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Abstract: Errors in variables regression is important in many areas of science and social sci-

ence, for example in economics where it is often a feature of hedonic models, in environmental

science where air quality indices are measured with error, in biology where the vegetative

mass of plants is frequently obscured by mismeasurement, and in nutrition where reported

fat intake is typically subject to substantial error. To date, in nonparametric contexts, the

great majority of work has focused on methods for estimating the mean as a function, with

relatively little attention being paid to techniques for empirical assessment of the accuracy

of the estimator. In this paper we develop methodologies for constructing confidence bands.

Our contributions include techniques for tuning parameter choice aimed at minimising the

coverage error of confidence bands.
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1 Introduction

Confidence bands are a particularly informative way of quantifying the accuracy of estimators

of regression means. For example, they provide a graphically simple description of the

way in which estimation accuracy varies with location. A lot of work has been devoted to

the construction of such bands in the standard nonparametric regression problem, where

the covariates are observed accurately. In this paper, we construct confidence bands in

the nonparametric errors-in-variables regression problem, where explanatory variables are

observed with error.

This errors-in-variables problem has received a lot of attention in the literature. In a

nonparametric context, most of the work so far has concentrated on the development of

consistent regression estimators. Some authors have developed confidence bands in related,
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but simpler, deconvolution problems; see for example Bissantz et al. (2007), Bissantz and

Birke (2009) and Birke et al. (2010). However, despite their practical importance, to our

knowledge confidence bands in errors-in-variables nonparametric regression have largely been

ignored so far. We show that the problem is particularly complex, much more so than in the

standard error-free setting. We argue that methods that require explicit variance estimation,

such as confidence bands based on central limit theory or the percentile-t bootstrap, are

particularly difficult to implement in practice, and we focus instead on percentile methods,

which estimate variance implicitly.

We develop our approach in the context of local constant, kernel-based estimators of the

regression mean (see Fan and Truong, 1993), although the methods can be generalised to

other settings, for example to the estimators of Hall and Meister (2007) based on ridging or to

the local polynomial estimators of Delaigle et al. (2009). In order to be fully practicable, the

method requires choice of several bandwidths. Data-driven bandwidths have been developed

in the errors-in-variables literature for the problem of regression estimation, but in order to

ensure consistency of the coverage of the confidence bands, the bandwidths cannot all be

taken to be of the size appropriate for estimating a regression curve. We introduce methods

for bandwidth choice, focused specifically on the problem of ensuring good coverage accuracy.

We also outline theoretical properties of our bootstrap bands.

We make several novel contributions: (1) We develop new strategies for generating the

bootstrap sample in the context of errors-in-variables data, in a way that guarantees consis-

tency of the bootstrap bands; see Sections 2.3 and 3.1. (2) We clarify the conditions that

the smoothing parameters need to satisfy in order to guaranteee consistency of the bands,

and develop a novel and completely data-driven approach to selecting these parameters in a

way that satisfies these conditions; see Section 3.2. (3) We develop theoretical properties of

our bands; see Section 5.

2



2 Model and outline of methodology

2.1 Model and regression estimator

Suppose we observe data pairs (Wi, Yi), generated from the errors-in-variables regression

model

Wi = Xi + Ui , Yi = g(Xi) + Vi for 1 ≤ i ≤ n , (2.1)

where the variables Ui, Vi, Xi for 1 ≤ i ≤ n are totally independent, the Uis are identically

distributed as U ∼ fU , the Vis are identically distributed as V ∼ fV and have zero mean

and finite variance, and the Xis are identically distributed as X ∼ fX . In this model, the

explanatory variables Xi are not available, and we observe only their contaminated versions

Wi ∼ fW = fX ∗fU , which are measured with unknown errors Ui. For simplicity, throughout

most of this work we make the standard assumption that the error density fU is known. The

unknown error case will be treated in Section 4.2.

A popular nonparametric estimator of g, in the errors-in-variables model described at

(2.1), is the local constant deconvolution estimator of Fan and Truong (1993). To define it,

let K be a kernel function, write ϕK(t) =
∫
eitx K(x) dx for its Fourier transform, let ϕU be

the characteristic function of the distribution of U . We assume throughout that

ϕU does not vanish on the real line, (2.2)

and that ϕK is compactly supported. Let h > 0 denote a bandwidth, and put

KU(u) =
1

2π

∫ ∞

−∞
e−itu ϕK(t)

ϕU(t/h)
dt . (2.3)

The local constant deconvolution estimator of g is defined by

ĝ(x) = ĝ(x;h) = â(x)/f̂X(x) , (2.4)

where

f̂X(x) = f̂X(x;h) =
1

nh

n∑
j=1

KU

(x−Wj

h

)
(2.5)
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is the deconvolution kernel estimator of fX defined in Carroll and Hall (1988) and Stefanski

and Carroll (1990), and where

â(x) = â(x;h) =
1

nh

n∑
j=1

Yj KU

(x−Wj

h

)
(2.6)

denotes a kernel estimator of a = fX g.

2.2 Pointwise confidence bands based on central limit theory

In standard error-free nonparametric curve estimation problems, a common method for con-

structing confidence bands is through the limiting distribution of estimators (see e.g. Härdle,

1989a, Eubank and Speckman, 1993, and Xia, 1998). In theory, such procedures could be

employed in the errors-in-variables setting too. However, in practice, unlike the error-free

case or density deconvolution problems, there does not seem to be an attractive way of es-

timating consistently the quantities required to construct the interval. See Section C.1 in

the Supplementary Material, where we explain the difficulties associated with this approach.

Therefore, while they can be defined, confidence bands based on limiting distributions are

not really practicable in the errors-in-variables context.

2.3 Pointwise confidence bands based on the bootstrap

The difficulties raised in Section 2.2 make it unattractive to use confidence bands based

on central limit results, or other procedures that rely explicitly on estimating the variance

of ĝ. Instead we suggest constructing confidence bands using the bootstrap. As usual,

we have a choice of percentile-t or percentile methods. However, using the percentile-t

method requires us to estimate the variance of ĝ when bootstrapping the studentised form of

ĝ − g, while percentile bootstrap approaches do not rely on studentisation. Moreover, when

confining attention to two-sided confidence bands, the coverage accuracies of percentile and

percentile-t confidence bands are of the same orders (see e.g. Sections 4.4 and 4.5 in Hall,

1992b). Therefore we shall use the percentile approach for bootstrap confidence bands.

Bootstrap procedures have been used in the error-free case; see, for example, Härdle
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and Bowman (1988), Hall (1992c), Neumann and Polzehl (1998) and Claeskens and Van

Keilegom (2003). However, the methods cannot simply be adapted to the error case, where

the Xis are not observed. In particular:

1. We need to develop new strategies for generating the bootstrap sample, that are valid

for data contaminated with errors. This will be tackled below and in Section 3.1, where

we shall develop a new moment-matching method for errors-in-variables data.

