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Abstract

We consider random walks with transition probabilities depending on the number
of consecutive traversals n of the edge most recently traversed. Such walks may get
stuck on a single edge, or have every vertex recurrent or every vertex transient,
depending on the reinforcement function f that characterizes the model. We prove
recurrence/transience results when the walk does not get stuck on a single edge. We
also show that the diffusion constant need not be monotone in the reinforcement.
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1 Introduction

Random walks with edge reinforcement were introduced by Coppersmith and
Diaconis [3]. Many problems that are simple to state remain unsolved for
edge-reinforced random walks on Zd, however there are also many interesting
existing results in the general theory of reinforced random walks. There are
strong results for example in 1 dimension [4], for linear reinforcement on fi-
nite graphs [11] and for once-reinforcement on trees [5]. In the case of linear
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reinforcement there is also an interesting connection with random walk in a
random environment (see for example [16]). The most recent survey that we
know of is [17].

A nearest-neighbour senile reinforced random walk on Zd, {Sn}n≥0 begins at
the origin and initially steps to one of the 2d nearest-neighbours with equal
probability. Subsequent steps are defined in terms of a function f : N 7→
[−1,∞) such that if the current undirected edge {Sn−1, Sn} has been traversed
m consecutive times in the immediate past, then the probability of traversing
that edge in the next step is 1+f(m)

2d+f(m)
with the rest of the possible 2d−1 choices

being equally likely. The reinforcement of the current edge continues until a
new edge is traversed, at which point the reinforcement of the previous edge
is forgotten (i.e. the weight of that edge returns to its initial value). The spe-
cial case f ≡ C, which we might call once-reinforced senile random walk, or
memory-1 reinforced random walk, is among the class of walks considered by
Gillis [7]. In [7], the natural recurrence and transience results were obtained
for d = 1 and for d an even integer by generating function analysis. The corres-
ponding results for more general memory-1 models in all dimensions have since
been obtained (see for example [2] and references therein). Further extensions
to models with memory-m have also been studied extensively in the literature
(see for example [1,8]), particularly in 1 dimension. A crucial ingredient in
much of the literature is the fact that these models can be described in terms
of finite state Markov chains. For example, for memory-1 models the sequence
of increments of the walk is a Markov chain on the space of allowable steps.
This is not true for senile random walks in general, although it is implicit in
our analysis and explicit in [9] that the senile random walk observed at certain
stopping times does have this property.

At the completion of our work we were made aware of two papers [10,15] in
which a different model with a similar flavour was studied. Their model has
the property that the walk prefers (as defined by the reinforcement function)
to continue in the same direction, rather than traverse the same edge, and as
such we might call their model senile persistent random walk. Our methods are
somewhat different to those used in [10,15], and are much more complicated
in the case of the senile persistent random walk. On the other hand, due to
the importance of the parity (even/odd) of the number of times an edge is
traversed by the senile reinforced random walk, the methods used in [10,15]
are not immediately applicable to our model. It should be noted that both the
recurrence/transience criteria and the appropriate scaling limits of these two
models are not the same in general.

Let S be a finite subset of Zd such that o /∈ S, {y ∈ Zd : |y| = 1} ⊆ S and
x ∈ S ⇒ −x ∈ S. We say that there is an edge between x ∈ Zd and y ∈ Zd

and write x ∼ y if x − y ∈ S. Formally, a senile random walk (SeRWf,S)
is a sequence {Sn}n≥0 of Zd-valued random variables on a probability space
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(Ω,F ,Pf ) (with corresponding filtration {Fn = σ(S0, . . . , Sn)}n≥0) defined by:

• The walk begins at the origin of Zd, i.e. S0 = o, Pf -almost surely,
• Pf (S1 = x) = D(x), where D(x) = 1

|S|1{x∈S}.
• For n ∈ N, en = {Sn−1, Sn} is a random undirected edge (Fn-measurable)

and

mn = max{k ≥ 1 : en−l+1 = en for all 1 ≤ l ≤ k} (1.1)

is an N-valued (Fn-measurable) random variable.
• For n ∈ N and x ∈ S,

Pf (Sn+1 = Sn + x|Fn) =





1 + f(mn)

|S|+ f(mn)
, if {Sn, Sn + x} = en,

1

|S|+ f(mn)
, if {Sn, Sn + x} 6= en.

(1.2)

Examples of D satisfying the above definition include the nearest-neighbour
model, where S is the set of unit vectors in Zd and the spread-out model where
S is the closed ball in Zd of radius L for some L ≥ 1. Many of our results
remain valid for more general classes of D, however we at least require that
the distribution of the number of times in succession that the walk traverses
the first edge traversed is the same for each edge incident to the origin. This is
ensured by the uniformity and symmetry conditions. The additional assump-
tions on S enable us to avoid reducible cases such as where some vertices or
edges of Zd may not be reachable by the walk. For notational convenience we
often write P for Pf when there is no ambiguity.

If f ≡ 0 then the model is nothing but random walk on Zd with transition
kernel given by D. If in addition S is the set of unit vectors in Zd we arrive
at nearest-neighbour simple random walk.

Let Nx denote the number of times the walk Sn visits x. If P(Nx = ∞) = 1 for
all x we say that the walk is recurrent(I). If P(Nx = ∞) = 0 for all x we say
that the walk is transient(I). If E[Nx] = ∞ for every x then we say that the
walk is recurrent(II), and if E[Nx] < ∞ for every x then we say that the walk is
transient(II). For simple random walk (equivalently senile random walk with
f ≡ 0) the two characterisations of recurrence/transience are equivalent and
it is standard that simple random walk is recurrent for d ≤ 2 and transient
otherwise. For senile reinforced random walks the two notions of recurrence
need not be the same.

