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Physical setup

Quantum system of spins ~Sl transforming in a Lie algebra g

1 2 L → |ψ〉 ∈ H1 ⊗ · · · ⊗ HL

Assumptions: • Hl are irreps of g
• Hamiltonian H is g-invariant
• Unique ground state |ψ〉
• Energy gap (will constrain choice of irreps Hl)

The Haldane phase of SU(2) spin chains

The open S=1 chain exhibits gapless S= 1
2 boundary spins:

S= 1
2 boundary spin

S= 1
2 auxiliary spins

S=1 physical spin

Singlet bond

Explicit realization by AKLT in terms of an MPS/VBS state

Symmetry fractionalization:
Center Z2 ⊂ SU(2) acts trivially on physical spins...
...but non-trivially on emergent boundary spins

Virtual realization of boundaries in the entanglement spectrum:

Subsystem AVirtual edge mode Subsystem B

Classification of topological phases

Idea: Understand the action of the symmetry group G on the
boundary spins or on the entanglement spectrum [1, 2].

Topological phases ⇔ Classes of projective reps of G

A

H

B B∗

G-intertwiner A : B ⊗ B∗→ H lifts
symmetry from auxiliary to physical levelD(g)−1D(g)

g

Boundary reps B and B∗ only need to be projective reps of G:

D(g1)D(g2) = eiω(g1,g2)D(g1g2)

Some basic facts on simple Lie groups

All Lie groups with Lie algebra g can be written as G/Γ with

• G simply-connected (no holes, π1(G) ∼= {1})
• Γ ⊂ Z(G) subgroup of the center

• Projective representation of GΓ = linear representation of G

For the projective group PG = G/Z(G):

• Projective class of G-irrep λ ⇔ irrep [λ] of center Z(G)

• Number of topological phases:
∣∣Z(G)

∣∣
• Identity: Z(G) ∼= Irreps of Z(G) ∼= weight/root lattice of g

From boundary reps B to topological classes

For the center of SU(N) one immediately finds

Z
(
SU(N)

) ∼= ZN ∼=
{
I, ω I, · · · , ωN−1 I

}
with ω = e

2πi
N

PSU(N) spin chains admit N distinct phases

Type Label λ Topological class [λ]

Dynkin label (λ1, . . . , λN−1)
∑

kλk mod N

Young tableau Boxes(λ) mod N

SU(2)

λ1

Linear reps of SO(3)

Projective reps

(Half-)Integer spin

SU(3)

λ1

λ2
λ = (1, 2) =

Dλ(ω I) = ω[λ] I

Linear reps of PSU(3)

Projective reps

Results for all classical Lie groups
For symmetries of type su(N) and so(2N) there
exists more than one topologically non-trivial phase

g su(N) so(2N+1) sp(2N) so(4N+2) so(4N)

G SU(N) Spin(2N+1) Sp(2N) Spin(4N+2) Spin(4N)

Z(G) ZN Z2 Z2 Z4 Z2 × Z2

Hierarchies of topological phases

PSU(6)

SU(6)/Z3

SU(6)/Z2

SU(6)
Z3

Z2

Z2

Z3

Symmetry group

{0, 1, 2, 3, 4, 5} = {0, 1, 2, 3, 4, 5}

{0, 1, 2}
{0, 1}

{0}

Topological classes

Different choices of
symmetry group lead
to different sets of
topological phases

⇓
New perspective on
Haldane’s Conjecture

Outlook

• We constructed a string order parameter which can distinguish
the N distinct phases of PSU(N) spin chains, see [6].

• Inversion symmetry requires B ∼= B∗ ⇒ restriction 2[λ] ≡ 0

• Realization in terms of cold atoms? (→ [7])

• Classification of supersymmetric and q-deformed spin chains
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