each vertex

v of T :

• If χ(Sv) > 0 then v is finite.

• If χ(Sv) = 0 then v is ideal.

• If χ(Sv) < 0 then v is hyperinfinite.

This is a consequence of the Gauss-Bonnet theorem and the fact that a finite (resp.

ideal, hyperinifinite) vertex produces a surface Sv with a spherical (resp. Euclidean,

hyperbolic) structure.

Orb uses Newton’s method to solve for hyperbolic structures. Weeks imple-

mented Newton’s method to find hyperbolic structures in SnapPea ([69]). Casson

([12]) and Frigerio, Martelli, Petronio ([21]) also used this method with great suc-

cess.

Technical remark: We use Newton’s method with an initial guess of regular trun-

cated tetrahedra with vertex Gram matrices

(2.1)











0.5 −1 −1 −1

−1 0.5 −1 −1

−1 −1 0.5 −1

−1 −1 −1 0.5











.

This choice is somewhat arbitrary. Generalized tetrahedra with all length-0 edges

would seem to be a more obvious choice since these attain the maximum volume,

but as discussed in Section 2.4 this case presents difficulties.

As in SnapPea, we trust the direction of the gradient in Newton’s method but

not the magnitude ([72]). On each step of Newton’s method we renormalize the

gradient vector to ensure that the tetrahedra can always be realized.

Orb solves the edge condition numerically ensuring that at each stage the vertex

Gram matrices represent generalized hyperbolic tetrahedra. Let |T i| denote the

number of i-cells in T . Since the edge condition gives |T 1| equations and there

are |T 0| + |T 1| parameters, the solution space (if any) will have dimension greater

than or equal to |T 0|. The size of this solution space is not surprising as our

discussion prior to lemma 2.4 indicated that we have the freedom to renormalize
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the parameters αv. When calculating a structure on a closed manifold, the solution

space is even larger, see Figure 2.10.

Figure 2.10. Given a triangulation that realizes a hyperbolic struc-

ture on a closed 3-manifold, perturbing any vertex in the triangula-

tion will result in a 3-parameter family of different solutions.

Newton’s method can still be used provided it is modified so on each iteration

a unique gradient direction can be selected. Let D denote the subset of R
|T 0|+|T 1|

in which the tetrahedra of T can be realized as generalized hyperbolic tetrahedra.

Let the map

e : D → R
|T 1|,

describe the error in the cone angle around each edge of T for any x ∈ D. So if ei

denotes the i-th edge of T then the i-th component of e is

ei =
2π

nei

− θei
,

where nei
is the label on ei and θei

is the sum of the dihedral angles around it.

Then in Newton’s method we want to solve e(x) = 0, with x ∈ D.

Let xn be the current position in Newton’s method and M be the Jacobi matrix

M =

(

∂ej

∂xi

)

i,j

∣

∣

∣

∣

x=xn

.

Then normally the next position in Newton’s method would be

xn+1 = xn − δ,

where δ is the solution to the equation

(2.2) Mδ = e(xn).

The problem is that there are an infinite number of δ to choose from. Newton’s

method requires a unique choice of δ on each iteration.

When M has full rank, the matrix MM t is invertible. We can find a unique

solution for equation (2.2) by first solving

MM tz = e(xn)
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for z and then setting

δ = M tz.

Geometrically, we are moving orthogonal to the solution set of the linearized equa-

tions. When M has less than full rank, we compute δ in the same way, except we

first select a set of linearly independent equations from the system of equations

(2.2). This approach overcomes any ambiguity in the choice of direction of New-

ton’s method and in practice gives excellent convergence, even on closed manifolds.

The following lemma tells us how to calculate the entries of the Jacobi matrix

in Newton’s method:

Lemma 2.5. Let ∆′ be a generalized tetrahedron with vertex Gram matrix G.

Then if Gij is the matrix obtained from G by deleting the i-th row and j-th column

then the (i, j)-th cofactor of G can be written as

cij = (−1)i+j det(Gij).

Let θij be the dihedral angle between the faces opposite vertices vi and vj of ∆′.

Then:

Cij
∂θij

∂vij

=2ciicijcjj(vmmvnn − v2
mn),

Cij
∂θij

∂vii

=ciic
2
ij(vmmvnn − v2

mn),

Cij
∂θij

∂vin
=2ciic

2
ij(vimvmn − vinvmm)

+ 2ciicijcjj(vjmvmn − vjnvmm),

Cij
∂θij

∂vnn
=ciic

2
ij(viivmm − v2

im)

+ 2ciicijcjj(vijvmm − vimvjm)

+ c2ijcjj(vjjvmm − v2
jm),

Cij
∂θij

∂vmn
=2ciic

2
ij(vimvin − viivmn)

+ 2ciicijcjj(vimvjn − 2vijvmn + vinvjm)

+ 2c2ijcjj(vjmvjn − vjjvmn),

where i, j,m and n are distinct and

Cij = sin(2θij)c
2
iic

2
jj.
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Proof. First note that it is enough to calculate the partial derivatives ∂θ12

∂v12
, ∂θ12

∂v14
,

∂θ12

∂v34
, ∂θ12

∂v44
and ∂θ12

∂v11
, and deduce the result. We start by taking the square of equation

(1.13)

cos2(θ12) =
c212
c11c22

then implicitly differentiating we get

(2.3) sin(2θ12)c
2
11c

2
22

∂θ12
∂vmn

= c212(c11
∂c22
∂vmn

+ c22
∂c11
∂vmn

) − 2c11c22c12
∂c12
∂vmn

,

where m 6= n. More easy, but tedious, calculations give:

c11 = det







v22 v23 v24

v23 v33 v34

v24 v34 v44






⇒

∂c11
∂v11

= 0
∂c11
∂v44

= v22v33 − v2
23

∂c11
∂v12

= 0
∂c11
∂v14

= 0
∂c11
∂v34

= −2(v22v34 − v23v24);

c22 = det







v11 v13 v14

v13 v33 v34

v14 v34 v44






⇒

∂c22
∂v11

= v33v44 − v2
34

∂c22
∂v44

= v11v33 − v2
13

∂c22
∂v12

= 0
∂c22
∂v14

= 2(v13v34 − v14v33)
∂c22
∂v34

= −2(v11v34 − v13v14);

c12 = − det







v12 v23 v24

v13 v33 v34

v14 v34 v44






⇒

∂c12
∂v11

= 0
∂c12
∂v44

= −(v12v33 − v13v23)
∂c12
∂v12

= −(v33v44 − v2
34)

∂c12
∂v14

= −(v23v34 − v24v33)
∂c12
∂v34

= 2v12v34 − v14v23 − v13v24.

Substituting these calculations into equation (2.3) gives the required derivatives.

�

Technical remark: Although we only dealt explicitly with orbifolds in this sec-

tion, the same method can be used to place hyperbolic structures with cusps and

geodesic boundary on link and graph complements. In this case there is no singular

locus and the surfaces in the links of the vertices are tori and higher genus surfaces.

These differences have no impact on the algorithm.

2.3. Flat and negatively oriented tetrahedra

Recall the generalized tetrahedron inscribed in a rectangular box from example

1.6 in Section 1.3. As an eigenvalue λi (for i > 0) approaches 0 the box collapses into
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a coordinate plane and the vertices of the tetrahedra become linearly dependent.

So equation (1.10) is

V tJW = 0,

and V is no longer an invertible matrix, so the previous method for calculating the

matrix of normals W is no longer valid.

Let ∆′ be a generalized tetrahedron in H
3 with vertex Gram matrix G and some

choice of vertices V in E
1,3. Then there are a variety of ways that the vertices of ∆′

can become coplanar. The flat tetrahedra in Figure 2.11 are much nicer than those

in Figure 2.12 because the directions of the normals to faces are clearly defined.

Figure 2.11. Two flat tetrahedra drawn in the projective model.

Unlike the configurations of vertices in Figure 2.12 the normals to

faces are clearly defined.

Figure 2.12. Other ways a tetrahedron can be flattened.

Definition 2.6. Let {u1,u2,u3,u4} be a linearly dependent set in P
3
1 such that

any three of the points define a triangle. Then {u1,u2,u3,u4} defines a flat tetra-

hedron in P
3
1.

A flat generalized (hyperbolic) tetrahedron is a generalized tetrahedron in every

sense except that the tetrahedron it was created from in P
3
1 is flat.
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Definition 2.7. Let ∆ be a flat tetrahedron in P
3
1. Suppose each edge of ∆

intersects Bn.

(1) The truncated flat hyperbolic tetrahedron say ∆′, is the polyhedron in B
n

obtained by truncating ∆ at all its vertices lying outside Bn and omitting

any vertices in ∂B
n.

(2) A flat generalized hyperbolic tetrahedron in B
n is either a flat tetrahedron

in the ordinary sense or a truncated flat tetrahedron described above.

By ∆̂ we denote the projection of ∆′ to H−.

We then have the following result on the vertex Gram matrices of flat general-

ized tetrahedra:

Lemma 2.8. Let ∆′ be a flat generalized hyperbolic tetrahedron with vertex

Gram matrix G = (vij). Then

(1) G has one negative, one zero and two positive eigenvalues,

(2) cii < 0, for all i,

(3) c2ij = ciicjj, for all i and j,

where cij is the (i, j)-th cofactor of G.

Proof. Let ∆′ be a flat generalized tetrahedron with vertex matrix V and

vertex Gram matrix G. According to definition 2.7, the nullspace of G is one

dimensional and so G has one zero eigenvalue. Moreover, any three vertices of ∆′

define a generalized hyperbolic triangle so Sylvester’s inertia law implies that there

is one negative and two positive eigenvalues.

Setting A = G and taking p = 2 in Jacobi’s theorem (Theorem 2.9, stated

below) we get

(2.4) ciicjj − c2ij = det(G)(vmmvnn − v2
mn),

where i, j,m, n are distinct and cij is the (i, j)-th cofactor of G. Since det(G) = 0

it is clear that ciicjj = c2ij . To show that cii < 0 first note that cii = det(Gii). Since

Gii is the vertex Gram matrix for a generalized hyperbolic triangle it follows it has

one negative, and two positive eigenvalues and so cii = det(Gii) < 0. �

Theorem 2.9. [Jacobi’s theorem ([53])] Let A = (aij) be a square matrix

of order n, (adj(A))t = (Aij), 1 ≤ p < n, σ =

(

i1 . . . in

j1 . . . jn

)

an arbitrary

permutation. Then

det







Ai1j1 · · · Ai1jp

...
. . .

...

Aipj1 · · · Aipjp






= (−1)σ det







aip+1jp+1
· · · aip+1jn

...
. . .

...

ainjp+1
· · · ainjn






det(A)p−1.
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Here adj(A) denotes the adjoint of A, given by

A · adj(A) = det(A)I.

Remark: There is a similar result to Lemma 2.8 for each of the degenerate tetra-

hedra in Figure 2.12. The number of zero eigenvalues of their vertex Gram matrices

will be 4 − d where d is the dimension of the span of the vertices. For every face

that has collapsed to a point or a line, the corresponding cii will be 0. This follows

from the fact that cii = det(Gii), and det(Gii) = 0 because the vertices of the

corresponding faces are linearly dependent.

Henceforth a flat generalized hyperbolic tetrahedron is considered as a gener-

alized hyperbolic tetrahedron. Call a generalized triangulation consisting of posi-

tively oriented (and possibly some flat) generalized tetrahedra a geometric trian-

gulation. A geometric triangulation truly represents the hyperbolic structure of a

3-orbifold because any flat tetrahedra can be removed by a natural subdivision of

the surrounding tetrahedra, into polyhedra. There is one exceptional case: when

the singular locus bumps into itself as a result of a tetrahedron flattening out. In

this instance the result is not a geometric triangulation of the orbifold.

A tetrahedron that has continued past flat, and turned inside out is negatively

oriented. (See Figure 2.13.) Although it is useful at times to allow negatively

oriented tetrahedra in a triangulation, there is no guarantee that this represents a

hyperbolic structure (Petronio, Weeks [51]).

Figure 2.13. In order to detect a tetrahedron turning inside out

we must keep track of the branches of arccos(x) giving the dihedral

angles.

Definition 2.10. Let ∆′ be a generalized hyperbolic tetrahedron in E
1,3 with (or-

dered) vertices v1, v2, v3, v4 and corresponding vertex matrix V = (v1,v2,v3,v4).

Then the orientation parameter of ∆′ is τ = det(V ).

