
Balanced Excited Random Walk

in Two Dimensions

Omer Angel Mark Holmes Alejandro Ramirez

October 25, 2021

Abstract

We give non-trivial upper and lower bounds on the range of the so-called
Balanced Excited Random Walk in two dimensions, and verify a conjecture
of Benjamini, Kozma and Schapira. To the best of our knowledge these
are the first non-trivial results for this 2-dimensional model.
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1 Introduction and main results

We consider the following model of a random walk in Z2. On the first
departure from each site x, the walk makes a vertical step. On all subse-
quent departures from the vertex the walk makes a horizontal step. In
each case, the step is to one of the two neighbours with equal probability,
independent of all previous randomness, so that the walk Z = (Zn)n≥0 is
a martingale. Figure 1 shows a simulation of this process, which we also
refer to as BERW, up to time n = 108.

This model was introduced in more general dimensions d by Benjamini,
Kozma and Schapira in [1]: on the first departure from any site a simple
random walk step in the first d1 coordinate directions is taken, while on
subsequent departures a simple random walk step in the last d2 coordinate
directions is taken, and d = d1 +d2. If d1∨d2 ≥ 3 then the walk is trivially
transient. They proved that in 4 = 2 + 2 dimensions the walk is transient,
and they stated various conjectures and beliefs about lower dimensional
settings. In 3 dimensions, where 3 = 2 + 1 and 3 = 1 + 2 dimensions they
conjectured that the walk would be transient. This was proved by Peres,
Schapira and Sousi in 2016 [7] for the case 3 = 1 + 2.

In the 2 dimensional case 2 = 1 + 1, Benjamini et al. [1] conjecture that
the walk is recurrent, in the sense that every vertex is visited infinitely
often (a.s.). To the best of our knowledge, nothing non-trivial has been
proved about this model. As the walk is non-Markovian, it is not even
clear that the set of recurrent sites (i.e. those visited infinitely often by
the walk) is empty or all of Z2. Our first main result, Theorem 1.1 verifies
this statement.
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Figure 1: A simulation of the path of the 2-dimensional balanced
excited random walk, up to time n = 108
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We say that a vertex x ∈ Z2 is recurrent for a trajectory Z = (Zn)n≥0

if it is visited infinitely often by the trajectory (i.e. x = Zi for infinitely
many i ∈ Z+ := N ∪ {0}). Let D denote the set of recurrent vertices of Z.

Theorem 1.1. For the balanced excited random walk in 2 = 1 + 1 dimen-
sions,

P(D ∈ {∅,Z2}) = 1. (1.1)

Note that Theorem 1.1 does not rule out the possibility that D is
random. In agreement with Benjamini et al. we conjecture that the walk
is recurrent, i.e. P(D = Z2) = 1. A less ambitious goal would be to prove
the following 0-1 law.

Open Problem 1.2. For the balanced excited random walk in 2 = 1 + 1
dimensions, either P(D = ∅) = 1 or P(D = Z2) = 1.

Benjamini et al. also make a conjecture about the limiting shape and
growth of the range, Rn = {Z0, . . . , Zn}. One expects that to leading order
Rn := #Rn grows like nα for some α ∈ [1/2, 1]. These two bounds on α
are trivial since Rn ≤ n+ 1, and the projection of the walk in the direction
(1, 1) is a 1-dimensional simple random walk (similarly for (−1, 1)).

Open Problem 1.3. Prove that α exists, e.g. prove that there exists
α ∈ [1/2, 1] such that (convergence in probability) as n→∞,

log(Rn)

logn

P→ α.

Rudimentary numerical analysis suggests that α ≈ 0.78.

Open Problem 1.4. Provide a better numerical estimate of α.

The list of horizontal moves of Z forms a 1-dimensional simple random
walk, as does the list of vertical moves, and these two lists are independent.
The number of horizontal steps by time n must grow linearly with n since
e.g. any two consecutive vertical steps of opposite sign must either have a
horizontal step between them or be immediately followed by a horizontal
step. Thus the “horizontal range” (maxk≤n Zk · (1, 0)−mink≤n Zk · (1, 0))
grows like

√
n. Note that the range of the walk at time n is exactly one

plus the number of vertical steps taken (a vertical step is taken when and
only when departing from a newly visited site). Therefore, if the growth
of Rn is sublinear then the number of vertical steps taken up to time n is
sublinear (so the vertical range is o(

√
n)) and the limiting shape of the

range will be a horizontal line. Benjamini et al. [1, Page 2] conjecture that
this is the case. Our second main result provides non-trivial lower and
upper bounds on the growth of the range and in particular verifies this
conjecture.

Theorem 1.5. As n→∞,

(i) for any sequence an →∞, P
(
Rn >

nan√
log logn

)
→ 0, and

(ii) P
(
Rn ≥ n4/7/(log2 n)

)
→ 1.

Roughly speaking, the first claim says that the range does not grow
faster than n/

√
log logn, while the second says that it grows at least as

fast as n4/7/ log2 n. This result gives rise to the following Corollary (see
also Figures 2 and 3).
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Figure 2: A simulation of the path of the 2-dimensional balanced
excited random walk, up to time n = 108 with common horizontal
and vertical scale.

Corollary 1.6. For every T > 0 we have that (n−1/2Zbntc)t∈[0,T ] con-
verges weakly to ((Bt, 0t))t∈[0,T ] as n → ∞, where Bt is a standard 1-
dimensional Brownian motion and 0t = 0 for all t.

Neither of the bounds in Theorem 1.5 are very close to our crude
numerical estimate α ≈ 0.78. It would be of interest to improve either of
these bounds, e.g., by proving resolving one or both of the following.

Open Problem 1.7. Prove that for some α < 1 one has:

P(Rn > nα)→ 0, as n→∞.

Open Problem 1.8. Prove that for some α > 4/7 one has:

P
(
Rn ≥ nα

)
→ 1, as n→∞.

Organisation

The remainder of this paper is organised as follows. In Section 2 we
introduce an important tool for our analysis, namely that of stacks of
instructions (one stack per site) that represent the moves that a walker
would take from each site. We show that multiple particles moving accord-
ing to such a set of instructions satisfy a certain Abelian property - the
set of instructions used by the particles does not depend on the order in
which the particles are moved. In Section 3 we use this Abelian property
to verify Theorem 1.1. In Section 4 we prove Theorem 1.5(i). In Section 5
we prove Theorem 1.5(ii). The proof of Corollary 1.6 is left as an exercise
using Theorem 1.5(i) and the approach indicated prior to that theorem.
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Figure 3: A simulation of the horizontal (top) and vertical (bottom)
displacement over time, up to time n = 108.
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2 Abelian Property

In what follows for every m ≥ 1, we define the set [m] = {1, 2, . . . ,m}.
A set of Z2 instructions is a collection I = (I(x, k))x∈Z2,k∈N where each
I(x, k) is either a unit coordinate vector e ∈ {±ei : i ∈ {1, 2}} or a unit
vector together with an instruction to cease movement.

Let P = (Pi)i∈J be particles started at locations (xi)i∈J (not necessar-
ily unique), where J is finite or countable. A movement list L = (Li)i∈N for
P is a sequence with each Li ∈ J such that every j ∈ J appears infinitely
often in the list. A movement list L together with a set of instructions I
defines a collection of paths associated to the particles as follows:

The first move is made by particle PL1 . It follows the instruction
I(xL1 , 1). Having made the first k (attempted) moves of the particles, we
next invite particle PLk+1 to move. If it has not already been ceased by
an instruction that it previously used, it follows the first instruction at its
current location that has not already been followed. If it has already been
ceased then no instruction is used. If a particle uses an instruction that
consists of a unit vector together with a cease statement, then the particle
first takes the step indicated by the unit vector and then ceases.

Let I(L) denote the collection consisting of the instructions used by L.

Proposition 2.1. Let I be a set of Z2 instructions and let L and L′ be
two movement lists for P . Then I(L) = I(L′).

Proof. Suppose not. Wolog I(L) * I(L′), and we let I(x, k) be the first
(in chronological order) instruction used by L that is never used by L′.
Then I(x, k) 6= I(xi, 1) for any i since the first instruction at each xi
is automatically followed for any L. Let (I(yi, ji))i∈A denote the set of
instructions used by L up to but not including the instruction I(x, k). This
includes all non-ceasing instructions used by L to move from neighbours
of x to x, up to but not including the time of the kth departure from x
for L. Since these instructions all appear in L′ it follows that L′ must also
have non-stopped particles visit x at least k times, so I(x, k) must also be
used by L′, which gives a contradiction. �

Lemma 2.2. Suppose that L is a movement list for a set of particles P ,
and that L′ is a movement list for a set of particles P ′ ⊃ P (i.e. add some
extra particles). Then I(L) ⊂ I(L′).

Proof. Let I(x, n) be an instruction used by L. Then it is used at some
finite position j in that list. By Proposition 2.1 we can realise I(L′) by
moving the particles in P ′ in any order. So consider the ordering that
first uses L1, L2, . . . , Lj and then continues in any order thereafter. The
instruction I(x, n) is clearly used by this list. �

Consider a set Λ = (Λz)z∈Z2 of independent rate-one Poisson clocks.
A sequence of firings (Vi, Ti)i∈I where I = N or I = [n], and for each i,
(Vi, Ti) ∈ Z2 × R+, Ti+1 ≤ Ti and |Vi+1 − Vi| = 1, is called a descending
chain. If I = [n] then the (finite) sequence is called a descending chain of
length n. Let B(z, r) denote the ball of radius r (graph distance) centred
at z.
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Lemma 2.3. For each z ∈ Z2 and t ≥ 0 there exists R = R(z, t) such that
there are no infinite or finite descending chains (Vi, Ti)i∈[n] with n ∈ N
such that V1 ∼ z, T1 ≤ t and Vn /∈ B(z,R).

