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Abstract

We derive a continuous-time lace expansion for a broad class of
self-interacting continuous-time random walks. Our expansion applies
when the self-interaction is a sufficiently nice function of the local
time of a continuous-time random walk. As a special case we obtain a
continuous-time lace expansion for a class of spin systems that admit
continuous-time random walk representations.

We apply our lace expansion to the n-component g|ϕ|4 model on
Zd when n = 1, 2, and prove that the critical Green’s function Gνc(x)
is asymptotically a multiple of |x|2−d when d ≥ 5. As another appli-
cation of our method we establish the analogous result for the lattice
Edwards model at weak coupling.

1 Introduction

Many lattice spin systems are expected to exhibit mean-field behaviour on Zd
when d > dc = 4, and several results along these lines have been proven by
making use of random walk representations [1, 2, 16, 14]. In this paper we will
establish a very precise statement about the mean-field behaviour of certain
O(n)-invariant spin models by making use of the random walk representation
that originated in the work of Symanzik [42] and was developed in [10, 13].
For recent developments regarding this representation see [3, 43], and for
alternative random walk representations see [2, 22].
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To be more precise, this article is concerned with the asymptotics of the
infinite volume critical two-point function 〈ϕa · ϕb〉. Here 〈·〉 denotes the
expectation of an O(n)-invariant g|ϕ|4 spin model; the spins ϕ take values in
Rn. The definitions of these models are given in Section 3, and our results
mostly concern the cases n = 1, 2. Let |x| and |ϕ| denote the Euclidean
norms of x ∈ Zd and ϕ ∈ Rn.

Theorem 1.1. Let d > dc = 4 and n ∈ {1, 2}. Let 〈·〉 denote expectation
with respect to the critical n-component g|ϕ|4 model. For g > 0 sufficiently
small there is a constant C > 0 such that

〈ϕa · ϕb〉 ∼
C

|b− a|d−2
, as |b− a| → ∞. (1.1)

The relation ∼ in (1.1) means the ratio of the left-hand and right-hand
sides tends to one in the designated limit. Our theorem exhibits mean-field
behaviour in the sense that the exponent d − 2 in (1.1) is the exponent
predicted by Landau’s extension of mean-field theory [27, Chapter 2]. The
right hand side of (1.1) is Euclidean invariant, so for weak coupling the
conclusion strengthens existing triviality results [1, 16] by showing that the
scaling limit of the two-point function of this model is Euclidean invariant and
equals the massless free field two-point function. When n = 1 Theorem 1.1
was first proven by Sakai [35]. The case n = 2 is new. For d = dc the
asymptotics in (1.1) have been established by a rigorous renormalization
group technique for the n-component g|ϕ|4 model for all n ∈ N [40].

Sakai’s proof of the n = 1 case of Theorem 1.1 made use of the lace ex-
pansion, a technique originally introduced to prove mean-field behaviour for
discrete-time weakly self-avoiding walk [8]. The lace expansion has since been
reformulated in many different settings: unoriented and oriented percolation
[19, 32, 50], the contact process [49], lattice trees and animals [20], Ising
and g|ϕ|4 models [34, 35], and various self-interacting random walk models
[47, 17, 23, 45]. Within these settings the lace expansion has been applied
to a variety of problems, ranging from proofs of weak convergence on path
space for branching particle systems [11, 48, 25] to proofs of monotonicity
properties of self-interacting random walks [46, 24, 26]. In each case the
expansion is based on a discrete parameter that plays the role of time.

To prove Theorem 1.1 we introduce a lace expansion in continuous time.
Our methods naturally apply to a broader class of problems than g|ϕ|4 mod-
els, and to illustrate this we also analyze the lattice Edwards model. A precise
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formulation of our main results is given in Section 3, after the introduction
of the basic objects of our paper.

2 Random walk and local times

To fix notation and assumptions, we define continuous-time random walk
started at a point a in Zd and killed outside of a finite subset Λ of Zd. These
stochastic processes are central to the rest of the paper.

2.1 Infinite volume

We begin by defining the class of jump distributions that we will allow.
Recall that a one-to-one map T from the vertex set of Zd onto itself such
that edges {x, y} of Zd are mapped to edges {Tx, Ty} of Zd is called an
automorphism. Let Aut0(Zd) denote the group of automorphisms that fix
the origin 0. A function f on Zd is Zd-symmetric if f(Tx) = f(x) for all
x ∈ Zd and T ∈ Aut0(Zd). Similarly, a function f(x, y) of two variables is
Zd-symmetric if f(Tx, Ty) = f(x, y) for all x, y ∈ Zd and T ∈ Aut0(Zd).

Assumptions 2.1. Assume J : Zd → R satisfies

(J1) J(x) ≥ 0 for x 6= 0, and J(0) := −
∑

x 6=0 J(x) is finite,

(J2) the set {x ∈ Zd | J(x) > 0} is a generating set for Zd,

(J3) J is Zd-symmetric,

(J4) J has finite range R > 0, i.e., J(x) = 0 if |x| ≥ R.

Henceforth we work with a fixed choice of J satisfying (J1)–(J4). Let
∆(∞) : Zd × Zd → R be the infinite matrix with entries

∆(∞)

x,y := J(y − x). (2.1)

By (J3), ∆(∞) is symmetric, and (J1) implies that ∆(∞) has non-negative
off-diagonal elements and that its row sums are all equal to zero. This implies
∆(∞) is the generator of a continuous-time random walk X (∞) on Zd. The
assumption (J2) ensures this walk is irreducible. Let

Ĵ := −∆(∞)

x,x = −J(0), J+(y) := J(y)1{y 6=0}. (2.2)

3



By (J1), Ĵ is finite. The walk X (∞) has a mean Ĵ−1 exponential holding time
at each x, and jumps from x to y 6= x with probability J+(y−x)/Ĵ . We write
Pa for a probability measure under which X (∞) is a continuous-time random
walk on Zd started at a ∈ Zd, and Ea for the corresponding expectation.

Example 2.2. The most important example is when

J(x) = 1{|x|=1} − 2d1{x=0}.

In this case ∆(∞) is called the lattice Laplacian, and X (∞) is a continuous-
time nearest-neighbour random walk on Zd.

2.2 Finite volume

Let Λ be a finite subset of Zd and let T (Λ) be the first time X (∞) exits Λ:

T (Λ) := inf{t ≥ 0 : X (∞)

t /∈ Λ}. (2.3)

Let ∗ /∈ Zd be an additional “cemetery” state, and define X (Λ)

t by

X (Λ)

t =

{
X (∞)

t , t < T (Λ),

∗, t ≥ T (Λ).
(2.4)

For each finite Λ the process X (Λ) = (X (Λ)

t )t≥0 is a continuous-time Markov
chain on Λ∪ {∗} with absorbing state ∗. Note that this construction defines
the processes X (Λ) on the same probability space for all finite Λ ⊂ Zd.

The generator ∆(Λ)
∗ of X (Λ) is a (|Λ|+ 1)× (|Λ|+ 1) matrix with a row of

zeros since ∗ is an absorbing state. We will let ∆(Λ) : Λ× Λ→ R denote the
matrix obtained by removing the row and column corresponding to transition
rates to and from ∗, i.e., (∆(Λ))x,y := (∆(∞))x,y for x, y ∈ Λ.

2.3 Local time and free Green’s functions

For x ∈ Λ and a Borel set I ⊂ [0,∞) the local time of X (Λ) at x during I is

τ (Λ)

I,x :=

∫
I

d`1{X(Λ)
` =x}. (2.5)
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Let τ (Λ)

I := (τ (Λ)

I,x)x∈Λ denote the vector of all local times, and let τ (Λ)
x de-

note τ (Λ)

[0,∞),x. We will often omit the superscript Λ when there is no risk of
confusion. For a, b ∈ Λ we define the free Green’s function in Λ by

S(Λ)(a, b) := Ea[τ
(Λ)

b ] =

∫ ∞
0

d` Pa(X
(Λ)

` = b). (2.6)

Note that S(Λ)(a, b) <∞ since the expected time for X (Λ) to exit Λ is finite.
The next lemma, proved in Appendix A.1, explains why S(Λ)(a, b) is called
the free Green’s function.

Lemma 2.3. ∆(Λ) is invertible, and for a, b ∈ Λ

S(Λ)(a, b) = (−∆(Λ))−1
a,b. (2.7)

There is also an infinite volume version of Lemma 2.3, and it is nicer
because the infinite volume limit restores translation invariance. For d ≥ 3,
define S(a, b) to be the expected time spent at b by the random walk X (∞)

started from a, i.e.,
S(a, b) := Ea[τ

(∞)

b ], (2.8)

where τ (∞)

b is defined as in (2.5) but with X (Λ)

` replaced by X (∞)

` . Since
T (Λ) ↑ ∞ as Λ ↑ Zd a.s., monotone convergence implies that

S(Λ)(a, b) = Ea[τ
(∞)

[0,T (Λ)],b
] ↑ Ea[τ (∞)

[0,∞),b] = S(a, b) <∞. (2.9)

where the finiteness holds by transience. The translation invariance of the
infinite volume random walk implies

S(x) := S(a, a+ x), x, a ∈ Zd (2.10)

is well-defined, i.e., independent of a ∈ Zd. Recall, see [28, Theorem 4.3.5],
that there is a CJ depending on J such that

S(x) ∼ CJ
|x|d−2

. (2.11)

Since S(x) is positive for all x this implies that there is a constant cJ de-
pending on J such that S(x) ≥ cJ

|x|d−2 for x 6= 0.

Recall that the discrete convolution f ∗ h of functions f and h on Zd is
defined by f ∗ h(x) :=

∑
y∈Zd f(y)h(x − y). For n ∈ N let f ∗n denote the

n-fold convolution of f with itself, and let f ∗0(x) = 1{x=0}. The next lemma
is proved in Appendix A.1.
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Lemma 2.4. Suppose d ≥ 3. For S defined by (2.10) and x ∈ Zd,

J ∗ S(x) = S ∗ J(x) = −1{x=0}. (2.12)

Moreover, recalling Ĵ and J+ from (2.2),

S(x) =
∑
n≥0

Ĵ−(n+1) J∗n+ (x), (2.13)

where the right-hand side converges absolutely.

2.4 A convenient technical choice

In this section we make a specific choice for the measurable space (Ω1,F)
on which X (∞) is defined so that the paths of X (∞) have desirable regularity
properties. This reduces the number of statements that have to be qualified
as holding almost surely (a.s.). Let

Ω1 =
{
X (∞) : [0,∞)→ Zd

∣∣X (∞) is càdlàg
}
, (2.14)

where we recall a function is càdlàg if it is right continuous with left limits.
Let (Ft)t≥0 denote the natural filtration of X (∞), i.e., Ft is the smallest σ-
algebra on Ω1 such that {X (∞) |X (∞)

s = y} ∈ Ft for each s ∈ [0, t] and y ∈ Zd,
and let F denote the smallest σ-algebra on Ω1 containing ∪t≥0Ft. Henceforth
we let Pa denote the probability measure on (Ω1,F) under which X (∞) is a
continuous-time random walk on Zd started at a ∈ Zd.

3 The Green’s function

In this section we define the object G(Λ)

t (a, b) at the center of our results. It
is called the Green’s function and it is an integral over all walks, of varying
continuous-time duration `, that start at a and end at b. We have two
motivations for studying this Green’s function. The first is that two-point
correlations of lattice spin models such as the n-component g|ϕ|4 model have
random walk representations in terms of this Green’s function. We state
this representation below, see Definition 3.2 and Theorem 3.3. The second
motivation is that it is a departure point for the study of random walks with
self-interactions that are functions of local time. These are of interest in
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chemistry, physics, and probability; they include a canonical model of self-
avoiding walk, the lattice Edwards model, as a special case. We define the
lattice Edwards model in Definition 3.1.

Fix a finite set Λ ⊂ Zd. Let AΛ denote the set of sequences (xv)v∈Λ with
each xv in A, and let Z : [0,∞)Λ → (0,∞), t 7→ Zt be a bounded continuous
positive function. For a random variable σ taking values in [0,∞)Λ, Zσ
denotes Z evaluated at the random point σ. For t, s ∈ [0,∞)Λ let

Yt,s :=
Zt+s
Zt

. (3.1)

For a, b ∈ Λ and t ∈ [0,∞)Λ define the Green’s function

G(Λ)

t (a, b) :=

∫
[0,∞)

d` Ea

[
Y
t,τ

(Λ)
[0,`]

1{X(Λ)
` =b}

]
. (3.2)

Note that G(Λ)

t (a, b) > 0 since Zt is continuous and positive. We extend the
definition (3.2) by setting G(Λ)

t (a, b) = 0 if a or b is the cemetery state ∗.
The free Green’s function S(Λ)(a, b) is the special case of G(Λ)

t when Z := 1,
see (2.6). For each t the function Yt,τ [0,`]

is bounded as a function of ω ∈ Ω1

and ` ∈ [0,∞) because Zt is bounded and positive. By (2.9) this implies

G(Λ)

t (a, b) <∞, t ∈ [0,∞)Λ. (3.3)

Our primary interest in this paper is G(Λ)

0 (a, b) given by (3.2) when t 7→ Zt
is one of the choices described in the next two sections. Both choices involve
parameters g > 0 and ν ∈ R called coupling constants.

3.1 The Edwards model

Definition 3.1. Fix g > 0 and ν ∈ R. The Green’s function G(Λ)

t (a, b) of
the (lattice) Edwards model is given by (3.2) and (3.1) with the choice

Zt := exp

{
−g
∑
x∈Λ

t2x − ν
∑
x∈Λ

tx

}
. (3.4)

To explain Definition 3.1 note that∑
x

τ 2
[0,`],x =

∫∫
[0,`]2

ds dr 1{X(Λ)
s =X

(Λ)
r }
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is the time X (Λ) spends intersecting itself up to time `. Since g > 0, the choice
of Zt in Definition 3.1 weights a walk in (3.2) by the exponential of minus its
self-intersection time: self-intersection is discouraged. The parameter ν ∈ R
is called the chemical potential, and it controls the expected length of a walk.
Thus the Edwards model is a continuous time self-avoiding walk. See [5] for
further details and background on this model.

3.2 The g|ϕ|4 models

Our second choice of Zt requires some preparation. Let RnΛ := (Rn)Λ, ϕ :=
(ϕx)x∈Λ be a point in RnΛ, and let ϕ[i]

x denote the ith component of ϕx ∈ Rn.
Define a Gaussian measure P on the Borel sets of RnΛ in terms of a density
with respect to Lebesgue measure dϕ on RnΛ by

dP (ϕ) := Ce
1
2

(ϕ,∆(Λ)ϕ) dϕ, (3.5)

where C normalises the measure to have total mass one and the quadratic
form (ϕ,∆(Λ)ϕ) is defined by:

(∆(Λ)ϕ)[i]

x :=
∑
y∈Λ

∆(Λ)

x,yϕ
[i]

y , (f, h) :=
∑
x∈Λ

n∑
i=1

f [i]

x h
[i]

x . (3.6)

The covariance of ϕ under P is the n|Λ| × n|Λ| positive definite matrix
(−∆(Λ))−1

x,yδi,j; positive definiteness follows from (A.3) in Appendix A.1. By
Lemma 2.3, ∫

RnΛ

dP (ϕ)ϕ[i]

x ϕ
[j]

y = S(Λ)(x, y)δi,j. (3.7)

Definition 3.2. Fix g > 0, ν ∈ R, and n ∈ N≥1. The Green’s function
G(Λ)

t (a, b) of the n-component g|ϕ|4 model is given by (3.2) and (3.1) with
the choice

Zt :=

∫
RnΛ

dP (ϕ) exp

{
−
∑
x∈Λ

(
g(|ϕx|2 + 2tx)

2 + ν(|ϕx|2 + 2tx)
)}

. (3.8)

The justification for Definition 3.2 is given by the next theorem.

Theorem 3.3. Let G(Λ)

0 (a, b) be given by Definition 3.2. Then

G(Λ)

0 (a, b) =
1

n
〈ϕa ·ϕb〉g,ν , (3.9)
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where 〈·〉g,ν denotes expectation with respect to the probability measure

dQ(ϕ) :=
1

Z0

e−
1
2

(ϕ,−∆(Λ)ϕ)
∏
x∈Λ

(
e−V (|ϕx|2)dϕx

)
, ϕ ∈ RnΛ, (3.10)

where V (ψ) = gψ2 + νψ and Z0 is defined by (3.8).