Remark: If the vertices of ∆′ are labelled according to the right hand rule (Figure

2.14), then τ > 0 and the tetrahedron is “positively oriented”. If the vertices are
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v1

v4

v2

v3

Figure 2.14. A tetrahedron labelled according to the right hand

rule. If you place your right hand on the edge e14, with your thumb

pointing towards v4, then your fingers should point in the direction

from v2 towards v3.

labelled according to the left hand rule then τ < 0 and ∆′ is “negatively oriented”.

Also, it follows immediately from equation (1.9) that

(2.5) det(G) = det(V tJV ) = −τ 2.

So equation (1.10) becomes

(2.6) V tJW = τI.

When tetrahedra flatten out there is a problem in using equation (1.13) to cal-

culate the dihedral angles of ∆′, since this requires calculation of arccos(x) as x

approaches 1 or −1. Remember also that G only parameterizes ∆′ up to isome-

try, so it is not enough to distinguish between positively and negatively oriented

tetrahedra. But, by introducing the orientation parameter τ these tetrahedra can

be distinguished. Furthermore, θij can be written in terms of arcsin(x) using the

following corollary to Jacobi’s theorem.

Corollary 2.11. If ∆′ is a generalized hyperbolic tetrahedron then

(2.7) sin(θij) = τ

√

v2
mn − vmmvnn

ciicjj
,

where i, j,m, n are distinct.

Proof. Recall equation (2.4):

ciicjj − c2ij = det(G)(vmmvnn − v2
mn),

where i, j,m, n.
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Using equations (1.13), (2.4) and (2.5) gives:

(2.8) sin2(θij) = τ 2 v
2
mn − vmmvnn

ciicjj
.

The choice of sign follows from the fact that θij ∈ (0, π) for a positively oriented

tetrahedron. Note that v2
mn−vmmvnn

ciicjj
≥ 0. �

In Newton’s method, if an angle θij approaches 0 or π, we introduce an orien-

tation parameter and add equation (2.5) to the set of equations to solve. Limiting

the amount each dihedral angle can change in an iteration of Newton’s method

ensures that the branch of arccos(x) or arcsin(x) on which θij lies is always clear.

In fact, by ensuring no angle changes by more than π
4
, and making the convention

to calculate angle θij with equation (2.7) if | sin(θij)| < 1√
2

and equation (1.13) if

| cos(θij)| ≤ 1√
2
, the branch of θij can always be varied continuously. As in the

previous section, the implementation of Newton’s method requires understanding

how the θij are affected by small changes in our parameters when using equation

(2.7):

Lemma 2.12. Let ∆′ be a generalized tetrahedron with vertex Gram matrix G

and orientation parameter τ . Let θij denote the dihedral angle of ∆′ between faces

i and j, and let cij be the (i, j)-th cofactor of G. Then

Cij
∂θij

∂τ
=2τciicjj(v

2
mn − vmmvnn),

Cij
∂θij

∂vij

=0,

Cij
∂θij

∂vin

=2τ 2cii(vmmvnn − v2
mn)(vimvmn − vinvmm),

Cij
∂θij

∂vii
=τ 2cii(vmmvnn − v2

mn)2,

Cij
∂θij

∂vnn
=τ 2((vmmvnn − v2

mn)(cii(viivmm − vimvim)

+ cjj(vjjvmm − v2
jm)) − ciicjjvmm)

Cij
∂θij

∂vmn

=2τ 2((v2
mn − vmmvnn)(cii(viivmn − vimvin)

+ cjj(vjjvmn − vjmvjn)) + ciicjjvmn),

where i, j,m and n are distinct and

Cij = sin(2θij)c
2
iic

2
jj.

Proof. As in lemma 2.5 it is enough to compute the derivatives when i = 1

and j = 2. The partial derivative ∂θ12

∂τ
follows immediately from equation (2.8).
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For the remainder, implicitly differentiating equation (2.8) gives

sin(2θ12)c
2
11c

2
22

∂θ12
∂vmn

= τ 2(c11c22
∂

∂vmn
(v2

34−v33v44)−(
∂c11
∂vmn

c22+
∂c22
∂vmn

c11)(v
2
34−v33v44)),

and then we reuse the calculations in the proof of lemma 2.5. �

2.4. Pared manifolds

As in the beginning of Section 2.2, let Γ be a graph in a closed 3-manifold M ,

with vertices of degree 3 and edges labelled by integers ≥ 2. We now examine

what happens to the hyperbolic 3-orbifold Q = (M,Γ) as the labels on the edges

of Γ approach infinity. For simplicity we will assume that each of the edges of Γ is

labelled n ≥ 2.

Let T be a triangulation of Q as described in Section 2.2 and let Sv denote the

orbifold in the link of vertex v of T . Then at each vertex v, Sv is a S
2(n, n, n)

orbifold. As n approaches +∞ the cone angle 2π
n

around each of the cone points

on Sv approaches 0. This arises in the proof of the orbifold theorem ([16], [7]). In

the limit ∂Q consists of geodesic 3-punctured spheres. This produces a so-called

pared hyperbolic manifold (Flapan [20], Kapovich [36], Morgan [46]), which is the

complement of a neighbourhood of Γ in M with its meridian curves parabolic.

Figure 2.15. The boundary of a pared manifold with two annulus

cusps and two punctured geodesic boundary components.

Definition 2.13. A pared 3-manifold (N,P ) is an orientable compact 3-manifold

N together with a family P of disjoint incompressible annuli and tori in ∂N .

As noted in [20], a pared manifold is a special case of a manifold with boundary

patterns in the sense of Johannson [38] or a 3-manifold pair in the sense of Jaco-

Shalen [37]. The following definition agrees with [38] and [37].

Definition 2.14. The pared manifold (N,P ) is simple if the following condi-

tions hold:

(1) N is irreducible and ∂N − P is incompressible

(2) N is atoroidal
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(3) Any annulus A in N with ∂A ⊂ ∂N − P is either compressible or parallel

to an annulus A′ in ∂N with ∂A′ = ∂A and such that A′ ∩ P consists of

zero or one annular component of P .

Definition 2.15. A pared manifold (N,P ) is said to be Seifert fibered if there

is a Seifert fibration of N for which P is a union of fibers. A pared manifold (N,P )

is said to be I-fibered if there is an I-bundle map of N over a surface B such that

P is in the preimage of ∂B.

The following is an existence theorem for hyperbolic structures on pared man-

ifold:

Thurston’s Hyperbolization Theorem for Pared Manifolds ([36], [47],

[63]). If (N,P ) is simple, N is connected, and ∂N is non-empty, then either

(N,P ) admits a finite volume complete hyperbolic metric with geodesic boundary

and parabolic cusps along P , or (N,P ) is Seifert fibered or I-fibered.

Given Q = (M,Γ) as above, we can calculate hyperbolic structures on pared

manifolds using Orb by fixing the cone angle around each edge of Γ to be 0. We

represent this on Γ by labelling each of its edges ∞. (See Figure 2.16.)

∞∞

∞

Figure 2.16. Labelling a trivalent graph ∞ produces a pared man-

ifold whose boundary consists of geodesic 3-punctured spheres.

Let e be an edge in T labelled ∞ and let ∆′ be a generalized tetrahedron

incident to e. Let v1 and v2 denote the vertices of T at either end of e. Then Sv1

and Sv2
are 3-punctured spheres.

It follows from Theorem 1.2 that fixing the cone angle around e to be 0 is

equivalent to forcing the equation

(2.9) β2
e = αv1

αv2

to hold. So e is a length-0 edge.

Although the dihedral angle of ∆′ at e is 0, the determinant of its vertex Gram

matrix can still be non-zero. So the orientation parameter τ of ∆′ can be non-

zero. Consequently, the method for handling dihedral angles near zero, outlined
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in Section 2.3, does not apply. Since e meets B
3

only at ∂B
3, ∆′ is at the bound-

ary of the space of all generalized tetrahedra. If e moves beyond ∂B
3 it will be

truncated entirely. (Refer to Figures 1.5 and 2.17.) In practice this issue can be

avoided by using equation (2.9) to eliminate the parameter βe entirely. Then by

applying Newton’s method in the new parameter system we can stay in the space

of generalized tetrahedra.

Question: Is there a more natural method of dealing with length-0 edges? That

is, is there another set of parameters that will allow us to continuously deform to

the length-0 edge case and back?

e

Figure 2.17. The edge e of ∆ does not meet B
3
, so after truncation

e is sliced completely off ∆.

2.5. Canonical cell decompositions

In [19], Epstein and Penner showed that a convex hull construction in Lorentzian

space determines a canonical cell decomposition of a cusped hyperbolic 3-manifold.

Using this approach, Weeks ([70]) outlined an algorithm for computing a canonical

cell decomposition for a cusped hyperbolic 3-manifold. This algorithm is imple-

mented in SnapPea ([69]) and the applications to hyperbolic manifolds have been

abundant (e.g. [31], [2], [33], [34], [57]).

Kojima extended the work of Epstein and Penner in [39] and [40], which al-

lowed Frigerio and Petronio to develop an equally useful algorithm ([23]) for the

computation of a canonical triangulation for a hyperbolic 3-manifold with geo-

desic boundary. This procedure has proved to be invaluable in the computation of

symmetry groups and the construction of a census of these objects ([22]).

The canonical cell decomposition is constructed by creating an equivariant tes-

sellation of the universal cover. Working in Lorentzian space, geodesic boundary

components are represented by points on the one sheeted hyperboloid H+. The
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orbits of these points turn out to be discrete and by truncating their convex hull

along their dual hyperplanes a truncated polyhedron is created in H
3. The faces

of this truncated polyhedron give rise to the pieces of the tessellation. By pro-

jecting these faces down to the manifold, it is decomposed into its canonical cell

decomposition. For more details see [39], [40] or [23].

The following section examines how this construction is affected by our new

choice of parameters. One of the biggest obstacles is checking the convexity of the

truncated polyhedron in H
3. This hinges on the so-called tilt formula and we begin

our discussion there. (Refer to [67], [70], [55] or [23]).

For a generalized tetrahedron ∆′ ⊂ E
1,3, with vertices v1,v2,v3,v4, define a

normal vector p to ∆′ by the condition 〈p, v̂i〉 = −1 for all i where according to

definition 1.3

v̂i =







vi√
|〈vi,vi〉|

, if 〈vi,vi〉 6= 0;

vi, otherwise.

Let Fi denote the face opposite vertex vi. Then the tilt tk of ∆′ relative to Fk is

the inner product

(2.10) tk = 〈ŵk,p〉,

where wi is the normal to face Fi satisfying equation (1.10) and ŵi is the unit

normal in the direction of wi. The following result of Ushijima indicates how the

tilts are used to measure the convexity of the angle between two neighbouring

tetrahedra in E
1,3.

Lemma 2.16. (Tilt Proposition [67]) Let ∆′
1 and ∆′

2 be two neighbouring gen-

eralized hyperbolic tetrahedra in E
1,3 We denote by t1 (resp. t2) the tilt of ∆′

1 (resp.

∆′
2) with respect to their joint face. Then the dihedral angle formed between ∆′

1

and ∆′
2 is convex (resp. flat, concave) if and only if t1 + t2 < 0 (resp. = 0, > 0).

The following result shows that the tilts can be computed easily with our choice

of parameters:

Theorem 2.17. Let ∆′ be a geometric generalized tetrahedron. Then the tilts

tk of ∆′ are given by:

tk = 〈p, ŵk〉 =
1

τ

4
∑

i=1

√

∣

∣

∣

∣

li
ckk

∣

∣

∣

∣

cik,

where

li =







1 , if vii = 0,

vii , otherwise.
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Proof. First we prove that

(2.11) p = −1

τ

4
∑

i=1

√

|li|wi.

Then the result follows.

Let V be the matrix with the vi as columns and W be the matrix with the wi

as columns satisfying equation (2.6)

V tJW = τI.

Then by Theorem 1.5, det(V ) 6= 0 which implies det(W ) 6= 0. So the wi are

linearly independent and therefore form a basis for E
1,3. Hence we can write

(2.12) p =
4
∑

i=1

αiŵi,

for some unique αi ∈ R. Denote by Ŵ and V̂ the matrices of “unit” normals and

vertices of ∆′. Then since V tJW = τI, the matrix V̂ tJŴ = (〈v̂i, ŵj〉) is diagonal.

Applying the function 〈·, v̂i〉 to both sides of equation (2.12) gives

αi =
〈p, v̂i〉
〈ŵi, v̂i〉

.