Proof. Fix z1 ∼ z and suppose that there is such a descending chain, then
there is one (for some n′ ≤ n) where all Vi are distinct, and therefore
the chain itself is of length at least R − 1. The proof of [4, Lemma 4]
shows that the expected number of descending chains of length n started
from z with all vertices distinct is at most (4t)n/(n!). Since any chain
of length k contains a chain of length ` < k the probability that there
exists a descending chain of length ≥ n, starting from (z, t) is at most
(4t)n/(n!). Thus letting An be the event that there is such a descending
chain of length n we have

P(∩∞m=1 ∪∞n=m An) ≤ P(∪∞n=mAn) = P(Am)→ 0. (2.1)

In other words P(∪∞r=1 ∩∞n=r Acn) = 1, which completes the proof. �

3 Proof of Theorem 1.1

We begin by considering a collection of particles indexed by the sites of
Z × {0} (one particle per site), each walking in continuous time in the
lattice Z2.

Consider a probability space (Ω,F ,P) on which (U(y, n))y∈Z2,n∈N are
i.i.d.∼ U(0, 1] random variables, (Λy)y∈Z2 are i.i.d. rate 1 Poisson processes,
and I = (I(y, n))n∈N,y∈Z2 are i.i.d. (over y) variables that are Rademacher
vertical steps for n = 1 and Rademacher horizontal steps for n > 1. Also
on this space let (W x

n )n∈N,x∈Z be i.i.d. Rademacher random variables. All
of the above random variables are mutually independent.

We have a set of particles P indexed by Z, with particle x starting
at position (x, 0) at time 0. For each x ∈ Z we also have an associated
ordering

x
^ of Z, defined by

x
x
^ x+ 1

x
^ x− 1

x
^ x+ 2

x
^ x− 2 . . . .

The particles move in continuous time according to the following rules:

Version A: When the clock at y ∈ Z2 fires for the n-th time at some time
t, we choose a particle from among those at y = (u, v) at time t− (if there
are any, if not we do nothing) to read the next instruction, using U(y, n)
and the ordering

u
^. To be precise, if the particles at y at this time are

x1
u
^ . . .

u
^ xm then we choose particle xi if U(y, n) ∈ ((i − 1)/m, i/m].

This is well defined since there are no infinite descending chains (and
hence there are only finitely many particles at any given site at any
time, a.s.) Every particle stops as soon as it returns to Z × {0}. This
system is invariant with respect to horizontal shifts, and ergodic since the
environment (instructions and Poisson processes) is i.i.d. over the sites.

Version B: As for Version A, except that now on the k-th occasion when
the x-particle is chosen to read an instruction of the form I(y, 1) for some
y ∈ Z2, it instead takes a vertical step with sign determined by W x

k . This
version is also stationary (horizontal shift) and ergodic. The resulting
collection of walks has the same law as in Version A.
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Lemma 3.1. For the above collection of particles (Version A, or Version
B), almost surely:

(a) Every particle returns to Z× {0},
(b) Every vertex in Z2\{Z×{0}} is visited infinitely often by the collection

of particles.

Proof. It is sufficient to prove the result for version B, since the joint
law of the particles in version A is the same. Therefore we proceed with
Version B.

The x-particle will a.s. only use finitely many of the W x
i , but we

will define Sx0 = 0 and Sxn =
∑n
k=1W

x
k for all n ∈ N anyway. Let

τx = inf{n ∈ 2N : Nx
n,+ = Nx

n,−} = inf{n ∈ 2N : Sxn = 0}, where Nx
n,+

denotes the number of +1-valued random variables among {W x
1 , . . . ,W

x
n}

and Nx
n,− = n − Nx

n,+. Then τx < ∞ almost surely. Let τ∗x denote
the number of vertical moves actually made by the x-particle. Then
1 ≤ τ∗x ≤ τx almost surely (it is a priori possible that the movements of
other particles prevent this particle from returning to Z× {0}, in which
case τ∗x < τ). Note that τx is σ(W x)-measurable (where Wx = (W x

n )n∈N)
but τ∗x is not (it depends on the moves of other particles).

For i, n ∈ N, let Lxn,i = #{k < n : Nx
k,+ = Nx

k,− + i} = #{k < n :
Sxk = i}, which is the number of vertical moves from level i appearing in
the list of moves (W x

1 , . . . ,W
x
n ). Then E[Lxτx,i] = 1 for each i, since Lxτx,i

is the number of visits to (departures from) i by a simple random walk
excursion from 0. These quantities are σ(W x) measurable. On the event
Jxi that the particle at (x, 0) gets stuck at level i or above (this event is
not σ(W x) measurable) we have Lxτ∗x,i ≤ Lxτx,i − 1. This shows that if
P(Jxi ) > 0 then E[Lxτ∗x,i] < 1.

For z ∈ Z2, let pz be the probability that z is hit by the family of
continuous-time excursions. By (horizontal) stationarity, p(k,i) = p(0,i) for
every i. Let Kx

i be the event that the walk at site (x, 0) gets stuck on
level i. If P(K0

i ) > 0 then by ergodicity a.s. there exist (infinitely many)
particles that get stuck on level i, and then almost surely every vertex in
level i is visited (infinitely often). Indeed, let t be the unit shift in the
horizontal direction acting on Ω, so that t(ω) = (ωz+(1,0))z∈Z2 . Note that
{tn : n ∈ Z} is an ergodic group of transformations acting on the space
(Ω,B(Ω),P). Therefore, if Nn,i is the number of particles within the sites
(−n, 0), (−n+ 1, 0), . . . , (n, 0) that get stuck at level i, we have that a.s.

lim
n→∞

1

2n+ 1
Nn,i = P(K0

i ),

which implies that the total number Ni of particles that get stuck at level
i, then Ni = limn→∞Nn,i =∞. In particular, if P(K0

i ) > 0 then p(k,i) = 1
for each k ∈ Z. On the other hand, if P(K0

i ) > 0 then we know that
E[L0

τ∗0,i] < 1− εi, and again by ergodicity we have that the proportion pi
of vertices at level i that are visited is smaller than 1− εi:

pi = lim
n→∞

1

2n+ 1

n∑
x=−n

Lxτ∗x,i = E[L0
τ∗0,i] < 1− εi.
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This gives a contradiction. Therefore P(K0
i ) = 0 for every i ∈ N, and we

conclude that every particle almost surely returns to level 0, or in other
words, τ∗x = τx almost surely. This proves (a).

Now note that we have from (a) that for each i ∈ N and x ∈ Z,
E[Lxτx,i] = 1. We claim that this implies that p(0,i) = 1. To show this,
define for each z ∈ Z2, Lz as the number of vertical moves made (by any
of the particles) from site z. Note that since Lz = 0 when site z is never
visited and Lz = 1 whenever site z is visited, we have that

E[Lz] = pz.

By ergodicity the density of vertical moves per unit length in level i ∈ N is

lim
n→∞

1

2n+ 1

n∑
j=−n

L(j,i) = p(0,i).

The same density can be computed again by ergodicity as

lim
n→∞

1

2n+ 1

n∑
x=−n

Lxτx,i = E[L0
τ0,i] = 1.

It follows that p(0,i) = 1.
This proves that every vertex is visited by the collection of excursions.

We now show that every vertex in level i ∈ N is in fact visited infinitely
often by this family of excursions. Fix i, and let ân be the number of
times level i is entered from above or below at (n, i). Since (n, i − 1) is
visited almost surely, and (n, i+ 1) is visited almost surely, and each site
has an i.i.d. ± vertical step as the first move in the stack at that site, the
numbers (ân)n∈Z are i.i.d. Bin(2, 1/2) random variables.

The first visit to (n, i) results in a vertical exit from that site. All
subsequent visits result in a horizontal departure. Let hn denote the
number of horizontal departures from (n, i) and Tn denote the total number
of visits to (n, i). Then we have the relationship

hn = Tn − 1.

We wish to show that Tn = ∞ for each n (a.s.). If Tn = ∞ for some
n with positive probability then by ergodicity Tn = ∞ for some n and
therefore Tk = ∞ for all k (since all but the first move from (n, i) is
horizontal). We shall therefore suppose that Tn < ∞ for every n and
look for a contradiction. Now the number Tn of visits to (n, i) consists of
the number an of vertical visits to (n, i) plus the number of visits from
(n − 1, i) (call this `n,+), plus the number of visits from (n + 1, i) (call
this rn,−). Similarly, the number hn of horizontal departures from (n, i) is
the number of departures from (n, i) to (n− 1, i) (call this `n,−), plus the
number of departures from (n, i) to (n+ 1, i) (call this rn,+). It follows
that we have

`n,− + rn,+ = ân + `n,+ + rn,− − 1.

If Tn is finite then all of these quantities are finite and we can write

ân − 1 = `n,− + rn,+ − `n,+ − rn,−.

9



Let mn be the number of signed crossings from (n, i) to (n+ 1, i) (with
reverse crossings counted negatively). Then mn is an ergodic process, and
mn = rn,+ − rn,− and mn−1 = `n,+ − `n,−. Thus we have

ân − 1 = mn −mn−1.

Summing over n from 1 to t we get

t∑
n=1

(ân − 1) = mt −m0.