The quantity 1
n
〈ϕa ·ϕb〉g,ν in (3.9) is the standard definition of the n-

component g|ϕ|4 two-point function, see, e.g., [4, Section 1.6]. Note this
references writes 〈ϕ[1]

a ϕ
[1]

b 〉g,ν in place of 1
n
〈ϕa ·ϕb〉g,ν which is the same by

O(n) invariance.

Proof of Theorem 3.3. The theorem is a consequence of the BFS-Dynkin iso-
morphism as formulated in [4, Theorem 11.2.3]1 with βxy = J(x − y) and
F : [0,∞)Λ → R defined by

F (t) = exp
[
−
∑
x∈Λ

(
γxtx − V (2tx)

)]
. (3.11)

The coefficient γx is such that the quadratic form (ϕ,∆(Λ)ϕ) defined in (3.6)
equals the quadratic form (ϕ,−∆βϕ) in [4, Theorem 11.2.3] plus

∑
x γx

1
2
|ϕx|2.

From (A.3) and [4, (1.3.3)], γx =
∑

y 6∈Λ J(x− y). �

3.3 Main result

Our main result concerns the infinite volume limit of the Green’s function
for the examples in the previous sections.

Lemma 3.4 (Proof in Section 11). Let a, b ∈ Λ. G(Λ)

0 (a, b) is non-decreasing
in Λ for the n = 1, 2-component g|ϕ|4 and Edwards models.

Lemma 3.4 implies that for each of our examples

Gg,ν(x) = G(∞)

g,ν (x) := lim
Λ↑Zd

G(Λ)

0 (a, a+ x) (3.12)

is either infinite or exists, is positive and translation invariant, and is Zd-
symmetric. It is in fact known that the limit is finite, and our results prove
this for d ≥ 5 and ν ≥ νc, where νc is defined below in (3.13). The subscripts
g and ν denote the coupling constants in the examples. A closely related
property of our models is expressed by

1Note an unfortunate clash of notation: in [4, Theorem 11.2.3] the notation τx = 1
2 |ϕx|2

is used, while the vector of local times of the walk up to time T is denoted therein by LT .
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Lemma 3.5 (Proof in Section 11). For each x ∈ Zd, Gg,ν(x) is non-increasing
in ν for the n = 1, 2-component g|ϕ|4 and Edwards models.

This lemma motivates defining the critical value of ν by

νc := inf
{
ν ∈ R |

∑
x∈Zd

Gg,ν(x) <∞
}
. (3.13)

It will be a conclusion of our theorems that νc is finite. Since our models
depend on g, νc is a function of g and, when necessary, we write νc = νc(g).
When ν = νc we say that the Green’s function is critical.

Our main result is the following more precise version of Theorem 1.1.

Theorem 3.6. Suppose d ≥ 5, J satisfies (J1)–(J4), and consider the Ed-
wards and the g|ϕ|4 models given by Definition 3.1 and Definition 3.2 with
n = 1, 2. For each model there exists g0 = g0(J) > 0 such that for g ∈ (0, g0)
νc(g) is finite and there exists C = C(g, J) > 0 such that

Gg,νc(x) ∼ C

|x|d−2
, as |x| → ∞. (3.14)

Theorem 3.6 describes mean field asymptotics of the infinite volume
Green’s function at the critical point, c.f. (2.11). The restriction to n = 1, 2
for the g|ϕ|4 models is necessary because our proof uses the Griffiths II in-
equality, which is not known to hold for n > 2.

The proof of Theorem 3.6 occupies Sections 4 through 11. Section 4 serves
as an overview of lace expansion methods and reduces a key step of our argu-
ment to some auxiliary lemmas. The remainder of the argument is comprised
of three parts: the derivation of a lace expansion in finite volume (Sections 5
and 6), establishing an infinite volume expansion (Section 7 through 9), the
analysis of this expansion (Section 10), and the application of this analysis
to our examples (Section 11). The contents of individual sections will be
discussed locally.

3.4 Related lace expansion results

Sakai has proved similar results for the Green’s function of the Ising model
and the scalar (i.e., n = 1) g|ϕ|4 model by lace expansion [34, 35]. Sakai first
studied the Ising model by lace expanding the random current representation.
By using the Griffiths-Simon trick [37], which represents the scalar g|ϕ|4
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model in terms of Ising models, Sakai then studied scalar g|ϕ|4. Since it is
unclear how to use the Griffiths-Simon approximation when n = 2, we have
developed alternative methods.

4 Infrared bound and overview

A key step in the proof of Theorem 3.6 is to obtain the upper bound on
Gg,νc(x) provided by Theorem 4.1. This section begins the proof of Theo-
rem 4.1 by reducing it to lemmas which will be proved in later sections. Our
reduction reviews the guiding ideas of proofs by lace expansion, which are
explained in more detail and attribution in [38]. See also [21, 6].

Recall the definitions of the Edwards model and the g|ϕ|4 model from
Sections 3.1 and 3.2, and that the infinite volume Green’s functions Gg,ν(x)
for these models are given by (3.12). We are mainly interested in the case
where ν = νc, the critical value given by (3.13). In this section we do not
make our standing Assumptions 2.1 explicit in theorem statements.

Theorem 4.1. Suppose d ≥ 5. For the n = 1, 2-component g|ϕ|4 and Ed-
wards models there are g0 = g0(d, J) > 0 such that if 0 < g < g0 then νc(g)
is finite and

Gg,νc(x) ≤ 2S(x), x ∈ Zd. (4.1)

This is called an infrared bound. Infrared bounds in Fourier space for
nearest neighbour models (i.e., J as in Example 2.2) were first proved for n ≥
1 and d > 2 in [15] with 2 replaced by 1. The relation between Fourier infrared
bounds and (4.1) is non-trivial, see [41, Appendix A] and [31, Example 1.6.2].

The proof of Theorem 4.1 also yields bounds on the critical value νc:

Proposition 4.2 (Proof in Section 11). For the n = 1, 2-component g|ϕ|4
and Edwards models, νc = O(g) as g ↓ 0.

In Proposition 4.2 and in what follows, for functions f, r, the notation
f(x) = O(r(x)) as x → a has its standard meaning, i.e., that there exists a
C > 0 such that |f(x)| ≤ Cr(x) if x is sufficiently close to a.

4.1 The infrared bound

Recall that S is the free Green’s function from (2.8).
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Proposition 4.3. Suppose d ≥ 5. For the n = 1, 2-component g|ϕ|4 and
Edwards models, there are g0 = g0(d, J) > 0 such that if 0 < g < g0 then

Gg,ν ≤ 2S, for ν > νc. (4.2)

Here we include case νc(g) = −∞.

Before giving the proof we discuss the proof strategy and state some
preparatory results. Lace expansion arguments have been reduced to three
schematic steps, all for ν > νc. As we discuss these steps it will be helpful to
recall (2.12), i.e., J ∗ S = −1{x=0}. This is equivalent to

ĴS(x) = 1{x=0} + J+ ∗ S(x), (4.3)

where Ĵ and J+ were defined in (2.2).

Step one We will call a bound of the form

Gg,ν ≤ KS (4.4)

a K-infrared bound or K-IRB. Step one assumes a 3-IRB and uses the as-
sumption that g is sufficiently small to prove that there exist Lg,ν = O(g) ∈ R
and an O(g) integrable function Ψg,ν : Zd → R such that for all x

(Ĵ − Lg,ν)Gg,ν(x) = 1{x=0} + J+ ∗Gg,ν(x) + Ψg,ν ∗Gg,ν(x). (4.5)

This is a generalization of (4.3). The term involving Lg,ν could be absorbed
into Ψg,ν , but (4.5) is more convenient for future developments. Step one
also provides a formula for Ψg,ν that shows Ψg,ν is small relative to J . The
formula for Ψg,ν is called the lace expansion.

Step two Step two assumes Ψg,ν is small relative to J and shows that (4.5)
implies that Gg,ν(x) satisfies a 2-IRB. Steps one and two combined show that
a 3-IRB implies a 2-IRB.

Step three Step three removes the 3-IRB assumption of step one: the
desired (4.2) holds unconditionally. The removal of the 3-IRB assumption
uses continuity of Gg,ν(x) in ν together with an auxiliary result that Gg,ν(x)
satisfies a 2-IRB if ν is large enough. The 2-IRB cannot be lost as ν is de-
creased towards νc because step two implies that Gg,ν(x) cannot continuously
become greater than 3S(x).
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4.2 Proofs of Proposition 4.3 and Theorem 4.1

We now develop these steps into lemmas. This requires the following nota-
tion. For |z| ≤ Ĵ−1, define real-valued functions S̃z and DS̃

z on Zd by

S̃z(x) :=
∑
n≥0

(zJ+)∗n(x), DS̃
z (x) := −1{x=0} + zJ+(x). (4.6)

DS̃
z is a variant of J such that when z = Ĵ−1 the jump rates are normalised by

z to probabilities. The series defining S̃z(x) in (4.6) is absolutely convergent,

see [28, Section 4.2], and it is easy to show that DS̃
z ∗ S̃z(x) = −1{x=0}. Let

S̃(x) := S̃Ĵ−1(x). (4.7)

By comparing the definition of S̃z with Equation (2.13) and using (2.11)

S̃z(x) ≤ S̃(x) = ĴS(x) ≤ C̃J

|||x|||d−2
, (4.8)

for some C̃J > 0, where |||x||| := max{|x|, 1}.
Step one is formulated by the next lemma.

Lemma 4.4 (Proof in Section 11). Let d ≥ 5, and consider the lattice Ed-
wards model or the g|ϕ|4 model with n = 1, 2. If Gg,ν ≤ 3S then there exist
α > 0, g0 > 0, Lg,ν and Ψg,ν such that for all g ∈ (0, g0),

(i) |Ψg,ν(x)| ≤ gα|||x|||−3(d−2).

(ii) (4.5) holds.

(iii) Ĵ − Lg,ν ≥ 1+O(g)
3S(0)

.

The conclusions of the lemma enable us to rewrite equation (4.5) as

Dg,ν ∗ G̃g,ν(x) = −1{x=0}, (4.9)

with the definitions

w(g, ν) := (Ĵ − Lg,ν)−1, G̃g,ν(x) := w(g, ν)−1Gg,ν(x),

Dg,ν := DS̃
w(g,ν) + Ψ̃g,ν , Ψ̃g,ν(x) := w(g, ν)Ψg,ν(x).

(4.10)
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Lemma 4.5 (Proof in Section 11). With the same hypotheses as Lemma 4.4,
if ν ∈ (νc, g], there exists C0 > 1 such that

(I) D = Dg,ν satisfies (i) – (iii) in the statement of Lemma 4.6 below, with
C = C0;

(II) |Lg,ν | ≤ C0g.

Step two is accomplished by Lemma 4.6 below, which is a generalization
of [6, Lemma 2] to more general step distributions. We will use Lemma 4.6
with D = Dg,ν given by (4.10), but in the lemma D is arbitrary. The

hypotheses say that D is a perturbation of DS̃
z for some z, and the conclusion

is that D has a convolution inverse −H. The lemma also relates the decay of
H to the decay of S̃µ for a specified parameter µ; note that µ is not necessarily
equal to z.

Lemma 4.6 (Proof in Section 10.2). Let d ≥ 5, and C > 0. There exist
g0 = g0(d, J, C) > 0 and C ′ > 0 such that for each g ∈ (0, g0) the following
holds. Suppose D : Zd → R satisfies

(i) D is Zd-symmetric,

(ii)
∑

x∈Zd D(x) ≤ 0,

(iii) there exists z = z(g,D) ∈
[
0, Ĵ−1

]
such that

∣∣∣D(x)−DS̃
z (x)

∣∣∣ ≤ Cg|||x|||−(d+4).

Then there is an H : Zd → R such that D ∗H = −1{x=0} and

|H(x)− S̃µ(x)| ≤ C ′g|||x|||−(d−2), (4.11)

where µ := Ĵ−1
(
1 +

∑
x∈Zd D(x)

)
∈
[
−(2Ĵ)−1, Ĵ−1

]
.

The µ created by Lemma 4.6 with D as in (4.10) will from now on be
written as µ(g, ν).

Step three is based on the application of the next lemma to the function F
defined in (4.12) below. The lemma is implied by the fact that the continuous
image of a connected interval is connected. The use of this lemma to extend
estimates up to the critical point in lace expansion analyses originated in [39];
a related application is in [9].

Lemma 4.7 ([21, Lemma 2.1]). Let F : (νc, ν1]→ R. If

14



(i) F (ν1) ≤ 2,

(ii) F is continuous on (νc, ν1],

(iii) for ν ∈ (νc, ν1] the inequality F (ν) ≤ 3 implies the inequality F (ν) ≤ 2,

then F (ν) ≤ 2 for all ν ∈ (νc, ν1].

The next two lemmas provide hypotheses (i) and (ii) of Lemma 4.7 with
ν1 = g for the function F : (νc,∞)→ R defined by

F (ν) := sup
x∈Zd

Gg,ν(x)

S(x)
. (4.12)

Lemma 4.8 (Proof in Section 11). For the lattice Edwards model and the
n = 1, 2-component g|ϕ|4 model, with F as in (4.12)

F (ν) ≤ 2 when ν = g. (4.13)

Lemma 4.9 (Proof in Section 11). For the lattice Edwards model and the
n = 1, 2-component g|ϕ|4 model the function F in (4.12) is continuous on
(νc, g].

The next lemma ensures the interval (νc, g] is not empty for g > 0.

Lemma 4.10 (Proof in Section 11). For the lattice Edwards model and the
n = 1, 2-component g|ϕ|4 models, νc ≤ 0.

Let `p = `p(Zd) denote the set of f : Zd → R with
∑

x∈Zd |f(x)|p finite.

Proof of Proposition 4.3. By hypothesis, d ≥ 5 and g is small enough that
the results we have stated above in this section are applicable. Since (νc, g] is
not empty by Lemma 4.10, by referring to the definition (4.12) and Lemma 3.5,
it suffices to prove

F (ν) ≤ 2 for ν ∈ (νc, g]. (4.14)

To prove (4.14) it is enough to prove that the statement F (ν) ≤ 3 implies
F (ν) ≤ 2 when ν ∈ (νc, g], as this is hypothesis (iii) in Lemma 4.7, and the
hypotheses (i) and (ii) have been verified in Lemmas 4.8 and 4.9.

Assume F (ν) ≤ 3. Then Lemma 4.5 applies, |Lg,ν | ≤ C0g, and the
hypotheses of Lemma 4.6 are satisfied providing us with H as in (4.11).
Since |µ| ≤ Ĵ−1 and d ≥ 5, (4.8) and (4.11) imply that H is an `2 convolution
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inverse of−D; by the Fourier transformH is the unique `2 convolution inverse
of −D. By (4.9) G̃g,ν is also a convolution inverse of −D. Moreover, G̃g,ν

is in `2 because it is proportional to Gg,ν by (4.10) and Gg,ν ∈ `1 ⊂ `2 by
the hypothesis ν > νc. Therefore G̃g,ν = H. By (4.11), |Lg,ν | ≤ C0g, and
the lower bound below (2.11), |G̃g,ν(x)| ≤ (1 +O(g))S̃(x). By (4.10) and the
equality in (4.8) this is the same as

Gg,ν(x) ≤ Ĵ

Ĵ −O(g)

(
1 +O(g)

)
S(x) =

(
1 +O(g)

)
S(x). (4.15)

By taking g smaller if necessary we have Gg,ν(x) ≤ 2S(x). �

Lemma 4.11 (Proof in Section 11). For the lattice Edwards model and the
n = 1, 2-component g|ϕ|4 models, Lg,ν →∞ as ν → −∞.

We use this result to prove that νc is finite as claimed in Theorem 4.1.
By Lemma 4.10 it is enough to rule out νc = −∞. Towards a contradiction,
suppose νc = −∞. Then Proposition 4.3 implies a 2-IRB holds for all ν ≤ g,
and hence Lemma 4.5 (II) implies |Lg,ν | ≤ C0g for all ν ≤ g. This contradicts
Lemma 4.11.

Proof of Theorem 4.1. For future reference, we note that the remainder of
this proof deduces the desired (4.1) from (4.2), (i) G(Λ) is monotone in Λ
and (ii) the finite volume G(Λ)

0 (0, x) is continuous in ν at νc. Claim (i) is
Lemma 3.4. Claim (ii) is deferred to the end of the proof.