Since 〈p, v̂i〉 = −1 and 〈vi,wi〉 = τ ,

p = −
4
∑

i=1

ŵi

〈v̂i, ŵi〉
= −

4
∑

i=1

wi

〈v̂i,wi〉
= −

4
∑

i=1

√

|li|
wi

〈vi,wi〉
= −

4
∑

i=1

√

|li|
τ

wi,

as required.

We can then use equation (1.12) which says

〈wi,wj〉 = wij = −cij ,

and apply 〈·, ŵk〉 to both sides of equation (2.11) to produce the result

tk = 〈p, ŵk〉 = −1

τ

4
∑

i=1

√

|li|
wik√
wkk

=
1

τ

4
∑

i=1

√

∣

∣

∣

∣

li
ckk

∣

∣

∣

∣

cik.

�

Although the algorithm in [23] is only defined for hyperbolic 3-manifolds with

geodesic boundary, it is still extremely useful for distinguishing hyperbolic 3-

orbifolds. Let Q be an orientable hyperbolic 3-orbifold and let l(e) denote the

labelling on edge e of Σ(Q).

There is a pared 3-manifold MQ obtained from Q by setting the finite labels

on Σ(Q) to ∞ and creating one annulus cusp ae for each singular edge e in Σ(Q).

Now if Q1 and Q2 are hyperbolic 3-orbifolds with geodesic boundary then they

can be distinguished by computing the canonical cell decompositions of MQ1
and
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MQ2
and checking for isometries between them. Every isometry γ : MQ1

→ MQ2

induces a map γa between annulus cusps. If there exists an isometry γ between

pared manifolds such that γa(ae) = ae′ implies the labels l(e), l(e′) are equal then

γ can be extended to an isomorphism between Q1 and Q2.

We now give an outline of the algorithm in [23] when cusps are not involved.

The input for the algorithm is a geometric triangulation T of a hyperbolic 3-

manifold M with geodesic boundary, such that T realizes the hyperbolic structure

on M . The following is the algorithm restated:

(1) Pick a face F of T such that the two incident tetrahedra are distinct. Use

Theorem 2.17 and lemma 2.16 to determine if the angle at F is concave.

If it is, move to step 2. If it is not, move to another face. If all the

faces are visited and no concave angle is found then T is the canonical cell

decomposition, or a subdivision of it.

(2) If a two-to-three move can be performed at F without creating negatively

oriented tetrahedra, do so and then go back to step 1. Otherwise, check if

one of the non-length-0 edges of F can be removed by a three-to-two move,

while still maintaining a geometric triangulation. If the aforementioned

move can be completed, do so, then go back to step 1. If not, go back

to step 1 and move to a new face. If all concave faces are visited and no

move can be applied to any of them, we give up.

Frigerio and Petronio showed that if this process does not get stuck during step

2 then the canonical decomposition is output in a finite number of steps. We now

describe the three-to-two and two-to-three moves used above.

The three-to-two move can be applied to a triangulation when there are three

distinct tetrahedra incident to an edge of order three, say e. (See Figure 2.18.) If

e is not labelled, the three tetrahedra can be replaced by two sharing a face.

The two-to-three move is essentially the inverse of the three-to-two move. Given

two distinct tetrahedra sharing a face they are replaced by three tetrahedra sharing

a common edge. This move can always be performed and introduces a new edge

e into the triangulation. The following lemma shows how to calculate e’s edge

parameter:

Lemma 2.18. Let ∆′
1 and ∆′

2 be two generalized tetrahedra sharing a common

face in a triangulation with vertices

v1,v2,v3,v4 and v5,v2,v3,v4,

and vertex Gram matrices G1 and G2. (See Figure 2.18.) Then

〈v1,v5〉 =
−v12c12 − v13c13 − v14c14 + τ1τ2

c11
,
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v1

v5

v2
v3

v4

v1

v5

v2
v3

v4

Figure 2.18. On the left are three distinct tetrahedra sharing an

edge e of order 3. If e is not labelled then the tetrahedra can be

replaced by two tetrahedra sharing a common face. This is known

as the three-to-two move. Its inverse, the two-to-three move, creates

a new edge of order 3 from two distinct tetrahedra sharing a face.

where τ1 and τ2 are the orientation parameters, vij = 〈vi,vj〉 and cij is the (i, j)-th

cofactor of G2.

Proof. Since v2,v3 and v4 are linearly independent and w1 is normal to the

plane containing them, the equation

v5 = α1w1 + α2v2 + α3v3 + α4v4

has a unique solution. Taking the inner product of both sides with vi for i = 2, 3, 4

produces the following equations for α2, α3 and α4

α2v22 + α3v23 + α4v24 = v25

α2v23 + α3v33 + α4v34 = v35

α2v24 + α3v34 + α4v44 = v45,

which can be solved by applying Cramer’s rule







α2

α3

α4






=







v22 v23 v24

v23 v33 v34

v24 v34 v44







−1 





v25

v35

v45






=

−1

c11







c12

c13

c14






.

Now since v2, v3 and v4 are contained in the plane w⊥
1 = w⊥

5 we have

w5 = ∓
√

〈w5,w5〉
〈w1,w1〉

w1,
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taking the minus sign when both ∆′
1 and ∆′

2 have the same orientation. However,

by equation (1.12), 〈w5,w5〉 = 〈w1,w1〉, so

w5 = ∓w1.

As the vector α1w1 is the orthogonal projection of v5 onto the space spanned by

w1,

α1 =
〈v5,w1〉
〈w1,w1〉

= ∓ 〈v5,w5〉
〈w5,w5〉

= ∓
√

− det(G2)

〈w5,w5〉
= ±

√

− det(G2)

c11
,

taking the plus sign when the orientations of ∆′
1 and ∆′

2 agree. Since

v5 =
1

c11
(−c12v2 − c13v3 − c14v4 ±

√

− det(G2)w1),

we conclude by taking the inner product of both sides with v1 and then applying

equations (2.5) and (2.6) to determine the choice of sign. �

The aforementioned algorithm is slightly more complicated when M has cusps.

The issue arises because ideal vertices of T are lifted to L+ in E
1,3. As a result

there is ambiguity in the choice of lift. In [23], Frigerio and Petronio explain

that by choosing lifts that correspond to sufficiently small horospheres, the above

algorithm will still produce a canonical cell decomposition. In particular, a choice

of horospheres O on M satisfying the following will do:

(1) Any distinct components O1 and O2 of O are disjoint and

e−d(O1,∂M̃) + e−d(O2,∂M̃) < 2e−d(O1,O2);

(2) The toric cusps inM determined by O do not contain vertices of Cut(M, ∂M),

and for any such vertex u

sinh d(u, ∂M) < e−d(u,O),

where M̃ is the universal cover of M . The cut-locus Cut(M, ∂M) of M relative

to ∂M is defined to be the set of all points of M that admit at least two different

shortest paths to ∂M . A point is a vertex of the cut-locus if it admits four different

shortest paths to ∂M , whose initial tangent vectors span the tangent space to M

at the point.

Question: Is there a universal bound on how small the cusp cross-sections have

to be to satisfy these properties? In [70], Weeks has answered the question when

the boundary of M consists of tori. In this case, shrinking the cross-sections to

area 3
√

3
8

will do. If such a bound is found, then we could use Theorem 2.19 and

corollary 2.20 (below) to renormalize the cusp areas.

Let vi be an ideal vertex of some generalized tetrahedron ∆′. The following

result explains how the Euclidean triangle ∆vi = ∆̂ ∩ hvi
is affected by the renor-

malization of vi:
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Theorem 2.19. Let ∆′ be a generalized tetrahedron with vertices v1,v2,v3,v4 ∈
E

1,3. Then if v1 is an ideal vertex, the area of ∆v1 is given by

(2.13) Area(∆v1) =
− det(G)2

2c22c33c44 sin θ24 sin θ23 sin θ34
.

Proof. By an isometry of E
1,3 we can assume v1 = (1, 0, 1, 0), v4 = (u, 0, v, 0)

and w2 = (0, a, 0, 0), where a, u, v ∈ R. It follows from

〈v1,w3〉 = 〈v4,w3〉 = 0 and 〈w2,w3〉 = ‖w2‖‖w3‖ cos θ23

that w3 = (0, b cos θ23, 0,±b sin θ23), where b ∈ R. Since

〈v1,w4〉 = 0 and 〈w2,w4〉 = ‖w2‖‖w4‖ cos θ24

we can conclude that w4 = (c0,−c cos θ24, c0,±c sin θ24), where c0, c ∈ R. If we

assume the 3-rd and 4-th faces of ∆′ lie ‘below’ the 2-nd face we can resolve the

ambiguity in sign. So

w3 = (0, b cos θ23, 0, b sin θ23) and w4 = (c0,−c cos θ24, c0, c sin θ24).

Refer to Figure 2.19. Moreover, we can adjust the lengths of these normals so

equation (1.10) is satisfied.

e3

e2
e2

e3

x1

x2

x3 x3

x1

v1v4

v3

v2

hv1

w4

w2

w3

θ24

θ34

θ23

Figure 2.19. The positioning of ∆′ in H
3, illustrated in the projec-

tive model.

Let x = (x0, x1, x2, x3) ∈ H− denote a point on hv1
. Then since x ∈ hv1

∩H−,

〈x,v1〉 = −1 and 〈x,x〉 = −1 we have x0 = x2 + 1. So the equation of the

horosphere hv1
is

−1 = −(x2 + 1)2 + x2
1 + x2

2 + x2
3,

and if α = x1 and β = x3, hv1
can be parametrized by

hv1
= {g(α, β)|α, β ∈ R},
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where

g(α, β) =

(

α2 + β2

2
+ 1, α,

α2 + β2

2
, β

)

.

Since
∂g

∂α
= (α, 1, α, 0) and

∂g

∂β
= (β, 0, β, 1),

it follows that

〈 ∂g
∂α

,
∂g

∂α
〉 = 1, 〈∂g

∂β
,
∂g

∂β
〉 = 1 and 〈 ∂g

∂α
,
∂g

∂β
〉 = 0

and so from this parametrization we can clearly see the Euclidean structure of hv1
.

Let

g2(t) = g(0, t) =

(

t2

2
+ 1, 0,

t2

2
, t

)

.

Then since 〈g2(t),w2〉 = 0 and 〈g2(0),w3〉 = 0, g2 parametrizes edge e2 = ∆v1∩w⊥
2 .

Moreover, because 〈ġ2, ġ2〉 = 1, Length(e2) is given by solving

0 = 〈g2(t),w4〉 = −c0(
t2

2
+ 1) + c0

t2

2
+ ct sin θ24

for t. So

Length(e2) = t =
c0

c sin θ24
.

Let

g3(t) = g(−t sin θ23, t cos θ23) =

(

t2

2
+ 1,−t sin θ23,

t2

2
, t cos θ23

)

.

Then since 〈g3(0),w2〉 = 0 and 〈g3(t),w3〉 = 0, g3 parametrizes edge e3 = ∆v1∩w⊥
2 .

It is easy to check 〈ġ3, ġ3〉 = 1, so solving 〈g3(t),w4〉 = 0, and noting that

θ34 = π − θ23 − θ24

we get

Length(e3) =
c0

c(sin θ24 cos θ23 + sin θ23 cos θ24)
=

c0
c sin θ34

.

So the area of ∆v1 is given by

Area(∆v1) =
1

2
Length(e2)Length(e3) sin θ23

=
c20 sin θ23

2c2 sin θ24 sin θ34

=
det(G) sin θ23

2v2
14c44 sin θ24 sin θ34

,

because equation (1.10) implies
√

− det(G) = 〈v4,w4〉 = c0(v − u) = c0v14 and

w44 = c2 = −c44. To get this equation in a more symmetric form, apply equation
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(2.7) giving

Area(∆v1) =
sin2 θ23 det(G)

2v2
14c44 sin θ24 sin θ23 sin θ34

=
det(G)2(v11v44 − v2

14)

2v2
14c22c33c44 sin θ24 sin θ23 sin θ34

=
− det(G)2

2c22c33c44 sin θ24 sin θ23 sin θ34

since v11 = 0 as v1 is ideal. �

Corollary 2.20. Let v1 be an ideal vertex of ∆′, then

Area(∆αv1) =
1

α2
Area(∆v1),

where α > 0.