By assumption the mn are a.s. finite, so there is some K so that |mn| ≤ K
with positive probability and by ergodicity the set S = {n : |mn| ≤ K}
has positive density. However,

∑t
n=1(ân − 1) is a (lazy) simple random

walk (recall that (ân)n∈Z are i.i.d. Bin(2, 1/2)), and so it is impossible for
it to be bounded by K + |m0| at all points of a set with positive density.
This gives a contradiction, thus Tn must be infinite, a.s. �

3.1 Connection with the BERW

Let Dy = {y is visited infinitely often by the walk}.
Lemma 3.2. For the balanced BERW in 2 dimensions, a.s.

D(u,0) for some u ∈ Z⇒ Dy for every y ∈ Z2.

Proof. It is sufficient to show that if P(D(u,0)) > 0 then almost surely on
D(u,0) we have that every vertex is visited infinitely often. In order to
show this, note first that if D(u,0) occurs then a.s. D(x,0) occurs for every
x ∈ Z since e.g. on every visit to (u, 0) (except the first) there is probability
1/2 of then visiting (u− 1, 0) (so (u− 1, 0) is also visited i.o.). Therefore
it remains to show that every vertex in every other level is visited i.o.
To show this, it is sufficient to prove that for any y in level i 6= 0, and
any n ∈ N, y is visited at least n times a.s. Note that the BERW can
be realised as the movement of a particle (started at the origin) in an
i.i.d. instruction environment I as used in Version A.

So let I be given, and suppose that D(u,0) occurs (and hence that D(x,0)

occurs for every x ∈ Z) for the BERW using the instruction environment
I. Fix y and n. We know that y is visited i.o. a.s. by Version A particles
(using the same I), hence there is a.s. some finite time T0 at which y
has been visited n times by time T0. These visits occurred by particles
using some instructions I0 ⊂ I prior to time T0. By Lemma 2.3 I0 is
finite and this set of instructions was used by a finite set of particles
P 0 = {P1, . . . , Pk} with starting locations {x1, . . . , xk} 3 0 for some k.

Since the BERW in I visits every vertex in Z × {0} infinitely often
as above, there is some smallest time N0 < ∞ at which the BERW has
departed from each of the sites x1, . . . , xk above and returned to level 0.
We will show that by time N0 the BERW has used every instruction in I0,
which implies that it has also visited y at least n times.

To achieve this, we will define a movement list L for the particles
P 0 that will match the behaviour of the BERW until time N0: let ρ0 =
0, and v0 = 0. For j = 1, . . . , k − 1 let ρj = inf{n > ρj−1 : Xn ∈
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{x1, . . . , xk} \ {v0, . . . , vj−1}} be the first time that the BERW has visited
j distinct elements of x1, . . . , xk, and vj be such that (vj , 0) = Xρj . Let
ρk = inf{n > ρk−1 : Xn ∈ Z× {0}}. Note that ρk = N0.

The first ρk of the elements of the list L are defined so that the r-th
element of L is vj if and only if ρj < r ≤ ρj+1. Thus, the first ρ1 of the
elements of L are 0 etc. Subsequent elements of L just cycle through the
particles in P 0 (one element each) thereafter. Modify the instructions I to
get a new instruction set I∗ with the property that any instruction I(y, n)
used at time ρj−1 for some j ≥ 1 is replaced with the same instruction plus
a cease instruction (all other instructions remain the same). In other words,
we have constructed a particle system with particles P 0, a movement list
for those particles, and an instruction set such that the sequence of particle
movements in this construction exactly matches the original BERW until
time N0 (after this time we don’t care what happens). Another way of
phrasing this is that the BERW walks as particle v0 = 0 until time ρ1,
when it continues to walk as particle v1, until time ρ2 etc.

Now note that the Version A system of excursions remains unchanged
if we replace the instruction set I with the modified I∗. This is because
instructions I((x, 0), 1) remain unchanged I((x, 0), 1) = I∗((x, 0), 1) for
every x ∈ Z, and each excursion in Version A was stopped upon re-entry
into Z× {0}.

Now define a movement list L′ for the particles P 0 for Version A with
instruction set I∗ according to the order of movement of these particles in
Version A up to time T0, followed by cycling through P 0 (one element each)
thereafter. Thus, I∗0 = I0 ⊂ I∗(L′). This P 0-particle process defined from
Version A has moves that are identical to the moves of the particles P 0 of
Version A until at least time t, so in particular this particle process visits
y at least n times up to time t.

By Proposition 2.1, I∗(L′) = I∗(L). Thus the particles in the BERW
particle process use all of the instructions in I∗0. Since each particle has
been stopped by time N0, this means that the BERW uses every instruction
in I0 by time N0 (and hence visits y at least n times by time N0), as
required. �

Proof of Theorem 1.1. In view of Lemma 3.2 it is sufficient to show that
for any level i 6= 0, on the event Dz that z (in level i) is visited infinitely
often by the BERW, almost surely every site is visited infinitely often.
Since the proof is similar to that of Lemma 3.2 we will be brief.

Firstly note that it is trivially true that on the event Dz, almost surely
every site in the same level as z is visited infinitely often by the BERW.
Therefore it is sufficient to show that for any y not in level i, y is visited
at least n times almost surely (on the event Dz).

Now consider Version A, but with particles started from points in
Z× {i}. These particles visit every vertex outside level i infinitely often,
and hence there is some finite time T0 by which they have visited y
at least n times. These visits used some set of instructions I0 that is
finite, and these instructions were used by a finite set of particles, say
P 0 = {P1, . . . , Pk}, started at points {(x1, i), . . . , (xk, i)}.

Run the BERW with the same set of instructions, and note that by
assumption each (xj , i) for j = 1, . . . , k is eventually hit by the BERW,
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and after departing from each of these points at least once, it will return
to level i at some finite time N0.

Define a movement list L for the set of particles P 1 = P 0∪{P0} where
P0 is started at {(0, 0)} by modifying instructions (to get new instructions
I∗) used by the BERW to hit each starting point (of a particle in P 0) for
the first time (modify such an instruction I(w, n) to do the same move but
cease the particle when it makes this move and reaches the relevant starting
point of particles in P 0), then start moving the particle just reached etc.
This defines the first N0 moves in the movement list. Now cycle between
the particles P 1 in some fixed order to complete the movements list L.
Let L∗ be the movement list L with all occurrences of P0 deleted (so L∗ is
a movements list for P 0, rather than P 1).

Similarly, define a movement list L′ from Version A with the particles
P 0 as usual until time T0, and then extend to an infinite movement list
by cycling through P 0. Modifying the instructions from I to I∗ as above
does not affect the behaviour of these particles up to time T0, since they
are each stopped when they enter level i from outside.

Then we have by Proposition 2.1 and Lemma 2.2 that I0 = I∗0 ⊂
I∗(L′) = I∗(L∗) ⊂ I∗(L), but since all of the particles are stopped by
time N0 for the BERW construction, this means that all instructions in I∗0
have been used in the BERW up to time N0, so all instructions in I0 have
been used by the BERW up to time N0. Thus also y has been visited at
least n times by the BERW up to time N0. �

4 Upper bound on the range

In this Section we prove the non-trivial upper bound on the range given
in Theorem 1.5(i).

We will actually consider a more general problem, in which we con-
struct a 2-dimensional walk Z = (Zt)t≥0 from a pair of independent one-
dimensional simple random walks, say X = (Xn)n≥0 and Y = (Yn)n≥0.
The horizontal steps of Z are given exactly by the steps of X and the
vertical steps of Z are given exactly by the steps of Y . What we are
allowed to choose at each time n ∈ N = {0, 1, 2, . . . } is whether to take
the next horizontal step or the next vertical step. For example, we use a
vertical step if Z is at a new vertex and a horizontal step otherwise, this
process is exactly the BERW. Our objective is to maximize the size of the
range (i.e. trace) of the resulting 2-dimensional walk Z.

If we were to only ever use horizontal (resp. vertical) steps, the range
of the two-dimensional random walk Z would just be the range of the
1-dimensional walk X (resp. Y ), which is typically of order

√
t at time t

(with some exceptional times when the range is slightly larger, as given by
the law of the iterated logarithm). It is possible to get a range of order√
t also if we must use both directions, for example by making steps in

only one of the coordinates in blocks of quickly growing lengths. On the
other hand if we choose to take a horizontal or vertical step based on an
independent sequence of coin tosses then the random walk Z will just
be a standard simple two-dimensional random walk, with a range whose
cardinality grows like πt/ log t, at time t (see for example [3]). The main
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question is whether knowledge of the steps of the two walks in part or in
their entirety allows for a significantly larger range.

Let us state a more precise version of this question. We call a sequence
x = (xn)n≥0 on Z, a nearest neighbour path if |xn+1 − xn| = 1 for all
n ≥ 0. Similarly, we call a sequence z = (z[1]

n , z
[2]
n )n≥0 in Z2 a nearest

neighbor path if ‖(z[1]

n+1, z
[2]

n+1) − (z[1]
n , z

[2]
n )‖1 = 1 for all n ≥ 0, where

‖ · ‖1 denotes the l1 norm. A timing sequence is a monotone increasing
(north/east) nearest neighbour sequence in Z2 starting at (0, 0). More
explicitly, these are sequences q = (nt,mt)t∈Z+ with values in Z+ × Z+,
with n0 = m0 = 0 and such that for each t ≥ 0 we have that (nt+1,mt+1)
is either equal to (nt + 1,mt) or to (nt,mt + 1). Note that nt +mt = t
for any timing sequence. We denote the set of timing sequences by S, and
the set of restrictions of timing sequences to the first t elements St. Two
infinite nearest neighbor paths x and y on Z, and a timing sequence q ∈ S
give rise to a nearest neighbor path z(x,y, q) = (zt)t≥0 on Z2 defined by
zt = (xnt , ymt)t≥0.