2. We need to develop a data-driven approach to selecting the smoothing parameters

involved. This task is particularly challenging, since, even in the simple error-free case,

the literature does not seem to indicate clearly how to do this completely adaptively.

Perhaps surprisingly, we shall argue in Section 3.2 that choosing the tuning parameters

is actually simpler in the errors-in-variables case than in the standard error-free case.

We shall clearly derive conditions that the smoothing parameters should satisfy in

order to guarantee consistency of the bands, and we suggest a novel approach especially

designed for, and only valid in, the errors-in-variables setting.

3. We need to develop theoretical properties of our bands. These are considerably more

difficult to obtain than in the error-free case, and will be handled in Section 5. As often

in errors-in-variables problems, the proofs are quite technical. They will be relegated

to the Supplementary Material.

To generate bootstrap resamples, let h0 and h1 be two bandwidths. Their choice and

that of other bandwidths will be discussed in Section 3.2. Construct ĝ(x;h0) as in (2.4)

using the bandwidth h0, and let U∗ = {U∗
i }ni=1, X ∗ = {X∗

i }ni=1 and V∗ = {V ∗
i }ni=1 denote

resamples drawn by sampling randomly from the distributions with distribution functions

FU , F̃X(.;h1) and F̃V , respectively, where F̃X(·;h1) is the estimator of FX with bandwidth

h1, defined in Hall and Lahiri (2008) (see Section D.2 in the Supplementary Material), and

F̃V is constructed by moment matching, see Section 3.1. The resamples are drawn in such

a manner that, conditional on the original dataset Z = {(W1, Y1), . . . , (Wn, Yn)}, they are

comprised of independent data and are independent of one another. The bootstrap version
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of the model at (2.1) is:

W ∗
i = X∗

i + U∗
i , Y ∗

i = ĝ(X∗
i ;h0) + V ∗

i for 1 ≤ i ≤ n. (2.7)

Using the bootstrap data set Z∗ = {(W ∗
i , Y

∗
i )}ni=1 in place of the original data Z, com-

pute the bootstrap analogue ĝ∗ of ĝ, replacing h by a bandwidth h2, chosen to mimic the

distribution of ĝ(x;h)− g(x) by that of ĝ∗(x;h2)− ĝ(x;h0). In practice, h2 = h is an appro-

priate choice, but it is convenient in our discussion at this point to distinguish between the

two bandwidths.

Let the nominal coverage of the confidence band be 1− α, where 0 < α < 1. We define

a nominal (1 − α)-level percentile pointwise confidence band for g, constructed over the

compact interval I, by:

CBα(I) =
{
(x, y) : x ∈ I and ĝ(x;h)− t̂1−α/2(x) 6 y 6 ĝ(x;h)− t̂α/2(x)

}
, (2.8)

where, for each x, t̂α/2(x) and t̂1−α/2(x) are such that

P
{
ĝ∗(x;h2)− ĝ(x;h0) 6 t̂α/2(x)

∣∣Z}
= P

{
ĝ∗(x;h2)− ĝ(x;h0) > t̂1−α/2(x)

∣∣Z}
= α

2
. (2.9)

As is usually the case for bootstrap methods, the quantiles t̂α/2 are computed as the empirical

quantiles obtained from B bootstrap samples Z∗
b , b = 1, . . . , B, generated according to (2.7).

In practice, owing to the discreteness of both the bootstrap distribution and the Monte

Carlo approximation algorithm, in most instances the identity “= α
2
” can be achieved only

approximately.

The pointwise nature of the equal-tailed band at (2.8) is reflected by the fact that it

gives approximately correct coverage at individual points x, i.e.

P
{
ĝ(x;h)− t̂1−α/2(x) 6 g(x) 6 ĝ(x;h)− t̂α/2(x)

}
→ 1− α for all x ∈ I, (2.10)

as sample size diverges. See Section 5.2.

Remark 1. The band defined by (2.8) is the one we employed in our numerical work, but

other (1 − α)-level bands for g can also be defined. See for example Section D.1 in the

Supplementary Material for an alternative equal-tailed band and a symmetric band.
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2.4 Simultaneous confidence bands

In this work, we focus on pointwise bands. However, it is worth mentioning that our boot-

strap methodology would be largely unchanged if the bands were simultaneous; the main

alteration would be to the critical point determining interval width. More precisely, a simul-

taneous analogue of the pointwise confidence band defined in (2.8) can be constructed by

altering equation (2.9) to

P
{
ĝ∗(x;h2)− ĝ(x;h0) 6 t̂α/2(x) for all x ∈ I

∣∣Z}
= P

{
ĝ∗(x;h2)− ĝ(x;h0) > t̂1−α/2(x) for all x ∈ I

∣∣Z}
= α

2
.

In this case, and modulo appropriate assumptions, the following approximation would prevail

in place of (2.10): P
{
ĝ(x;h)− t̂1−α/2(x) 6 g(x) 6 ĝ(x;h)− t̂α/2(x) for all x ∈ I

}
→ 1− α.

Simultaneous bands based on asymptotic arguments can also be considered. They are

generally founded on approximations to the distributions of Gaussian processes or sequences

of normally distributed random variables (see e.g. Bickel and Rosenblatt, 1973). In conse-

quence they are afflicted by the inferior accuracy of such approximations (see e.g. Hall, 1979),

and can have very poor performance. Therefore, asymptotic methods are even less attrac-

tive than in the pointwise case discussed in Section 2.2, and bootstrap methods give more

satisfactory results. For example, in the so-called ordinary smooth case, where the charac-

teristic function of U decays polynomially fast in the tails, the difference, in the setting of

simultaneous confidence intervals, is that coverage errors of size (log n)−1/2 occur when using

asymptotic methods, whereas accuracy is of order n−c, for some c > 0, in the bootstrap case.

See e.g. Hall (1991). Theory, too, is quite different in pointwise and simultaneous cases.

3 Details of percentile bootstrap methodology

3.1 Estimating the distribution of V

The distribution function FV of V is not readily accessible from data of the type at (2.1),

because we know neither the function g nor the variables Xi. Since FY = fR ∗ FV , where

7



FY is the distribution function of Y and fR is the density of R = g(X), both of which

can be estimated from the data, we could estimate FV consistently using a nonparametric

regularised deconvolution procedure. This would provide a consistent estimator of FV , but

it is unattractive, not least because it suffers from slow convergence rates.

Fortunately, the main properties of confidence bands for g depend on the distribution

of V only through its first three moments (see Section 5.1 for justification), and these are

relatively easy to access. Therefore, it suffices to generate our resampled data V ∗
i from a

distribution whose first three moments are consistent with those of FV . These requirements

characterise moment-matching bootstrap methods, which date from a suggestion by Wu

(1986). See also Liu (1988), Cao-Abad (1991) and Mammen (1992).