By (i) and (4.2), for ν > νc,

G(Λ)

0 (0, x) ≤ Gg,ν(x) ≤ 2S(x) (4.16)

By (ii) G(Λ)

0 (0, x) is bounded above by 2S(x) when ν = νc. By taking the
infinite volume limit as in (3.12) with ν = νc we obtain Gg,νc(x) ≤ 2S(x).

To prove (ii) for the Edwards model, observe from (3.4) that Zt is con-
tinuous in ν pointwise in t and uniformly bounded in t for each ν. By
dominated convergence it follows from (3.2) that the finite volume G(Λ)

0 (0, x)
is continuous in ν at νc. A similar argument applies to the g|ϕ|4 model. �

Remark 4.12. Lemma 4.6 and 4.7 are model-independent. We also classify
Lemmas 4.4 and 4.5 as model-independent even though the hypotheses refer to
our two examples, because they will be subsumed within a general framework.
We classify Lemmas 3.4, 3.5, and 4.8 – 4.11 as model dependent. The
proofs of Proposition 4.3 and Theorem 4.1 only used the lemmas just listed.
Furthermore, for the model-dependent lemmas, it is enough to have only the
conclusions. We will explain how this plays a role in the next section.
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4.3 Outline of the remainder of the paper

Our analysis is done in a general context that includes the Edwards and
the g|ϕ|4 models with n = 1, 2 as special cases. The general context is
determined by a set of hypotheses on the function t 7→ Zt that enters into
the definition (3.2) of the Green’s function; see Section 10.1 for a full list
of hypotheses. In the course of the paper we introduce these hypotheses
on Zt as they are needed. In some initial sections we use hypotheses that
will eventually be superseded; these are indicated by ending in a 0, e.g., (G0)
below. We verify that the Edwards and the g|ϕ|4 models with n = 1, 2 satisfy
the hypotheses in Section 11. We have based our proof on hypotheses on Z
to facilitate extending the continuous-time lace expansion to other models:
isolating properties that currently play a role should help the search for more
appealing hypotheses.

In Section 5 and Section 6 we develop a lace expansion for Green’s func-
tions as in (3.2) in finite volumes Λ ⊂ Zd. Working in a finite volume is
essential, as we have only defined the g|ϕ|4 model as the infinite volume
limit of finite volume models.

The next part of the paper, Sections 7 through 9, develops estimates
on our finite volume lace expansion, under the hypothesis that the Green’s
function satisfies a 3-IRB. These estimates establish the infinite-volume lace
expansion equation (4.5) under the general hypotheses on Zt and provide the
key inputs for the proofs of Lemma 4.4 and Lemma 4.5.

In Section 10.2 and 10.3 we complete the proofs of the lemmas we have
used in the last two sections, and thus establish the conclusions of Theo-
rem 4.1 for any Zt satisfying our hypotheses. We then make use of this
result, in conjunction with a theorem of Hara [18], to obtain the Gaussian
asymptotics of Theorem 3.6.

5 Functions on a set of intervals

In this section we begin to derive the lace expansion needed for step one
of Section 4.1. The main result of this section is Theorem 5.2, which is an
expansion for a function Y : D → R, where

D := {(s, t) : 0 ≤ s ≤ t <∞} ⊂ [0,∞)2. (5.1)

Theorem 5.2 will be used in the next section to derive our lace expansion for
Green’s functions of the form (3.2). We begin with notation and minimal
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assumptions on Y needed for the main result of the section.
For a function Y on D and t ∈ (0,∞), we denote by Y·,t : [0, t] → R the

function s 7→ Ys,t, and for each s ∈ [0,∞), we denote by Ys,· : [s,∞)→ R the
function t 7→ Ys,t. We will write ∂1 and ∂2 to denote partial differentiation
with respect to the first and second coordinates, respectively.

We will assume Y satisfies the following assumptions. The almost every
(a.e.) statements in the assumptions are with respect to Lebesgue measure.

Assumptions 5.1.

1. Y is continuous and strictly positive on D, and Ys,s = 1 for all s ≥ 0.

2. For each t ∈ (0,∞), Y·,t is absolutely continuous. For each s ∈ [0,∞),
Ys,· is absolutely continuous on bounded subintervals of [s,∞).

3. For a.e. t ∈ (0,∞), the function (∂2Y)·,t is absolutely continuous on
(0, t). For a.e. s ∈ [0,∞), the function (∂1Y)s,· is absolutely continuous
on bounded subintervals of (s,∞).

4. ∂1∂2Y = ∂2∂1Y a.e. on the interior of D.

Absolutely continuous functions are uniformly continuous on bounded
intervals and therefore the derivative ∂2Y·,t in 3. extends to an absolutely
continuous function on [0, t] and similarly ∂1Ys,· extends to [s,∞). When we
write derivatives on the boundaries of their domains we are referring to these
extensions. Note that the first and second derivatives of Y are measurable
because they are pointwise limits of measurable functions.

5.1 The expansion

In this section we introduce the objects that enter into our expansion, and
state the expansion in Theorem 5.2 below.

Define vertex functions by

rs := − lim
t↓s

∂1 logYs,t, 0 ≤ s <∞,

rs,t := −∂1∂2 logYs,t, 0 ≤ s < t <∞.
(5.2)

These are a.e. equalities. By Assumptions 5.1 and the paragraph that follows
them, the chain rule, which applies to a smooth function composed with
an absolutely continuous function, proves these derivatives exist a.e. and
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s0 = s′0 s1 s2 s3 s4s′1 s′2 s′3 s′4 s5 = s′5

Figure 1: A lace with m = 5 intervals

provides formulas for them. The limit defining rs is well-defined by the
paragraph before this subsection.

For m ∈ N a lace L is a sequence

L =
(
(si, s

′
i+1)
)
i=0,...,m−1

(5.3)

of m intervals (si, s
′
i+1) with s0 := s′0, sm := s′m, and

0 ≤ s′0 < s1 < s′1 < s2 < s′2 < · · · < s′m−1 < sm <∞. (5.4)

The meaning of (5.4) is illustrated by Figure 1. The union of all of the
intervals of a lace is (s0, s

′
m), and if any single interval is excluded from the

union the resulting set does not cover (s0, s
′
m).

Let Lm be the region in R2m defined by the inequalities in (5.4). We
identify Lm with the collection of all laces containing m intervals. Let

L0 := {s0 | 0 ≤ s0 <∞}. (5.5)

We associate to a lace L a product

r(L) :=

{
rs0 , if L = {s0} ∈ L0,∏m−1

i=0 rsi,s′i+1
, if L =

(
(si, s

′
i+1)
)
i=0,...,m−1

∈ Lm, m ≥ 1,
(5.6)

of vertex functions. The weight L 7→ w(L) of a lace is defined to be

w(L) := r(L)×

{
1, L ∈ L0,

P (L), L ∈ Lm, m ≥ 1,
(5.7)

where for L =
(
(si, s

′
i+1)
)
i=0,...,m−1

P (L) := Ys′0,s′1
m−2∏
i=0

Ys′i,s′i+2

Ys′i,s′i+1

. (5.8)
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For m = 1 the empty product in (5.8) is defined to be one by convention.
For m ≥ 0 we define integration

∫
Lm dL over Lm to be integration with

respect to Lebesgue measure on Lm. For example, if m = 0 then
∫
Lm dL =∫

[0,∞)
ds0. Let Lm,` be the subset of Lm such that sm ≤ `, and let D` be the

subset of D with t ≤ `.

Theorem 5.2. Let Y be such that (i) Y satisfies Assumption 5.1, (ii) the
function rs,t defined in (5.2) is Lebesgue a.e. bounded on D`. Then for ` > 0

Y0,` = 1 +
∑
m≥0

∫
Lm,`

dL w(L) Ys′m,` , (5.9)

and the sum is absolutely convergent.

The proof of this theorem is given in Section 5.4 and is based on two
identities, which are given in the next two subsections. We will also need the
following fact from real analysis, whose proof we omit.

Lemma 5.3. Let I ⊂ R be bounded. If f : I → R is Lipschitz continuous
and g : I → I is absolutely continuous, then f ◦ g is absolutely continuous.

5.2 The identity that starts the expansion

Lemma 5.4. Under Assumptions 5.1,

Y0,` = 1 +

∫
(0,`)

ds0 rs0 Ys0,` +

∫
(0,`)

ds0

∫
(s0,`)

ds′1 rs0,s′1 Ys0,`. (5.10)

Proof. By Assumption 2,

Y0,` = Y`,` −
∫

(0,`)

ds0 ∂1Ys0,` . (5.11)

Y is bounded below by a positive constant on D` by Assumption 1 and the
compactness of D`. Hence, by Y`,` = 1, (5.11) can be rewritten as

Y0,` = 1−
∫

(0,`)

ds0
∂1Ys0,`
Ys0,`

Ys0,`. (5.12)

Since the range of Y is the continuous image of a compact set and z 7→ 1/z
is Lipschitz on compact subsets of (0,∞), it follows from Lemma 5.3 that t 7→
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Y−1
s0,t is absolutely continuous in t for t in a bounded interval whose closure

does not contain 0. Combined with Assumption 3 this shows Y−1
s0,t ∂1Ys0,t is

absolutely continuous in t ∈ (s0, `) for a.e. s0, hence for a.e. s0 > 0

∂1 logYs0,` = (∂1 logY)s0,s0 +

∫
(s0,`)

ds′1 ∂2∂1 logYs0,s′1 . (5.13)

In this equation (∂1 logY)s0,s0 is by definition the continuous extension of
(∂1 logY)s0,t = Y−1

s0,t ∂1Ys0,t as a function of t > 0 to the boundary t =
s0 of its domain. This is an instance of the convention we declared below
Assumption 5.1. By inserting (5.13) into (5.12) we obtain

Y0,` = 1−
∫

(0,`)

ds0 Ys0,` (∂1 logY)s0,s0

−
∫

(0,`)

ds0

∫
(s0,`)

ds′1 Ys0,` ∂2∂1 logYs0,s′1 . (5.14)

The proof is completed by substituting in the definitions of rs0 and rs0,s′1 . For
the last term the interchange of derivatives is justified by Assumption 4. �

5.3 The identity that generates the expansion

Lemma 5.5. Suppose Y satisfies Assumptions 5.1. If (u, v) ∈ D` then

Yu,` = Yu,v Yv,` +

∫
(u,v)

ds+

∫
(v,`)

ds′+ rs+,s′+ Yu,s′+
Yv,`
Yv,s′+

. (5.15)

Proof. As Y is bounded below by a positive constant on D`, we can rewrite
the left-hand side:

Yu,` = Yu,vYv,` +

(
Yu,`
Yv,`
− Yu,v

)
Yv,`. (5.16)

By Assumption 2, Ys,s = 1, and the absolute continuity of Y−1
v,` in ` noted

after (5.12), this can be rewritten as

Yu,` = Yu,vYv,` +

(∫
(v,`)

ds′+ ∂2

Yu,s′+
Yv,s′+

)
Yv,`. (5.17)
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Since exp and log are Lipschitz on compact subsets of their open domains
we can compute the derivative in (5.17) using f(x) = exp log f(x):

Yu,` = Yu,vYv,` +

(∫
(v,`)

ds′+

(
∂2 log

(
Yu,s′+
Yv,s′+

))Yu,s′+
Yv,s′+

)
Yv,` (5.18)

= Yu,vYv,` −

(∫
(v,`)

ds′+

(∫
(u,v)

ds+ ∂1∂2 logYs+,s′+
)Yu,s′+
Yv,s′+

)
Yv,`, (5.19)

where we have used Assumption 3 in the second step. By Fubini’s theorem
this can be rewritten as the desired result. �

5.4 Proof of Theorem 5.2

Recall the definitions of w(L), r(L) and P (L) in (5.6)–(5.8) and define

Rn :=

∫
Ln,`

dL w(L)
Ys′n−1,`

Ys′n−1,s
′
n

, n ≥ 1. (5.20)

Lemma 5.6. Suppose Y satisfies Assumptions 5.1. Then

Y0,` = 1 +
n−1∑
m=0

∫
Lm,`

dL w(L) Ys′m,` +Rn, n ≥ 1. (5.21)

Proof. We first prove (5.21) with n = 1. By Lemma 5.4

Y0,` = 1 +

∫
(0,`)

ds0 rs0 Ys0,` +

∫
(0,`)

ds0

∫
(s0,`)

ds′1 rs0,s′1 Ys0,`. (5.22)

By the definition (5.7) of w(L) and the definition of integration over Lm,`
given below (5.8) (recall also that s′0 := s0), this can be rewritten as

Y0,` = 1 +

∫
L0,`

dL w(L) Ys′0,` +

∫
L1,`

dL rs′0,s′1 Ys′0,`. (5.23)

This establishes (5.21) when n = 1 as the final term is R1.
We now prove (5.21) holds for n ≥ 1 by induction, using (5.21) as the

inductive hypothesis. By Lemma 5.5 with (u, v) replaced by (s′n−1, s
′
n),

Ys′n−1,`
= Ys′n−1,s

′
n
Ys′n,`

+

∫
(s′n−1,s

′
n)

ds+

∫
(s′n,`)

ds′+ rs+,s′+ Ys′n−1,s
′
+

Ys′n,`
Ys′n,s′+

. (5.24)
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We insert (5.24) into the definition (5.20) of Rn and use the definition (5.7)
of w(L) for the contribution from the first term Ys′n−1,s

′
n
Ys′n,`:

Rn =

∫
Ln,`

dL w(L)Ys′n,` +

(∫
Ln,`

dL r(L) P (L)

×
∫

(s′n−1,s
′
n)

ds+

∫
(s′n,`)

ds′+ rs+,s′+
Ys′n−1,s

′
+

Ys′n−1,s
′
n

Ys′n,`
Ys′n,s′+

)
. (5.25)

Renaming s+, s
′
+ as sn, s

′
n+1 and combining the integrals in the second term

into an integral over Ln+1,` yields

Rn =

∫
Ln,`

dL w(L) Ys′n,` +

∫
Ln+1,`

dL r(L) P (L)
Ys′n,`
Ys′n,s′n+1

(5.26)

For the second term on the right of (5.25), rs+,s′+ := rsn,s′n+1
became part of

r(L) and the ratio of Y ’s became part of P (L) when the range of integration
became Ln+1,`. By the definition (5.20) of Rn+1, this is

Rn =

∫
Ln,`

dL w(L) Ys′n,` +Rn+1. (5.27)

Inserting (5.27) into the inductive hypothesis completes the proof. �

Proof of Theorem 5.2. We justify taking the n→∞ limit of Lemma 5.6.
The factors Ys,t under the integrals in (5.21) are bounded above and below

because they are strictly positive and continuous functions on the compact
domain D`. Together with the assumption that rs,t is uniformly bounded this
proves that there is a constant C = C(`) such that

∣∣w(L)Ys′n,`
∣∣ ≤ Cn+1 for

L ∈ Ln,` and n ≥ 1, where w was defined in (5.7). Similarly the integrand
in Rn is bounded by Cn+1 for L ∈ Ln,`. Because Ys,t is bounded above and
below we also have that

∣∣w(L)Ys′0,`
∣∣ is bounded by a constant C ′ = C ′(`)

when L ∈ L0,`.
The Lebesgue measure of Ln,` is the Lebesgue measure of all 2n-tuples

of ordered points in (0, `), which is 1
(2n)!

`2n. Therefore |Rn| ≤ Cn+1 1
(2n)!

`2n

and the mth term in the sum over m in (5.21) is bounded by Cm+1 1
(2m)!

`2m.

Therefore the series in the right hand side of (5.9) is absolutely convergent
and equals Y0,` as claimed because limn→∞Rn = 0 in (5.21). �
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6 The lace expansion in finite volume

In this section we continue with step one of Section 4.1. The main result
is Proposition 6.2, which provides a finite-volume version of (4.5) as desired
for step one. This proposition involves a function Π(Λ)(x, y), and the formula
(6.3) for Π(Λ)(x, y) is called a lace expansion for reasons to be explained
following Proposition 7.4. We begin by introducing some further definitions
and assumptions.

Given Z(Λ) : [0,∞)Λ → (0,∞), u 7→ Z(Λ)
u , define a function Y : D → R by

Ys,t = Y (Λ)

s,t :=

(
Z(Λ)
·

Z(Λ)

0

)
◦ τ (Λ)

[s,t] =
1

Z(Λ)

0

Z(Λ)

τ
(Λ)
[s,t]

. (6.1)

Recall (3.1) and note that Ys,t = Y
0,τ

(Λ)
[s,t]

. Y is random as it depends on the

local time τ , and henceforth we assume Y is of the form in (6.1). Let G(Λ)

be the Green’s function determined by (3.2) with this choice of Z(Λ). Recall
that the weight w(L) of a lace is defined in terms of Ys,t in (5.7). We write
w(Λ)(L) := w(L) for the weight that arises with the choice (6.1).