Now consider two independent simple random walk paths X and Y ,
and an independent source of randomness U on some probability space
(Ω,F ,P). We write FX (resp. FY , FU ) for the σ-algebra generated by
the entire sequence X (resp. Y , U). The natural filtrations of X and Y
are denoted by (FX

n )n≥0 and (FY
n )n≥0 respectively.

A timing rule is any element Q = (Nt,Mt)t∈Z+ ∈ S, measurable with

respect to FX ⊗FY ⊗FU .
Each triple X,Y ,Q defines a random nearest neighbor path Z =

(Zt)t≥0 = z(X,Y ,Q) satisfying Zt = (XNt , YMt). We call this random
walk the two-dimensional random walk generated by (X, Y ), and
the rule Q. Let RZ

t = {Z0, Z1, . . . , Zt−1} be its range up to time t, and
RZ
t = #RZ

t .

Open Problem 4.1. Is there a timing rule such that with positive P-
probability

lim
t→∞

RZ
t

t/ log t
=∞?

If yes, how close to t can the range RZ
t be?

We study an easier variant of the above question, which restricts to
rules that do not depend on the entire random walk trajectories, and in
particular includes the BERW. We say that a rule Q is Y -adapted, if
the decision of the next move at time t is determined by (Zi)i≤t, together
with the entire walk X and the extra randomness U , but does not depend
on the steps of Y that have not yet been used. Formally, let Gs be the
σ-field generated by the sets

{N1 = k1, . . . , Ns = ks} ∩A ∩B ∩ C,

for 0 ≤ k1 ≤ · · · ≤ ks ≤ s, A ∈ FX , B ∈ FY
s−ks , and C ∈ FU . We say

that a rule Q = (Nt,Mt)t≥0 is Y -adapted if for every t ≥ 0 and q ∈ St+1,
the event (Qi)i≤t = q is Gt measurable.

Let σ0 = 0 and for i ∈ N let σi = inf{t > σi−1 : Nt > Nt−1}. These are
the jump times of the first coordinate of Z, so this coordinate is constant

13



on [σi, σi+1 − 1]. For each i ≥ 1, define the σ-algebra Gσi as the smallest
σ-algebra generated by the sets

{σi = k} ∩A,
where A ∈ Gk.

Theorem 4.2. Let X and Y two independent one-dimensional simple
random walks, independent of U . Let Q be a timing rule that is Y -adapted,
and Z = Z(X,Y ,Q) be the associated two-dimensional walk. Suppose
that there is a constant K such that for all i ≥ 0,

E[σi+1 − σi|Gσi ] ≤ K, a.s. (4.1)

Then,

lim sup
t→∞

E[RZ
t ]

t/
√

log log t
<∞,

and in particular RZ
t = o(t) in probability.

This theorem falls short of answering Open Problem 4.1 in 3 ways:
First, it requires that the timing rule is Y -adapted, second, it requires
that the horizontal (first coordinate) steps are sufficiently frequent, and
lastly, it only shows E[RZ

t ] grows no faster than t√
log log t

. By Markov’s
inequality, this theorem implies that for every ε > 0 there exists Kε > 0
such that

lim sup
t→∞

P
( RZ

t

t/
√

log log t
> Kε

)
< ε. (4.2)

We claim that the conditions of Theorem 4.2 apply to the balanced
excited random walk. To see this let X,Y be independent one-dimensional
simple random walks, and let Q be the timing rule that takes a step from
Y on the first departure from any site in Z2 and otherwise a step from X.
Now observe that any three consecutive steps include a horizontal step
with probability at least 1/2, irrespective of the past, which implies that
(4.1) is satisfied with K = 6. Indeed, if the first step in this interval is
vertical then either the walker is now at a previously visited site (so must
take a horizontal step) or it is at an unvisited site and has probability 1/2
of stepping back to its previous location, whence the third step must be
horizontal. Hence, Theorem 1.5(i) is an immediate Corollary of Theorem
4.2.

4.1 Notation and preliminary lemmas

We now introduce some important notations that will be used in the proof
of Theorem 4.2, including the concept of slow intervals. We furthermore
prove here some preliminary lemmas. Everything in this sub-section refers
to a (nearest neighbour, symmetric) 1-dimensional discrete-time simple
random walk S = (St)t≥0. For a time interval I = [s, s+ t] (with s, t ∈ Z+)
and ε > 0, we say that S is ε-slow on I, or that I is ε-slow for the walk
S, if the range {Ss, Ss+1, . . . , Ss+t} of the random walk during the time
interval I is contained in some closed interval of length ε

√
t. For such an

interval I = [s, s+ t], write |I| = t for the length of the interval, and write

14



RS
I for the range of S during the interval I as above. Let RS

I denote the
cardinality of RS

I , and note that RS
I ≤ |I| + 1. Then I is ε-slow for S

means that
RS
I − 1 ≤ ε

√
|I|. (4.3)

Note that for |I| ≥ 2 this can only occur if t ≥ ε−2, since at least two
points must be visited during such an interval.

A key step in our argument is to show that for a simple random walk,
the time interval [0, n] can be almost covered by ε-slow intervals. Towards
this we first estimate the probability that a given interval is ε-slow. Our
first lemma is a fairly standard estimate of the probability that an interval
is slow for a random walk.

Lemma 4.3. Let τm be the hitting time of ±bmc by a simple random
walk started at 0. Then there is a constant c1 so that for any m ≥ 2 and
k ≥ 1 we have P(τm > km2) ≥ e−c1k.

Note that m, k need not be integers.

Proof. By Donsker’s invariance principle there is a constant c so that for
any m ≥ 2 and any x ∈ [−m/2,m/2],

Px
(
τm ≥ m2, |Sm2 | ≤ m/2

)
≥ c.

It follows by induction and the Markov property that for any integer k,

Px(τm ≥ km2) ≥ ck.

Finally, if k ≥ 1 is not an integer, we have

Px(τm ≥ km2) ≥ Px(τm ≥ dkem2) ≥ cdke ≥ c2k. �

Lemma 4.4. For ε ∈ (0, 1) and i ∈ N, let Ai = Ai(ε) be the event that
[0, 2i] is ε-slow for S. There exists a constant c3 and independent events
(Ãi)i∈N such that for every i ∈ N with 2i > 28ε−2

P(Ãi) ≥ e−c3ε
−2

and Ãi ⊂ Ai.

Proof. Consider the stopping times (Ti)i≥0 defined by T0 = 0 and

Ti = inf
{
t > Ti−1 : |St − STi−1 | ≥ bε2

i/2c
}
,

that is the time since the previous stopping time in the sequence it takes the
walk to move bε2i/2c. By the Markov property, the increments Ti − Ti−1

are independent. Let i0 = i0(ε) = blog2(4ε−2)c. Define the events

Ãi(ε) = {Ti − Ti−1 > 2i}.

Applying Lemma 4.3 to the walk after time Ti−1 (i.e. STi−1+n−STi−1) with

m = ε2i/2 and k = ε−2, we have for every i > i0 that P(Ãi(ε)) ≥ e−c1/ε
2

.
Now, for t ≤ Ti, we must have

|St| ≤
i∑

j=1

bε2j/2c ≤ 4ε2i/2.

On the event Ãi(ε) we have 2i < Ti, and therefore [0, 2i] is (8ε)-slow for S.
This shows that Ãi(ε) ⊂ Ai(8ε) for i ≥ i0(ε). Therefore Ãi(ε/8) ⊂ Ai(ε)
and P(Ãi(ε/8)) ≥ e−c1/(ε/8)

2

for i ≥ i0(ε/8) and the claim follows. �
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A dyadic interval is an interval I ⊂ N, of the form [j2i, (j + 1)2i] for
some i, j ∈ N. The following states that any point is highly likely to be
contained in some slow dyadic interval.

Proposition 4.5. There exists a constant δ such that for any ε ∈ (0, 1),
any k ∈ N, and any 0 ≤ s ≤ 2k the probability that s is not contained in
any ε-slow dyadic interval (for S) in [0, 2k] is at most(

1− e−
δ
ε2

)k−9−2| log2(ε/4)|
.

Proof. Fix ε ∈ (0, 1) and let k > 9 + 2| log2 ε|. While the event we are
interested in depends only on (Si)0≤i≤2k , it is convenient to extend the
random walk S to a doubly infinite random walk, so that we can talk about
intervals [a, b] with a < 0. Let i0 = i0(ε) = blog2(28ε−2)c, and consider
the intervals [s, s + 2i] for i > i0. By Lemma 4.4 there are independent
events Ãi (depending only on the steps of the walk after time s), with

P(Ãi) ≥ e−c3ε
−2

such that on Ãi the interval [s, s+ 2i] is ε-slow. Similarly,
there are independent events Ã′i (depending only on the steps of the walk
up to time s) with the same probability bound, on which the intervals
[s−2i, s] are ε-slow. The collection Ãi is also independent of the collection
Ã′i since they depend on disjoint sets of steps of the walk.

Let B be the event that there is no i ∈ (i0, k] so that [s, s + 2i] and
[s− 2i, s] are both ε-slow. Then

B ⊂
k⋂

i=i0+1

(
Ãi ∩ Ã′i

)c
.