Proof. Let G′ be the vertex Gram matrix of the generalized tetrahedron with

vertices αv1,v2,v3,v4 and let c′ij denote its cofactors. Then det(G′) = α2 det(G)

and c′ii = α2cii, for i > 1. Applying equation (2.13) gives the required result. �

2.6. Further extensions

By building upon the code from the SnapPea kernel we can use Orb to find

a large number of geometric and topological invariants of hyperbolic 3-orbifolds

including

• Fundamental groups,

• Covering spaces,

• Matrix generators,

• Length spectra,

• Canonical cell decompositions and

• Symmetry groups.

Matrix generators can be fed into SnapPea where Dirichlet domains can be viewed.

We can also use Snap ([27]) by Goodman to find exact representations for these

matrices giving us access to arithmetic invariants.

Orb also allows the user describe any orbifold whose singular set can be repre-

sented by a labelled graph Γ in S
3. A projection for Γ can be drawn and, using

the algorithm in the Appendix, the 3-orbifold Q = (S3,Γ) can be triangulated. In

addition, graph complements can be triangulated and, using the same method as in

Section 2.2, Orb can find complete hyperbolic structures with geodesic boundary.

Orb accepts 3-orbifolds in a variety of other formats including those used by

SnapPea and Geo. A large number of knotted graphs is also available with Orb , and
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these can be used to produce large numbers of orbifolds and graph complements.

See Section 4.2 for details on how Orb was used in the enumeration of these knotted

graphs and how these provide us with a huge class of 3-orbifolds.

There are several obvious extensions to the algorithm outlined in Section 2.2.

Currently the algorithm only finds geometric structures on orbifolds with constant

sectional curvature −1. One possible extension is to introduce a curvature param-

eter and allow for all geometric structures of constant sectional curvature; allowing

for Euclidean and spherical orbifolds. This can be implemented with equations

(10.91), (10.92) and (10.93) from [17] and should provide an even more robust

algorithm. Casson’s Geo works well on hyperbolic and spherical closed 3-manifolds

by employing this approach.

Another possibility is to allow for generalized tetrahedra with completely trun-

cated edges, as in Figure 2.17. Such tetrahedra could be used to find hyperbolic

structures on hyperbolic 3-manifolds with geodesic boundary creased or bent along

a collection of disjoint simple closed curves. One could prescribe an angle θ at the

crease by modifying equation (2.9) to

β2
e = αv1

αv2
cos θ,

with the special case of a length-0 edge occurring as a limiting case when θ = 0.



CHAPTER 3

Attaching 2-handles

Throughout this chapter M will denote an orientable 3-manifold, and α a simple

closed curve on its boundary ∂M. Then by M [α] we denote the 3-manifold obtained

by gluing a 2-handle to ∂M along α, and capping off any spherical boundary

components created. That is, when α lies on a torus component of ∂M, M [α] is

exactly the manifold obtained by doing Dehn filling on the slope α. Otherwise,

M [α] is simply the 3-manifold produced by gluing a thickened disc to M along α.

When α does lie on a boundary component with genus g > 1, then we call this

operation a handle addition along curve α. Refer to Figure 3.1.

α

∂M ∂M [α]

Figure 3.1. If α is a simple closed curve on ∂M, then gluing a

thickened disc along α produces M [α].

According to Thurston’s Hyperbolization Theorem, if M is Haken, then M is

hyperbolic with geodesic boundary if and only if M is irreducible, ∂-reducible,

atoroidal and anannular. If M is hyperbolic but M [α] is not, then α is an excep-

tional curve. Then there is a properly embedded surface S in M [α], which is either

a reducing sphere, a ∂-reducing disc, an essential annulus or an essential torus. We

call S a degenerating surface.

Finally, any two curves α and β on a surface S are coplanar if some component

of S − (α∪ β) is an annulus or a once-punctured annulus. (See Figure 3.2.) If α is

non-separating and β is separating and coplanar to α, then α lies in a punctured

torus in ∂M bounded by β, and it is clear that M [α] = M [β][α].

The next section gives conditions on a curve α on the boundary to ensure that

M [α] is hyperbolic. In the following section, an algorithm for attaching 2-handles

to a triangulated 3-manifold is discussed. The chapter concludes by applying these

results to study several examples.

47
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β

α

β

α

Figure 3.2. Two sets of coplanar curves.

3.1. Bounds on exceptional curves

Suppose T is a torus component of ∂M , α ⊂ T , and suppose M is hyperbolic.

By Thurston’s Hyperbolic Dehn Surgery Theorem ([61]), there are only finitely

many α (up to isotopy) with non-hyperbolic M [α]. Thurston and Gromov ([28],[6])

also showed that if the length of α, as measured in the Euclidean metric on the

boundary of a horoball neighbourhood of the cusp, is at least 2π then M [α] is

negatively curved. Agol ([3]) and Lackenby ([42]) have independently shown that

if the length of α is at least 6, then M [α] is irreducible, atoroidal and not Seifert

fibered, and has an infinite, word hyperbolic fundamental group. Hodgson and

Kerckhoff ([32]) have shown that the number of non-hyperbolic fillings is bounded

by a number independent of M. But do any of these results extend to the case

where α lies on a boundary component of higher genus?

That is, if Sg is a boundary component of M with genus g > 1, then are there

only finitely many curves α on Sg (up to isotopy) such that M [α] is non-hyperbolic?

In general this is not the case. In fact, it is easy to construct counterexamples,

for instance see [58]. The problem is that if Sg contains an exceptional curve β

bounding a punctured torus P , then any curve α contained in P is also exceptional

since M [α] = M [β][α] and M [β] is non-hyperbolic. With this in mind we can

produce the following result:

Theorem 3.1. Let M be an orientable compact finite volume hyperbolic 3-

manifold with non-empty geodesic boundary. Suppose α is a simple closed geodesic

on a boundary component Sg, with genus g > 1. Let

c(Sg) = 6ArcCosh






1 +

2
√

1 − 4/χ(Sg)
(

√

1 − 4/χ(Sg) − 1
)2






.

Then M [α] is hyperbolic provided that, if α is separating then

Length(α) > c(Sg),

and if α is non-separating, then all curves α′ coplanar to α have

Length(α′) > c(Sg).
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Figure 3.3. As g → ∞, c(Sg) = O(log(g)).

The number c(Sg) only depends on the genus of Sg. If all the separating curves

bounding once punctured tori are long enough then there are only finitely many

exceptional curves.

Corollary 3.2. If there is no exceptional simple closed geodesic of length less

than or equal to c(Sg) that bounds a once punctured torus on Sg, then there are

only a finite number of exceptional simple closed geodesics on Sg.

Proof of corollary 3.2. Let N denote the set of all exceptional simple

closed geodesics that have length greater than c(Sg). Since there are only a finite

number of simple closed geodesics on Sg with length less than or equal to c(Sg) it

is enough to show that N is a finite set. Note that it follows from the theorem that

N consists entirely of non-separating curves.

Let L denote the set of simple closed geodesics on Sg that bound a once punc-

tured torus in Sg and have length less than or equal to c(Sg). Then by Theorem

3.1 any curve in N must be coplanar to at least one curve in L. For each curve

α ∈ L let Cα denote the set of all curves in N coplanar to α. Then it is clear that

N = ∪α∈LCα.

Recall that for any curve β ∈ Cα we have the equality

M [α][β] = M [β].

Since M [α] is hyperbolic by assumption, Thurston’s Hyperbolic Dehn Surgery The-

orem shows there can only be a finite number of curves in Cα. Thus N can be

written as a finite union of finite sets and so is also a finite set. �

Theorem 3.1 is closely related to one in [41] where Lackenby showed that if no

short curves become trivial when a handlebody is glued to ∂M, then the resulting

manifold is hyperbolike. This differs from the above result in the sense that multiple

2-handles are being glued to the boundary in one operation.



50 3. ATTACHING 2-HANDLES

In [58], Scharlemann and Wu have found a bound on the number of basic curves

with non-hyperbolic additions. An exceptional curve α is basic if it is separating,

or there are no exceptional separating curves coplanar to α. It is interesting to note

that the proof uses mainly combinatorial arguments and little of the geometry of

the manifold. The proof of Theorem 3.1 uses the following extension of Lemma 3.3

from [58]:

Lemma 3.3. Assume M and α are as in Theorem 3.1. If α is an exceptional

curve on ∂M then there is a degenerating surface P̂ in M [α] such that P = M ∩ P̂
is essential in M and the components of ∂P not in ∂P̂ are coplanar to α. Moreover,

if α is separating then P can be chosen so that all the components of ∂P not in ∂P̂

are parallel to α.

Proof. The first sentence in the statement above can be extracted from the

first paragraph of the proof of Lemma 3.3 in [58]. Here we follow Scharlemann

and Wu’s proof and establish that the statement can be strengthened when α is

separating.

Let α be an exceptional separating curve on ∂M . Since α is exceptional then

we can find an essential sphere, disc, annulus or torus P̂ in M [α]. Then after an

isotopy we can arrange that the surface P = P̂ ∩M has boundary ∂P = ∂1 ∪ ∂P̂
where ∂1 consists of boundary components parallel to α and P̂ is obtained from P

by capping off the curves in ∂1 by disjoint discs in M [α]. Define

b(P̂ ) =



























0 if P̂ is a sphere;

1 if P̂ is a disc;

2 if P̂ is an annulus;

3 if P̂ is a torus.

Define the complexity of P to be c(P ) = (b(P̂ ), |∂P |) in lexicographic order. We

select a degenerating surface P̂ with ∂P = ∂1 ∪ ∂P̂ as above so that the surface

P has least complexity. We now show that this choice guarantees P is essential in

M . Clearly P is incompressible in M , for a compression would produce a surface

of lower complexity.

Suppose P is ∂-compressible, with D a ∂-compression disc in M . Write ∂D =

u ∪ v, where u is an arc in ∂M , and v is an arc in P . Since P is incompressible,

u cannot be isotoped into ∂P relative to ∂u. There are three types of boundary

compression to consider.

Case (1): u has endpoints on different components of ∂P .

Since P̂ is ∂-incompressible, u cannot have both ends on ∂P̂ . If u has ends on

different components of ∂1 then since α is separating, this boundary compression
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produces a trivial boundary component on ∂M . Cap the new boundary component

off and call the new surface P ′. It is clear that P̂ ′ = P̂ and |∂P ′| < |∂P | so P ′ is a

surface of lower complexity. (Figure 3.4.)

D
∂M

P

α

Figure 3.4. In this case we see that we can pull P across the disc

D and then past ∂M , reducing the complexity.

If u has one end on ∂1 and one on ∂P̂ then this boundary compression merges

a component of ∂1 with a component of ∂P̂ creating a new boundary component

which is not homotopic to α. Again we see that the new surface created P ′ has

P̂ ′ = P̂ and |∂P ′| < |∂P | so P ′ is a surface of lower complexity. (Figure 3.5.)

P P ′

v

Figure 3.5. Here P is a punctured annulus. The boundary compo-

nents in ∂1 are drawn with thicker lines. Boundary compression gives

a new surface with P̂ ′ = P̂ but with fewer boundary components in

∂1.

Case (2): u has both endpoints contained in one component of ∂P̂ . In this

case boundary compression along D produces a new surface P ′ and since P̂ is

∂-incompressible, P̂ ′ must have a component isotopic to P̂ . The corresponding

component of P ′ has lower complexity.

Case (3): u has both endpoints contained in one component of ∂1. Boundary

compress along D and call the new surface P ′. Figure 3.6 illustrates the case when

P̂ is a torus. In general we see that the two new boundary curves created are

essential on ∂M [α] and not parallel to α, so |∂P̂ ′| = |∂P̂ | + 2. Moreover, either

a component of P̂ ′ is a boundary compression disc for M [α], or P̂ ′ is one or two

annuli. In the former case, the compression disc is a surface of lower complexity. In
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the latter case we see that P̂ ′ can be obtained from P̂ by 2-surgery along an annulus

so that one of the components of P̂ ′ is essential. The corresponding component of

P ′ is a surface of lower complexity. (Figure 3.6.)

v
v

Figure 3.6. The boundary compression on the left produces a punc-

tured annulus. The boundary compression on the right produces a

disconnected surface consisting of a punctured disc and a punctured

torus.

Note that the only new boundary components created by these three types

of boundary compressions belong to ∂P̂ ′. In the proof in [58] we see that there

are actually five types of boundary compression to consider when we allow for the

possibility that α is a non-separating curve. In that case, it is possible that a

boundary compression may introduce a new boundary curve, that is not contained

in ∂P̂ ′, and is coplanar but not parallel to α. �

Scharlemann and Wu’s combinatorial theorem contrasts with Lackenby’s the-

orem which uses much of the manifold’s structure. Theorem 3.1 combines both

these approaches and calls upon a result on strip packing densities in [44].