The difficulty in our errors-in-variables context is to construct consistent moment esti-

mators. Since we know that E(V ) = 0, we put the first moment estimator equal to zero. We

construct consistent estimators of σ2 = E(V 2) and ζ = E(V 3) under the assumption that

E(V 6) + E{g(X)6} < ∞. Let µj = E(Y j) and ξj = E{g(X)j}. Since V and X are inde-

pendent and E(V ) = 0, it follows from (2.1) that µ2 = ξ2 + σ2 and µ3 = ξ3 + 3ξ1σ
2 + ζ. We

suggest estimating µj and ξj by µ̂j = n−1
∑

i Y
j
i and ξ̂j =

∫
ĝ(x)j dF̃X(x) = E{ĝ(X∗)j | Z},

respectively. (In practice, we compute the value of ξ̂j as the empirical average of many

ĝ(X∗
i )s, where each X∗

i is drawn from F̃X .) Finally, our estimators of σ2 and ζ are

σ̂2 = max(µ̂2 − ξ̂2, 0) , ζ̂ = µ̂3 − ξ̂3 − 3 ξ̂1 σ̂
2 , (3.1)

respectively. See Section D.3 of the Supplementary Material for a discussion of consistency

of σ2 and ζ. See also Delaigle and Hall (2011) for an alternative, more complex estimator of

σ2.

We can generate V ∗
i from any distribution with first three moments equal to zero, σ̂2

and ζ̂, respectively. In our numerical work we used a centred, rescaled gamma distribution,

with density

f(x) =
(x+ kθ)k−1

θk Γ(k)
e−(x+kθ)/θ · 1{x > kθ} , (3.2)

where k, θ > 0. This density produces a distribution with positive third moment, and we

fold the distribution into the negative half-line if ζ̂ < 0; when ζ̂ = 0 this procedure produces
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the N(0, σ̂2) model for the distribution of V .

3.2 Choice of bandwidths

To construct our bootstrap confidence band at (2.8), we need to select four bandwidths: h,

h0, h1 and h2. As we shall see in Section 5.2, if all four bandwidths are of conventional size

for estimating g, then the effect of the bias of the regression estimator on the coverage error

of bootstrap confidence bands can be significant, and needs to be accommodated in some

way. This is well known in the standard error-free case; see e.g. Härdle and Bowman (1988),

Härdle (1989a), Härdle and Marron (1991), Hall (1992a), Neumann (1995), Neumann and

Polzehl (1998) and Cummins et al. (2001).

In principle we could do explicit bias correction, but this is an unattractive approach

due to the complexity of bias estimators in errors-in-variables problems, as mentioned in

Section 2.2 (see also Section C.1 in the Supplementary Material). Instead, in Section 5.2,

we shall derive two different sets of conditions on the orders of magnitude of the bandwidths

that each ensure consistency of the bands: (1) take h, h1 and h2 of conventional size, and

take h0 larger than usual; or (2) take h0 and h1 of standard size, and h and h2 smaller than

usual. Option (2) is not easy to implement in practice, even in the error-free case, because

it requires choosing two non conventional bandwidths in an automatic data-driven way, and

it is not clear how to do this in practice. Moreover, while undersmoothing is necessary to

obtain consistent bands, too much undersmoothing can produce too wiggly bands. For all

these reasons, we use the first approach.

In more details, we take h1 equal to the normal reference bandwidth for deconvolution

density estimation described in Delaigle and Gijbels (2004), and we take h = h2 = ĥ,

found by the SIMEX (SIMulation EXtrapolation) regression bandwidth selection procedure

of Delaigle and Hall (2008). For h0, while we know that it has to be larger than usual, it

remains to find a way of choosing it in practice. Even in the error-free case there is no easy

way to do this, but, ironically, we shall see below that the errors-in-variables structure has

an advantage because it enables us to estimate coverage error, and we shall exploit this fact

to suggest a method for choosing h0.
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First, we define the ideal, theoretical, h0 to be the bandwidth that minimizes a global

measure of coverage error over an interval J . More precisely, we take h0 = c0h, where

c0 = argminc≥1

∫
J

{
CP(x; c)− (1− α)

}2
dx, (3.3)

with CP(x; c) = P{g(x) ∈ CBch(x)}, and CBch(x) denoting the band defined at (2.8),

replacing there h0 by ch. In Section D.4 of the Supplementary Material, we shall prove that

h0 defined in this way is an order of magnitude larger than h, h1 and h2, and thus guarantees

consistency of the band.

Of course we do not know g, thus we cannot calculate CP. To estimate it, we develop

a SIMEX procedure for this problem. The SIMEX method was introduced by Cook and

Stefanski (1994) for parametric estimation of curves in errors-in-variables problems. It in-

volves generating new data, with further noise added to existing measurement errors on the

Xis. Since we contaminated these new data artificially, we have access to their error-free

version (the version before we added further noise), as well as their contaminated version

(the version after we added the extra noise). Therefore we can learn about the effect that

measurement errors has on a target, and extrapolate back this effect to the original dataset.

In the nonparametric context, Delaigle and Hall (2008) suggested a SIMEX method for

selecting bandwidth for estimating a regression curve, but it cannot be used to select h0,

since it provides bandwidths of the same magnitude as h and h2. In our confidence band

context, we suggest the following new SIMEX bandwidth selection procedure, that aims

to mimick the behaviour of h0 = c0 h, with c0 as in (3.3). Theoretical arguments will be

provided in Section D.4 in the Supplementary Material.

First, generate the SIMEX data W1,i and W2,i, for 1 ≤ i ≤ n, in the following way:

1. Generate {U1,i}ni=1 and {U2,i}ni=1 from the known distribution of U .

2. Put W1,i = Wi + U1,i and W2,i = W1,i + U2,i for 1 ≤ i ≤ n.

Next, the idea is to regard temporarily the problem as one of constructing confidence bands

for the regression of Yi on Wi and of Yi on W1,i, rather than of Yi on Xi. For this, define

g+(x) = E(Yi|Wi = x) and g++(x) = E(Yi|W1,i = x). The samples Z+ = {(W1,i, Yi)}ni=1
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and Z++ = {(W2,i, Yi)}ni=1 are, respectively, versions of Z = {(Wi, Yi)}ni=1 and Z+ =

{(W1,i, Yi)}ni=1 contaminated by errors with density fU . For ω = h, ĥ, h0, hj and ĥj, j = 1, 2,

let ω+ and ω++ denote, respectively, the version of ω calculated as above, but replacing Z

by Z+ and Z++. Likewise, let c+0 , CB
+

h+
0

and CP+ be defined as c0, CBh0 and CP above,

but replacing Z by Z+, g by g+ and each bandwidth ω by ω+. In particular, CB+

h+
0

is a con-

fidence band for g+ and CP+(x; c) = P{g+(x) ∈ CB+
ch+(x)}. Define ω++, c++

0 , CB++

h++
0

and

CP++ similarly, this time replacing Z by Z++, g by g++ and each bandwidth ω by ω++. In

particular, CB++

h++
0

is a confidence band for g++ and CP++(x; c) = P{g++(x) ∈ CB++
ch++(x)}.