From the independence and bounds above we deduce

P(B) ≤
(

1− e−2c3ε
−2
)k−i0

≤
(

1− e−2c3ε
−2
)k−9−2| log2 ε|

. (4.4)

Now, on the event Bc, there is some i ∈ (i0, k] so that I+ := [s, s+ 2i]
and I− := [s−2i, s] are both ε-slow. This implies that RS

I+
≤ 1+ε2i/2 ≤ 2·

2i/2ε and RS
I− ≤ 1+ε2i/2 ≤ 2·2i/2ε. It follows that RS

I+∪I− ≤ 4ε2i/2. Now,

there is some dyadic interval I ⊂ I+ ∪ I− of length 2i, with s ∈ I ⊂ [0, 2k],
and clearly RS

I ≤ 4ε2i/2 as well. Thus I is (4ε)-slow for S.
This shows that for any ε > 0 etc., the probability that s is not contained

in any 4ε-slow dyadic interval in [0, 2k] is at most (4.4). Applying this result
to ε/4 instead, yields the desired conclusion for k > 9 + 2| log2(ε/4)|. Since
the claim is trivial for k ≤ 9 + 2| log2(ε/4)| this completes the proof. �

We shall rely on the following calculus exercise.

Lemma 4.6. Fix a ∈ (0, 1), and consider the function g : R→ R defined
by

g(θ) := θa− log(cosh(θ)).

Then, the following statements are satisfied.
(i) The equation g(θ) = 0 has exactly two roots, 0 and θa > 0.

(ii) For θ > θa we have that g(θ) < 0.
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(iii) The root θa satisfies the bounds

2a ≤ θa ≤ 2a

(
1 +

1

(1− a)2

)
.

Proof. Parts (i) and (ii). Note that g(0) = 0, g′(0) = a > 0. Hence, there
is a θ1 > 0 such that g(θ1) > 0. Furthermore, since a < 1 we also have
that limθ→∞ g(θ) = −∞. Hence there is a θ2 > θ1 such that g(θ2) < 0.
By the intermediate value theorem it follows that there is a θa ∈ (θ1, θ2)
(in particular θa > 0) such that

g(θa) = θaa− f(θa) = 0.

Furthermore, since g′′(θ) = −(cosh2 θ)−1, it follows that 0 and θa are the
only roots of g(θ) = 0 and that

g(θ) < 0 for θ > θa.

Part (iii). Note that for θ ∈ R we have that cosh θ ≥ eθ

2
. Hence, since

θaa = log(cosh θa) we see that

θa − log 2 ≤ θaa.
From here we conclude that

θa ≤
log 2

1− a . (4.5)

On the other hand we also have for θ ∈ R the bounds 1 + θ2

2
≤ cosh(θ) ≤

eθ
2/2. Hence again using that θaa = log(cosh θa), we conclude that

log

(
1 +

θ2a
2

)
≤ θaa ≤

θ2a
2
.

Now, since we also have for x > −1 that log(1 + x) ≥ x
1+x

, we get

θ2a
2 + θ2a

≤ θaa ≤
θ2a
2
.

Substituting the upper bound (4.5) into the denominator of the left-hand
side of the above inequality we conclude that

θa

2 + 2
(1−a)2

≤ θa

2 + (log 2)2

(1−a)2
≤ a ≤ θa

2
.

Inverting these bounds we finish the proof. �

Our next lemma gives a bound on certain functional of the range of a
simple random walk.

Lemma 4.7. There is a constant γ > 0 such that for all l ≥ 0,

E
[
sup
k≥0

{
RS
k

√
l − γ(k + l)

}]
≤ 0.

Proof. The proof has 4 steps:
1. Estimate the probability that the walk ever exceeds at+ b.
2. Estimate sup

{
RS
k − (ak + b)

}
.

3. Prove the claim for some γ and large l.
4. Upgrade to some (other) γ and all l.
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Step 1. Let a ∈ (0, 1) and θa be the positive root of aθ = log cosh(θ)
from Lemma 4.6. Define

Mn(a) = eθaSn−n log cosh(θa) = eθa(Sn−na)+ng(θa) = eθa(Sn−na).

Then (Mn(a))n≥0 is a Martingale. Let b > 0 and define the (possibly
infinite) stopping time τ = τa,b by

τa,b = inf{k ≥ 0 : Sk ≥ ak + b}.

Up to and (when τ is finite) including at τ we have Sn < an+ b+ 1. It
follows that the stopped martingale Mn∧τ (a) is bounded by eθa(b+1). We
can thus apply the optional stopping theorem to Mn(a) at the stopping
time τ .

On the event that τ is finite we have

aτ + b ≤ Sτ ≤ aτ + b+ 1, (4.6)

so on this event we have

eθab ≤Mτ (a) ≤ eθa(b+1).

Since Sn grows sub-linearly, we also have that Mn(a) → 0 as n → ∞
almost surely. The optional stopping theorem now implies that

1 = E[Mτ (a)] = E[Mτ (a)1{τ<∞}].

The bounds on Mτ (a) imply that

e−θa(b+1) ≤ P (τa,b <∞) ≤ e−θab. (4.7)

Step 2. Let a ∈ (0, 1) and

S̄ := sup
k≥0

{
RS
k − ak

}
. (4.8)

Note that the supremum in (4.8) is attained since a > 0 and the range
grows sublinearly (e.g. by the law of the interated logarithm), and that
S̄ ≥ 0 (from k = 0). Now, for each j ∈ N, consider the event

Aj :=
{
S̄ ≥ j

}
.

Since the supremum in the definition of S̄ is attained, then for j ≥ 0,
S̄ ≥ j implies that for some n we have |Sn| ≥ (an+ j)/2. Thus

{τa,j <∞} ⊂ Aj ⊂ {τa/2,j/2 <∞} ∪ {τ ′a/2,j/2 <∞},

where τ ′ is the same stopping time for −S. It follows that for j ≥ 0,

P (S̄ ≥ j) ≤ 2P (τa/2,j/2 <∞).

We then have from the upper bound in (4.7) that S̄ satisfies

E
[
S̄
]

=

∫ ∞
0

P (S̄ ≥ t)dt ≤ 2

∫ ∞
0

e−θa/2(t−1)/2dt =
4

θa/2
e(θa/2)/2.

Translating by b, it follows that

E

[
sup
k≥0
{RS

k − (ak + b)}
]
≤ −b+

4e(θa/2)/2

θa/2
. (4.9)
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Step 3. We claim that there is an L > 0 such that

sup
l≥L

E

[
sup
k≥0

{
RS
k

√
l − 4(k + l)

}]
≤ 0. (4.10)

To see this, divide by
√
l, and note that it suffices to prove that for l ≥ L

E

[
sup
k≥0

{
RS
k − (4/

√
l)k + 4

√
l)
}]
≤ 0.

This is bounded in (4.9) with a = 4/
√
l and b = 4

√
l by

−4
√
l +

4e
(θ

2/
√
l
)/2

θ2/
√
l

.

From Lemma 4.6(iii), for l large enough we have 4/
√
l ≤ θ2/

√
l ≤ 10/

√
l,

so the bound becomes

−4
√
l +

4e5/
√
l

4/
√
l

=
√
l[−4 + e5/

√
l].

This is clearly negative for l large enough, which verifies the claim.

Step 4. Applying the bound (4.9) with a = 4/
√
l and b = 4

√
l shows

that for any L there exists a constant C = C(L) such that

sup
1≤l≤L

E
[
sup
k≥0

{
RS
k

√
l − 4(k + l)

}]
≤ C.

From here we can see that, with γ := 4 + C

sup
1≤l≤L

E

[
sup
k≥0

{
RS
k

√
l − γ(k + l)

}]
≤ 0.

Since the quantity RS
k

√
l−x(k+l) is monotone decreasing in x, we conclude

from (4.10) that

sup
l≥L

E

[
sup
k≥0

{
RS
k

√
l − γ(k + l)

}]
≤ 0,

which completes the proof. �

4.2 Proof of Theorem 4.2

Consider two independent 1-dimensional simple random walks X and Y
and a timing rule Q that is Y -adapted. Consider the two-dimensional
random walk Z given by X, Y , and the rule Q. Recall that for each
t ∈ Z+, Nt denotes the number of X-steps that Z takes by time t. Since
there will be multiple time scales (for 1-dimensional and 2-dimensional
walks respectively) in what follows, we will distinguish between intervals on
these time scales by using the subscript notation [a, b]X or [a, b]Z . The X
walk takes b− a steps during the interval [a, b]X and Nv −Nu steps during
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the interval [u, v]Z . The range of a walk X over an interval I = [a, b]X
is denoted RX

I , and its cardinality is RX
I . (The trivial bound for this

is RX
I ≤ |I| + 1.) Similarly the range of the walk Z over the interval

I = [a, b]Z is denoted by RZ
I and its cardinality by RZ

I .
Recall that a 1-dimensional simple random walk X is ε-slow on an

interval JX if RX
JX
− 1 ≤ ε

√
|JX |.

The main steps in the proof are as follows.
1. Decompose the interval [0, Nt]X into ε-slow intervals and a com-

plementary set, and derive from these a certain decomposition of
[0, t]Z .

2. Estimate the range of Z during the slow intervals.
3. Estimate the range of Z in the remaining times.
4. Estimate the size of the complementary set.
5. Combine the bounds, set the parameters and deduce the result.

Step 1. For ε > 0 and an interval IX define the collections of intervals

Dε,IX := {JX ⊂ IX : JX is a dyadic ε-slow interval for X}.

Also define the subcollection of “maximal” intervals

Aε,IX := {JX ∈ Dε,IX : there is no J ′X ∈ Dε,IX such that JX ( J ′X}.

Any two dyadic intervals are either disjoint (except possibly their
endpoints) or one is contained in the other. It follows that the intervals in
Aε,IX are step-disjoint (i.e. two intervals in Aε,IX may share an endpoint,
but no more). The union of the intervals in Aε,IX is denoted by

Aε,IX :=
⋃

JX∈Aε,IX

JX .