Theorem [44]: A strip of radius r in the hyperbolic plane is the set of points

within distance r of a given geodesic. The density of a packing of strips of radius

r in the plane can not exceed

3

π
sinh rArcCosh

(

1 +
1

2 sinh2 r

)

.

This bound is sharp for every value of r.

Remark: The same strip packing density arguments can also be used to sharpen

Lackenby’s result.

Proof of Theorem 3.1. Suppose that M and α satisfy the conditions of

Theorem 3.1 and that M [α] is not hyperbolic.

Lemma 3.3 says we can find a punctured sphere or punctured torus P and an

essential map f : P → M such that f(∂P ) = ∂1 ∪ ∂2, where ∂1 consists of all the

boundary components coplanar to α. The lemma also says that |∂2| ≤ 2, with

|∂2| = 0 if P is a punctured torus. Moreover, if α is separating then we can choose

P so that all the components in ∂1 are parallel to α. We can assume that the

components of ∂P map to geodesics on ∂M .
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Next we replace f by a pleated map g : P → M as described in Thurston [64]

or Agol [3] (Lemma 4.1). Choose a topological ideal triangulation T for intP so

that each edge e is essential in P . So when we lift f(e) to the universal cover M̃

its end points lie on distinct geodesic boundary planes. Now spin the triangles of

T around ∂P (Figures 3.7). Let E denote the edges of T . Lifting f(P ) to M̃ ,

Figure 3.7. Spinning the edges of T around ∂P .

Figure 3.8. The picture in the universal cover of M .

this spinning corresponds to dragging the end points of the components of f(E)

along the lifts of the components of f(∂P ) to ∂H
3 (Figure 3.8). Since the lift of

each component of f(E) runs between distinct boundary planes we see that the

end points of each component of f(E) are carried to distinct points on ∂H
3. So we

may homotope f so that each edge of T maps to a unique geodesic in M . Then

we can homotope f so that each ideal triangle is totally geodesic by a homotopy

extension giving a pleated map g : intP →M . Since this new map is pleated there

is an induced hyperbolic metric on intP.

Let β denote an edge in g(E) and let β ′ be the corresponding edge in f(E).

Then since the ends of each component in E are quasi-geodesic (after spinning),

each end of β lies within a bounded neighbourhood of the corresponding end of

β ′. So the ends of β limit to the same closed geodesics on ∂M as the ends of

β ′. Furthermore, when an end of β ′ wraps closely once around a component of

f(∂P ) the corresponding end of β wraps closely once around the same component

of f(∂P ). Thus, as in the proof of Lemma 4.1 of [3], we can complete the metric

on intP by extending g to be an isometry on ∂P .
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Let N(S) be the points in M at distance at most U from S = Sg. Using

Basmajian’s theorem ([4]), if

U = ArcSinh

(

(1 − 4/χ(S))1/4 − (1 − 4/χ(S))−1/4

2

)

,

then N(S) will be a collar on S.

Let N(∂P ) be the points of P at distance at most U from ∂P, using the induced

metric. Then N(∂P ) is a collar on ∂P . To see this, increase U from zero to it’s final

value. Near zero, N(∂P ) is clearly a collar. But suppose that as it expands, there

is some point at which a self tangency is created. This point on P has property

that it has two shortest geodesic arcs to the boundary, γ1 and γ2. Since this is the

first point the bumping occurs, these two arcs form a smooth geodesic γ = γ1 ∪ γ2

in P. Hence, γ is essential in P .

As pleated maps shrink distances we have g(N(∂P )) ⊆ N(S), and so g(γ) is

contained entirely in N(S), which is a collar. Hence, g(γ) can be homotoped to

S keeping endpoints fixed. This contradicts P being essential and so N(∂P ) is a

collar.

Since Length(α) > c(S) and ∂1 consists of boundary components parallel to α

we have

Area(N(∂P )) = sinh(U)Length(∂P )

≥ sinh(U)Length(∂1)

> sinh(U)c(S)|∂1|

= 6 sinh(U)ArcCosh

(

1 +
1

2 sinh2(U)

)

|∂1|.

Now using the theorem of Marshall and Martin,

Area(N(∂P )) ≤ 3

π
sinh(U)ArcCosh

(

1 +
1

2 sinh2(U)

)

Area(P )

and so by combining the previous two inequalities with Gauss-Bonnet we get

2πχ(P ) =

∫

P

KdA ≤ −Area(P ) < −2π|∂1|.

There are two cases to consider. If P is a punctured torus its Euler characteristic

is −|∂1| which gives

−2π|∂1| < −2π|∂1|,
which is an obvious contradiction. If P is a punctured sphere then we get

2π(2 − |∂1| − |∂2|) < −2π|∂1|,

which again is a contradiction since |∂2| ≤ 2. Therefore the surface P cannot exist

and M [α] is hyperbolic. This completes the proof of the theorem. �
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3.2. The algorithm

We now outline an algorithm for attaching a 2-handle to a manifold M trian-

gulated by generalized tetrahedra. When M is a graph complement in S
3 such a

triangulation can be found using Orb. (See Appendix.) This algorithm is applied

in the section to two examples, and combined with Theorem 3.1 to describe the

non-hyperbolic handle additions. The procedure works for attaching 2-handles to

both torus and higher genus boundary components. No assumptions are made

about geometric structures as the algorithm is completely topological.

Suppose we wish to produce a triangulation for M [α], where α is an essential

simple closed curve in ∂M. SinceM is triangulated there is an induced triangulation

on ∂M and we can draw α as it passes through it. Denote by T0 the triangulation

for M and note that T0 induces a triangulation T 1
0 on ∂M . Homotope α so that it

is a normal curve with respect to T 1
0 , and lies within an ǫ-neighborhood of the dual

1-skeleton D of T 1
0 . (See Figure 3.9.) It is clear that this can be achieved without

making α self-intersect. Let t(e) denote the number of arcs of α running parallel

to edge e of D.

t(e) = 2

t(e) = 1

t(e) = 0

Figure 3.9. A normal curve α on ∂M . A normal curve is made up

of non-intersecting normal arcs. A normal arc enters and leaves a

triangle through distinct faces. The dual spine D has one vertex in

the middle of each triangle, and for every edge in T 1
0 , an edge joining

the vertices of the neighbouring triangles (represented by the dashed

lines.) The map t(e) is the number of normal arcs of α running

parallel to edge e of D.

The remainder of the algorithm can be thought of as follows. Take a thickened

disc, a 2-handle, and align its boundary with α as it lies on ∂M . Pushing the

boundary of the disc into ∂M along α produces M [α].

The description sounds simple but in practice things are complicated by the

need to maintain a triangulation. This means that not only must the thickened
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disc be subdivided into tetrahedra, but after it is slid into ∂M what is left must be

a triangulation. The problem is simplified by retriangulating T0. This is done by:

(1) Introducing a vertex in the middle of each tetrahedron and then coning

its faces to the middle. This replaces each tetrahedron by four, meeting

at a common vertex.

(2) Performing two-to-three moves (as discussed in Section 2.5) on the faces

that were not created by the previous step.

Call the new triangulation T and refer to Figure 3.10 for an illustration. As a

result of the subdivision, D is contained in the 1-skeleton of T 1, so α lies within

an ǫ-neighbourhood of the 1-skeleton of T 1. Here T 1 is the triangulation of ∂M

induced by T .

Figure 3.10. Start with two neighbouring tetrahedra (separated by

the grey face) and then perform a one-to-four move followed by a two-

to-three move. The retriangulation on the boundary is illustrated by

slicing off the link of a vertex.

Figure 3.11. After subdivision α now lies within an ǫ-

neighbourhood of the 1-skeleton of T 1.

For each edge e of D there is a unique face Fe in T lying in the interior of

M . The face Fe is a quadrilateral with one edge being e and the remaining three

belonging to T . Now for every edge e of D with t(e) > 0, unglue T along Fe. The
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result is a cell decomposition with two unidentified faces for every face unglued.

See Figure 3.12.

Figure 3.12. This is what ∂M looks like after we unglue the faces

of T incident to α. The boundary has new pairs of quadrilateral

faces. These quadrilaterals come from the truncated triangles in the

interior of T that were unglued. These new faces form a chasm that

cuts into M where α once ran.

t(e)

Q Q′

Figure 3.13. Here we see the chasm at (Q,Q′)e. We slide and glue

t(e) truncated tetrahedra down the chasm.

For each unglued face Fe, denote by (Q,Q′)e, the pair of unidentified quadri-

laterals on the boundary. At every pair (Q,Q′)e on the boundary, insert t(e)

tetrahedra down the chasm. This is best explained pictorially so refer to Figures

3.13 and 3.14.

The algorithm is essentially complete. These newly positioned tetrahedra glue

together to form the required 2-handle. To glue the tetrahedra up, follow the

tetrahedra along the path defined by α and glue consecutive faces.
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We now have M [α] decomposed into truncated tetrahedra. However, in the case

where α was on a torus boundary component, a spherical boundary component was

created. So the vertex has to be glued back in to produce a triangulation for M [α].

Figure 3.14. We proceed by sliding tetrahedra down the chasm.

We fill the chasm by placing t(e) truncated tetrahedra down the gap

at each pair of unidentified quadrilaterals (Q,Q′)e. Gluing consecu-

tive faces as shown here produces the 2-handle.

3.3. Two simple examples

This chapter concludes by using Theorem 3.1 and the previously described

algorithm to rigorously study two examples. Both the examples can be triangulated

with two regular truncated hyperbolic tetrahedra with dihedral angles π
6
. They are

amongst the eight lowest volume hyperbolic 3-manifolds with geodesic boundary

as described by Fujii in [25].

Both the examples that follow required the enumeration of simple closed geodesics

on geodesic boundary surfaces. This is discussed in more detail in Section 3.3.3.

Figure 3.15. The knotted-Y G1. The complement of this graph in

R
3 is a hyperbolic 3-manifold with geodesic boundary.
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3.3.1. Example one. The first manifold M1 is the complement of the knotted-

Y or “tripos graph” G1 illustrated in Figure 3.15 ([62]). The symmetry group G1

of M1 is generated by two rotations σ1 and σ2 with G1 = 〈σ1, σ2|σ3
1 = σ2

2 = 1〉.
Since an isometry of a hyperbolic 3-manifold with geodesic boundary is de-

termined by its action on the boundary, σ1 and σ2 can be represented by the

permutations on the dual 1-skeleton D (Figure 3.17) of ∂M1 with

σ1 =

(

1 2 3 4 5 6 7 8 9 10 11 12

2 3 1 10 11 12 4 5 6 7 8 9

)

and

σ2 =

(

1 2 3 4 5 6 7 8 9 10 11 12

12 6 9 4 5 2 10 11 3 7 8 1

)

.

A computer program implementing the handle attaching algorithm has been used

to compile a list of all exceptional geodesics of length ≤ c(S2) ≈ 16.192407. Refer

to Table 3.1. The program found no exceptional separating curves and so according

to Corollary 3.2 there are a finite number of exceptional curves on ∂M1. Unfor-

tunately, because the program found separating curves with length less than c(S2)

we can not conclude that Table 3.1 is a complete list of exceptional curves.

Curve α length(α) JSJ decomposition

(0,0,0,0,0,0,0,0,0,1,1,0) 1.66289 solid torus

(0,1,1,0,1,1,0,0,0,1,0,1) 4.24315 T(2, 7)

(0,1,1,0,1,1,0,0,0,0,1,1) 4.41349 T(2, 3), T(2, 4)

(0,1,1,1,0,1,0,0,0,1,0,1) 4.41349 T(2, 6)

(0,1,1,0,1,1,0,0,0,2,1,1) 5.25744 T(3, 5)

(0,1,1,0,1,1,0,0,0,3,2,1) 6.77248 T(2, 3), T(2, 4)

(0,1,1,1,2,1,0,0,0,1,2,1) 6.90358 T(2, 4), T(3, 3)

(0,2,2,1,1,0,1,1,2,0,2,2) 8.8026 T(2, 3), T(3, 3), m004

Table 3.1. The list of exceptional curves on ∂M1 (up to symmetry)

of length ≤ c(S2).

The proof of Corollary 3.2 indicates how Table 3.1 could be extended to a

complete list of exceptional curves. For each separating curve α with length ≤ c(S2)

we can find (using SnapPea) the finite set of degenerating curves on ∂M [α]. Each

of these degenerating curves on ∂M [α] corresponds to a degenerating curve on ∂M

coplanar to α.