Let Lm(s) ⊂ Lm be the hypersurface defined by s′0 = s. For m ≥ 1 we
write

∫
Lm(s)

dL for integration with respect to Lebesgue measure on Lm(s).

Then, by (5.4), we have∫
Lm

dL =

∫
[0,∞)

ds

∫
Lm(s)

dL. (6.2)

For m = 0, since L0(s) consists of the single point s′0 = s we let dL in the
inner integral denote a unit Dirac mass at s.

In the following assumptions, and hereafter, we write Z in place of Z(Λ)

when Λ is contextually clear.

Assumptions 6.1. For all a ∈ Λ,

(Z1) t 7→ Zt is strictly positive and continuous on [0,∞)Λ.

(Z2) t 7→ Zt is C2 on [0,∞)Λ.

(G0)
∫

[0,∞)
d` Ea

[
Y (Λ)

0,`

]
<∞.

(F0)
∑

m≥0

∫
Lm(0)

dL Ea
[
|w(Λ)(L)|

]
<∞.
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In (Z2), C2 at the boundary means that the derivatives have continuous
extensions to the boundary. Lemma 6.3 below proves that Assumptions 6.1
are consistent, and this enables us to define a function Π(Λ) : Λ× Λ→ R by

Π(Λ)(x, y) =
∑
m≥0

∫
Lm(0)

dL Ex
[
w(Λ)(L)1{X(Λ)

s′m
=y}

]
. (6.3)

Proposition 6.2. Under Assumptions 6.1,

G(Λ)

0 (a, b) = S(Λ)(a, b) +
∑
x,y∈Λ

S(Λ)(a, x)Π(Λ)(x, y)G(Λ)

0 (y, b). (6.4)

The proof of this proposition occupies the rest of this section.

6.1 Derivatives of local time

For each x ∈ Λ, (2.5) defines a local time τ [s,s′],x that is absolutely continuous
in s for s ≤ s′ with s′ fixed, and similarly is absolutely continuous in s′ for
fixed s when s′ is restricted to a bounded interval. Note that

∂2τ[s,s′],x = ∂2

∫
[s,s′]

1{X(Λ)
r =x} dr = 1{X(Λ)

s′ =x}, (6.5)

∂1τ[s,s′],x = −1{X(Λ)
s =x}, (6.6)

∂2∂1τ[s,s′],x = ∂1∂2τ[s,s′],x = 0. (6.7)

The first equation holds a.e. in s′ for s ≤ s′. The derivative does not depend
on s, so it is absolutely continuous in s. By similar reasoning (6.6) holds a.e.
in s for s ≤ s′, and as a consequence (6.7) holds a.e. in {s ≤ s′}.

6.2 Proof of Proposition 6.2

Lemma 6.3. If Zt satisfies (Z1) and (Z2) then w(Λ)(L) is well-defined and
Y (Λ)

s,t defined by (6.1) satisfies the hypotheses of Theorem 5.2.

Proof. The hypothesis that Y (Λ)
s,s = 1 holds as τ [s,s] = 0. By (Z2) and the

compactness of [0, `]Λ the function Zt is Lipschitz in t. For each s, τ [s,t] is
absolutely continuous as a function of t when t is restricted to a bounded
interval, and vice-versa by Section 6.1. By Lemma 5.3 this implies that for
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each s, Zτ [s,t]
is absolutely continuous as a function of t when t is restricted to

a bounded interval and vice-versa. Combined with (Z1) this proves the first
of Assumptions 5.1. Furthermore, by the chain rule, the composition Zτ [s,t]

is differentiable in t at points (s, t) where τ [s,t] has this property. Therefore
for each s, Zτ [s,t]

is differentiable in t at all but a countable number of points
(recall that simple random walk takes only finitely many jumps in any finite
time interval), and hence is absolutely continuous in t, and vice-versa. This
verifies the second item of Assumptions 5.1, and an analogous argument
verifies the third item. The fourth follows by (Z2) and (6.7).

Lastly, we must prove that rs,t is a.e. bounded on D`. This follows by a
direct calculation, using that t 7→ Zt is C2 and strictly positive, (6.5)–(6.7),
and the compactness of [0, `]Λ. �

Proof of Proposition 6.2. We omit the superscript Λ on Green’s functions,
etc., since Λ is fixed. At two points in the proof we will use the Markov
property; the justifications for these applications are given in Appendix A.2.

By definition (3.2) and (6.1),

G0(a, b) =

∫
[0,∞)

d` Ea

[
Y0,`1{X`=b}

]
. (6.8)

Expanding Y0,` by Theorem 5.2 and using the definition (2.6) of S(a, b),

G0(a, b) = S(a, b) +

∫
[0,∞)

d` Ea

[∑
m≥0

∫
Lm,`

dL w(L) Ys′m,` 1{X`=b}

]
, (6.9)

where s′m is defined by the lace L as explained in (5.4). For convenience,
define Ua,b := G0(a, b)− S(a, b). Using (6.2) and (F0) we obtain

Ua,b =

∫
(0,∞)

ds
∑
m≥0

∫
Lm(s)

dL

∫
[s′m,∞)

d` Ea

[
w(L) Ys′m,` 1{X`=b}

]
. (6.10)

By a change of variable in the integral with respect to `, this is equal to∫
(0,∞)

ds
∑
m≥0

∫
Lm(s)

dL

∫
[0,∞)

d` Ea

[
w(L) Ys′m,s′m+` 1{Xs′m+`=b}

]
. (6.11)

For ` > 0, let h(`, y, b) := Ey
[
Y0,` 1{X`=b}

]
. By conditioning on Fs′m in the

last expectation, using w(L) ∈ Fs′m , and applying the Markov property to
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Ea
[
Ys′m,s′m+` 1{Xs′m+`=b}

∣∣Fs′m],
Ua,b =

∫
(0,∞)

ds
∑
m≥0

∫
Lm(s)

dL

∫
[0,∞)

d` Ea

[
w(L) h(`,Xs′m , b)

]
. (6.12)

By (F0) the right-hand side converges absolutely and likewise for the follow-
ing equations. We bring the integral with respect to ` inside the expectation
and rewrite

∫
[0,∞)

d` h(`,Xs′m , b) using the definition of G0(a, b):

Ua,b =

∫
(0,∞)

ds
∑
m≥0

∫
Lm(s)

dL Ea

[
w(L) G0(Xs′m , b)

]
. (6.13)

By changing variables in the integral over Lm(s) so that it becomes an integral
over Lm(0) we rewrite this as

Ua,b =

∫
(0,∞)

ds
∑
m≥0

∫
Lm(0)

dL Ea

[
w(L+ s) G0(Xs′m+s, b)

]
, (6.14)

where for L ∈ Lm(0), L + s is defined to be the lace in Lm(s) obtained
from L by adding s to each si, s

′
i. For L ∈ Lm(0) define f(x, b, L) :=

Ex

[
w(L) G0(Xs′m , b)

]
. By conditioning on Fs inside the expectation in

(6.14) and applying the Markov property to Ea

[
w(L+ s) G0(Xs′m+s, b)

∣∣Fs]
we obtain

Ua,b =

∫
(0,∞)

ds
∑
m≥0

∫
Lm(0)

dL Ea
[
f(Xs, b, L)

]
. (6.15)

The expectation is equal to∑
x,y∈Λ

Ea

[
EXs

[
w(L)G0(Xs′m , b)1{Xs′m

=y}
]
1{Xs=x}

]
(6.16)

=
∑
x,y∈Λ

G0(y, b)Ea
[
1{Xs=x}

]
Ex[w(L)1{Xs′m

=y}], (6.17)

where we have used the fact that the sums over x, y ∈ Λ are finite to take
them outside the expectation in the first line. Recalling the definition (6.3)
we see that (6.15) can be written as

Ua,b =

∫
(0,∞)

ds
∑
x,y∈Λ

G0(y, b)Ea
[
1{Xs=x}

]
Π(x, y). (6.18)
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By the definitions of S(x, y) and Ua,b this is the same as

G0(a, b) = S(a, b) +
∑
x,y∈Λ

S(a, x)Π(x, y)G0(y, b). �

7 The terms Π(Λ)
m of the lace expansion

Recall the definitions below (6.1) and define

Π(Λ)

m (x, y) :=

∫
Lm(0)

dL Ex

[
w(Λ)(L)1{X(Λ)

s′m
=y}

]
, m ≥ 0. (7.1)

Thus Π(Λ)
m is the mth term in the series (6.3) that defines Π(Λ)(x, y). This sec-

tion has two parts. The first computes formulas for the weights w(Λ), and the
second derives bounds on Π(Λ)

m for m ≥ 1. The main result is Proposition 7.4,
which bounds Π(Λ)

m in terms of G(Λ)

0 ; these bounds are used in implementing
step one of Section 4.1.

7.1 Formulas for weights

We compute formulas for Π(Λ)

0 and the factors r(Λ) that enter into w(Λ). Both
computations are applications of the chain rule to our choice (6.1) of Y
together with the formulas (6.5)–(6.7) for derivatives of the local time.

7.1.1 The term Π(Λ)

0

For x ∈ Λ define L(Λ)
x ∈ R by

L(Λ)

x := lim
t↓0

∂tx logZ(Λ)

t , (7.2)

where Z(Λ) is the function entering in the definition (6.1) of Y . The limit L(Λ)
x

exists and is finite by (Z1)-(Z2) and Lemma 6.3.

Lemma 7.1. For all finite Λ, Π(Λ)

0 (x, y) = L(Λ)
x 1{x=y}.

Proof. From (7.1),

Π(Λ)

0 (x, y) =

∫
L0(0)

dLEx

[
r(Λ)

s0
1{X(Λ)

s′0
=y}

]
. (7.3)
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By definition, dL for L ∈ L0(0) is a unit mass at s0 = 0, and by definition
s′0 = s0. Moreover, X (Λ)

0 = x under the measure Ex. Hence (7.3) becomes

Π(Λ)

0 (x, y) = 1{x=y}Ex
[
r(Λ)

0

]
(7.4)

By the definition (5.2) of r(Λ)

0 , (6.1), and ∂txZ
(Λ)

0 = 0,

r(Λ)

0 = − lim
s′↓0

∑
v∈Λ

∂tv logZ(Λ)

t

∣∣
t=τ

(Λ)

[0,s′]
∂1τ

(Λ)

[0,s′],v (7.5)

=
∑
v∈Λ

∂tv logZ(Λ)

t

∣∣∣
t=0

1{X(Λ)
0 =v}, a.s. (7.6)

In obtaining (7.6) we used (6.6) and the right-continuity of the random walk.
Since X (Λ)

0 = x a.s. under Ex, the lemma follows. �

7.1.2 The vertex weight r(Λ)

Recall from (5.2) that ru,v := −∂1∂2 logYu,v. Define, for x, y ∈ Λ and u < v,

r(Λ)

u,v(x, y) := −∂tx∂ty logZ(Λ)

t

∣∣
t=τ

(Λ)
[u,v]

. (7.7)

Lemma 7.2. For all finite Λ and all u < v,

r(Λ)

u,v =
∑
x,y∈Λ

r(Λ)

u,v(x, y)1{X(Λ)
u =x}1{X(Λ)

v =y}. (7.8)

Proof. This follows from a calculation similar to the proof of Lemma 7.1; we
omit the details. �

7.2 Bounds on Π(Λ)

m , m ≥ 1

Our bounds on Π(Λ)
m for m ≥ 1 will rely on two assumptions. Recall the

definition (7.7) of r(Λ)
u,v(x, y).

Assumptions 7.3.

(G1) For all t ∈ [0,∞)Λ, G(Λ)

t ≤ G(Λ)

0 .

(R0) There exists r̄(Λ) : Λ × Λ → R such that
∣∣r(Λ)
u,v(x, y)

∣∣ ≤ r̄(Λ)(x, y) for all
x, y ∈ Λ and 0 ≤ u < v <∞.
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x x1

x′1 x2

x′2
x3

x′3 x4

x′4
y

Figure 2: The upper bound on Π(Λ)

5 (x, y) from Proposition 7.4. All vertices
except x and y are summed over Λ. Lines connecting vertices represent functions:
wavy lines represent r̄(Λ) and straight lines represent G0.

Given vertices x and y in Λ, and m ≥ 1, define

Λ2m−2
x,y := {((xi, x′i))i=0,...,m |x0 = x′0 = x and xm = x′m = y}. (7.9)

Generic elements of Λ2m−2
x,y will be denoted by x = ((xi, x

′
i))i=0,...,m.

Proposition 7.4. Suppose (Z1)–(Z2), (G0), and Assumptions 7.3 hold. For
m ≥ 1 and x, y ∈ Λ

|Π(Λ)

m (x, y)| ≤
∑

x∈Λ2m−2
x,y

G(Λ)

0 (x, x1)r̄(Λ)(x, x′1)

×
m−1∏
j=1

G(Λ)

0 (xj, x
′
j)G

(Λ)

0 (x′j, xj+1)r̄(Λ)(xj, x
′
j+1). (7.10)

See Figure 2 for a diagrammatic representation of the upper bound, which
explains our use of the term lace expansion: the upper bound is of exactly
the form that occurs in discrete-time lace expansion analyses of self-avoiding
walk [8, 38]. In more detail, for the Edwards model, a computation (see
(11.1)) shows that we can choose r̄(Λ) to be a constant times 1{x=y}. This
amounts to shrinking the wavy edges in Figure 2 to points, and these are the
diagrams occurring in [8, 38].

The next two subsections prove Proposition 7.4. As Λ is fixed it will be
omitted from the notation.

7.2.1 A preparatory lemma

Recall the definition (6.1) of Ys,t and define

Ȳu,v(w) :=
Yu,w
Yu,v

, u ≤ v ≤ w. (7.11)
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By the definitions (5.7) and (5.8) of w(L) and P (L) for L ∈ Lm with m ≥ 1,

w(L) = r(L)P (L),

P (L) =
m−2∏
i=−1

Ȳs′i,s′i+1
(s′i+2), s′−1 := s′0.

(7.12)

The term Ȳs′−1,s
′
0
(s′1) in the product is the factor Ys′0,s′1 in (5.8) (recall that

Ys′0,s′0 = 1). For k = 1, 2 define P−k(L) by replacing the upper limit m− 2 in
(7.12) by m− 2− k. By convention empty products are defined to be one.

When we use the next lemma it will help to remember that on the left-
hand side u3 is the time that appears in the σ-algebra and lower limit of
integration, while u1 and u2 are the subscript parameters in Ȳ .