Of course, g+ and g++ are unknown, but since we have access to direct samples from

(Wi, Y ) and (W1,i, Y ), we can construct standard error-free nonparametric estimators ĝ+EF

and ĝ++
EF , which converge to g+ and g++ at much faster rates than in errors-in-variables

problems. (By error-free estimators, we mean estimators based on non-contaminated data,

such as the standard local linear estimator.) In particular, ĝ+EF and ĝ++
EF have negligible esti-

mation error compared to the estimation of error of CB+ and CB++, which are constructed

from contaminated data. Motivated by this, we repeat the procedure S times, for each of S

SIMEX samples, obtaining estimates ĝ+s,EF , ĝ
++
s,EF , s = 1, . . . , S and confidence bands CB+

s,ch+
s

and CB++

s,ch++
s

, for the sth SIMEX sample, where s = 1, . . . , S. We suggest estimating the

coverage probabilities for g+(x) and g++(x) by

ĈP+(x; c) =
1

S

S∑
s=1

I{ĝ+s,EF (x) ∈ CB+

s,ch+
s
(x)},

ĈP++(x; c) =
1

S

S∑
s=1

I{ĝ++
s,EF (x) ∈ CB++

s,ch++
s

(x)},

and we take

ĉ+0 = argminc≥1

∫
J

{
ĈP+(x; c)− (1− α)

}2
dx.

We define c++
0 in the same way, replacing + by ++.

Then, by using reverse extrapolation, we can compute an approximation to the factor

c0 for the original problem. More precisely, since CB, CB+ and CB++ are all constructed

from data contaminated by errors with density fU , then c0, c
+
0 and c++

0 all have the same

asymptotic order as h0/h. Further, quoting Delaigle and Hall (2008) (although replacing

11



there the bandwidths by the factors c0, c
+
0 and c++

0 ), since, for k = 0, 1, Wk+1,i measures

Wk,i in the same way as Wi measures Xi, it can be expected that c++
0 measures c+0 in the

same way as c+0 measures c0, that is, c++
0 /c+0 ≈ c+0 /c0, so that c0 ≈ (c+0 )

2/c++
0 . Therefore,

we estimate c0 by ĉ0 = (ĉ+0 )
2/ĉ++

0 , and take ĥ0 = ĉ0ĥ. See Section D.4 of the Supplementary

Material for theoretical arguments justifying our approach.

Remark 2. The SIMEX method could even be used to construct the entire confidence

band, as follows. First, construct standard error-free confidence bands for g+, g++, g+++,

where g+++(x) = E(Yi|W2,i = x), using, respectively, the samples Z, Z+ and Z++. Then

extrapolate these bands, to obtain SIMEX-based confidence bands for g. This method, or

refined versions of it, are straightforward to implement. However, just as SIMEX does not,

in general, lead to consistent estimators of regression means in errors-in-variables problems,

the SIMEX confidence bands constructed in this way do not have asymptotically correct

coverage, in contrast with bands based on the bootstrap.

3.3 Calibrating the confidence bands

To improve coverage accuracy of our confidence bands in practice, we calibrate them through

a standard double bootstrap method, as follows (see for example Beran, 1987, Loh, 1987,

Hall and Martin, 1988 and Martin, 1990). Let π0(α) denote the actual coverage of the band

CBα constructed from the original sample Z, that is, P{g(x) ∈ CBα(x)} = π0(α). Instead

of constructing CBα, if we construct CBβα where βα is such that π0(βα) = 1 − α, then the

band CBβα will have the nominal coverage 1−α. As in more standard prolems, we estimate

βα by solving P{ĝ(x) ∈ CB∗
β̂α
(x)|Z} = 1− α, where CB∗

β denotes a band computed defined

in Section 2.3, but replacing there the data Z by a bootstrap sample Z∗. Of course, this

involves double bootstrap since, computing CB∗
β requires drawing bootstrap samples, say C,

from the bootstrap sample Z∗. See Appendix B for details.
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4 Numerical properties

4.1 Details of implementation

We applied our procedure for constructing the percentile bootstrap confidence band described

in Section 2.3 to real and simulated data, using the bandwidths described in Section 3. In

each case we took the interval J where the integrals in Section 3 are calculated, equal to

[q0.1, q0.9], [q
+
0.1, q

+
0.9] and [q++

0.1 , q
++
0.9 ], respectively when calculations were based on the sample

Z, Z+ and Z++, respectively, and where qp, q
+
p and q++

p denote, respectively, the empirical

pth quantile of the Wis, the W1,is and the W2,is (the latter two quantiles are calculated from

one SIMEX sample). For the J used in Section 3.3, we took J = [q0.1, q0.9], where qp is

defined above. We took the number of bootstrap and double bootstrap replications equal to,

respectively, B = 100 and C = 100. The SIMEX calculations were based on S = 20 SIMEX

samples.

The standard error-free regression estimators in the SIMEX methodology were calcu-

lated using a local linear estimator with a standard normal kernel and a cross-validation

bandwidth. The errors-in-variables estimators were calculated using the kernel K, defined

through its characteristic function by ϕK(t) = (1− t2)3 · 1{t ∈ [−1, 1]}. To gain time, when

calculating the various bandwidths involved, we binned the data in [n/5] bins; see Appendix

D in Wand and Jones (1995).

4.2 Unknown error case

In practice, the error density fU is not always known. As usual in errors-in-variables prob-

lems, our procedure can be adapted to this case as long as we have repeated measurements

Wjk = Xj + Ujk for k = 1, 2,

and the Ujks are distributed as U and are independent of the Xjs. LetW j = (Wj1+Wj2)/2 =

Xj + U j with U j = (Uj1 + Uj2)/2. We apply our procedure with the sample {(W j, Yj)}nj=1.

In particular, here the errors are Ūj, and their characteristic function is ϕŪ(t) = E(eitŪj).
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To construct bootstrap and SIMEX samples, we need to generate data from the dis-

tribution of Ūi, which is unknown. We construct the sample Ū∗
1 , . . . , Ū

∗
n by drawing with

replacement from the data set {(Wj1 − Wj2)/2}nj=1. We proceed similarly to generate the

errors required to compute the SIMEX samples, as suggested by Delaigle and Hall (2008).

This approach to generating new samples of error variables is particularly simple; for example

it does not require any additional bandwidth.

Next, to compute f̂X and ĝ, we need to derive an estimator of the unknown ϕŪ . Since

the errors U i have the same distribution as (Wi1 −Wi2)/2, as in Delaigle et al. (2008), we

can estimate ϕŪ(t) by ϕ̂Ū(t) = n−1
∑n

j=1 cos
{
t(Wj1 −Wj2)/2

}
.