The notation used to describe the curves is explained in Figures 3.16 and 3.17.

By perturbing any curve α ⊂ ∂M so it lies within an ǫ-neighbourhood of D, α can

be assigned a vector (a1, a2, . . . , a12) ∈ Z
12, where ai denotes the number of arcs of

α running parallel to the i-th edge of D.
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The last column in the table describes the JSJ decomposition of M1[α] ([37],[38])

obtained by using SnapPea to cut M1[α] open along essential tori or Klein bot-

tles. The manifold M1[(0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1)] is the only manifold on the list

which contains an essential Klein bottle. T(p, q) denotes the complement of the

(p, q) torus link and m004 the complement of the figure eight knot. The two man-

ifolds M1[(0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1)] and M1[(0, 1, 1, 0, 1, 1, 0, 0, 0, 3, 2, 1)] can be

distinguished by the homology of their 3-fold covers.

Figure 3.16. The gluing pattern for M1 and the induced triangu-

lation on the genus 2 boundary surface.

1

2

3

45
6

7

8

9
10

11

12

α

Figure 3.17. The curve α = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0) is one of

the three short meridian curves on the boundary.
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γ

Figure 3.18. M2 is the complement of G2 in S
3. Like M1, M2 is

a hyperbolic 3-manifold with geodesic boundary.

3.3.2. Example two. The second example M2 is the complement of the

graph G2 (illustrated in Figure 3.18) in S
3. The geodesic meridian γ has approxi-

mate length 3.01274 on ∂M2. The manifold M2[γ] is the complement of the (2, 4)

torus link, so it is clear that γ is an exceptional curve which separates ∂M2 into

two punctured tori P1 and P2. Consequentially, any curve α ⊂ ∂M2 that can be

homotoped so that it is contained in either of the Pi is also exceptional. Hence M2

has an infinite number of exceptional curves. The symmetry group G2 of M2 is

generated by a rotation of order two, σ, which can be represented by the following

permutation on the dual 1-skeleton (Figure 3.20) of ∂M2:

σ =

(

1 2 3 4 5 6 7 8 9 10 11 12

1 10 4 3 5 7 6 11 12 2 8 9

)

Table 3.2 lists all the exceptional geodesics of length ≤ c(S2) and whose in-

tersection with γ is essential. The notation used is described in Figures 3.19 and

3.20.

Curve α length(α) JSJ decomposition

(0,0,0,1,2,1,2,1,1,1,0,1) 6.12168 T(2, 3), T(3, 3), X

(0,1,1,1,2,1,1,1,0,1,1,0) 6.90358 T(2, 3), T(3, 3), X

(2,1,1,1,0,1,1,0,1,1,0,1) 6.90358 m203

(1,1,0,0,1,1,1,0,1,1,2,1) 7.27655 T(2, 4), m009

(0,1,1,1,2,1,1,0,1,1,0,1) 7.82248 m295

(1,1,0,0,1,1,1,1,2,1,1,2) 8.59074 T(2, 3), m129

(2,0,2,2,0,2,2,1,1,0,1,1) 8.8026 T(2, 3), T (3, 3), m004

(2,0,2,1,0,1,2,1,1,1,2,3) 9.7475 T(2, 4), m015

(0,1,1,3,2,1,1,1,0,3,2,1) 9.80376 T(2, 4), m032

(0,1,1,2,2,2,1,2,1,2,1,1) 9.97732 T(2, 3), m203

(2,1,1,1,0,1,1,2,3,1,2,3) 11.4963 s776

Table 3.2. The list of exceptional curves on ∂M2 (up to symmetry)

of length ≤ c(S2) and whose intersection with γ is essential.
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M2[(0, 0, 0, 1, 2, 1, 2, 1, 1, 1, 0, 1)] and M2[(0, 1, 1, 1, 2, 1, 1, 1, 0, 1, 1, 0)] are dis-

tinguished by the homology of their 2-fold covers. The only manifolds on the

list that contain essential Klein bottles are M2[(2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1)] and

M2[(0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1)]. The manifold X can be obtained by taking a

solid torus, drilling out two longitudinal fibers and then performing (1, 3) and

(−1, 3) Dehn surgery. The remaining JSJ pieces which are not torus links refer to

the SnapPea cusped census.

Figure 3.19. The gluing pattern for M2 and the induced triangu-

lation on the genus 2 boundary surface.

1
2

3

8 9

7

11
12

10

5

6

4
γ

Figure 3.20. With the above labelling on the dual 1-skeleton, the

curve γ is denoted by (1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0). Any simple closed

curve on the boundary that can be homotoped so that it avoids γ is

also exceptional since it lies on a punctured torus with boundary γ.
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3.3.3. Geodesic enumeration. In this section we examine how the simple

closed geodesics were enumerated on the boundary of M1 and M2. As already

mentioned, both these manifolds can be triangulated with two truncated tetrahedra

with dihedral angles π
6
. This induces a triangulation by eight regular hyperbolic

triangles on each of their genus two boundary surfaces. Due to the similarities

in these triangulations it is enough to examine the enumeration process on the

boundary of M1.

Let S denote the genus two boundary of M1. Then by lifting the triangulation

of S to its universal cover S̃ we can produce a tiling of H
2 by regular hyperbolic

triangles with angles π
6
. The dual 1-skeleton D of S also lifts to H

2 giving an infinite

trivalent graph D̃ with vertices at the centres of the triangles in the tessellation.

Let ∆c be one of the eight triangles on S, with centre c. Fix some lift c̃ of c in H
2.

The following lemma says that if we want to find all closed geodesics of length

at most c(S2) that pass through ∆c, it is enough to find all the lifts of c within a

certain radius r of c̃.

Lemma 3.4. For any geodesic γ passing through ∆c there exists a unique deck

transformation dγ of S̃ associated with γ. Under the action of dγ the point c̃ is

sent to some new vertex dγ c̃ of D̃. If γ is a geodesic of length at most l then the

distance between c̃ and dγ c̃ is at most

r = 2ArcCosh

(

1 +
√

3

3 −
√

3

)

+ l.

Proof. Let ∆c̃ be the triangle in H
2 containing c̃ and let ∆dγ c̃ be the triangle

containing dγ c̃. Then since γ passes through ∆c we can lift it to an infinite geodesic

γ̃ that passes through ∆c̃ and ∆dγ c̃. (See Figure 3.21.) Let ρ denote the unique

γ̃

ρ

dγρ

x′

x

c̃

dγ c̃

Figure 3.21. The set up in H
2.

geodesic passing through c̃ perpendicular to γ̃. Then by applying dγ to ρ we can

produce a geodesic segment passing through dγ c̃ perpendicular to γ̃. Let x and x′

denote the points where ρ and dγρ meet γ̃.
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Now length(ρ) = length(dγρ) ≤ m, where m is the radius of the circle that

inscribes a regular hyperbolic triangle with angles π
6
. Applying the hyperbolic

cosine law to the triangle in Figure 3.22,

m = ArcCosh

(

cos 2π
3

cos π
12

+ cos π
12

sin 2π
3

sin π
12

)

= ArcCosh

(

1 +
√

3

3 −
√

3

)

.

2π
3

π
6

m

Figure 3.22. Calculating m.

Since the distance between x and x′ is less than l we can conclude that the

distance between c̃ and dγ c̃ is at most 2m+ l �

Let e1, e2 and e3 be the three edges of D̃ incident to c̃. Then any piecewise

geodesic curve in D̃ starting at c̃ and ending at a vertex of D̃ can be represented by

a pair (ei, w), where w is a (possibly empty) word consisting of L’s and R’s. The

reader should interpret a L as meaning ‘left’ and a R and meaning ‘right’ e.g.: the

pair (e1, L) describes the piecewise geodesic path that starts at c̃ follows e1 to the

next vertex; then turns left and stops at the next vertex. Figure 3.23 illustrates

the path (e1, LRR). Let v(ei, w) denote the vertex at the end of the path (ei, w).

c̃

v(e1, LRR)

e1

Figure 3.23. The piecewise geodesic path (ei, LRR) in the Poincaré

disc model of H
2.
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The following lemma says that in searching for lifts of c we need only follow

paths in D̃ that move away from c̃:

Lemma 3.5. Let x be a vertex of D̃ with x 6= c̃. Then there exists a piecewise

geodesic path (ei, w) where w = a1a2 · · ·an is a word made up from L’s and R’s

such that x = v(ei, a1a2 · · ·an) with the property that

dist(c̃, pm−1) < dist(c̃, pm)

for 1 ≤ m ≤ n, where pm = v(ei, a1a2 · · ·am).

Proof. We first claim that one of the vertices of D̃ neighbouring x will be

closer to c̃ than x. The result then follows immediately since we can construct the

sequence of points pm in reverse by starting at x and moving towards c̃.

Recall that the vertices of D̃ are the centres of regular hyperbolic triangles in a

tessellation. So we know the edges leaving x are equally spaced with angles of 2π
3

between them. (See Figure 3.24.)

x

c̃

Figure 3.24. Expanding balls around the neighbours of x. The

point x is at the centre of the Poincaré disc model.

Expand three balls B1, B2, B3 of equal radius around each of the vertices neigh-

bouring x until they bump. These bumping points lie on the boundary of a ball

Bx centered at x. If we expand a ball centered at c̃ it is clear it will bump with

one of the Bi (i = 1, 2, 3) before Bx. Our claim immediately follows. �

Combining Lemmas 3.4 and 3.5 we can now describe an algorithm for enu-

merating all simple closed geodesic on S passing through ∆c with length at most

c(S2).

We start with the three piecewise geodesic paths

L0 = {(e1, ·), (e2, ·), (e3, ·)},

and extend them. We define Ln recursively, for n ≥ 0 as follows. For each (ei, w) ∈
Ln consider the extensions (ei, wL) and (ei, wR). If



66 3. ATTACHING 2-HANDLES

(1) dist(v(ei, w), c̃) < dist(v(ei, wL), c̃) ≤ r; and

(2) (ei, wL) projects to a simple normal curve on S (this may require a slight

perturbation of the curve);

then add (ei, wL) to Ln+1. We check condition (2) by tracing the curve out in the

surface S as well as the universal cover. This also allows us to check if the curve

can close up on S. If (ei, wL) does close up on S we add it to our list of simple

closed geodesics. We then perform the same checks on (ei, wR).

We repeat the process on Ln+1. This process will terminate because there

are only finitely many vertices of D̃ within distance r of c̃ and at each stage the

endpoints of the paths in Ln are moving further away from c̃. So eventually the list

Ln will be empty. The output will contain the complete list of geodesics of length

at most c(S2), which pass through ∆c. Since we trace out each of the curves in the

surface we will also have a normal curve representation for each of the geodesics.

To get the complete list of simple closed geodesics on S with length at most

c(S2) we need to repeat the procedure for each of the eight triangles of S. To limit

the amount of repetition, each time we rerun the process we need only collect the

curves that do not pass through a ‘base’ triangle we have already used.

Technical remark: When we are extending our curves above, there may be more

than one way to represent the curve on S as a normal curve. We need to keep

track of all simple normal curve representations to ensure we get the complete list

of curves that close up on S.

Table 3.1 only lists the exceptional geodesics on S up to symmetries of M1.

Repetition was removed in two stages:

(1) Geodesics with matching normal curve representations were rejected.

(2) Geodesics whose normal curve representations were equivalent under sym-

metry were rejected. This is easy to detect as the symmetries of M1 just

permute normal curve representations.

The lengths of geodesics and JSJ decompositions in Table 3.1 distinguish between

the remainder of the geodesics. Table 3.2 was produced in precisely the same way,

except 3 duplicate geodesics were removed by hand by explicitly tracing them out

on S.

3.4. Remarks on implementation

Ultimately we would like to use the algorithm in Section 3.2 to study how the

geometry of the manifoldM [α] depends on the choice of the curve α. Unfortunately,

this algorithm is yet to be implemented in complete generality. The biggest obstacle

seems to be arriving at a practical method of representing simple closed curves on

boundary surfaces.
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The Dehn-Thurston coordinates ([50]) seem to present the most effective method

of parametrizing simple closed curves on boundary surfaces. This parametrization

has the advantage that any family of disjoint simple closed curves can be repre-

sented. So by gluing on multiple 2-handles we could attach entire handlebodies to

the boundary.