Note that whenever IX ⊂ I ′X , we have that

Aε,IX ⊂ Aε,I′X . (4.11)

In what follows we will work with the collection Aε,[0,Nt]X . In order
to simplify notation, we will write Aε,Nt and Aε,Nt instead of Aε,[0,Nt]X
and Aε,[0,Nt]X respectively.

The walk Z interlaces the steps of X with those of Y . In light of this,
there is a natural correspondence between intervals of X, intervals of Y ,
and intervals of Z. For an interval I = [a, b]Z we let NI := [Na, Nb]X , and
let MI = [Ma,Mb]Y . The converse mapping is a bit more delicate, since
there is some flexibility in how to handle the endpoints of the intervals.

Formally, for each interval J ∈ [0,∞)X we associate an interval I ∈
[0,∞)Z corresponding to the time passed in the timeline of Z. Suppose
that JX = [a, b]X , for some a ≤ b ≤ 2j . Let U− = inf{u ≥ 0 : Nu = a}
and U+ = sup{u ≥ 0 : Nu = b}. We now define the map φ by φ(JX) =
[U−, U+]Z . Note that φ(JX) is a random interval.

We are in interested in particular in the images of slow dyadic intervals.
For each j ≥ 0, let

Bj =
{
φ(J) : J ∈ Aε,[0,2j ]X

}
and Bj =

⋃
I∈Bj

I.
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The decomposition of the timeline of Z is into the intervals of Bj and the
complement of those.

Step 2. We will prove that for the constant γ from Lemma 4.7, for
every j ≥ 0 and I = [a, b]X we have

E
[(
RZ
φ(I) − γε|φ(I)|

)
1{

I∈A
ε,[0,2j ]X

}] ≤ 0. (4.12)

Roughly speaking this says that for a slow interval for X, the expected
range of Z in the corresponding time interval is comparably small. Note
that if b > 2j the indicator is 0 so (4.12) is trivial. Otherwise, let
φ(I) = [U−, U+]Z , so that a = NU− and b = NU+ . For u− ≤ u+ de-
fine I ′u−,u+

=
[
Mu− ,Mu+

]
Y

. Note that I ′U−,U+
is a random interval. To

simplify notation we will in what follows sometimes drop the subindices
and write I ′ instead of I ′U−,U+

. At any time i ∈ [U−, U+]Z the X coordi-
nate of Zi is some value of X taken during I, and the Y coordinate is a
value of Y during I ′. Consequently, Z is constrained to a rectangle and
we have the bound

RZ
φ(I) ≤ RX

I ·RY
I′ .

Suppose that I is ε-slow for X. Then

RZ
φ(I) ≤ ε

√
|I| ·RY

I′ .

Note that |φ(I)| = |I|+ |I ′|. Then with γ from Lemma 4.7 we have

RZ
φ(I) − γε|φ(I)| ≤ ε(

√
|I| ·RY

I′ − γ(|I|+ |I ′|)).

Taking expectations we have that

E
[
(RZ

φ(I) − γε|φ(I)|)1{
I∈A

ε,[0,2j ]X

}]
≤

∞∑
u−=0

εE
[(√

|I| ·RY
I′
U−,U+

− γ(|I|+ |I ′U−,U+
|)
)
1{

I∈A
ε,[0,2j ]X

}1{U−=u−}
]

≤
∞∑

u−=0

εE
[
E
[√
|I| ·RY

I′
u−,U+

− γ(|I|+ |I ′u−,U+
|)
∣∣Gu−]1{

I∈A
ε,[0,2j ]X

}1{U−=u−}
]
,

where we have used the fact that both indicator functions are Gu− -
measurable. Since the timing rule is Y -adapted, conditioned on Gu−
the subsequent steps of Y are still an independent simple random walk.
Thus, using Lemma 4.7 we have a.s.,

E
[√
|I| ·RY

I′
u−,U+

− γ(|I|+ |I ′u−,U+
|)
∣∣∣Gu−] ≤ 0.

This completes the proof of (4.12).

Step 3. Given a subset A ⊂ [0,∞)Z , denote by

RZ
A = {x ∈ Z2 : Zn = x, for some n ∈ A}

the range of the random walk at times in A, and its cardinality by RZ
A

(thus generalizing this notation from intervals to arbitrary sets). If we sum
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(4.12) over all dyadic intervals in [0, 2j ]X (with contributions only from
intervals in Aε,[0,2j ]X ), we get the following:

E[RZ
Bj ] ≤ E

[ ∑
I∈A

ε,[0,2j ]X

RZ
φ(I)

]
≤ γεE

[ ∑
I∈A

ε,[0,2j ]X

|φ(I)|
]

(4.13)

≤ γε
2j∑
i=0

E
[
σi+1 − σi

]
≤ 2Kγε2j . (4.14)

Here, the third inequality holds since the intervals of Aε,[0,2j ]X are step-

disjoint within [0, 2j ]X , while the last inequality uses condition (4.1).

Step 4. To bound the range of Z in the complement of the slow intervals,
first note that

E [#([0, σ2j ]Z \Bj)] ≤
2j∑
i=0

E

σi+1−1∑
s=σi

1{s/∈Bj}

 . (4.15)

Now s ∈ Bj if and only if s ∈ φ(J) for some J ∈ Aε,[0,2j ]X , and from
the definition of φ we have for s ∈ [σi, σi+1) that s ∈ φ(J) if and only if
σi ∈ φ(J). It follows that

E [#([0, σ2j ]Z \Bj)] ≤
2j∑
i=0

E
[
1{

i/∈A
ε,[0,2j ]X

}(σi+1 − σi)
]

=

2j∑
i=0

E
[
1{

i/∈A
ε,[0,2j ]X

}E [σi+1 − σi|Gσi ]
]

(4.16)

≤ K2j+1
(

1− e−δ/ε
2
)j−9−2| log2(ε/4)|

. (4.17)

In the second inequality we used the fact that the indicator is Gσi -
measurable (slow intervals are determined purely by the trajectory of
X), and in the last inequality we used Proposition 4.5 and Condition (4.1).

Step 5. Combining the bounds of steps 3 and 4 we get that

E
[
RZ

[0,σ
2j

]Z

]
≤ E

[
RZ
Bj

]
+ E [#([0, σ2j ]Z \Bj)]

≤ 2Kγε2j +K2j+1
(

1− e−δ/ε
2
)j−9−2| log2(ε/4)|

.

Now, given t ≥ 0, choose j ≥ 0 such that

2j−1 ≤ t < 2j . (4.18)

By definition, the number of steps made by the X coordinate up to time
σ2j in the timeline of Z is 2j . Thus we have that t ≤ 2j ≤ σ2j . Therefore,

E
[
RZ

[0,t]Z

]
≤ E

[
RZ

[0,σ
2j

]Z

]
≤ K2j+1

(
γε+

(
1− e−δ/ε

2
)j−9−2| log2(ε/4)|

)
. (4.19)
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Since γ, δ, and K are constants, all that remains is to find ε so as to

minimize this bound. Set ε =
√

2δ/ log j, so that (1−e−δ/ε
2

) = 1−1/
√
j ≤

e−1/
√
j . Thus ε ∼ c/

√
log log t as t → ∞. Since from (4.18) we see that

j →∞ as t→∞, we see that for t large enough, j−9−2| log2(ε/4)| ≥ j/2.
Thus so we find for t sufficiently large

E
[
RZ

[0,t]Z

]
≤ K2j+1

(
γε+ e−

√
j/2
)
≤ K2j+1 (γ + 1) ε.

Now, from (4.18) we see that 2j ≤ 2t and j ≥ 1
log 2

log t, so that

E
[
RZ

[0,t]Z

]
≤ 4K(γ + 1)εt ≤ C t√

log log t
,

for some constant C > 0, for all sufficiently large t.

5 Lower bound on the range

The main idea is to show that the initial visits to a level (a horizontal line)
do not take too long. If little time is spent in each level, then the process
has visited many levels, hence made many vertical steps. The number of
vertical steps is equal to the range, which is therefore large.

Thus we start by focusing on a single level Z×{y}. The process enters
the level at some sequence of locations (ai, y), which we will simply refer
to as ai. Each time it enters the level it performs a simple random walk
within the level until it reaches a previously unvisited vertex, at which
time it exits to level y ± 1. The location of the next entry to the level
is determined by the exit point and random events that occur while the
process is outside the level. To avoid dealing with those dependencies, we
identify events that hold with high probability uniformly in this “external”
randomness.

For this section we use the following construction of the balanced
excited random walk via stacks of instructions (one stack per vertex): the
first instruction at each vertex being a vertical step, and all subsequent
ones are horizontal steps.

Fix y ∈ Z. We denote by Fy the σ-algebra generated by the stacks
of all vertices in level y. In particular, the durations and exit nodes of
the first n visits to a level are determined by the entry points a1, . . . , an
together with Fy. Let Fvy denote the σ-algebra generated by the vertical
instructions at levels y ± 1, and F ′y the smallest σ-algebra containing Fy
and Fvy . (Note that – unlike the Fy – these σ-algebras are not independent
of each other.)

In a similar manner to Section 3 we will consider families of random
walks in level y. In the first instance these walks will be measurable with
respect to Fy as detailed next.

A collection of random walks in level y.