Lemma 7.5. Let 0 ≤ u1 ≤ u2 ≤ u3, and let H be Fu3-measurable. Then
almost surely∫

[u3,∞)

d`Ex

[
H Ȳu1,u2(`)1{X`=y}

∣∣∣Fu3

]
= H Ȳu1,u2(u3)Gτ [u1,u3]

(Xu3 , y)

(7.13)

Proof. By the definition (7.11) of Ȳu1,u2(u3)

Ȳu1,u2(`) =
Yu1,`

Yu1,u2

=
Yu1,u3

Yu1,u2

Yu1,`

Yu1,u3

= Ȳu1,u2(u3)Ȳu1,u3(`). (7.14)

Insert (7.14) into the left-hand side of (7.13). After taking the Fu3-measurable
factor H Ȳu1,u2(u3) outside of the conditional expectation and integration
what remains is∫

[u3,∞)

d`Ea
[
Ȳu1,u3(`)1{X`=y}

∣∣Fu3

]
= Gτ [u1,u3]

(Xu3 , y) a.s., (7.15)

by the Markov property as stated in Lemma A.2. �

7.2.2 Proof of Proposition 7.4

Before giving the proof of Proposition 7.4, we recall the following consequence
of the Fubini–Tonelli theorem that will be used in the proof. If Xu is a real-
valued stochastic process satisfying E[

∫
[a,b]

du |Xu|] =
∫

[a,b]
duE[|Xu|] < ∞,

then integration and conditional expectation can be interchanged:∫
[a,b]

duE [Xu | G] = E

[∫
[a,b]

duXu | G
]
, a.s. (7.16)
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Proof of Proposition 7.4. Let L ∈ Lm(0). Given a sequence x ∈ Λ2m−2
x,y as in

(7.9) and a time u ∈ [0,∞) define the indicator function

IL,x,u :=
∏
sj≤u

1{Xsj =xj}
∏

s′j+1≤u

1{Xs′
j+1

=x′j+1} (7.17)

of the event that the path X is at the points (xi, x
′
i+1) at the times (si, s

′
i+1)

in L = ((si, s
′
i+1))i=0,...,m−1. See Figures 1 and 2 and think of the solid lines

in the latter figure as a representation of paths X with X0 = x, Xs1 = x1,
Xs′1

= x′1, etc. For y ∈ Λ we have

1{X0=x}1{Xs′m=y} =
∑

x∈Λ2m−2
x,y

IL,x,s′m (7.18)

since X cannot be at the absorbing state ∗ at times earlier than s′m on the
event {Xs′m = y}. We have also used that {X0 = x} = {Xs0 = x} since
L ∈ Lm(0). Define

Γm,x :=

∫
Lm(0)

dLEx

[
IL,x,s′m P (L)

]
. (7.19)

Since 1{X0=x} = 1 a.s. under Ex, we can insert (7.18) into the definition (7.1)
of Πm to obtain

|Πm(x, y)| =
∣∣∣ ∑
x∈Λ2m−2

x,y

∫
Lm(0)

dLEx

[
IL,x,s′m r(L)P (L)

]∣∣∣ (7.20)

≤
∑

x∈Λ2m−2
x,y

m−1∏
j=0

r̄(xj, x
′
j+1)Γm,x, (7.21)

where we have used the triangle inequality and (R0) to bound the vertex
functions in r(L), and P (L) > 0 to remove absolute values. This reduces
Proposition 7.4 to proving

Γm,x ≤ G0(x0, x1)
m−1∏
j=1

G0(xj, x
′
j)G0(x′j, xj+1), (7.22)

for m ≥ 1 and x ∈ Λ2m−2
x,y , which we will do by induction on m. The base

case m = 1 follows by noting that IL,x,s′1 = 1{Xs′1
=y} under Ex and recalling

that
∫
L1(0)

dL =
∫∞

0
ds′1, so Γ1,x = G0(x, y).
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Suppose (7.22) holds when m = n for some n ≥ 1. For L ∈ Ln+1(0) the
measure dL factorizes as dL′ ds′n ds

′
n+1, where dL′ is Lebesgue measure on

L′n(0) = {(s1, s
′
1, s2, . . . , sn) | s1 < s′1 < · · · < sn} (7.23)

and ds′n ds
′
n+1 is Lebesgue measure on the set of (s′n, s

′
n+1) such that sn <

s′n < s′n+1. Rewriting Γn+1,x using this factorization yields

Γn+1,x =

∫
L′n(0)

dL′
∫

[sn,∞)

ds′n

∫
[s′n,∞)

ds′n+1Ex

[
IL,x,s′n+1

P (L)
]
. (7.24)

The induction step involves estimating the integrals over s′n+1 and s′n by
Lemma 7.5 and (G1). To bound the s′n+1 integral note the range of inte-
gration starts at s′n and accordingly insert a conditional expectation with
respect to Fs′n under the expectation Ex. Bringing the s′n+1 integral inside
the expectation yields

Γn+1,x =

∫
L′n(0)

dL′
∫

[sn,∞)

ds′nEx

[
JL,x,s′n

]
, where (7.25)

JL,x,s′n :=

∫
[s′n,∞)

ds′n+1Ex

[
IL,x,s′n+1

P (L)
∣∣∣Fs′n]. (7.26)

Recall that P−1(L) was defined below (7.12), and note that

IL,x,s′n+1
= IL,x,s′n1{Xs′n+1

=x′n+1}, P (L) = P−1(L)Ȳs′n−1,s
′
n
(sn+1). (7.27)

We insert these identities into JL,x,s′n and apply Lemma 7.5 with (u1, u2, u3) =
(s′n−1, s

′
n, s
′
n) and H = IL,x,s′n P−1(L) ≥ 0. The result is, after using (G1),

JL,x,s′n ≤ IL,x,s′n P−1(L)G0(x′n, x
′
n+1) (7.28)

because Ȳs′n−1,s
′
n
(s′n) = 1. Hence by (7.25) and that x′n+1 = xn+1 by (7.9),

Γn+1,x ≤
∫
L′n(0)

dL′
∫

[sn,∞)

ds′nEx

[
IL,x,s′n P−1(L)

]
G0(x′n, xn+1). (7.29)

For the s′n integral in (7.29) the procedure is similar so we will be brief.
Insert a conditional expectation with respect to Fsn under the expectation
in (7.29), bring the integral over s′n inside Ex, and then insert

IL,x,s′n = IL,x,sn 1{Xs′n
=x′n}, P−1(L) = P−2(L)Ȳs′n−2,s

′
n−1

(s′n). (7.30)
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We apply Lemma 7.5 with (u1, u2, u3) = (s′n−2, s
′
n−1, sn) and H = IL,x,sn ,

with the result, again after using (G1),

Γn+1,x ≤
∫
L′n(0)

dL′Ex

[
IL,x,sn P−2(L) Ȳs′n−2,s

′
n−1

(sn)
]

×G0(xn, x
′
n)G0(x′n, xn+1). (7.31)

By (7.23) the measure spaces (L′n(0),B(L′n(0)), dL′) and (Ln(0),B(Ln(0)), dL)
are the same. Using this identification and changing the integration variable
sn to s′n in (7.31) allows P−2(L) Ȳs′n−2,s

′
n−1

(sn) to be rewritten as P (L) for
L ∈ Ln(0) since s′n is the final time in such a lace. The result is

Γn+1,x ≤
(∫
Ln(0)

dLEx

[
IL,x,s′n P (L)

])
G0(xn, x

′
n)G0(x′n, xn+1). (7.32)

Replacing x in (7.32) with x′ := (xi, x
′
i)i=0,...,n with x′n := xn shows the quan-

tity in brackets is Γm,x with m = n. Applying the inductive hypothesis (7.22)
to this term completes the proof. �

8 Preparation for the infinite volume limit

This section continues with step one of Section 4.1. The main result is
Corollary 8.6, which is a bound on Ψ(Λ), which is the finite volume version of
the term Ψ in (4.5). A crucial aspect of the bound given by Corollary 8.6 is
that it is uniform in Λ. The bound relies on Assumptions 8.4, which play a
continuing role in the remainder of the paper.

8.1 Convolution estimates

Recall that |||x||| = max{|x| , 1}. The next lemma says that when the sum
over w ∈ Zd is sufficiently convergent there is a bound as if w = 0.

Lemma 8.1 (Equation (4.17) of [21]). Let d ≥ 5, u, v ∈ Zd. There exists a
C > 0 such that∑

w∈Zd

|||w|||4−2d|||w − v|||2−d|||w − u|||2−d ≤ C|||v|||2−d|||u|||2−d.

The next estimate says the convolution of two functions decays according
to whichever has the weaker decay, provided at least one of them is integrable.
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v

u a

b y

≤ C

v

u

y

Figure 3: A diagrammatic depiction of Lemma 8.3. Solid lines represents factors
|||x2 − x1|||2−d. The vertices u, v, y are fixed, but a and b are summed over Zd.

Lemma 8.2 (Proposition 1.7(i) of [21]). Let f, g : Zd → R be such that
|f(x)| ≤ |||x|||−a, |g(x)| ≤ |||x|||−b, a ≥ b > 0. There exists a C > 0 such that

|(f ∗ g)(x)| ≤

{
C|||x|||−b, a > d,

C|||x|||d−(a+b), a < d and a+ b > d.

Figure 3 gives a diagrammatic representation of the next lemma.

Lemma 8.3. Fix u, v, y ∈ Zd, d ≥ 5. There exists a C > 0 such that∑
a,b∈Zd

|||u− a|||2−d|||y − a|||4−2d|||b− a|||2−d|||v − b|||4−2d|||y − b|||2−d (8.1)

≤ C|||y − u|||2−d|||y − v|||4−2d.

Proof. Lemma 8.1 can be applied to the sum over a to upper bound the
left-hand side of (8.1) as if a = y, that is, by a constant C > 0 times

|||y − u|||2−d
∑
b∈Zd

|||y − b|||2−d|||v − b|||4−2d|||y − b|||2−d.

The sum over b is a convolution of two functions that decay at rate γ = 2d−4.
As γ exceeds d when d ≥ 5, Lemma 8.2 implies the claimed upper bound. �

8.2 Ψ(Λ) and uniform bounds on Ψ(Λ)

Assumptions 8.4. For all Λ ⊂ Zd finite,

(G2) For Λ′ ⊂ Λ and x, y ∈ Λ′, G(Λ′)
0 (x, y) ≤ G(Λ)

0 (x, y), and
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(R1) There exists η > 0 independent of Λ, such that for 0 ≤ u < v <∞∣∣r(Λ)

u,v(x, y)
∣∣ ≤ η(1{x=y} +G(Λ)

0 (x, y)2), x, y ∈ Λ. (8.2)

The assumption (R1) supersedes (R0) by stipulating a specific form for
the bound r̄(Λ) of (R0). This form is motivated by our applications, as will
become clear in Section 11. Note that (G2) implies G(∞)

0 := limΛ↑Zd G(Λ)

0

exists as a function taking values in [0,∞].
The propositions of this section will be made under the assumption that

G(∞)

0 satisfies a K-IRB, i.e., that

G(∞)

0 (x, y) ≤ KS(y − x), x, y ∈ Zd. (8.3)

The key aspect of the next proposition is that the bound is independent of
Λ and proportional to (cη)m.

Proposition 8.5. Suppose d ≥ 5, and that (Z1)–(Z2), (G1)–(G2), and (R1)
hold, and that a K-IRB (8.3) holds. Then there are constants c1, c2 > 0
depending only on d, J and K such that for each m ≥ 1

|Π(Λ)

m (x, y)| ≤ c1(c2η)m|||y − x|||−3(d−2). (8.4)

Proof. The basic input in our estimates is that by (G1) and (G2), G(Λ)

t (x, y) ≤
G(∞)

0 (x, y), so the K-IRB and (4.8) imply

G(Λ)

t (x, y) ≤ KC̃J |||y − x|||2−d, (8.5)

and hence, letting K1 = max{KC̃J , 1}, by (R1) and (8.5),∣∣r(Λ)

u,v(x, y)
∣∣ ≤ η(1{x=y} +K2

1)|||y − x|||4−2d. (8.6)

For u, u′, v, v′ ∈ Zd, define

A(Λ)(u, u′; v, v′) := G(Λ)

0 (u, u′)r̄(Λ)(u, v′)G(Λ)

0 (u′, v) =:

u

u′ v

v′

, (8.7)

where the right-hand side follows the diagrammatic notation of Figure 2.
Recall the notation x defined in (7.9), and note that (G2) combined with
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a K-IRB implies (G0) holds. Hence we can apply Proposition 7.4, and this
proposition can be rewritten as

|Π(Λ)

m (x, y)| ≤
∑

x∈Λ2m−2
x,y

G(Λ)

0 (x′0, x1)r̄(Λ)(x0, x
′
1)

m−1∏
j=1

A(Λ)(xj, x
′
j;xj+1, x

′
j+1).

(8.8)
To check this claim compare Figure 2 with

x0

x′0 x1

x′1

x1

x′1 x2

x′2

x2

x′2 x3

x′3

x3

x′3 x4

x′4

x4

x′4 x5

x′5
(8.9)

and recall that x0 = x′0 = x and xm = x′m = y and there is a sum over the
remaining xi, x

′
i.

Inserting the bounds (8.5) (with t = 0) and (8.6) into A(Λ)(u, u′; v, v′) we
obtain

A(Λ)(u, u′; v, v′) ≤ ηĀ(u, u′; v, v′), (8.10)

G(Λ)

0 (x′0, x1)r̄(x0, x
′
1) ≤ ηK−1

1 Ā(x0, x
′
0;x1, x

′
1), (8.11)

where

Ā(u, u′; v, v′) :=
K2

1(1 +K2
1)

|||u− u′|||d−2|||u− v′|||2d−4|||u′ − v|||d−2
. (8.12)

Inserting (8.10)–(8.11) into (8.8) yields

|Π(Λ)

m (x, y)| ≤ K−1
1 ηmUm(x, y) (8.13)

where

Um(x, y) :=
∑

x∈Zd(2m−2)
x,y

m−1∏
j=0

Ā(xj, x
′
j;xj+1, x

′
j+1). (8.14)

In obtaining (8.13) sums over vertices in Λ have been extended to sums over
Zd, which gives an upper bound as all terms are non-negative. To prove (8.4)
holds for m ≥ 1 it therefore suffices to establish the upper bound

Um(x, y) ≤ c1c
m
2 |||y − x|||

−3(d−2). (8.15)

37



We prove (8.15) with c1 = K2
1(1 +K2

1) and c2 = max{1, C(K1)} (where C is
a constant defined in (8.16) below) by induction. For m = 1 there is no sum
in (8.14), so the bound follows from x0 = x′0 = x, x1 = x′1 = y, and (8.12).

Suppose the upper bound has been established for some n − 1 ≥ 1. By
Lemma 8.3 there is a C = C(K1) > 0 such that for x1, x

′
1, x2, x

′
2 ∈ Zd,∑

u,v∈Zd

Ā(x1, x
′
1;u, v)Ā(u, v;x′2, x

′
2) ≤ CĀ(x1, x

′
1;x′2, x

′
2). (8.16)

For m = n using (8.16) to estimate the sum over xn−1, x
′
n−1 in the definition

of Un, and then using the induction hypotheses, implies

Un(x, y) =
∑

x∈Zd(2n−2)
x,y

n−1∏
j=0

Ā(xj, x
′
j;xj+1, x

′
j+1) (8.17)

≤ C
∑

x∈Zd(2n−4)
x,y

n−2∏
j=0

Ā(xj, x
′
j;xj+1, x

′
j+1) (8.18)

≤ c1c
n
2 |||y − x|||

−3(d−2),

where in the second line we have redefined xn−1 := xn and x′n−1 := x′n. The
final line follows by recalling that xn = x′n = y. �

Define Ψ(Λ), the finite-volume precursor to Ψ from Section 4.1, by

Ψ(Λ)(x, y) :=
∑
m≥1

Π(Λ)

m (x, y) = Π(Λ)(x, y)− Π(Λ)

0 (x, y). (8.19)

Summing (8.4) over m ≥ 1 immediately gives the following.

Corollary 8.6. Under the hypotheses of Proposition 8.5, if c2η < 1 then

|Ψ(Λ)(x, y)| ≤ c1c2η

1− c2η
|||y − x|||−3(d−2), x, y ∈ Zd. (8.20)

9 The lace expansion in infinite volume

The main result of this section is Proposition 9.9, which constructs Lg,ν and
Ψg,ν such that (4.5) holds. This completes a key part of step one of Sec-
tion 4.1. The proof uses Corollary 8.6 and the algebraic structure of Propo-
sition 6.2 to take the infinite volume limit of Proposition 6.2. In particular
we prove the existence of the infinite volume limit Π(∞) of Π(Λ).
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9.1 The infinite volume limit of G(Λ)

We begin by establishing some properties of G(Λ).

Lemma 9.1. The infinite volume limit G(∞)

0 (x, y) := limΛ↑Zd G(Λ)

0 (x, y) exists
in [0,∞] pointwise in x, y ∈ Zd, is translation invariant, and G(∞)

0 (x) :=
G(∞)

0 (0, x) is Zd-symmetric. If a K-IRB (8.3) holds, then G(∞)

0 (x) ∈ [0,∞).

Proof. By monotone convergence provided by (G2) the limit G(∞)

0 (a, b) :=
limΛ↑Zd G(Λ)

0 (a, b) exists for any choice of exhaustion Λn ↑ Zd. The limit is
independent of the limiting sequence: given two sequences Λn and Λ′n the
sequences can be interlaced (under inclusion) with one another.

This also implies G(∞)

0 (a, b) is translation invariant: the limit of G(Λ)

0 (a, b)
through Λn equals the limit of G(Λ)

0 (a′, b′) through (Λn + e), where a′ = a+ e,
b′ = b + e, and e a unit vector in Zd. Simultaneously, this latter limit is
the same as the limit of G(Λ)

0 (a′, b′) through (Λn). This proves translation
invariance. A similar argument shows G(∞)

0 (x) is Zd-symmetric.
If a K-IRB holds, then G(Λ)

0 (a, b) is bounded uniformly in Λ and a, b, and
hence G(∞)

0 cannot take the value ∞. �

Since G(Λ)

0 (x, y) is translation invariant, a K-IRB of the form (8.3) implies
G(Λ)

0 (x) satisfies a K-IRB of the form (4.4). Thus in the sequel there is no
ambiguity when we say G(Λ)

0 satisfies a K-IRB without further specification.