CHAPTER 4

Applications

Much of the theory discussed in this thesis has been implemented in Orb. The

final chapter displays some applications of this computer program. It is hoped that

it proves to be as useful in studying 3-orbifolds as SnapPea and Geo have been in

studying 3-manifolds.

The section that follows examines how Orb can be used in the field of spatial

graph enumeration. Until now the difficulty has not been the construction of

these graphs, but in determining if two graphs are distinct up to ambient isotopy.

By treating a spatial graph as the singular set of an orbifold a list of geometric

invariants can be associated to any given graph, which can be used to overcome

this obstacle.

The chapter concludes by compiling tables of low volume hyperbolic 3-orbifolds

obtained by prescribing cone angles along the edges of spatial graphs in S
3.

4.1. Knotted θ-curves

In 1989 Litherland wrote a letter to colleagues ([43]) containing what he hoped

was a complete list of all prime θ-curves with up to seven crossings. A θ-curve is

a spatial graph in S
3 consisting of two vertices and three edges, where each edge

joins the two vertices.

A graph is n-composite if there exists a 2-sphere meeting the graph in at most n

places dividing it into non-trivial pieces. A graph is prime if it is not 3-composite.

(See Figure 4.1).

Figure 4.1. Two composite graphs.

Moriuchi ([47]) has verified Litherland’s list of 90 θ-curves by using a method

of Conway ([14]). While Litherland employed the Alexander polynomial, Moriuchi

69
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used the Yamada polynomial to distinguish between the θ-curves. Although these

polynomial invariants are easy to define they are both computationally expensive

and, in practice, difficult to implement.

More recently, Chiodo, Heard, Hodgson, Saunderson and Sheridan ([15]) have

extended Moriuchi’s work to enumerate all prime spatial graphs with two and

four trivalent vertices and up to seven crossings. Rather than using polynomial

invariants, graphs were distinguished completely using hyperbolic invariants of 3-

orbifolds associated with each spatial graph. This method is illustrated in more

detail using Litherland’s table.

Each θ-curve Γ in Litherland’s table is depicted along with:

(1) its symmetry group and reversibility (indicated by an ‘r’ or a ‘n’);

(2) its three constituent knots, obtained by considering any two edges of Γ as

a knot;

(3) the hyperbolic volume of the associated pared manifold MΓ = (S3,Γ)

where the labels on the edges of Γ are taken to be ∞.

A symmetry of an embedded graph in S
3 gives a homeomorphism of S

3 that takes

the graph to itself. A θ-curve Γ is reversible if it has a symmetry which fixes

its edges but reverses their orientations. Litherland was unable to determine the

reversibility of 32 of the θ-curves; but this has been resolved by using the canonical

cell decompositions of the MΓ to compute symmetry groups. The volumes of the

MΓ are enough to completely distinguish between graphs in the table.

Symmetry groups of the graphs were found by computing the symmetry groups

of the pared manifolds. Any homeomorphism of MΓ gives a homeomorphism of

the complement of Γ sending meridians to meridians. These symmetries can be

extended to S
3 and hence the graph Γ. So the symmetry group of MΓ is isomorphic

to the symmetry group of Γ.

Hyperbolic structures were also used to show that all of Litherland’s θ-curves

are prime. Since MΓ is hyperbolic for each Γ we can conclude that no θ-curve on

Litherland’s list is 2-composite. If there was a 2-composite graph Γ then the asso-

ciated MΓ would contain an essential annulus, which contradicts its hyperbolicity.

It was also shown that for each θ-curve Γ the orbifold Q = (S3,Γ) is hyperbolic,

where Γ is labelled 3. This shows that no θ-curve is 3-composite; otherwise the

associated Q would contain an essential Euclidean S
2(3, 3, 3) suborbifold.
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31: D2 r

31 01 01

5.333489566898

41: D2 r

41 01 01

7.706911802810

51: D3 n

01 01 01

10.396867320885

52: D2 r

31 01 01

8.929317823097

53: D2 r

51 01 01

6.551743287888

54: C2 r

51 31 01

8.355502146380

55: D2 r

52 01 01

8.967360848788

56: D2 r

52 01 01

8.793345603865

57: C2 r

52 31 01

9.966511883698

61: C2 n

01 01 01

11.868927767799

62: C2 r

31 01 01

12.541436480028

63: C2 r

41 31 01

12.011086682981
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64: C2 r

41 31 01

10.556866255202

65: D2 r

61 01 01

9.312341316558

66: D2 r

61 01 01

9.665346419357

67: C2 n

61 01 01

11.082166624374

68: C2 r

61 41 01

11.284602977439

69: D2 r

62 01 01

10.562806312097

610: D2 r

62 01 01

10.740257667713

611: C1 n

62 01 01

12.642324892012

612: C2 r

62 31 01

11.294969135799

613: C2 r

62 41 01

12.005951173197

614: D2 r

63 01 01

11.762234287078

615: C1 n

63 01 01

13.318458109849
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616: C2 r

63 31 01

12.276562777744

71: C2 n

01 01 01

13.573971061801

72: C2 n

01 01 01

14.489285702422

73: C2 n

01 01 01

14.815103651458

74: C2 n

01 01 01

15.423672859318

75: C2 n

31 01 01

12.597206646484

76: C2 r

31 01 01

13.245997432362

77: C2 n

31 01 01

12.947638671000

78: C2 r

31 31 01

10.439255155210

79: C2 n

31 31 01

14.490908501382

710: C2 r

31 31 01

14.468602083546

711: C2 n

41 01 01

12.904404738301
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712: C2 r

41 01 01

15.357601981467

713: C1 n

41 01 01

13.701755893889

714: C2 n

41 41 01

14.616810435892

715: C2 n

51 01 01

12.214804374290

716: C2 r

51 01 01

10.947325448997

717: D2 r

51 01 01

13.492084244588

718: C1 n

51 52 01

12.216314783920

719: C1 n

52 01 01

14.551772135375

720: C2 n

52 01 01

11.393881778213

721: C2 r

52 01 01

13.209738771206

722: C2 r

52 31 01

13.443117140749

723: C2 r

52 41 01

13.439519474221
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724: C2 r

52 41 01

12.732652137455

725: D2 r

71 01 01

6.927377112306

726: C2 r

71 31 01

10.225901957780

727: C2 r

71 51 01

9.272866191653

728: D2 r

72 01 01

10.070078535424

729: D2 r

72 01 01

9.585859493954

730: C2 n

72 01 01

12.490066019901

731: C2 r

72 31 01

11.679957517516

732: C2 r

72 52 01

12.074061339622

733: D2 r

73 01 01

10.847925015932

734: D2 r

73 01 01

11.079643110813

735: C2 r

73 31 01

12.370018761958
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736: C2 r

73 51 01

11.817414810890

737: C2 r

73 52 01

12.624442757289

738: D2 r

74 01 01

11.571896813191

739: D2 r

74 01 01

12.479708871748

740: C2 r

74 31 01

14.398985619298

741: C2 r

74 31 01

14.114056597217

742: C2 r

74 52 01

12.962466708422

743: D2 r

75 01 01

12.551759219670

744: D2 r

75 01 01

12.721765197316

745: C2 r

75 31 01

13.550005663255

746: C2 r

75 31 01

13.027986690924

747: C1 n

75 31 01

14.546958401303
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748: C1 n

75 51 01

14.217006654939

749: C2 r

75 52 01

13.810713428216

750: D2 r

76 01 01

13.206174565976

751: C1 n

76 01 01

15.301776517492

752: C1 n

76 01 01

15.408564394952

753: D2 r

76 01 01

13.250639587594

754: C2 n

76 01 01

14.490092485423

755: C1 n

76 31 01

14.873424607035

756: C2 r

76 31 01

13.640388911026

757: C2 r

76 41 01

13.955866986152

758: C1 n

76 52 01

14.967937204950

759: D2 r

77 01 01

13.775530476259
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760: C2 r

77 01 01

15.727779400243

761: C2 r

77 01 01

16.056229296107

762: D2 r

77 01 01

14.323760017556

763: C1 n

77 01 01

15.606332837243

764: C2 r

77 31 01

15.569549316021

765: C2 r

77 41 01

14.390331965426
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4.2. Low volume hyperbolic 3-orbifolds

Like the volumes of hyperbolic 3-manifolds, the volumes of hyperbolic 3-orbifolds

form a well-ordered nondiscrete subset of R of order type ωω, and each volume is

realized by only finitely many orbifolds (Dunbar, Meyerhoff [18]).

The smallest known orientable hyperbolic 3-orbifold Q1 has approximate vol-

ume 0.039050285615 (see Figure 4.2). Chinburg and Friedman ([13]) have shown

that Q1 is the smallest arithmetic orientable hyperbolic 3-orbifold. Gehring, Mar-

shall and Martin have recently announced a proof that Q1 is the smallest orientable

hyperbolic 3-orbifold, but details have yet to be written down. (See also [26].) Mey-

erhoff ([45]) has proven that smallest cusped orientable hyperbolic 3-orbifold is a

tetrahedral orbifold with approximate volume 0.084578467201.

3

6

3

Q1 :

3

5

Figure 4.2. The smallest cusped orientable hyperbolic 3-orbifold

and the smallest known orientable hyperbolic 3-orbifold Q1 have the

above singular sets and underlying space S
3. All edges are labelled 2

unless otherwise indicated.

The three smallest orientable hyperbolic 3-orbifolds with nonrigid cusps were

found by Adams (see [1] and refer to Figure 4.3). The smallest of these (A1 below)

has approximate volume 0.305321865 and consequently is the smallest limit volume.

A1: 3

3

A2:

3

A3:

Figure 4.3. The three smallest orientable hyperbolic 3-orbifolds

with nonrigid cusps have the above singular sets and underlying space

S
3. Found by Adams, their volumes are approximately 0.305322,

0.444457 and 0.457982. All edges are labelled 2 unless otherwise

indicated.

SnapPea has given some insight into this set of volumes by allowing the compu-

tation of volumes of hyperbolic 3-orbifolds with links as the singular loci. However,
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SnapPea cannot directly handle orbifolds with more complicated singular sets. Un-

til now volumes have generally been computed by using SnapPea to study suitable

orbifold covers (e.g. Vesin, Mednykh, Zimmerman, [68], Zimmerman [73]). Orb is

designed to overcome this shortfall and should prove invaluable in the future study

of hyperbolic 3-orbifolds.

To illustrate this, we conclude with a brief survey of the 3-orbifolds with un-

derlying space S
3 and whose singular set is a connected, prime, two or four vertex

trivalent spatial graph whose projection has up to seven crossings.

The graphs were enumerated by a process based on the method of Conway. First

basic prime polyhedra with vertices of degree 3 and 4 where enumerated using the

computer program plantri by McKay and Brinkmann ([11]). Vertices of degree

4 were then replaced by algebraic tangles ([14]) to produce projections of knotted

graphs. The notation used to describe a basic prime polyhedron P is Nn
i where N

is the number of degree 4 vertices and n is the number of degree 3 vertices in P .

An algebraic tangle

12
1 12

1.0

Figure 4.4. First we enumerate basic prime polyhedra with vertices

of degree 3 and 4. Then we replace vertices of degree 4 by algebraic

tangles to produce a knotted graph. The polyhedron information

is encoded into the names of the projections of each graph. In this

example an algebraic tangle is inserted into polyhedron 12
1 producing

the projection 12
1.0.

Repeated projections are removed using an idea from plantri to give a canon-

ical description of each projection (up to homeomorphism of S
2). Finally, Orb was

used to compute hyperbolic invariants such as the volumes of associated orbifolds

and Kojima’s canonical decomposition. These invariants showed that the remain-

ing knotted graphs are distinct. The full details of how the graphs were enumerated

will appear in [15] which is currently in preparation.

The orbifolds in Table 4.1 were produced by considering all connected two vertex

graphs in [15] as the singular set of orbifolds with underlying space S
3. The edge
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labels on the graphs were varied from 2 to 6 and all orbifolds with volume less than

0.5 were noted. The singular sets of the orbifolds are illustrated in Table 4.2 where

the colourings match the labelling in Table 4.1.

The orbifolds in Table 4.3 were produced by considering the first 21 connected,

prime, four vertex graphs in [15] as singular sets. The edge labels on the graphs

were varied from 2 to 6 and all orbifolds with volume less than 0.2 were noted.

The singular sets of the orbifolds are illustrated in Table 4.4 where the colourings

match the labelling in Table 4.3.

There are several orbifolds worth noting:

• 62
5.7(2, 2, 2) is the smallest known 3-orbifold with the entire singular set

labelled 2.