Given a finite sequence a = (a1, . . . , an) of points in Z and sequences
of instructions Iy = (I((x, y), k)x∈Z,k∈N, the a-family of walks is defined
as follows: We first start a walk at position (a1, y). It uses the first
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instruction at (a1, y) (which is a vertical step) and then stops, using up
exactly L1 = 1 instructions. Inductively, the ith walk starts at (ai, y), and
uses the instructions following the ones used by previous walks, always
using the first unused (by itself or any of the previous walks) instruction
at its current location. Once the walk visits a previously unvisited site, it
uses the first instruction at that site (which is a vertical instruction) and
stops. The lifetime Li of the i-th walker is the number of instructions
used by the walk, which is 1 more than the number of horizontal steps
made by this walk. The instruction stacks I will be i.i.d. over sites (and
balanced) so that all of the walks eventually stop almost surely, and the
above process is well defined.

Lemma 5.1. Let a = (a1, . . . , an) be some sequence of starting points in
level y, and a′ = (a′1, . . . , a

′
n) be any permutation of a. Then the total

lifetime of the a-family of walks is equal to the total lifetime of the a′-family
of walks, i.e.

∑n
i=1 Li =

∑n
i=1 L′i.

Proof. By the Abelian property (Proposition 2.1) the exact same set of
instructions at each vertex will be used in the two scenarios. The total
number of instructions used is equal to the total lifetime. �

For a sequence a of starting points, we henceforth denote by Ly,a = La

the number of instructions used by the walks starting at points in a. For
now we shall omit the y subscript, while we consider only a single level, but
will use it later when working with multiple levels. Thus for any sequence
a, we have that La is a random variable measurable in Fy. In light of the
last lemma, the order of elements in a is immaterial, and we may think of
a as a multi-set rather than a sequence. Moreover, we henceforth assume
that the ai are non-decreasing, and will study the durations of the visits
under that assumption. For the k’th walk started at ak, let [uk + 1, vk − 1]
be the maximal contiguous interval - of vertices visited by the first k − 1
walks - that contains ak. If ak has not previously been visited, we write
uk = vk = ak, so that this is an empty set. (In that case we have Lk = 1.)

Remark 5.2. If ai ≡ a for all i (a constant sequence), then the process
in the level is equivalent to one-dimensional IDLA (see e.g. [6] where this
has been studied also in higher dimensions), and one has

∑
k≤n Lk � n3.

However, in the BERW model, each vertex (x, y) 6= (0, 0) is used as an
entry point to the level at most twice, depending on the unique vertical
steps from (x, y ± 1). Our proof exploits this fact.

Feasible sets and the surplus

For (x, y) 6= (0, 0) we denote by Uyx ∈ {0, 1, 2} the number of vertical
instructions pointing at (x, y). The starting point (0, 0) is slightly different:
We define U0

0 to be 1 plus the number of vertical instructions pointing
at (0, 0). For fixed y, the (Uyx )x∈Z are independent random variables that
are ∼ Bin(2, 1/2) for (x, y) 6= (0, 0) (and ∼ 1 + Bin(2, 1/2) for (0, 0)),
measurable w.r.t. Fvy , and independent of Fy.

We say that a sequence a of starting points is feasible (for level y) if
no x appears in a more than Uyx times. For an interval I ⊂ Z we define
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its surplus SyI by

SyI :=
∑
x∈I

(Uyx − 1).

Note that the surplus of an interval of length (number of vertices) m has
distribution Bin(2m, 1/2)−m. We denote by My

n the maximal surplus of
an interval of length at most n in [−n2, n2] in level y:

My
n := max{Sy[a,b) : −n2 ≤ a ≤ b < n2, b− a ≤ n}.

We shall consider the event

E = En,y :=
{
My
n ≤

√
6n logn

}
.

Lemma 5.3. For each n ≥ 10 and y ∈ Z, P(Ecn,y) ≤ 3n−3.

Proof. For an interval I of length m, and SyI ∼ Bin(2m, 1/2)−m (unless
y = 0 and 0 ∈ I). The latter can be written as 1

2

∑
i≤2mXi, where the Xi

are i.i.d. ±1 random variables with mean 0. By the standard Chernoff
bound for this sum, we have

P(SyI ≥ `) = P
( ∑
i≤2m

Xi ≥ 2`
)
≤ e−`

2/m.

For an interval I of length at most m ≤ n we thus have

P(SyI ≥ `) ≤ e
−`2/|I| ≤ e−`

2/n.

There are at most 2n3 intervals I to consider in the definition of My
n , and

the claim follows by a union bound:

P(Ec) ≤ 2n3e−(6n logn)/n = 2n−3.

The case where y = 0 is minutely different since intervals containing 0
have SyI ∼ 1 +Bin(2m, 1/2)−m. There are less than n2 such intervals,
and for ` ≥ 1 each has

P(S0
I ≥ `) ≤ e−(`−1)2/n.

For n ≥ 10 we have
√

6n logn− 1 ≥
√

5n logn, so the contribution from
these intervals to P(Ec) is at most n−3. �

The main significance of the maximal surplus comes from the following
obervation.

Lemma 5.4. Let a be a feasible increasing sequence of starting points in
[−n2, n2]. Then for each k = 1, . . . n, when the k-th walker starts (at ak),
the distance to the nearest unvisited point is at most My

n .

Proof. Let βk be the rightmost point visited by the first k − 1 walks, and
ik be the minimal i such that all vertices in [ai, ak] have been visited by
the first k − 1 walks. If ak has not been visited by the first k − 1 walks
then βk < ak and we set ik = k (in that case the distance in question is 0
and the claim holds trivially).

Since a is increasing, we know that the first k − 1 walkers have had
k − ik starting points in the interval I = [aik , ak], and the length of the
contiguous interval of visited points containing ak is k − ik. Now at most
k − ik − |I| ≤ SyI − 1 of these walkers can exit to the right of ak, so
βk ≤ ak + SyI − 1. It follows that βk + 1− ak ≤ SyI ≤M

y
n . �
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For fixed r,m ∈ N, let X be a random variable with law given by
the exit time from (0, r) of a simple random walk started at m, and let
Lr,m =

∑r
i=1Xi, where Xi are i.i.d. with law X. We are approaching a

central step in the argument for which we will make use of the following
Lemmas (which are proved later).

Lemma 5.5. There exist c, C > 0 such that for all r,m ∈ N,

P(Lr,m > 8r2m) ≤ Cre−cm.

Similarly, let L′r be the total exit time from (0, r) of r random walks
with starting points ar in (0, r) under a probability measure Par .

Lemma 5.6. There exist c, C > 0 such that for any 1 ≤ r ≤ n and for any
given set of r starting points a in (0, r) we have Par (L′r > 4nr2) ≤ Cre−cn.

Continue to fix the vertical level y. For an interval I, let AI = Ay
I

denote the (feasible and Fvy -measurable) multi-set containing each x ∈ I
exactly Uyx times, and nothing else. Let D = Dn,y be the event that
there is some interval I = [a, b) ⊂ [−n2, n2) with |I| ≤ n such that
LAI ≥ 27|I|n3/2√logn. Note that D ∈ F ′y.

Lemma 5.7. For all n sufficiently large we have P(D) ≤ 4n−3.

Proof. We have
P(D) ≤ P(Ecn,y) + P(En,y ∩D).

By a union bound and the fact that P(Ecn,y) ≤ 3n−3 it suffices to prove
that ∑

I

P
(
En,y,LAI ≥ 27|I|n3/2

√
logn

)
≤ n−3,

where the sum over I is over intervals of length at most n contained in
[−n2, n2). There are at most 2n3 such intervals, so it suffices to prove that
for each relevant interval I,

P(En,y,LAI ≥ 27|I|n3/2
√

logn
)
≤ n−6/2.

Fix such an interval I = [a, b), and consider the multi-set of entries AI ,
in increasing order. Denote its size by r = |AI | ≤ 2|I|. On the event En,y
we have that SyI ≤ m := d

√
6n logne. Consider now the AI family of walks.

By Lemma 5.4 and its proof, when the k-th walk starts at Ak = AI,k, the
previously visited interval containing Ak has length at most k − 1 < r,
and the distance from Ak to an unvisited vertex is at most m. If r ≥ 2m,
then conditioned on everything that happened during all previous visits to
the level, the lifetime Lk of the k-th walk is stochastically dominated by
X (the exit time from (0, r), starting at m). Since this domination holds
uniformly conditional on all previous visits, it also follows that we have
the stochastic domination

∑
k Lk ≺

∑
kXk, where there is one term in

the sum for each element of AI .
By Lemma 5.5 with these r and m, we find that

P(En,y,LAI ≥ 8r2m) ≤ Cre−cm.

Combining the above with r ≤ 2|I| ≤ 2n and m = d
√

6n logne ≤
4
√
n logn, we get (since 8r2 ≤ 25|I|n)

P
(
En,y,LAI ≥ 27|I|n3/2

√
logn

)
≤ 2Cne−cm.
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This is indeed smaller than n−6/2 for large enough n, as needed.
If I is such that r < 2m, then we use Lemma 5.6 instead. In this case,

the total duration of the walks is bounded by the total time for r walks to
exit an interval of length r. Thus for an interval I with r < 2m we have

P(LAI ≥ 4nr2) ≤ Cre−cn ≤ n−6/2

for large enough n. Now, using r ≤ 2m and r ≤ 2|I| we get 4nr2 ≤
24|I|nm ≤ 27|I|n3/2√logn, so the claim follows. �

Towards the proof of Lemma 5.5 we shall use the following large
deviation result for certain random variables.

Lemma 5.8. There exist absolute constants c, C such that for any n ∈
N, p > 0, the Binomial and Negative-Binomial random variables satisfy,
respectively,

P(Bin(n, p) > 2np) ≤ Ce−cnp,
and

P(Neg(n, p) > 2np−1) ≤ Ce−cn.