4.3 Simulations

We calculated our bootstrap confidence bands from samples of size n = 100 or n = 200

generated from the model at (2.1), with each of the following regression functions: g1(x) =

1.5 cos{(x+3)/2}, g2(x) = {(x− 1)2/17}− 1, g3(x) = (x/4)+4 (2π)−1/2 e−x2/8, and g4(x) =

1.5 sin{(x − 1)/2.3}. In each case, we took Xi ∼ N(0, 8) and Vi ∼ N(0, 0.04), while the

Uis were generated according to distributions usually encountered in the errors-in-variables

literature, namely, a Laplace distribution with parameter σ, Lap(σ), the convolution of a

Lap(σ) distribution with itself, (Lap ∗ Lap)(σ), or a normal distribution. More precisely,

they were generated according to one of the following distributions: EA: Lap(2−1/2); EB:

Lap(
√
0.8); EC : Lap ∗ Lap(0.5), ED: (Lap ∗ Lap)(0.6) or EE: N(0, 1). These particular

curves and distributions were chosen so that the graph of g, for a typical sample of size

n = 100 or n = 200, contains features such as a peak and/or a valley, and the noise-to-signal

ratio (NSR), Var(U)/Var(X) was approximately equal to 1/8 (cases EA, EC and EE) or 1/5

(cases EB and ED).

In each case, we generated 100 samples from one of the settings described above, and for

each sample we calculated the 95% bootstrap confidence band obtained using the algorithm

described in Section 2.3 for each x on an equispaced grid in ∈ [−5, 5]. Regarding the error

distribution FU , we considered three cases: FU is known (KNE); FU is unknown and, as

in Section 4.2, is estimated through replicated measurements Wij = Xi + Uij, j = 1, 2

14
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Figure 1: Coverage probability curves derived from our bootstrap method in the KNE case

with n = 100 (thick dashed line) and n = 200 (thick solid line), and from the naive approach

with n = 100 (thin dashed line) and n = 200 (thin solid line). (a): g = g2 and error EA,

(b): g = g2 and error EB, (c): g = g4 and error EB, (d): g = g4 and error ED, (e): g = g1

and error EC and (f): g = g3 and error EE. The horizontal dotted line indicates 0.95 for

reference.

(EST), where the Uijs are i.i.d. and independent of the Xis; and FU is unknown and the

bands are computed as if the errors were Laplace (LAP). The first setting is the most

commonly assumed in the nonparametric deconvolution literature. The second setting is

often encountered in practice but has only recently been considered in the nonparametric

literature; see Li and Vuong (1998) for early development, and Delaigle et al. (2008) for a

practicable approach. Note that in this setting, we took the Uijs to have the same distribution

as the Uis in EA–EE above, except that we took the scale parameter so that var(Uij) =

2var(Ui). The third setting is introduced here only to study the robustness of the bands

against error misspecification, as requested by an associate editor. Note that as argued by

Meister (2004) and Delaigle (2008), when the error distribution is unknown, it is preferable

to assume that it is Laplace, whence our choice of the Laplace distribution.
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Figure 2: Coverage probability curves derived from our bootstrap method in the KNE case

(thick solid line), the LAP case (dotthed line) and the EST case (dashed line) with n = 200.

Left: g = g4 and error ED; middle: g = g1 and error EC ; right: g = g3 and error EE. The

horizontal dotted line indicates 0.95 for reference.

To illustrate the importance of taking the measurement error into account when con-

structing confidence bands, we also computed 95% confidence bands derived from the so-

called naive estimator, i.e. a standard nonparametric regression estimator (e.g. Nadaraya-

Watson) constructed from the data (Wi, Yi), pretending they were observed without measure-

ment errors. To construct these naive bands, we cannot adapt our method to the error-free

case, since it relies crucially on SIMEX, which can only be calculated for errors-in-variables

estimators. Instead we used bands for standard nonparametric estimators that are available

in R, namely those based on asymptotic normal distribution, which can be calculated using

the package locfit.

We present the results of several examples, selected to illustrate the properties of our

method in different settings. We obtained similar results in other settings. First, in Figure 1

we show graphs of estimated coverage probabilities for x ∈ [−5, 5], calculated in each case

from 100 samples and derived using our bootstrap method in the KNE case, and the naive

approach, for samples of size n = 100 and 200, and for various combinations of curves and

error distributions. We can see that, despite the difficulty of the problem, when using our

bootstrap approach, for most x ∈ [−5, 5] the coverage probabilities are close to the nominal

level 0.95 when n = 200, although as usual the coverage is poorer at x-values closer to the

tail of fX ; as expected, the coverage improves as n increases from 100 to 200. By contrast,

overall, the bands constructed by the naive approach that ignores the error have very poor

16



−4 −2 0 2 4
−

1.
5

−
0.

5
0.

5
1.

5

x

g(
x)

−4 −2 0 2 4

−
1.

5
−

0.
5

0.
5

1.
5

x

g(
x)

−4 −2 0 2 4

−
1.

5
−

0.
5

0.
5

1.
5

x

g(
x)

−4 −2 0 2 4

−
1.

5
−

0.
5

0.
5

1.
5

x
g(

x)

Figure 3: ĝ (thin solid line), g = g2 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 40 (left) and 60 (right), in the KNE case,

when n = 200 and the error distribution is EA (row 1) or EB (row 2).

coverage at many x-values.

Figure 2 compares the coverage probability curves, for cases (d)–(e) of Figure 1 and

when n = 200, obtained in the KNE, LAP and EST cases. Graphs for the case n = 100 are

shown in Figure F1 in Appendix F in the Supplementary Material. These figures illustrate

that, even when the error distribution is unknown and either misspecified to be Laplace or

estimated from replicates, our procedure gives bands with good coverage, especially com-

pared with naive bands that do not take measurement errors into account. In general, and

unsurprisingly, the best coverage is obtained in the KNE case, although in the Gaussian

error case, pretending that the error distribution is Laplace can sometimes improve coverage

compare to the KNE case. This is not uncommon in deconvolution problems, and is due to

the numerical instability of the Gaussian error case.

Next, we depict confidence bands constructed by our bootstrap method for several con-

taminated samples, selected as follows. For each case considered in our simulations, we

generated 100 samples, and constructed the corresponding 100 estimators ĝ as in (2.4) and
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Figure 4: ĝ (thin solid line), g = g1 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 40 (left) and 60 (right), in the KNE case,

when n = 100 (row 1) or 200 (row 2) and the error distribution is EC .

their respective bootstrap bands. To choose which samples to show on the graphs, we ranked

the samples according to a score based on coverage and width of the bands, as follows. In

each case, the 100 bands were first ranked according to their overall coverage on the interval

[−5, 5], the highest coverage receiving the lowest rank. Then, to break ties, samples with the

same coverage were ranked according to the area comprised within the band, the smallest

area receiving the smallest rank. Proceeding this way, the samples received ranks 1 to 100.