9.2 The infinite volume limit of Π(Λ)

In this section we prove the existence of the infinite volume limit of Π(Λ)

under the following assumption; recall the definition of L(Λ)
x from (7.2).

Assumptions 9.2.

(Z3) If a K-IRB holds, then L(Λ)
x is bounded uniformly in x and Λ, and the

limit L(∞)
x := limΛ↑Zd L(Λ)

x exists and is independent of x.

For A,B : Λ×Λ→ R we write AB(x, y) =
∑

u∈ΛA(x, u)B(u, y). Our first
lemma is the well-known algebraic fact that left and right inverses coincide
for algebraic structures with an associative product. We state it here in a
language convenient for our purposes.

Lemma 9.3. Let A,B,C : Zd × Zd → R, AB(x, y) = CA(x, y) = 1{x=y},
and suppose C(AB) = (CA)B. Then B = C.
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Proof. C = C(AB) = (CA)B = B. �

Lemma 9.4. Assume the hypotheses of Proposition 8.5 and (Z3). If η is
sufficiently small, then for x, y ∈ Zd

|Π(Λ)(x, y)| = O(|||y − x|||−3(d−2)), (9.1)

uniformly in x, y and Λ.

Proof. This is immediate from Corollary 8.6, Lemma 7.1, and (Z3). �

Lemma 9.5. Assume the hypotheses of Proposition 8.5 and (Z3) and that η
is sufficiently small. Then for any sequence of volumes Λn ↑ Zd there exists
a subsequence Λnk

such that Π(x, y) := limk→∞Π(Λnk
)(x, y) exists pointwise

in x, y ∈ Zd.
Proof. Extend the definition of Π(Λ) : Λ × Λ → R to Zd × Zd by letting
Π(Λ)(x, y) = 0 if x /∈ Λ or y /∈ Λ. By Lemma 9.4, |Π(Λ)(x, y)| isO(|||y − x|||−3(d−2))
uniformly in Λ. Thus for any x, y ∈ Zd and any increasing sequence of vol-
umes Λn ↑ Zd, there exists a subsequence Λnk(x,y) such that Π(Λnk(x,y))(x, y)
converges as k → ∞. By a diagonal argument we can refine this sequence
such that the limit exists for all x, y ∈ Zd. �

Lemma 9.6. Assume the hypotheses of Proposition 8.5 and (Z3) and that
η is sufficiently small. For a sequence Λn ↑ Zd for which Π(Λn) converges
pointwise to Π,

S(Λn)Π(Λn)G(Λn)

0 (x, y)→ SΠG(∞)

0 (x, y) x, y ∈ Zd, (9.2)

and the product on the right-hand side is absolutely convergent, so there is
no ambiguity in the order of the products.

Proof. By Lemma 9.4, Π(Λ)(x, y) is uniformly bounded above by a multiple

of U(x, y) := |||y − x|||−3(d−2). S(Λ) is bounded above by S, and by (G2) G(Λ)

0

is bounded above by G(∞)

0 .
Both S(x, y) and G(∞)

0 (x, y) are non-negative and bounded above by a
multiple of |||y − x|||−d+2. Hence the products SU(x, y) and UG(∞)

0 (x, y) are
both absolutely convergent by Lemma 8.2, and decay at least as fast as
a multiple of |||y − x|||−d+2. Applying Lemma 8.2 once more with d ≥ 5
shows SUG(∞)

0 (x, y) is given by an absolutely convergent double sum. These
applications of Lemma 8.2 to G(∞)

0 are valid by Lemma 9.1.
As Π(Λn) → Π pointwise by hypothesis, S(Λn) → S pointwise (see (2.9)),

and G(Λn)

0 → G(∞)

0 pointwise by Lemma 9.1, (9.2) follows by the dominated
convergence theorem. �
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Recall the definition of ∆(∞) from (2.1).

Lemma 9.7. Assume the hypotheses of Proposition 8.5 and (Z3), that η is
sufficiently small, and that Λn ↑ Zd such that Π(Λn) → Π pointwise. Then
−(∆(∞) + Π) is a two-sided inverse of G(∞)

0 .

Proof. By (6.4), Lemma 9.1 and Lemma 9.6,

G(∞)

0 = S + SΠG(∞)

0 . (9.3)

Multiplying (9.3) on the left by −∆(∞) and using (2.12) yields

− (∆(∞) + Π)G(∞)

0 (x, y) = 1{x=y}. (9.4)

In applying (2.12) we have used that ∆(∞)(SΠG(∞)

0 ) = (∆(∞)S)(ΠG(∞)

0 ), which
holds as ∆(∞)(x, ·) is finite range by (J4).

Letting At denote the transpose of a matrix A, note that

− 1{x=y} = (G(∞)

0 )t(∆(∞) + Π)t(x, y) = G(∞)

0 (∆(∞) + Π)t(x, y), (9.5)

as (G(∞)

0 )t = G(∞)

0 by Lemma 9.1. Note Π(x, y) = O(|||y − x|||−3(d−2)), as Π is
a pointwise limit of functions satisfying this uniform bound by Lemma 9.4.
Since ∆(∞)(x, ·) is finite-range by (J4), this implies (∆(∞)+Π)(x, y) isO(|||y − x|||−3(d−2)),

and hence (∆(∞)+Π)t(x, y) is alsoO(|||y − x|||−3(d−2)). Thus (∆(∞)+Π)G(∞)

0 (∆(∞)+
Π)t is absolutely convergent and unambiguously defined by Lemma 8.2, so
Lemma 9.3 implies

∆(∞) + Π = (∆(∞) + Π)t. �

Proposition 9.8. Assume the hypotheses of Proposition 8.5 and (Z3) and
that η is sufficiently small. The limit Π(∞)(x, y) := limΛ↑Zd Π(Λ)(x, y) exists.
Moreover, it is translation invariant and Π(∞)(0, x) is Zd-symmetric.

Proof. Lemma 9.3 implies that if there are two-sided inverses A1, A2 of G(∞)

0

such that (A1G
(∞)

0 )A2 = A1(G(∞)

0 A2), then A1 = A2. By Lemma 9.7 and its
proof, if Λ ↑ Zd then any pair of subsequential limits Π(∞) and Π̃(∞) give rise
to left and right inverses A1 = −(∆(∞) + Π(∞)) and A2 = −(∆(∞) + Π̃(∞))
of G(∞)

0 satisfying the above conditions, so A1 = A2 and hence Π(∞) = Π̃(∞).
Since any sequence of volumes Λn ↑ Zd has a pointwise limit (by Lemma
9.5), and all the limit points coincide, this implies that limΛ↑Zd Π(Λ) exists.
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Let T ∈ Aut0(Zd); the matrix representation2 of T acts by conjugation,
so TG(∞)

0 T−1 = G(∞)

0 by Lemma 9.1. Thus

−1{x=y} = T (∆(∞) + Π(∞))G(∞)

0 T−1(x, y) = T (∆(∞) + Π(∞))T−1G(∞)

0 (x, y),

but since T (∆(∞) + Π(∞))T−1(x, y) = O(|||y − x|||−3(d−2)) as automorphisms
preserve |||·|||, Lemma 9.3 and Lemma 9.7 imply T (∆(∞) +Π(∞))T−1 = ∆(∞) +
Π(∞). �

9.3 The infinite-volume lace expansion equation

In the next proposition Ψ(∞)(x) := Ψ(∞)(0, x).

Proposition 9.9. Assume the hypotheses of Proposition 8.5 and (Z3) hold.
Then there exist α > 0, η0 > 0, L(∞) and Ψ(∞) such that for all η ∈ (0, η0),

(i) Ψ(∞)(x) is a Zd-symmetric function of x.

(ii) |Ψ(∞)(x)| ≤ αη|||x|||−3(d−2).

(iii) (Ĵ − L(∞))G(∞)

0 (x) = 1{x=0} + J+ ∗G(∞)

0 (x) + Ψ(∞) ∗G(∞)

0 (x).

(iv) Ĵ − L(∞) ≥ 1+O(η)
KS(0)

.

Proof. Item (i): Note Ψ(Λ)(x, y) = Π(Λ)(x, y)− Π(Λ)

0 (x, y). Both terms on the
right-hand side have translation invariant and Zd-symmetric infinite volume
limits by Proposition 9.8, Lemma 7.1 and (Z3) as desired.

Item (ii) follows from the finite-volume estimate given by Corollary 8.6.
Item (iii): Corollary 8.6 (and its proof) and (Z3) imply (F0) holds, and

hence by taking the limit as Λ ↑ Zd of Proposition 6.2 we obtain

G(∞)

0 (x) = S(x) + L(∞)S ∗G(∞)

0 (x) + S ∗G(∞)

0 ∗Ψ(∞)(x). (9.6)

Recall from (2.2) that J(x − y) = −Ĵ1{x=y} + J+(x − y). We apply −J to
(9.6) followed by −J ∗ S(x) = 1{x=0} from Lemma 2.4. By item (ii) we have
absolute convergence of all sums. By re-arranging we obtain (iii).

2If T is an automorphism, then the matrix representation of T (abusing notation we
also write this as T ), is given by T (x, y) := δT (x),y

42



Item (iv): We evaluate (iii) at x = 0, insert item (ii) using d ≥ 5 to obtain
|G(∞)

0 ∗Ψ(∞)(0)| = O(η) and insert J+ ∗G(∞)

0 (0) ≥ 0. The result is the desired
bound

Ĵ − L(∞) ≥ 1 +O(η)

G(∞)

0 (0)
≥ 1 +O(η)

KS(0)
, (9.7)

where the second inequality is implied by the K-IRB hypothesis. �

10 Final hypotheses and proof of asymptotic

behaviour

This section reduces the proof of Theorem 4.1, and in turn the proof of our
main Theorem 3.6, to verifying that the Edwards model and the n = 1, 2-
component g|ϕ|4 models satisfy Assumptions 10.1 and Assumptions 10.2
below. Assumptions 10.1 is the accumulation of all the assumptions from
Section 5 to this point on the interaction Z and the jump law J . Assump-
tions 10.2 constitute further hypotheses.

10.1 Final hypotheses

This subsection summarizes the hypotheses under which we will draw conclu-
sions about the asymptotic behaviour of the Green’s function. For each finite
Λ ⊂ Zd and two parameters g > 0 and ν ∈ R let Z(Λ)

g,ν : [0,∞)Λ → (0,∞),

i.e. Z(Λ)

g,ν,t ∈ (0,∞).

Assumptions 10.1. Assume J is such that (J1)–(J4) hold, and

(i) for each g > 0, ν ∈ R, (Z1), (Z2), (Z3), (G1)–(G2) hold for Z(Λ)
g,ν .

(ii) there exists c∗ > 0 such that for each g > 0, ν ∈ R, (R1) holds for Z(Λ)
g,ν

with η = c∗g.

Assumptions 10.1 and Lemma 9.1 imply that for each g > 0, ν ∈ R the
infinite-volume Green’s function Gg,ν := G(∞)

g,ν,0 exists. Define

χg(ν) :=
∑
x∈Zd

Gg,ν(x), (10.1)

which is called the susceptibility. The critical value νc(g) of ν is defined as

νc(g) := inf{ν ∈ R | χg(ν) <∞}. (10.2)
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Assumptions 10.2. Assume that g > 0, that νc(g) ≤ 0, and that

(G3) Gg,ν(x) is non-increasing in ν ∈ R. Moreover,

(a) For ν ∈ (νc(g),∞) and x ∈ Zd, Gg,ν(x) is continuous in ν.

(b) If Gg,ν ≤ 3S for some ν ∈ R, then {Gg,ν′(x)}x∈Zd is a uniformly
equicontinuous family of functions for ν ′ ∈ [ν,∞).

(G4) For ν ∈ (νc(g),∞), sup|x|≥rGg,ν(x)/S(x)→ 0 as r →∞.

(G5) Gg,g ≤ 2S.

(Z4) For each finite Λ and g > 0, Z(Λ)
g,ν is continuous in ν ∈ R.

(Z5) (a) For ν ∈ (νc(g),∞), Lg,ν is continuous.

(b) If Gg,ν ≤ 3S for some ν, then Lg,ν′ is continuous for ν ′ ∈ [ν,∞).
Moreover, if Lg,ν ≤ 0 and ν ∈ (νc(g), g], then Lg,ν = O(g).

(Z6) Lg,ν →∞ as ν → −∞.

Our assumptions are certainly not optimal. In particular, at the price of
more involved arguments, (J4) and (R1) could be relaxed.

10.2 Model independent lemmas

This section begins with the promised proof of Lemma 4.6. This lemma is
an extension of a lemma in [6], but the proof is nearly identical. Hence we
only describe where care must be taken in obtaining the extension.

Proof of Lemma 4.6. This is, mutatis mutandis, the proof of [6, Lemma 2].
Note this reference uses −∆ for what we denote by D, and that the formula
for µ and its range is stated in the body of the proof of the lemma.

The most significant step to check is [6, Lemma 4]. The necessary Edge-
worth expansion follows from [44, Theorem 2, (1.5b)], which applies by
Assumptions 2.1, and (J3) implies the norm ‖ · ‖ of [44] is | · | and that
U1 = U3 = 0. The factor U2(ω̃x) in [44, (1.5b)] can be computed and is
compatible with the bounds used in [6, Proof of Lemma 4]. �

Lemma 10.3. The conclusions of Lemma 4.4 and Lemma 4.5 hold for all
models satisfying Assumptions 10.1 and (Z5) in Assumptions 10.2.
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Proof. In this proof we drop the infinite volume superscripts on Ψ(∞)
g,ν etc. By

Assumptions 10.1 and Proposition 9.9 Ψg,ν(x) is Zd-symmetric,

|Ψg,ν(x)| ≤ gαc∗|||x|||−3(d−2), (10.3)

(4.5) holds and w(g, ν) := (Ĵ − Lg,ν)−1 is positive and bounded uniformly in
g for g small. In particular, all conclusions of Lemma 4.4 hold, as desired.
The objects Dg,ν , Gg,ν(x), DS̃

w(g,ν), Ψ̃g,ν(x) in the remainder of this proof are

defined in (4.10).
Proof of conclusions of Lemma 4.5, part (I). We sequentially prove the

three conclusions; the arguments are similar to part of the proof of [6,
Lemma 1]. Item (i) follows by the Zd -symmetry of Ψg,ν and the Zd-symmetry

of J from (J3), which implies DS̃
w(g,ν) is Zd-symmetric.

Item (ii). Sum (4.9) over x and interchange the sum over x with the sum
in the convolution in (4.9). Since ν > νc both sums are absolutely convergent,
so the interchange is legal. We obtain the desired item (ii):

∑
x∈Zd

Dg,ν(x) = −

(∑
x∈Zd

G̃g,ν(x)

)−1

< 0, (10.4)

where the inequality follows from Gg,ν(x) > 0 and w(g, ν) > 0.
Item (iii). By the triangle inequality, (10.3), the uniform bound on w(g, ν)

and Dg,ν(x) := DS̃
w(g,ν) + Ψ̃g,ν , it suffices to find a 0 ≤ z ≤ Ĵ−1 such that∣∣∣DS̃

w(g,ν)(x)−DS̃
z (x)

∣∣∣ ≤ Cg|||x|||−d−4. (10.5)

The left-hand side of (10.5) is |w(g, ν)− z| J+(x), so by (J4) it is enough
to show that it is possible to choose z such that

|w(g, ν)− z| ≤ cg (10.6)

for some c > 0. If w(g, ν) ≤ Ĵ−1, then we can take z = w(g, ν). Otherwise,

by the definition of DS̃
w(g,ν),

1− w(g, ν)Ĵ = −
∑
x∈Zd

DS̃
w(g,ν)(x),
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which implies, by the definition of Dg,ν and (4.10), that

0 ≥ 1− w(g, ν)Ĵ =
∑
x∈Zd

(−Dg,ν(x) + w(g, ν)Ψg,ν(x))

≥ −

∣∣∣∣∣∑
x∈Zd

w(g, ν)Ψg,ν(x)

∣∣∣∣∣ ≥ −Cw(g, ν)g. (10.7)

The first inequality follows from item (ii), and the second follows from (10.3).
The lower bound in (10.7) is equivalent to 1 ≥ w(g, ν)(Ĵ−Cg). Therefore

for g ≤ Ĵ/(2C) we have w(g, ν) ≤ 2/Ĵ and putting this back into the lower
bound of (10.7) gives

0 ≥ 1− w(g, ν)Ĵ ≥ −2(C/Ĵ)g (10.8)

which is equivalent to (10.6) with z = Ĵ−1 and c = 2(C/Ĵ2). The proof of
item (iii) and therefore of part (I) is complete.