Proof. For the binomial, observe that if p ≥ 1/2 the probability in question
is 0. Thus we may assume that p < 1/2. Now note that if Z = Bin(n, p)
and k ≥ 2np then P(Z = k + 1) ≤ P(Z = k)/2. Thus P(Z > 2np) ≤
2P(Z = d2npe). This probability can be written explicitly and estimated:
If d2npe = n then the claim is again immediate. Otherwise, by Stirling’s
formula we have, for some universal constant C (below the constant C
changes from line to line)

P(Z = d2npe) ≤ Cnn+1/2pd2npe(1− p)n−d2npe

d2nped2npe+1/2(n− d2npe)n−d2npe+1/2
(5.1)

≤ Cnnpd2npe(1− p)n−d2npe

d2nped2npe(n− d2npe)n−d2npe
(5.2)

≤ C2−d2npe
nn(1− p)n−d2npe

nd2npe(n− d2npe)n−d2npe
(5.3)

= C2−d2npe
( n(1− p)
n− d2npe

)n−d2npe
(5.4)

= C2−d2npe
(

1 +
d2npe − np
n− d2npe

)n−d2npe
(5.5)

≤ C2−d2npeed2npe−np ≤ C(e/4)np, (5.6)

and the claim follows.
For the Negative Binomial, one can use Chernoff’s bound for sums of

Geometric random variables to obtain the result for p < 9/10. For p ≥ 9/10
we can bound the probability in question by the probability of seeing at least
n failures in the first 2n trials, which is a Binomial(2n, 1− p) probability.
Again, by including a factor of 2 we can just calculate the probability that
this Binomial is exactly equal to n, and by a simple application of Stirling,
this is exponentially small, uniformly in p ≥ 9/10. �
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Proof of Lemma 5.5. Note that if m ≥ r the claim holds trivially, so
assume that m < r. We shall write the total duration of the r walks as
the sum of their cumulative local times at each s ∈ (0, r). Let Ns be the
number of walks that reach some s ∈ (0, r) before exiting the interval.
Then Ns is Bin(r,m/s) for s ∈ [m, r).

For s ∈ [m, r), by Lemma 5.8, this binomial is exponentially unlikely
to be more than twice its expectation, i.e.

P(Ns > 2rm/s) ≤ Ce−crm/s ≤ Ce−cm.

A walk that reaches s will return to s again before hitting 0 with probability
at most 1 − 1/2s (ignoring that it might reach r and stop there). If
Ns ≤ k := 2rm/s then the total local time at s is bounded by a sum of
bkc random variables, each being Geom(1/2s). By Lemma 5.8, we find
that Ls, the total local time at s satisfies

P(Ls > 8rm) ≤ P(Ns > 2rm/s) + P(Ls > 8rm|Ns ≤ 2rm/s)

≤ Ce−cm + Ce−crm/s ≤ 2Ce−cm.

For s ≤ 2m we have Ns ≤ r, and a sum of the r geometric variables is
similarly bounded with high probability by 4rs, giving the overall bound

P(Ls > 8rm) ≤ P(Ls > 4rs) ≤ Ce−cr ≤ Ce−cm.

It follows that the probability that Ls > 8rm for some s ∈ (0, r) is at
most 2Cre−cm. Thus the probability that Ls ≤ 8rm for every s is at least
1− 2Cre−cm. On this event Lr,m ≤ 8r2m. �

Proof of Lemma 5.6. We again write the total duration of the r walks
as the sum of their cumulative local times at each s ∈ (0, r). If a walk
visits s ∈ (0, r), the probability it exits before returning is at least 2/r
(uniformly in s, with equality only for s = r/2). Thus the time for each
walk at s is bounded by Geom(2/r), and so the total time at s is bounded
by Neg(r, 2/r), which we bound by Neg(n, 2/r). By Lemma 5.8, the
probability this exceeds 4nr is at most Ce−cn. If this does not happen for
any s, then L′r ≤ 4nr2. Thus Par (L′r > 4nr2) ≤ Cre−cn as claimed. �

The next step is to enhance Lemma 5.7 to arbitrary (feasible) sets A
(i.e. not just AI for intervals I). Recall the event D = Dn,y defined above
Lemma 5.7, (that some “bad” interval exists), and let D′ = D′n,y be the
event that there is some feasible set A ⊂ [−n2, n2] with size |A| ≤ n such
that LA ≥ 27|A|n3/2√logn.

Lemma 5.9. With these notations, D′ ⊂ D, and hence P(D′) ≤ 4n−3 for
all sufficiently large n.

Proof. For a feasible set A, let I1, . . . , Ik be the (maximal contiguous)
intervals of vertices visited in the level after starting walks at the points
of A. These depend on the set A and on the environment Fy (but by the
Abelian property these intervals do not depend on the order in which the
walks are run).

We claim that (deterministically) LA ≤
∑k
j=1 LAIj

. Given this claim,

on the event Dc we have for every Ij that LAIj
≤ 27|Ij |n3/2√logn.
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Since we have
∑k
j=1 |Ij | = |A|, it follows that on the event Dc, LA ≤

27|A|n3/2√logn. This shows that Dc ⊂ D′c, so it remains to justify the
first claim above.

This claim is a natural consequence of the Abelian property when viewed
in the right way. To see this, let Bj = A ∩ Ij , where the intersection is
viewed as multi-sets, so Bj will include an element twice if A does. Note
that A = ∪Bj . By the Abelian property, if we start walks in all points
of A, the walks started in Bj remain in Ij , and so do not interact in any
way with walks started in A \Bj . It follows that LA =

∑k
j=1 LBj . Since

Bj ⊂ AIj , we have that LBj ≤ LAIj
. This completes the proof. �

5.1 Proof of Theorem 1.5(ii)

To complete the proof, we return to the representation from Section 4 of
the BERW as an interlacement of a horizontal random walk and a vertical
one. Recall from there that Y = (Ys)s≥0 is a simple one dimensional
random walk that gives the sequence of vertical steps taken by the process.
This representation is not compatible with the representation in terms of
stacks of instructions at each vertex, but the almost sure results that each
one implies still hold. In particular, we rely on two almost sure statements
about Y : The first is the law of iterated logarithm, stating that almost
surely lim supYn/

√
2n log log n = 1. The second is a corresponding result

of Kesten [5] concerning the maximum of the local time of a simple random
walk. Let Ln,y be the number of visits to y in the first n steps of Y . Then
almost surely

lim sup
n→∞

maxy Ln,y√
2n log log n

= 1.

Lemma 5.10. Almost surely, for all large enough t,

• no level y with |y| ≥ 2
√
Rt log logRt has been visited, and

• no level has been visited (i.e. entered vertically) more than 2
√
Rt log logRt

times.

Proof. The first follows since the Y coordinate has performed Rt− 1 ≤ Rt
steps by time t, and Rt →∞ a.s., and using the law of iterated logarithm
for Y . (Indeed, it even holds with

√
2 + ε in place of the 2.) The second

claim holds similarly, using Kesten’s bound on the maximal local time
applied to the walk Y . �

Proof of Theorem 1.5(ii). We may restrict to the almost sure events of
Lemma 5.10, so that the vertical movements satisfy laws of iterated
logarithms. Consider the event Gn =

⋃
|y|≤nD

′
n,y. By a union bound and

Lemma 5.9 we have that P(Gn) ≤ (2n+ 1)4n−3 for all n sufficiently large.
By Borel Cantelli it follows that almost surely Gn occur only for finitely
many n, i.e. the event D′n,y does not occur for n large enough for any y
with |y| ≤ n. Restricted to these almost sure events, we claim that for all
t large enough, Rt ≥ Ct4/7(log t)−2/7.

Let Ay(t) be the multi-set of entrance points to level y up to time t
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by the BERW, 1 and note that
∑
y |Ay(t)| = Rt. Then for each level y

(except for the current level at time t, which is still ongoing) the total time
spent by the process in level y is Ly,Ay(t). The time spent in the current
level is even smaller, since the last visit has not ended. Thus we have the
bound

t ≤
∑
y

Ly,Ay(t).

Let
Nt := 2

√
Rt log log(Rt ∨ 4) ≥

√
Rt.

Obviously, Rt ≥ 4 eventually. By the event of Lemma 5.10, for some t0
and all t ≥ t0, only levels with |y| ≤ Nt have been visited, and each level
has been visited at most Nt times, so |Ay(t)| ≤ Nt for all t ≥ t0. For
some t1 the event GNt does not occur for t ≥ t1. If the maximal absolute
value of the X coordinate of the BERW up to some time t ≥ t1 ∨ t0 is M ,
then we have M ≤ Rt ≤ N2

t . Thus every entrance point in every level y is
within [−N2

t , N
2
t ]. Therefore, since D′Nt,y does not occur,

Ly,Ay(t) ≤ 27|Ay(t)|N3/2
t

√
logNt

for every y.
Observe that

N
3/2
t

√
logNt ≤ 4R

3/4
t (log t)1/2(log log t)3/4,

which follows from the definition of Nt and the fact that a.s. Rt ≤ t. We
find that for t ≥ t0 ∨ t1,

t ≤
∑
y

Ly,Ay(t)

≤ 27N
3/2
t

√
logNt

∑
y

|Ay(t)|

= 27N
3/2
t

√
logNtRt

≤ 29R
7/4
t (log t)1/2(log log t)3/4.

It follows that for t ≥ t0 ∨ t1,

Rt ≥
t4/7

236/7(log t)2/7(log log t)3/7
. �
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