In each case, in the graphs, we show the confidence bands corresponding to the samples that

received rank 40 and 60 in this ranking. This ranking permits us to compare bands obtained

in different settings. Here we show the graphs corresponding to a selected set of examples

illustrating the main properties of our method; for more examples, see Appendix F in the

Supplementary Material.

Figure 3 shows the 95% confidence bands for g = g2, when n = 200 and the error is

Laplace with NSR = 1/8 or NSR = 1/5, in the KNE case. We can see that the bands are

rather narrow, and, as could be expected, are narrower when the error is smaller. In Figure

4 we show, in the KNE case, the confidence bands for g = g1 when the error distribution is
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Figure 5: ĝ (thin solid line), g = g4 (thick solid line) and 95% confidence bands (dashed

lines) for g constructed from the samples ranked 40 (left) and 60 (right), in the EST case,

when n = 100 and the error distribution is ED (row 1) or EE (row 2).

a convolution of two Laplace distributions, and n = 100 or n = 200. We see that the bands

become more narrow as n increases. Figure 5 considers two challenging settings, in the first

because sample size is small and error variance is large, and the second because the error

is normal, which is notoriously difficult to deal with in errors-in-variables problems. More

precisely, the figure shows, in the EST case, the confidence bands for g = g3 when n = 100

and the error is a convolution of two Laplace distributions with NSR = 20%, and g = g4

when the error is normal. In those complex settings too we obtain reasonable bands, even

though the error distribution is estimated from replicates.

Finally, in Figures F5–F10 in Appendix F in the Supplementary Material, to further

illustrate the effect of estimating or misspecifying the error, we depict, for various combina-

tions of regression curves g and error distributions, the confidence bands obtained in cases

KNE, EST and LAP. The figure shows that we obtain reasonable confidence bands in all

three cases, although quite logically, the case KNE generally gives the most attractive bands.
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Figure 6: 95% confidence band for the risk of CHD; the dashed lines represent the confidence

band limits, the solid line shows the nonparametric estimate of the risk of CHD, and the

dot-dashed lines shows the logistic estimate.

4.4 Real Data Example

The suggested method of constructing confidence bands was applied to data from the the

Framingham heart study described Carroll et al. (2006). The data comprise measurements

of systolic blood pressure (SBP) for 1,615 male patients, taken twice in each of two exams.

As in Delaigle and Hall (2008), for i = 1, . . . , 1615, j = 1, 2, we let Wij = log
{
(SBPij1 +

SBPij2)/2− 50
}
, where SBPij1 and SBPij2 are the first and second measurements at exam

j, respectively. For each patient, the variable Yi, i = 1, . . . , 1615, indicating the presence

(Yi = 1) or absence (Yi = 0) of coronary heart disease (CHD) over an 8-year follow-up period,

is also available. Our interest is in the relationship between the risk of CHD and the SBP

level. Here since the error distribution is unknown, we employed the procedure described in

Section 4.2 to construct our confidence band.

Figure 6 shows the estimated regression curve, calculated using the SIMEX bandwidth

of Delaigle and Hall (2008), and the 95% confidence band limits, constructed using our pro-

cedure. The figure also depicts the parametric logistic fit obtained by regression calibration

(see e.g. Carroll et al., 2006). The logistic model seems reasonable for x in [4, 4.7], and in

that range, it does not differ much from the nonparametric regression estimator. However,

for x > 4.7, the parametric fit does not lie in our confidence band, suggesting that it may

be preferable to use a more sophisticated model. The nonparametric estimator seems to be

a good alternative. As could be expected, the figure suggests that the risk of CHD increases
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with the level of SBP.

5 Theoretical properties

5.1 Edgeworth and Cornish-Fisher expansions

In deconvolution problems, it is standard to consider two types of error distributions FU ,

called ordinary smooth and supersmooth, respectively; see Fan (1991). The distribution FU

is ordinary smooth (respectively, supersmooth) if ϕU decays polynomially fast (respectively,

exponentially fast) in the tails. Similarly to Bissantz et al. (2007), we derive our theoretical

results for the ordinary smooth case, as our conditions will imply. Analogous results can be

derived for the supersmooth case, but at the expense of longer arguments. The results of

our numerical work (see Section 4) suggest that our procedure works reasonably well in the

supersmooth error case too.

In conventional semiparametric problems, Edgeworth expansions of distribution func-

tions have the form

P
{
n1/2(θ̂ − θ) 6 τw

}
= Φ(w) + n−1/2p1(w)ϕ(w) + n−1p2(w)ϕ(w) +O(n−3/2). (5.1)

Here, θ̂ is an estimator of a parameter θ, τ 2/n equals the asymptotic variance of θ̂, Φ and ϕ

denote the standard normal distribution and density functions, respectively, and each pj is

a polynomial, being an odd and even function according as j is even or odd, respectively.

A close analogue of (5.1) holds in many nonparametric problems, the main change being

to replace θ in (5.1) by either E(θ̂) or a close analogue of it, and to replace n, for example

in the factors n−1/2, n−1, . . . , by a quantity that is of the same size as the inverse of the

variance of θ̂. The problem is a little more complex even in the case of standard error-free

nonparametric regression, since then a portion of the variance of θ̂ can be estimated root-

n consistently while another part can be estimated only at the root-mean-square rate of

(nh)−1/2. This means that Edgeworth expansions in the case of nonparametric regression

have a form which derives from competing stochastic errors of sizes (nh)−1/2 and n−1/2.

A similar phenomenon is observed in errors-in-variables regression. Here the analogue
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of θ̂ is ĝ = â/f̂X , and g1 = E(â)/E(f̂X) is a natural choice for θ. Moreover, the analogue of

τ 2/n is the asymptotic variance of ĝ(x;h), given by δ2(h)A2
0(x), where

δ2(h) = s2(h)/{E(f̂X)}2, (5.2)

s2(h) =
1

nh

∫
K2

U(x) dx =
1

2πnh

∫ ∣∣ϕK(t)
∣∣2∣∣ϕU(t/h)

∣∣−2
dt, (5.3)

A2
0(x) =

∫ [
{g(q)− g1(x)}2 + σ2

]
L2
0(u) fU(x− q − hu) fX(q) dq du, (5.4)

with L0 = KU/(
∫
K2

U)
1/2. (Note that

∫
K2

U diverges as h decreases to zero.) This means

that the analogue of the left-hand side of (5.1) is

P1(w) = P
[
δ(h)−1{ĝ(x;h)− g1(x)} 6 A0 w

]
.