Proof of conclusions of Lemma 4.5, part (II): We must show that Lg,ν =
O(g). By (Z5) this holds if Lg,ν ≤ 0. If Lg,ν ≥ 0 this follows by inserting

w(g, ν) = (Ĵ − Lg,ν)−1 into (10.8) and solving the inequality for Lg,ν . �

10.3 Model-dependent lemmas and proof of Theorem 4.1

In this section we show that the conclusions of the model-dependent lemmas
listed in Remark 4.12 hold under Assumptions 10.1 and 10.2.

Conclusion of Lemma 3.4. This is (G2) in Assumptions 10.1 �

Conclusion of Lemma 3.5. This is a consequence of (G3). �

Conclusion of Lemma 4.8. This is (G5), as ν = g is in the domain of F by
the conclusions of Lemma 4.10. �

Conclusion of Lemma 4.9. We follow [21, Proposition 2.2, (i)]. Let

F (ν) := sup
x∈Zd

Gg,ν(x)

S(x)
. (10.9)

We must show F (ν) is continuous for ν ∈ (νc, g]. By (G4), the supremum of
Gg,ν(x)/S(x) is obtained on a finite set of x. Since Gg,ν(x) is monotone in ν
by Lemma 3.5, and each term Gg,ν(x)/S(x) is continuous in ν by (G3) part
(a), continuity of (10.9) follows. �
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Conclusion of Lemma 4.10. This is part of Assumptions 10.2. �

Conclusion of Lemma 4.11. This is (Z6). �

By Remark 4.12 in Section 4.2 the conclusion (4.2) of Proposition 4.3 and
the conclusions of Theorem 4.1 hold for models satisfying Assumptions 10.1
and 10.2. Thus we have proved

Theorem 10.4. The conclusions of Theorem 4.1 hold for models satisfying
Assumptions 10.1 and 10.2. Namely, there is g0 = g0(d, J) > 0 such that if
0 < g < g0 then νc(g) is finite and

Gg,νc(x) ≤ 2S(x), x ∈ Zd. (10.10)

10.4 Proof of asymptotic behaviour

We begin with two lemmas. The first, Lemma 10.5, is an extension of a
lemma from [6], and hence we only describe where care must be taken in
obtaining this extension.

Lemma 10.5. Let D and H be as in Lemma 4.6. If
∑

x∈Zd D(x) < 0 then
H(x) ∈ `1(Zd).

Proof. In the proof of [6, Lemma 2], it is shown that

H = (−D ∗ Sµ)−1 ∗ Sµ,

where we have expressed the equation preceding [6, Equation (32)] in the
notation of the present paper. In [6] it is shown that the first term (−D∗Sµ)−1

is an element of the Banach algebra defined at the beginning of [6, Section 4],
i.e., the set of functions f on Zd that are `1 and have supx |f(x)||x|d finite.
Since

∑
x∈Zd D(x) < 0, the µ defined in Lemma 4.6 is subcritical for the

free Green’s function, and hence Sµ is an element of the Banach algebra as
well since it decays exponentially in |||x|||. This decay is a standard fact and
follows from, e.g., [28, Section 4.2]. Hence the convolution defining H is an
element of the Banach algebra with finite norm; in particular it is `1. �

Lemma 10.6. Consider a model satisfying Assumptions 10.1 and 10.2. If
d ≥ 5 and g is sufficiently small, then {Dg,ν(x)}x∈Zd is an equicontinuous
family of functions for ν ∈ [νc,∞). Moreover,

∑
x∈Zd Dg,ν(x) is continuous

in ν ∈ [νc,∞).
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Proof. To prove that Dg,ν(x) is defined and continuous in ν ∈ [νc,∞) we now
discuss the definitions in (4.10) for ν = νc as well as ν > νc. By Theorem 10.4
and (G3) the infrared bound Gg,νc ≤ 2S holds for ν ≥ νc. This implies the
hypotheses of Proposition 9.9 hold with η = c∗g for ν ≥ νc. By item (iv)

of Proposition 9.9 we conclude that Dg,ν := DS̃
w(g,ν) + Ψ̃g,ν exists for ν ≥ νc

as desired. This definition together with item (iii) of Proposition 9.9 asserts
that

Dg,ν ∗ G̃g,ν(x) = −1{x=0}. (10.11)

Moreover, by (J4), items (ii) and (iv) of Proposition 9.9, and the lower bound
on w(g, ν) following (10.3), there is a c1 > 0 such that for ν ≥ νc,

|Dg,ν(x)| ≤ c1|||x|||−d−4. (10.12)

For ν1, ν2 ∈ [νc,∞), (10.11) implies that

Dν2 ∗ (G̃ν1 − G̃ν2) ∗Dν1 + (Dν1 −Dν2) = 0, (10.13)

where we have omitted the subscript g. Note that the omission of the or-
der of the convolutions in this equation is valid as the iterated convolutions
are absolutely convergent by (10.12), the infrared bound Gg,νc ≤ 2S, and
Lemma 8.2. Therefore

|Dν2(x)−Dν1(x)| ≤ sup
y∈Zd

∣∣∣G̃ν1(y)− G̃ν2(y)
∣∣∣ ‖Dν1‖1‖Dν2‖1

≤ C sup
y∈Zd

∣∣∣G̃ν1(y)− G̃ν2(y)
∣∣∣ (10.14)

for some C > 0 by (10.12). By (Z5) part (b), w(g, ν) is continuous in ν for
ν ≥ νc. Therefore the functions G̃g,ν(x) are equicontinuous on [νc,∞) by
(G3) part (b). This proves that the functions Dg,ν(x) are equicontinuous on
ν ∈ [νc,∞) as desired.

The second claim, that ν 7→ Dg,ν is continuous in `1, follows from the
first. This is so because

∑
x∈Zd |Dg,ν(x)| is uniformly convergent by item (ii)

of Proposition 9.9 and (Z5) part (b). �

Lemma 10.7. Consider a model satisfying Assumptions 10.1 and 10.2. If
d ≥ 5 and g is sufficiently small then

∑
x∈Zd Dg,νc(x) = 0.

Proof. This follows from Lemmas 10.5 and 10.6 and the definition of νc. �
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Theorem 10.8. For models satisfying Assumptions 10.1 and 10.2, if d ≥ 5
there is a g0 = g0(d, J) such that if 0 < g < g0, then there are constants
C > 0, ε > 0 such that

Gg,νc(x) ∼ C

|||x|||d−2
+O

(
1

|||x|||d−2+ε

)
(10.15)

Proof. By Theorem 10.4, (Z5) part (b), and Lemma 4.5 part (ii), Lg,ν = O(g)

for ν ∈ [νc, g], and hence w(g, ν) = Ĵ−1(1 +O(g)). Hence it suffices to prove
(10.15) for G̃g,νc .

Let Qg,ν(x) := w(g, ν)
(
J+(x) + Ψg,ν(x)

)
, and note that

Dg,ν(x) = −1{x=0} +Qg,ν(x), (10.16)

by the definition of Dg,ν , see (4.10). By [21, Lemma 2.3] the Fourier transform
satisfies, for k ∈ [−π, π]d,

D̂g,ν(k) = D̂g,ν(0) +
|k|2

2d
∇2D̂g,ν(0) +O(|k|4 log |k|−1), (10.17)

and by the Lemma 4.5 part of Lemma 10.3, D̂g,ν(0) =
∑

x∈Zd Dg,ν(x) ≤
0. Note that −∇2D̂g,ν(0) is given by

∑
x∈Zd |x|2Dg,ν(x), which is finite by

item (ii) of Proposition 9.9 and positive by (J4), if g is small enough. Here we
have also used that w(g, ν) = Ĵ−1(1 +O(g)), as noted in the first paragraph.
Thus there is a b > 0 such that for all ν ≥ νc

1

−D̂g,ν(k)
≤ b

|k|2
. (10.18)

This implies

G̃g,νc(x) =

∫
[−π,π]d

dk

(2π)d
eik·x

1− Q̂g,νc(k)
. (10.19)

This equality is valid as (10.11) shows that the Fourier transform of G̃g,νc

is −1/D̂g,νc , and this latter function is in L2 ∩ L1. This implies that the
inverse Fourier transform of the `2 function G̃g,νc is given by the standard
integral definition in (10.19). A formal justification of this last claim follows
by approximating G̃g,νc through functions in `1 ∩ `2.

In what follows we focus on ν = νc, and write Q = Qg,νc and Q̂ = Q̂g,νc .
By [18, Theorem 1.4], (10.15) holds for G̃g,νc if there is a ρ > 0 such that
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(H1) Q̂(0) = 1,

(H2) |Q(x)| ≤ K1|||x|||−(d+2+ρ), some K1 > 0,

(H3)
∑

x∈Zd ‖x‖2+ρ
2 |Q(x)| ≤ K2, some K2 > 0,

(H4) there is a K0 > 0 such that Q̂(0)− Q̂(k) ≥ K0‖k‖2
2, k ∈ [−π, π]d.

By Theorem 10.4 Gg,νc satisfies an infrared bound. Hence (H2)–(H3) follow
from Proposition 9.9, (J4), and the assumption d ≥ 5. Furthermore (H1)
follows from

∑
x∈Zd Dg,νc = 0, i.e., Lemma 10.7.

Let Ĵ+ be the Fourier transform of J+. Using w(g, νc) > 0 and Ĵ = Ĵ+(0),
(H4) can be re-expressed as

Ĵ − Ĵ+(k)− (Ψ̂g,νc(0)− Ψ̂g,νc(k)) ≥ K0‖k‖2
2.

Thus to prove (H4) it suffices to show there is a c > 0, uniform in g, such
that

Ψ̂g,νc(0)− Ψ̂g,νc(k) ≥ −cg(Ĵ − Ĵ+(k)),

because Ĵ−Ĵ+(k) ≥ c′‖k‖2
2 for some c′ > 0; the desired bound then follows by

taking g small enough. The stated lower bound on Ĵ−Ĵ+(k) follows from [28,
Lemma 2.3.2], whose hypotheses are provided by (J4) and the irreducibility
assumption (J2). By the Zd-symmetry of Ψg,νc∣∣∣Ψ̂g,νc(0)− Ψ̂g,νc(k)

∣∣∣ =

∣∣∣∣∣∑
x∈Zd

Ψg,νc(x)(1− cos(k · x))

∣∣∣∣∣ .
Since 1− cos(k · x) ≤ c1(k · x)2, the claim follows from item (ii) of Proposi-
tion 9.9. �

11 Verification of hypotheses

In conjunction with Theorem 10.8, the next lemma completes the proof of
Theorem 3.6. By Section 10.3 it also completes the proofs of Lemmas that
were promised in Sections 3 and 4.

Lemma 11.1. The Edwards and n = 1, 2 g|ϕ|4 models defined in Sec-
tions 3.1 and 3.2 satisfy Assumptions 10.1 and 10.2.

The remainder of this section proves this lemma, first for the Edwards
model and then for the g|ϕ|4 model. In each section we also give the proof
of Proposition 4.2 that was promised in Section 4.
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11.1 Edwards model

Recall the Edwards model as defined in Definition 3.1. From this definition
it is clear that (Z1), (Z2), and (Z4) hold. By the definitions of L(Λ)

g,ν and

r(Λ)

s,s′(x, y) in (7.2) and (7.7), respectively, short calculations yield

L(Λ)

g,ν = −ν, r(Λ)

s,s′(x, y) = −g1{x=y}. (11.1)

and from (11.1) we immediately obtain (Z3), (Z5), (Z6), and (R1).
By (3.4) and (3.1) it follows that

Yt,s := exp

{
−g
∑
x∈Λ

(2txsx + s2
x)− ν

∑
x∈Λ

sx

}
(11.2)

which is decreasing in tx for each x, so (G1) holds. To verify (G2), note that
{X (Λ)

` = b} = {T (Λ) > `,X (∞)

` = b} and on this event τ (Λ)

[0,`],x = τ (∞)

[0,`],x. Hence

Y
0,τ

(Λ)
[0,`]

1{X(Λ)
` =b} = Y

0,τ
(∞)
[0,`]

1{X(∞)
` =b}1{T (Λ)>`}, (11.3)

which is non-negative and increasing in Λ since T (Λ) is.
(G3). Monotonicity in ν is clear from (3.4). We defer the proofs of (G3)

parts (a) and (b) until after Lemma 11.5 below, as they are very similar to
the detailed proof of Lemma 11.5.

(G4) is well-known in the discrete setting, see, e.g., [38, Equation 2.23].
The proof adapts mutatis mutandis to the continuous-time setting by using
a Simon inequality [36]. (G5) is clear since G(∞)

g,g ≤ S.
We complete the proof of Assumptions 10.2 by showing νc ≤ 0. This is

immediate from Definition 3.1: if ν > 0 the Green’s function is dominated
by the Green’s function of a simple random walk with non-zero killing.

Proof of Proposition 4.2 for Edwards model. This is immediate from Lg,νc =
O(g) by (Z5) part (b) and Lemma 4.5 part (ii) since Lg,ν = −ν. �

11.2 g|ϕ|4 theory with n = 1, 2

From Definition 3.2 it is clear that (Z1), (Z2) and (Z4) hold. By the def-
initions of L(Λ)

g,ν and r(Λ)

s,s′(x, y) in (7.2) and (7.7), respectively, calculations
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yield

L(Λ)

g,ν = −2ν − 4g
〈
|ϕx|2

〉(Λ)

0
(11.4)

r(Λ)

s,s′(x, y) = −4g

(
21{x=y} − 4g

〈
|ϕx|2 ; |ϕy|2

〉(Λ)

τ
(Λ)

[s,s′]

)
, (11.5)

where 〈A;B〉 := 〈AB〉−〈A〉 〈B〉. (Z3) follows by (11.4) and Lemma 9.1. The
continuity statements in (Z5) follow from (G3), which we will verify below.
(Z6) follows from (11.4). The assumption that Lg,ν = O(g) holds if a K-IRB
holds and ν ∈ (νc(g), g] follows from (11.4).

To verify the remaining hypotheses, the following correlation inequalities
will be useful. For A ⊂ Λ and i = 1, 2 let ϕA :=

∏
x∈A ϕ

[i]
x .

Proposition 11.2 (GKS II inequality). Consider the n-component g|ϕ|4-

model with n = 1, 2. For t ∈ [0,∞) and A,B ⊂ Λ,
〈
ϕA;ϕB

〉(Λ)

t
≥ 0.

Proof. See [14, Lemmas 11.3 and 11.4]. �

Lemma 11.3. For a, b ∈ Λ and t ∈ [0,∞)Λ

G(Λ)

g,ν,t(a, b) ≤ G(Λ)

g,ν,0(a, b). (11.6)

Moreover, G(Λ)

g,ν,0(a, b) is non-decreasing in Λ.

Proof. These statements follow from Proposition 11.2. �

Proposition 11.4 (Lebowitz Inequality). Consider the g|ϕ|4 model with n =
1, 2 components. Then for all Λ, x, y, v ∈ Λ and t ∈ [0,∞)Λ,

〈ϕx · ϕy;ϕv · ϕv〉(Λ)

t ≤ 2 〈ϕx · ϕv〉(Λ)

t 〈ϕy · ϕv〉
(Λ)

t .

Proof. For n = 1 this is the Lebowitz inequality [29], for n = 2 this is due
to Bricmont [7, Theorem 2.1]. See also [10, Remark below (5.7)] and let
F = ϕ1

y ϕv · ϕv. �

Both (G1) and (G2) follow immediately from Lemma 11.3. The property
(G4) is well-known and follows from the Simon–Lieb–Rivasseau inequality,
see [36, 30, 33], and (G5) follows from (3.8). The next lemma provides (G3).

Lemma 11.5.

1. For all Λ, G(Λ)
g,ν(x) is non-increasing as a function of ν ∈ (−∞,∞).

52



2. Gg,ν(x) is Lipschitz as a function of ν ∈ (νc,∞).

3. If d ≥ 5 and Gg,νc satisfies a K-IRB for some K then Gg,ν(x) is uni-
formly Lipschitz as a function of ν ∈ [νc,∞).

Proof. (1) By (G1), G(Λ)
g,ν(x) for g|ϕ|4 is non-increasing in ν because the

derivative with respect to ν is proportional to a constant times the derivative
with respect to t at t = 0 in the direction ty = t for all y ∈ Λ.

