

Topological order in ground state wave functions of gapped spin chains with continuous symmetry

Kasper Duivenvoorden and Thomas Quella University of Cologne, Institute of Theoretical Physics

Quantum system of spins \vec{S}_l transforming in a Lie algebra \mathfrak{g}

Assumptions: • \mathcal{H}_l are irreps of \mathfrak{g}

- Hamiltonian H is g-invariant
- Unique ground state $|\psi\rangle$
- Energy gap (will constrain choice of irreps \mathcal{H}_l)

From boundary reps \mathcal{B} to topological classes For the center of SU(N) one immediately finds $\mathcal{Z}(SU(N)) \cong \mathbb{Z}_N \cong \{\mathbb{I}, \omega \mathbb{I}, \cdots, \omega^{N-1} \mathbb{I}\} \quad \text{with} \quad \omega = e^{\frac{2\pi i}{N}}$ PSU(N) spin chains admit N distinct phases Type Label λ Topological class $[\lambda]$ Dynkin label $(\lambda_1, \ldots, \lambda_{N-1})$ $\sum k\lambda_k \mod N$

The Haldane phase of SU(2) spin chains The open S=1 chain exhibits gapless $S=\frac{1}{2}$ boundary spins:

Explicit realization by AKLT in terms of an MPS/VBS state

Symmetry fractionalization: Center $\mathbb{Z}_2 \subset SU(2)$ acts trivially on physical spins... ...but non-trivially on emergent boundary spins

Virtual realization of boundaries in the entanglement spectrum:

Young tableau

 $\mathsf{Boxes}(\lambda) \mod N$

Results for all classical Lie groups

For symmetries of type su(N) and so(2N) there exists more than one topologically non-trivial phase

 $so(2N+1) \quad sp(2N) \quad so(4N+2)$ su(N)so(4N) \mathfrak{g}

SU(N) Spin(2N+1) Sp(2N) Spin(4N+2) Spin(4N)G

Classification of topological phases

Idea: Understand the action of the symmetry group \mathcal{G} on the boundary spins or on the entanglement spectrum [1, 2].

Topological phases \Leftrightarrow Classes of projective reps of \mathcal{G}

 \mathcal{G} -intertwiner $A: \mathcal{B} \otimes \mathcal{B}^* \to \mathcal{H}$ lifts symmetry from auxiliary to physical level

Boundary reps \mathcal{B} and \mathcal{B}^* only need to be *projective* reps of \mathcal{G} : $D(g_1)D(g_2) = e^{i\omega(g_1,g_2)}D(g_1g_2)$

Some basic facts on simple Lie groups

All Lie groups with Lie algebra \mathfrak{g} can be written as G/Γ with

Hierarchies of topological phases

Outlook

- We constructed a string order parameter which can distinguish the N distinct phases of PSU(N) spin chains, see [6].
- Inversion symmetry requires $\mathcal{B} \cong \mathcal{B}^* \Rightarrow$ restriction $2[\lambda] \equiv 0$
- G simply-connected (no holes, $\pi_1(G) \cong \{1\}$)
- $\Gamma \subset \mathcal{Z}(G)$ subgroup of the center
- Projective representation of G_{Γ} = linear representation of G

For the projective group $PG = G/\mathcal{Z}(G)$:

- Projective class of G-irrep $\lambda \Leftrightarrow \text{irrep } [\lambda]$ of center $\mathcal{Z}(G)$
- Number of topological phases: $|\mathcal{Z}(G)|$

• Identity:
$$\mathcal{Z}(G)\cong {\rm Irreps} \text{ of } \mathcal{Z}(G)\cong {\rm weight/root} \text{ lattice of } \mathfrak{g}$$

- Realization in terms of cold atoms? $(\rightarrow [7])$
- Classification of supersymmetric and q-deformed spin chains

Literature

- [1] X. Chen, Z.-C. Gu, and X.-G. Wen, *Phys. Rev.* B83 (2011) 035107.
- [2] N. Schuch, D. Pérez-García, and I. Cirac, Phys. Rev. B84 (2011) 165139.
- [3] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 84 (2011) 235128, arXiv:1103.3323.
- [4] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, arXiv:1106.4772.
- [5] K. Duivenvoorden and T. Quella, arXiv:1206.2462.
- [6] K. Duivenvoorden and T. Quella, arXiv:1208.0697.
- [7] H. Nonne, M. Moliner, S. Capponi, P. Lecheminant and K. Totsuka, arXiv:1210.2072.

SFB | TR12

Symmetries and Universality in Mesoscopic Systems