This motivates Theorem 5.1 and Corollary 5.1 below, which give, respectively, Edge-

worth and Cornish-Fisher expansions relating to the distribution of ĝ − g1. Recall that I

denotes the compact interval over which the confidence band is constructed. The expansions

will be established under Conditions A, B and C given in Appendix A. In particular, we

develop results that hold uniformly in x ∈ I, and our assumptions reflect this goal. In fact,

Theorem 5.1 describes an expansion of the distribution of ĝ(x) that is valid not just uni-

formly in x but also in a large class of functions g and distributions of V and X. This makes

our regularity conditions a little cumbersome, but means that the result yields expansions

of bootstrap distributions, where g and the distributions of V and X are actually random

quantities. See the discussion below Corollary 5.1.

Before we state the results formally, we need to introduce notation. Recall the definitions

of â and f̂X at (2.6) and (2.5), and put

A1(x) =

∫
L2
0(u) fU(x− q − hu) fX(q) dq du, (5.5)

A2(x) =

∫ ∫ [
{g(q)− g1(x)}3 + E

(
V 3

)]
L3

0(u) fU(x− q − hu) fX(q) dq du, (5.6)

ar(x) =

∫
{g(q)− g1(x)}Lr

0(u) fU(x− q − hu) fX(q) dq du, (5.7)

the latter for r = 2, 3. Both A0 =
√

A2
0 (see (5.4)) and A1 are nonnegative and, under

Conditions A, B and C, converge to strictly positive quantities as h → 0, while A2 converges
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to a finite real number. Let α ∈ (0, 1) and define z1α and w1α to be the solutions of Φ(z) = α

and P1(w) = α, respectively, and put p1(w) = A−1
0 a2w

2, p2(w) =
1
2
{A−2

0 a22(1−w2)−A1}w3,

p3(w) =
1
6
(A2 + 3 σ2 a3)A

−3
0 (1− w2) and p4(w) =

1
2
(A−1

0 a2)
2(4− w2)w3.

Now we are ready to establish expansions relating to the distribution of ĝ − g1. These

can be used to prove consistency of the confidence bands (see next section).

Theorem 5.1. If Conditions A, B and C hold then∣∣∣P1(w)−
{
Φ(w) + δ p1(w)ϕ(w) + δ2 p2(w)ϕ(w) + (nh)−1/2p3(w)ϕ(w)

}∣∣∣
6 B1

{
δ3 + (nh)−1 + δ (nh)−1/2

}
, (5.8)

for all n > n0, all h ∈ (0, H0] and all |w| 6 B2, where B1, h and n0 depend only on I, the

constants C4, . . . , C9 and ϵ introduced in Condition B, on the length of the interval I1 there

(here and below, the constant is larger for shorter intervals), on the distributions of U and

V , on the kernel K and on B2. If the distribution of V is either N(0, σ2) or gamma, as at

(3.2), then dependence on the distribution of V , above, can be replaced by dependence on

the constants C1, C2 and C3 in (B1).

Corollary 5.1. If Conditions A, B and C hold then∣∣∣w1α −
{
z1α − δ p1(z1α)− δ2 p2(z1α)− (nh)−1/2p3(z1α) + δ2p4(z1α)

}∣∣∣
6 B1

{
δ3 + (nh)−1 + δ (nh)−1/2

}
, (5.9)

for all n > n0, all h ∈ (0, H0] and all α ∈ [B2, 1− B2], where B2 denotes any number in the

interval (0, 1), and B1, H0 and n0 have the dependence itemised in Theorem 5.1.

We deduce from Theorem 5.1 that

P{ĝ(x;h)− g1(x) 6 δA0(x)w} = Φ(w) + δ p1(w)ϕ(w) + δ2 p2(w)ϕ(w)

+ (nh)−1/2p3(w)ϕ(w) + o(δ2), (5.10)

where p1 and p3 are even, quadratic polynomials, and p2 is an odd quintic. Since
∫
K2

U → ∞

as h decreases then δ2 is an order of magnitude larger than (nh)−1. Therefore we have not

included terms of size (nh)−1 in (5.10). Result (5.10) fails if, on the left-hand side, we centre

23



ĝ(x;h) at g(x) rather than at g1(x); this goes to the heart of the impact of bias, and will be

addressed in Section E.3 of the Supplementary Material.

The bound at (5.8) is applicable uniformly to distributions of X and functions g which

satisfy Condition B. Therefore we can apply those bounds directly to the bootstrap setting,

where FX and g are replaced by F̃X and ĝ. This allows us to consider both the conventional,

unsmoothed bootstrap or its smoothed form as suggested in Section 2.3. These properties

enable us to apply Theorem 5.1 directly to obtain expansions in the bootstrap case, in

particular to derive

P{ĝ∗(x;h2)− ĝ1(x) 6 δ(h2)Â0(x)w|Z} = Φ(w) + δ(h2) p̂1(w)ϕ(w) + δ2(h2) p̂2(w)ϕ(w)

+ (nh2)
−1/2p̂3(w)ϕ(w) + op{δ2(h2)}. (5.11)

In fact in the bootstrap case, the analogue of the bound at (5.8) in that setting applies with

probability converging to 1; and, if a constant C > 0 is given, then the probability converges

to 1 at rate O(n−C), provided V has sufficiently many finite moments; the number depending

on C. In (5.11), hatted quantities are derived by replacing their standard forms by their

bootstrap estimators; in particular, ĝ1 = E(â∗|Z)/E(f̂ ∗
X |Z), and h2 is a bandwidth needed

for constructing ĝ∗.

Remark 3. As a justification for using the moment-matching bootstrap when generating

V ∗
i s based on the first three moments, as suggested in Section 3.1, note that from (5.4)

and (5.6), dependence of the polynomials p1, p2 and p3 on the distribution of V is only

through the first three moments of V ; E(V 2) and E(V 3) appear exactly in (5.4) and (5.6),

respectively. The dependence of other polynomials on the distribution of V is restricted in

the same way.

5.2 Consistency of the band

The results of Section 5.1 can be used to prove pointwise consistency of the band in the

ordinary smooth error case, i.e. to prove that (2.10) holds. The proof is quite standard; see

Section E.3 in the Supplementary Material for details. We show there that, for the bands to

have coverage error tending to zero, not all four bandwidths can be of the standard size for
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estimating g. In particular, the following two settings each lead to consistent bands: (1) h1

and h ∼ h2 are of conventional size for estimating g, i.e. h2
1 ≍ δ(h1), h

2 ≍ δ(h), h2
2 ≍ δ(h2),

and h0 is larger than the conventional size, so that δ(h0)/h
2
0 = o(1); (2) h and h2 ∼ h are

smaller than the conventional size, that is h2 = o{δ(h)} and h2
2 = o{δ(h2)}, and h0 and h1

are such that δ(h1)/h1 = O(1) and δ(h0)/h
2
0 = O(1).