• 14
1.1(3, 5, 2, 2, 2, 2) is the smallest known hyperbolic 3-orbifold;

• 04
1.1(2, 2, 6, 3, 2, 3) is the smallest volume cusped hyperbolic 3-orbifold ([45]).

The first fourteen orbifolds in Table 4.3 agree with those listed in a paper by

Zimmerman ([73]) but this is the first time their volumes have been computed to

such accuracy. From this point on, new low volume orbifolds begin to emerge.

Question: In practice, ‘bad’ triangulations seem to be the greatest obstruction to

finding a hyperbolic structure and at times some retriangulation is necessary. Is

there an efficient way to search for ‘nice’ triangulations?

4.3. Future applications

There are many avenues for continuing the research produced in this thesis.

An obvious useful addition to the algorithm outlined in Chapter 2 would be Dehn

filling. Dehn filling would enable the study of orbifolds with underlying spaces

other than S
3. The 2-handle addition algorithm in Chapter 3 could be imple-

mented, but ultimately a method for continuously deforming hyperbolic structures

like that present in SnapPea is more desirable. Orbifold Dehn filling also presents

an extremely effective method for deforming hyperbolic structures.

In the short term, more time needs to be spent analyzing the orbifolds in the

previous section. The fact that we can now find hyperbolic structures on these

objects is really just the beginning. This presents us with access to new information

like Dirichlet domains, symmetry groups and length spectra. Matrix generators can

be calculated and fed into the computer program Snap [27] by Goodman to find

exact representations and arithmetic invariants. All this should assist us greatly in

developing our understanding of hyperbolic 3-orbifolds.
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Γ Volume Γ Volume

62
5.7 2 2 2 0.117838420347 12

1.1 3 2 4 0.274956314143

12
1.1 4 2 3 0.132387219941 12

1.0 4 2 3 0.305321864725

12
1.20 2 3 2 0.132387219941 12

1.25 2 2 3 0.327122942964†
12

1.70 2 3 2 0.157117893796 12
1.3 3 2 3 0.338313868803

12
1.10 2 3 2 0.157117893796† 12

1.1 5 2 3 0.362887228283

62
5.6 2 2 2 0.157963654832 62

5.4 2 2 2 0.406613506058

12
1.4 3 2 3 0.205686016390† 42

1.111 2 2 2 0.439281507297†
72

5.1 2 2 2 0.235676840694 12
1.19 3 2 3 0.446892793603†

52
1.5 2 2 2 0.245342207223† 52

1.8 2 2 2 0.456086080550†
52

1.44 2 2 2 0.253735401602 12
1.3 2 4 2 0.457982797088

12
1.8 2 4 2 0.253735401602 72

8.1 2 2 3 0.461756942682

12
1.8 3 3 2 0.254944838148 12

1.8 2 5 2 0.468603427380

12
1.1 2 3 3 0.264774439883 12

1.4 4 2 3 0.492361631010†

† Solution found contained negatively oriented tetrahedra.

Table 4.1. The orbifolds of the type Q = (S3,Γ) found with

vol(Q) < 0.5, where Γ is a connected, prime, trivalent two vertex

graph with at most 7 crossings.
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12
1.0: — 12

1.1: 31 12
1.3: — 12

1.4: 41 12
1.8: 53

3.663862 5.333490 6.138139 7.706912 6.551743

12
1.10: 56 12

1.19: 57 12
1.20: — 12

1.25: 65 12
1.70: 725

8.793346 9.966512 6.784756 9.312341 6.927377

42
1.111: 719 52

1.5: 713 52
1.8: 79 52

1.44: — 62
5.4: —

14.551772 13.701756 14.490909 12.496170 13.505377

62
5.6: — 62

5.7: — 72
5.1: — 72

8.1: —

12.279280 11.603186 10.658691 8.140719

Table 4.2. Some simple, prime, trivalent two vertex graphs whose

projection contains at most 7 crossings. Hyperbolic volumes of the

associated pared manifolds are listed along with Litherland’s notation

where relevant.
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Γ Volume Γ Volume

14
1.1 3 5 2 2 2 2 0.039050285615 14

1.2 2 2 3 3 2 2 0.132387219941

14
1.4 3 2 2 2 2 3 0.040890367870† 14

1.2 2 2 2 2 4 3 0.137478157071

14
1.3 3 3 2 2 2 2 0.052654551610 04

1.1 5 3 2 3 2 2 0.143540253357

34
2.5 2 3 2 2 2 2 0.065965277526 14

1.6 2 2 2 3 2 3 0.149237805232

14
1.2 2 4 2 2 3 2 0.066193609970 14

1.5 3 3 2 2 2 2 0.150362044240

04
1.1 2 4 2 3 5 2 0.071770126678 04

1.1 4 4 2 2 3 2 0.152660932362

04
1.1 2 3 5 2 3 2 0.078100571230 14

1.4 3 2 2 2 2 4 0.165428734328†
44

2.2 2 2 3 2 2 2 0.078558946898 14
1.1 3 2 2 2 2 6 0.169156934401

14
1.1 3 2 2 2 3 3 0.081780735741 04

1.1 3 2 2 3 3 3 0.169156934401

04
1.1 2 2 6 3 2 3 0.084578467201 04

1.1 4 3 2 2 3 3 0.171540364016

14
1.1 2 3 3 2 2 4 0.085770182008 14

1.7 3 2 2 2 2 3 0.180420812849

14
1.1 2 2 2 5 2 3 0.093325539506 14

1.2 2 5 2 3 2 2 0.181443614141

34
2.6 3 2 3 2 2 2 0.102843008195 04

1.1 5 2 3 2 2 5 0.186651079013

14
1.2 2 3 3 2 2 3 0.105309103221 14

1.84 2 3 2 2 3 2 0.192773545469

24
1.9 4 2 2 2 2 2 0.126867700801 24

1.37 3 2 2 2 2 2 0.196397367245

24
1.9 3 2 2 2 2 3 0.127472419074 34

2.5 2 2 2 2 4 2 0.198580829912†

† Solution found contained negatively oriented tetrahedra.

Table 4.3. The orbifolds of the type Q = (S3,Γ) found with

vol(Q) < 0.2, where Γ is a connected, prime, trivalent four vertex

graph with at most 7 crossings.
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04
1.1: 7.327725 14

1.1: 10.149416 14
1.2: 11.751836

14
1.3: 12.844853 14

1.4: 12.709173 14
1.5: 14.603061

14
1.6: 14.135593 14

1.7: 15.088873 14
1.84: 13.905701

24
1.9: 13.939686 24

1.37: 15.204650 34
2.5: 14.262930

34
2.6: 13.294406 44

2.2: 15.189754

Table 4.4. Some simple, prime, trivalent four vertex graphs whose

projection contains at most 7 crossings. The hyperbolic volumes of

the associated pared manifolds are also listed.
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APPENDIX A

Triangulating orbifolds of type Q = (S3,Γ)

This appendix describes how the algorithm SnapPea employs to triangulate link

complements in S
3 can be extended to triangulate orbifolds of the type Q = (S3,Γ).

For more details see [72] which has an extensive discussion of SnapPea’s algorithm.

This extension was initially conceived in [30]. Towards the end of the appendix we

explain how this algorithm can be modified to triangulate graph complements in

S
3.

Let Γ be a graph in S
3 with vertices of degree 3 and edges labelled by integers

≥ 2. The triangulation for Q = (S3,Γ) will have:

(1) Σ(Q) contained in the 1-skeleton; and

(2) one vertex for each vertex of Γ.

Vertices of T can be finite, ideal and hyperinfinite.

Technical remark: To triangulate an orbifold with singular loops we will intro-

duce a finite vertex along each of the loops. This is the only time we will allow

degree 2 vertices.

To ensure the algorithm functions as we would expect in all cases we ask that the

projection of Γ is connected. Of course, if this is not the case we can easily rectify

the problem by performing Reidemeister II moves as necessary. The algorithm is

best understood using truncated tetrahedra, so we slice off a neighbourhood of each

of the vertices of Γ.

There is one additional requirement asked of the projection of Γ: No edge of

Σ(Q) may pass through a crossing. This requirement can be met be shrinking any

offending edges of Σ(Q) down until they avoid all crossings. (See Figure A.1.)

2 53

Figure A.1. Truncating the vertices and then shrinking edges of Σ(Q).

The graph Γ is then placed near the equatorial 2-sphere in S
3 where it will act

as a scaffolding as the triangulation for Q is built around it. To make this easy,

A.91
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finite vertices are placed at the north and south pole of S
3. Weeks has developed

a method for removing unnecessary vertices so these can be removed easily after

triangulation is complete. Since truncated tetrahedra will be used, neighbourhoods

of these vertices are removed and Γ is now positioned in S
2 × I. (See Figure A.2.)

Figure A.2. Γ is in S
3 which looks like S

2×I since neighbourhoods

of the north and south poles have been removed.

It is now necessary to make a series of cuts straight down through S
2× I. After

all the cuts are made, S
2 × I will be broken into pieces around the thickened Γ.

There are four type of incisions (refer to Figure A.3):

(1) Between every pair of neighbouring crossings of Γ make an incision that

separates them;

(2) For every crossing next to an edge of Σ(Q) make an incision that separates

them;

(3) At every vertex of Γ make an incision that separates neighbouring edges;

(4) Make one long incision all the way along Γ.

Figure A.3. Cutting up S
2 × I. The dotted lines represent our

incisions. The shaded area indicates the four pieces of type (1).

Each of these four pieces is topologically a truncated tetrahedron.

The remaining area is filled by eight pieces of type (2).



A. TRIANGULATING ORBIFOLDS OF TYPE Q = (S3, Γ) A.93

After all the incisions are made there are two types of pieces:

(1) Those that are incident to an edge of Σ(Q), which have a labelling induced

on their edges;

(2) Those that are incident to a crossing.

For every edge in Σ(Q) there are two pieces of type (1); topologically these are

truncated tetrahedra. For every crossing in the projection of Γ there are four

pieces of type (2). (Figure A.4.)

The type (2) pieces have four truncated vertices, two of which border a neigh-

bourhood of the vertices of Γ and two of which border the upper and lower surfaces

of S
2 × I, along with six ordinary faces, four of which are combinatorial hexagons

and two of which are combinatorial squares. By collapsing each combinatorial

square to a vertical edge each of these pieces becomes a truncated tetrahedron.

Figure A.4. One of the second types of pieces. After collapsing the

combinatorial squares it is topologically a tetrahedron.

This completes the algorithm. As in SnapPea, the vertices at the north and

south poles can be removed and the triangulation can be simplified. Refer to [72]

for more details.

We now examine how this algorithm can be modified to triangulate graph com-

plements in S
3. We begin with the projection of a graph Γ in S

3. The triangulation

will have one vertex for each component of Γ. Removing a neighbourhood of these

vertices produces the required triangulation.

As before, the projection of Γ must be connected. In addition we ask that every

longitudinal curve on Γ must pass through a crossing on both an over and an under

strand. These conditions can be met by performing Reidemeister II and III moves.

We use truncated tetrahedra to visualize the algorithm, so slice off a neighbour-

hood N(Γ) of Γ and position it on the equatorial 2-sphere. Truncate finite vertices

at the north and south poles leaving our thickened Γ in S
2 × I.
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We now make a series of cuts straight down through S
2 × I. After all the cuts

are made, S
2×I will be broken into pieces around the thickened Γ. This time there

are three types of incisions (refer to Figure A.5):

(1) Between every pair of neighbouring crossings of Γ make an incision that

separates them;

(2) At every vertex of Γ make an incision that separates neighbouring edges;

(3) Make one long incision all the way along Γ.

What results is a decomposition of (S2 × I) − N(Γ) with four pieces around each

crossing in the projection of Γ. It turns out each of these pieces is equivalent to

the polyhedron pictured in Figure A.4 and so by collapsing all bigons to vertical

edges we produce a triangulation of (S2 × I) −N(Γ) by truncated tetrahedra. We

then replace the north and south poles to complete the algorithm.

Figure A.5. Cutting up S
2 × I. The dotted lines represent our

incisions. All the pieces produced are equivalent to those pictured in

Figure A.4.

Technical remark: Ensuring that every longitudinal curve on Γ must pass through

a crossing on both an over and an under strand guarantees that our decomposition

of (S2 × I)−N(Γ) does not contain a circular chain of bigons. So when we collapse

the bigons to vertical edges the topology is unchanged.