(2) For any finite volume Λ and any ν, by Proposition 11.4 and Lemma 11.3,〈
ϕ0 · ϕx; |ϕy|2

〉(Λ)

0
≤ 2 〈ϕ0 · ϕy〉(Λ)

0 〈ϕx · ϕy〉
(Λ)

0 ≤ 2Gg,ν(y)Gg,ν(y − x)

≤ G2
g,ν(y) +G2

g,ν(y − x), (11.7)

where the last inequality is the elementary inequality 2uv ≤ u2 + v2 for
u, v ∈ R. Since

− ∂

∂ν
G(Λ)

g,ν(x) =
∑
y∈Λ

〈
ϕ0 · ϕx;ϕ2

y

〉(Λ)

0
(11.8)

we have, for ν and a such that ν ≥ a ≥ νc,

| ∂
∂ν
G(Λ)

g,ν(x)| ≤ 2
∑
y∈Zd

G2
g,ν(y) ≤ ca, (11.9)

where ca = 2
∑

y∈Zd G2
g,a(y). The second inequality holds by part (1), and ca

is finite for a > νc because Gg,a(y) is summable by (10.2). For a > νc and
ν, ν ′ ∈ [a,∞), by writing G(Λ)

g,ν′(x) − G(Λ)
g,ν(x) as the integral of its derivative

we have |G(Λ)

g,ν′(x)−G(Λ)
g,ν(x)| ≤ ca|ν ′ − ν|. Taking Λ ↑ Zd by (G2), we obtain

|Gg,ν′(x)−Gg,ν(x)| ≤ ca|ν ′−ν| and therefore Gg,ν(x) is Lipschitz as claimed.
(3) We repeat part (2) with a = νc. Since d ≥ 5, cνc is finite by the

K-IRB, so Gg,ν(x) is Lipschitz on [νc,∞) with uniform constant cνc . �

Proof of (G3) parts (a) and (b) for the Edwards model. We first claim that
for any finite volume Λ and any ν ∈ R,

− d

dν
G(Λ)

g,ν(x) ≤ G(Λ)

g,ν ∗G(Λ)

g,ν(x) ≤ 1

2

∑
y∈Zd

((G(Λ)

g,ν(y− x))2 + (G(Λ)

g,ν(y))2), (11.10)

where the second inequality is the elementary 2ab ≤ a2 + b2. Granting the
claim, note that by (G2) and translation invariance this proves (11.9), and
the remainder of the proof is essentially identical to the proof above.
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We now prove the claimed first inequality in (11.10). By the definitions
(3.2) and (2.5), the left-hand side of (11.10) is∑

x′∈Λ

∫
[0,∞)

d`

∫
[0,`]

d`′ Ea

[
Y0,`1{X(Λ)

`′ =x′}1{X(Λ)
` =x}

]
. (11.11)

where Ys,t = Z(Λ)

τ
(Λ)
[s,t]

/Z(Λ)

0 as in (6.1), and, for the Edwards model, Z(Λ)

0 = 1.

We reverse the order of integration over `, `′ and insert Y0,` = Y0,`′Ȳ0,`′(`),
where Ȳ0,`′(`) =

(
Y0,`

/
Y0,`′

)
as in (7.11). By Lemma 7.5 with H = Y0,`′ and

(u1, u2, u3) = (0, `′, `′) the result is∑
x′∈Λ

∫
[0,∞)

d`′ Ea

[
Y0,`′G

(Λ)

τ
(Λ)

[0,`′]

(X (Λ)

`′ , x)1{X(Λ)

`′ =x′}

]
, (11.12)

By (G1) and (3.2) read from right to left we obtain the first inequality in
(11.10) as desired. �

For 0 < u < v define

r̄(Λ)

u,v(x, y) := 8g

[
1{x=y} + 4n2g

(
1

n
〈ϕx · ϕy〉(Λ)

τ
(Λ)
[u,v]

)2
]
,

r̄(Λ)(x, y) := r̄(Λ)

0,0(x, y). (11.13)

The next lemma, together with (3.9), verifies (R1).

Lemma 11.6. Suppose 0 < u < v, x, y ∈ Λ. Then∣∣r(Λ)

u,v(x, y)
∣∣ ≤ r̄(Λ)

u,v(x, y) ≤ r̄(Λ)(x, y). (11.14)

Proof. As Λ is fixed we will omit it from the notation. Applying the triangle
inequality to (11.5) and using Proposition 11.4,

ru,v(x, y) ≤ r̄u,v(x, y), (11.15)

where we have used Proposition 11.2 to remove the absolute values from the
correlation function. The remaining inequality r̄u,v(x, y) ≤ r̄(x, y) follows by
Proposition 11.2. �

We complete the proof of Assumptions 10.2 by showing νc ≤ 0. This
follows from Theorem 3.3, which shows the g|ϕ|4 Green’s function with ν > 0
is dominated by the Green’s function of a simple random walk with non-zero
killing ν.
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Proof of Proposition 4.2 for the g|ϕ|4 model. The same argument as for the
Edwards model shows Lg,νc isO(g). Since Lg,ν = −4g 〈ϕ2

x〉0−2ν, and 4g 〈ϕ2
x〉0

is O(g) at νc since an infrared bound holds, the claim follows. �
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A Random walk and the Markov property

A.1 Properties of continuous-time random walk

Proof of Lemma 2.3. We first prove that ∆(Λ) is invertible. Let f, h : Λ→ R.
The quadratic form associated to ∆(Λ) is given by

(f,−∆(Λ)h) :=
∑
x∈Λ

fx(−∆(Λ)h)x. (A.1)

For f : Λ → R define the extension by zero: f̃ = f on Λ and f̃x = 0 for
x /∈ Λ. We claim that

(f,−∆(Λ)h) =
1

2

∑
x,y∈Zd

J(x− y)(f̃x − f̃y)(h̃x − h̃y). (A.2)

By choosing h = f we obtain

(f,−∆(Λ)f) =
1

2

∑
x 6=y∈Zd

J(x− y)|f̃x − f̃y|2 > 0, f 6= 0. (A.3)

The strict inequality holds because f̃y = 0 for y /∈ Λ and for every point v ∈ Λ
there is a walk with transitions of nonzero rate that starts at v and reaches
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a point not in Λ. This positivity implies that the eigenvalues of −∆(Λ) are
strictly positive and therefore −∆(Λ) is invertible as desired. Thus it suffices
to prove the claim (A.2).

To prove (A.2) we start with the right-hand side which contains

(f̃x − f̃y)(h̃x − h̃y) = f̃x(h̃x − h̃y) + f̃y(h̃y − h̃x), (A.4)

so by the symmetry under exchanging x and y we can rewrite the right-hand
side of (A.2) as

1

2

∑
x,y∈Zd

J(x− y)(f̃x − f̃y)(h̃x − h̃y) =
∑
x,y∈Zd

J(x− y)f̃x(h̃x − h̃y)

=
∑
x,y∈Zd

J(x− y)f̃x(−h̃y). (A.5)

For the final equality we used the zero row sum property
∑

y J(x − y) = 0.
Recall from (2.1) that J(x − y) = ∆(∞)

x,y and that ∆(Λ)
x,y is the restriction of

∆(∞)
x,y to Λ. Therefore, in (A.5) we insert∑
y∈Zd

J(x− y)(−h̃y) =
∑
y∈Zd

(−∆(∞)

x,y )h̃y =
∑
y∈Λ

(−∆(∞)

x,y )hy = (−∆(Λ)h)x (A.6)

which proves (A.2) and hence completes the proof that ∆(Λ) is invertible.
Next we prove (2.7). By definition

S(Λ)(a, b) =

∫ ∞
0

dtPa(Xt = b) =

∫ ∞
0

dt (et∆∗)a,b =

∫ ∞
0

dt (et∆
(Λ)

)a,b. (A.7)

where the last equality holds since (∆k
∗)a,b = ((∆(Λ))k)a,b, and where for a

square matrix A, etA denotes the matrix exponential
∑∞

k=0
tk

k!
Ak. The right

hand side of (A.7) is (−∆(Λ))−1
a,b as desired: since −∆(Λ) is real symmetric

with positive eigenvalues, this follows by diagonalizing and integrating. �

Proof of Lemma 2.4. Recall the definition of S̃z(x) from (4.6), and let S̃(x) =
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S̃Ĵ−1(x). Let Tn denote the time of the nth jump of X (∞) and T0 = 0. Then

S(x) = E0

[ ∞∑
n=0

(Tn+1 − Tn)1{X(∞)
Tn

=x}

]
=
∞∑
n=0

E0[Tn+1 − Tn]E0

[
1{X(∞)

Tn
=x}

]
(A.8)

= Ĵ−1

∞∑
n=0

E0

[
1{X(∞)

Tn
=x}

]
= Ĵ−1S̃(x). (A.9)

It is an easy exercise (see, e.g. [28, Section 4.3]) that

S̃(x) = 1{x=0} +
∑
y

Ĵ−1J+(y)S̃(x− y), (A.10)

and by (A.9) this can be rewritten as

ĴS(x) = 1{x=0} +
∑
y

J+(y)S(x− y). (A.11)

Collecting terms gives the first claim. To verify (2.13), we use (A.8):

S(x) =
∞∑
n=0

E0[Tn+1 − Tn]P0(X (∞)

Tn
= x) =

∞∑
n=0

Ĵ−1(Ĵ−1J+)∗n(x). �

A.2 The Markov Property

For s ≥ 0 define the F -measurable map θs : Ω1 → Ω1 by θs((xt)t≥0) =
(xs+t)t≥0. The following is a standard formulation of the Markov property.

Proposition A.1. Let H : Ω1 → R be F-measurable and integrable with
respect to Ea for each a ∈ Zd, and let h(x) = Ex

[
H
]
. Then for every x ∈ Zd

and s ≥ 0,
Ex
[
H ◦ θs

∣∣Fs] = h(Xs), Px-a.s. (A.12)

A.2.1 The Markov property as used to obtain (6.12)

To justify this application of the Markov property, for ` > 0 and b ∈ Zd let
H`,b := Y0,` 1{X`=b} and h(`, y, b) := Ey [H`,b] . Then, by Proposition A.1,

Ea
[
Ys,s+` 1{Xs+`=b}

∣∣Fs] = h(`,Xs, b), Pa-a.s. (A.13)
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A.2.2 The Markov property as used to obtain (6.15)

To justify this application of the Markov property, for L ∈ Lm(0) let HL,b :=
w(L)G0(Xs′m , b), and f(x, b, L) := Ex [HL,b] . Then, by Proposition A.1,

Ea
[
w(L+ s) G0(Xs′m+s, b)

∣∣Fs] = f(Xs, b, L). (A.14)

A.2.3 The Markov property in the proof of Lemma 7.5

Lemma A.2. For s′ ≥ 0, b ∈ Λ, and any Borel set I ⊂ [0, s′],

G(Λ)

τ I
(Xs′ , b) = Ea

[ ∫
[s′,∞)

d`
Zτ I+τ [s′,`]

Zτ I

1{X`=b}
∣∣Fs′] Pa-a.s. (A.15)

The proof of Lemma A.2 requires two preparatory ingredients.

Lemma A.3. Let W : Ω → R be integrable with respect to P, A ∈ F with
P(A) > 0 and EA = E[·|A]. Then

1AE[W |F ] = 1AEA[W |F ], P-a.s. (A.16)

Proof. Let L and R denote the left- and right-hand sides, respectively. Then
both L and R are F -measurable. Let B ∈ F . Then E[1B(L−R)] = 0 since

E[1B1AEA[W |F ]] = EA[1B1AEA[W |F ]]P(A) (A.17)

= EA[1B1AW ]P(A) (A.18)

= E[1B1AW ] = E[1B1AE[W |F ]]. (A.19)

Taking B1 = {L > R} ∈ F and B2 = {L < R} ∈ F completes the proof. �

The following lemma is a standard result in the case that G = σ(W1),
see [12, Example 5.1.5]. Since we have been unable to find this particular
formulation in the literature, we give a proof below.

Lemma A.4. Fix a probability space (Ω,F ,P), and measurable spaces (S1,S1)
and (S2,S2). Let W1 : Ω → S1 and W2 : Ω → S2 be measurable, and let
f : S1 × S2 → R be Borel-measurable on the corresponding product space
(S1 × S2,S) and either bounded or non-negative and such that E[f(W1,W2)]
is finite. Define h : S1 → R by

h(w1) = E[f(w1,W2)]. (A.20)

If W2 is independent of G ⊂ F and W1 is G-measurable then

h(W1) = E[f(W1,W2)|G], a.s. (A.21)
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Proof. If f(w1, w2) = f1(w1)f2(w2), where f1 and f2 are bounded and B(R)-
measurable then h(w1) = f1(w1)E[f2(W2)]. Then h(W1) = f1(W1)E[f2(W2)]
(is G measurable) and by independence, almost surely

f1(W1)E[f2(W2)] = E[f1(W1)f2(W2)|G]. (A.22)

In particular the result holds for any f of the form f(w1, w2) = 1A1×A2 ≡
1{w1∈A1}1{w2∈A2}, where Ai ∈ Si. Therefore by linearity of expectation it also
holds for indicators of finite disjoint unions of events of the form A1 × A2.

Let A ⊂ S denote the collection of events for which the claim of the
lemma holds with f = 1A. Then A contains the field of finite disjoint unions
of events of the form A1×A2, and by dominated convergence A is a monotone
class. Thus by the Monotone Class Theorem A = S, and hence by linearity
the claim holds for all simple functions f .

For non-negative f such that f(W1,W2) is integrable we can take non-
negative simple functions fn increasing to f pointwise. Let hn(w1) = E[fn(w1,W2)].
Then hn(w1) ↑ E[f(w1,W2)] =: h(w1) pointwise by monotone convergence.
Next, by the result for simple functions we have for each n

hn(W1) = E[fn(W1,W2)|G]. (A.23)

The right hand side increases to E[f(W1,W2)|G] by monotone convergence
and the left hand side increases to h(W1) by the above pointwise convergence.
This proves the result for non-negative f such that f(W1,W2) is integrable.

The claim for bounded measurable f follows by considering the positive
and negative parts of f . �

Proof of Lemma A.2. Fix s′ and let X̃ = θs′(X). Then τ [s′,`] = τ̃ [0,`−s′],

where τ̃ is the local time of X̃, and 1{X`=b} = 1{X̃`−s′=b}
. Thus the right

hand side of (A.15) is equal to∑
x∈Λ

1{Xs′=x}Ea

[ ∫
[s′,∞)

d`
Zτ I+τ̃ [0,`−s′]

Zτ I

1{X̃`−s′=b}
∣∣Fs′]. (A.24)

Conditional on the event {Xs′ = x} = {X̃0 = x}, we have that X̃ is a random
walk starting at x that is independent of Fs′ . Let P̃x(·) := Pa(·|X̃0 = x), and
define fx : [0,∞)Λ × Ω1 → R by

fx(r, ỹ) :=

∫
[s′,∞)

d`
Zr+τ̃ [0,`−s′](ỹ)

Zr
1{ỹ`−s′=b}, (A.25)
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where τ̃ [0,`−s′](ỹ) denotes the vector of local times of the path ỹ in the interval

[0, ` − s′]. Then Ẽx[fx(τ I , X̃)] < ∞ (recall (3.3)), τ I is Fs′-measurable and
X̃ is independent of Fs′ under P̃x. Define hx : [0,∞)Λ → R by hx(r) :=
Ẽx[f(r, X̃)]. Then Lemma A.4 implies

hx(τ I) = Ẽx
[∫

[s′,∞)

d`
Zτ I+τ̃ [0,`−s′]

Zτ I

1{X̃`−s′=b}

∣∣∣Fs′] . (A.26)

By Lemma A.3, almost surely

1{Xs′=x}Ea
[ ∫

[s′,∞)

d`
Zτ I+τ̃ [0,`−s′]

Zτ I

1{X̃`−s′=b}
∣∣Fs′] (A.27)

= 1{Xs′=x}Ẽx
[∫

[s′,∞)

d`
Zτ I+τ̃ [0,`−s′]

Zτ I

1{X̃`−s′=b}

∣∣∣Fs′] . (A.28)

Thus the right hand side of (A.15) is almost surely equal to∑
x∈Λ

1{Xs′=x}hx(τ I). (A.29)

Finally, by the change of variables ˜̀= `− s′ and interchange of integrals we
have that G(Λ)

r (x, b) = hx(r), and the result follows. �
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