Using arguments similar to those in Sections 5.5.3 and 5.5.4 of Hall (1992a), it can also

be proved that, as long as, for b = o(1) and δ(b) = o(1), where b denotes any of h, h0, h1,

h2, and h0 ̸= o(b), we have

P{ĝ(x;h)− g1(x) 6 δÂ0(x)ŵα} = Φ(zα) + δ q1(zα)ϕ(zα) + δ2 q2(zα)ϕ(zα)

+ (nh)−1/2q3(zα)ϕ(zα) + o(δ2), (5.12)

P{ĝ(x;h)− g1(x) 6 −δÂ0(x)ŵ1−α} = Φ(zα) + δ q
[1]
1 (zα)ϕ(zα) + δ2 q

[1]
2 (zα)ϕ(zα)

+ (nh)−1/2q
[1]
3 (zα)ϕ(zα) + o(δ2). (5.13)

In (5.12) and (5.13), ŵα is defined by solving the following equation for w:

P{ĝ∗(x;h2)− ĝ1(x) 6 δÂ0(x)w|Z} = α, (5.14)

and the polynomials q1, q2, q3, q
[1]
1 , q

[1]
2 , q

[1]
3 have the same parity properties as the pjs; they are

odd or even polynomials according as the index is even or odd, respectively. See Chapter 3 in

Hall (1992a) for similar results. From there, using arguments similar to, but more involved

than, those in Section E.3, and the Delta method described in Section 2.7 of Hall (1992a),

formulae for coverage error of the bootstrap band can be derived.
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A Conditions

We develop our theory under the following conditions. We choose the kernel K to satisfy:

Condition A

(A1) K is symmetric.

(A2) The function (1 + x2)|K(x)| is integrable.

(A3) ϕK vanishes outside a compact set.

(A4) ϕK(0) ̸= 0.

Write ϕV for the characteristic function of V . We impose the following conditions on the

distributions of V and X, and on g.

Condition B

(B1) ϕV satisfies Cramér’s condition, i.e. lim sup|t|→∞|ϕV (t)| 6 C1 where 0 6 C1 < 1, and

also E(V ) = 0, E(V 2) > C2 > 0 and E(V 4) 6 C3 < ∞.

(B2) 0 < C4 6 infx∈IfX(x) 6 supx∈RfX(x) 6 C5 < ∞, and also fX satisfies |fX(x)−fX(x+

u)| 6 C6 |u|ϵ for all x ∈ I and all u ∈ R, where C6 > 0 and 0 < ϵ 6 1.

(B3) supx∈R|g(x)| 6 C7 < ∞ and |g(x) − g(x + u)| 6 C8 |u|ϵ for all x ∈ I and all u ∈ R,

where C8 > 0 and 0 < ϵ 6 1.

(B4) There exists a nondegenerate interval I1, and a constant C9 > 0, such that fX(x −

q)fU(q) > C9 for all x ∈ I and all q ∈ I1.

(The constant C1 is referred to during proofs). Finally, recall that L0 = KU/(
∫
K2

U)
1/2,

where KU is defined at (2.3). We make the following assumptions about the kernel, the

distribution of U and the bandwidth:

Condition C

(C1) For constants C,H0 > 0, supu∈R|L0(u)| 6 C for all h ∈ (0, H0], and

sup0<h6H0

∫
u>u0

L2
0(u) du → 0 as u0 → ∞.

(C2) For a function ℓ defined on the real line, and bounded away from zero on a nondegen-

erate interval I2, L0(u) → ℓ(u), uniformly on all compact intervals, as h → 0.
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(C3) supu∈R|f
(j)
U (u)| 6 C < ∞ for j = 0, 1.

(C4) for some ϵ > 0, h+ (nh)−1/2(
∫
K2

U)
1/2 = O(n−ϵ).

In (B1), the properties E(V ) = 0, E(V 2) > C2 > 0 and E(V 4) 6 C3 < ∞ guarantee that

the parameter k, in the gamma model at (3.2), is bounded away from zero. This ensures that

the Cramér smoothness condition holds uniformly in gamma models for which E(V ) = 0,

E(V 2) > C2 > 0 and E(V 4) 6 C3 < ∞.

Next we show that (B4), (C1) and (C2) hold for commonly assumed distributions of

errors, U . Indeed, if U has an ordinary smooth distribution, and in particular if ϕU(t) =

(1 + t2)−β/2 where β > 1, then for a constant B > 0 we have
∫
K2

U ∼ B h−2β. Defining

ℓ1(u) = π−1
∫
t>0

cos(tu)ϕK(t) t
β dt we see that, if in addition Condition A holds, then

KU(u) =
1

π

∫ ∞

0

cos(tu)ϕK(t)
{
1 + (t/h)2

}β/2
dt = h−β ℓ1(u) + o

(
h−β

)
,

uniformly in all real numbers u. Hence, L0(u) = ℓ(u) + o(1) uniformly in u, where ℓ =

B−1/2 ℓ1. The function ℓ is continuous and vanishes only at isolated points, and so (C2) and

the first part of (C1) holds. Note too that if K is sufficiently smooth, and β > 1
2
, then for

some η > 0, L0(u) = O(u−(1/2)−η) as u → ∞, from which follows the second part of (C1).

Also in this setting, (B4) requires only that fX be bounded away from zero on an open

interval containing I.

B Details for calibrating confidence bands

For b = 1, . . . , B, let Z∗
b denote the bootstrap resamples and for a large number C, let

Z∗∗
b,1, . . . ,Z∗∗

b,C be the double-bootstrap resamples taken from the bootstrap resample Z∗
b for

b = 1, . . . , B. These double bootstrap resamples are generated from bootstrap samples in

the same way as the bootstrap samples are generated from the original sample, as in Section

2.3. The confidence bands constructed from the dataset Z∗
b , CB

∗
b,β̂α

, can be calculated as

CB∗
b,β̂α

(x) =
[
ĝ∗(x;h∗

b)− t̂∗
b,1−β̂α/2

, ĝ∗(x;h∗
b)− t̂∗

b,β̂α/2

]
, b = 1, . . . , B,

where ĝ∗(x;h∗
b) is the estimator of g based on the bootstrap resample Z∗

b employing the

bandwidth h∗
b selected by the method of Delaigle and Hall (2008). The quantity t̂∗b,β is
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defined as the 100βth percentile of ĝ∗∗(x;h∗∗
b,c)− ĝ∗(x;h∗

0,b) with ĝ∗∗(x;h∗∗
b,c) constructed from

the double-bootstrap resamples Z∗∗
b,c with h∗∗

b,c = h∗
b and where h∗

0,b is selected analogously to

ĥ0, replacing, in the definition of ĥ0, Z by Z∗
b . We estimate P{g(x) ∈ CB∗

β̂α
(x)|Z} by

1

B

B∑
b=1

I
{
ĝ(x; ĥ) ∈ CB∗

b,β̂α
(x)

}
where ĥ is the bandwidth calculated in Section 3.2.
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