Let τ = sup{n ≥ 1 : Sm = o or S1 ∀ m ≤ n} denote the (random) number
of times that the walk traverses the first edge before leaving that edge for
the first time. Note that τ is not a stopping time (however τ + 1 = inf{n ≥
2 : Sn 6= Sn−2} is a stopping time). Intuitively if the overall effect of the
function f is one of positive reinforcement but such that the probability it
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gets stuck on the first edge it traverses is 0, then the walk should in some
sense be more recurrent than simple random walk. Similar intuition suggests
that if the overall effect of the function f is one of negative reinforcement,
the senile random walk should in some sense be more transient than simple
random walk.

By definition of τ we have for all n ≥ 1,

P(τ = n) =
n−1∏

l=1

1 + f(l)

|S|+ f(l)

|S| − 1

|S|+ f(n)
, P(τ ≥ n) =

n−1∏

l=1

1 + f(l)

|S|+ f(l)
, (1.3)

where an empty product is defined to be 1. Moreover the probability that
the senile random walk gets stuck on the first edge it traverses without ever
traversing another edge is

P(τ = ∞) =
∞∏

l=1

1 + f(l)

|S|+ f(l)
. (1.4)

When f(l) = −1 for some l, the walk cannot traverse the same edge more
than l times in succession (so does not get stuck), and the definition of the
function on integer values greater than l is irrelevant. If f(1) = −1 then the
walk never traverses the same edge on two consecutive steps, a model that is
sometimes called memory-2 self-avoiding walk. In particular for the nearest-
neighbour model when d = 1, there are only two possible paths for the walk,
and the path is determined by the first step.

Obviously if f ≥ g then Pf (τ ≥ n) ≥ Pg(τ ≥ n), and similarly the probability
of being stuck on an edge is monotone in the reinforcement function f .

2 Results

In this section we state the main results of this paper and briefly discuss some
interesting open problems. As a first step towards recurrence/transience type
results, the following proposition immediately implies that the senile random
walk visits either 0,2, or all vertices infinitely often.

Proposition 2.1 Let Ai be the event that the senile random walk traverses
exactly i edges infinitely often and let AZd be the event that every edge in the
edge set of Zd generated by S is traversed infinitely often. Then Pf (A0) +
Pf (A1) + Pf (AZd) = 1 and each is a 0-1 event. Furthermore, Pf (A1) = 1 if
and only if (1 + f(l))−1 is summable.

The proof of Proposition 2.1 is easily adapted to show that for any edge-
reinforced random walk (or any senile random walk) on Zd such that the
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weight attached to any edge is bounded i.e. supm f(m) < ∞, one must have
that every site is recurrent almost surely or no site is recurrent almost surely.
The last statement of Proposition 2.1 is consistent with the results of [12,13,18]
for the edge reinforced random walk.

Recall that SeRWf,S denotes senile random walk with reinforcement function
f and transition kernel uniformly distributed over S. In particular SeRW0,S
denotes ordinary random walk with this transition kernel. The following the-
orem, is one of the two main results of this paper.

Theorem 2.2 For f satisfying Pf (τ = ∞) = 0, but excluding the degenerate
case where |S| = 2 and f(1) = −1, we have the following:

(1) SeRWf,S is recurrent(I)/transient(I) if and only if SeRW0,S is recur-
rent(I)/transient(I).

(2) When Ef [τ ] < ∞, SeRWf,S is recurrent(II)/transient(II) if and only if
SeRW0,S is recurrent(II)/ transient(II).

(3) When Ef [τ ] = ∞, SeRWf,S is recurrent(II).

Our proof of Theorem 2.2 is via a time change of the process and ultimately
by comparison of the Green’s functions for SeRWf,S and SeRW0,S . We will
complete the proof in the beginning of Section 4.

The following Corollary is a simple consequence of Theorem 2.2 applied to
senile linearly reinforced random walk.

Corollary 2.3 The senile random walk with linear reinforcement of the form
f(m) = Cm is recurrent(I),(II) when d = 1, 2 and transient(I) when d > 2. It
is transient(II) for d > 2 if and only if C < |S| − 1.

Definition 2.4 The diffusion constant v = vf ≥ 0 is defined as

v = lim
n→∞

1

n
E[|Sn|2] = lim

n→∞
1

n

∑

x∈Zd

|x|2P(Sn = x), (2.1)

whenever this limit exists.

Note that when f ≡ 0 (simple random walk), Sn is a sum of independent
random variables with mean squared displacement σ2 =

∑
x |x|2D(x), and

thus v0 = σ2 (=1 for the nearest-neighbour model).

The second main result of the paper is the following Theorem.

Theorem 2.5 Suppose that there exists ε > 0 such that E[τ 1+ε] < ∞. Then
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the limit (2.1) exists, and is given by

v =
P(τ odd)

1− 2
|S|P(τ odd)

σ2

E[τ ]
. (2.2)

In the degenerate case where |S| = 2 and f(1) = −1 we have |Sn|2 = σ2n2, Pf -
almost surely, and (2.2) should be interpreted as ∞ = 1/0. It is easy to show
that for nearest-neighbour models and for any fixed reinforcement function f ,
if there exists some d such that E[τ 1+ε] < ∞ for some ε, then v = v(d) → 1
as d →∞. This holds for example when f(m) = Cm for any fixed C > 0.

Our proof of Theorem 2.5 is based on the formula for the Green’s function,
and a standard Tauberian theorem, whose application requires the (1 + ε)th
moment of τ to be finite. We expect that (2.2) holds for all f by a time-change
argument of similar flavour to what appears in Section 3.3. When E[τ ] = ∞,
the right-hand side of (2.2) is zero, which suggests that the walk is subdiffusive.
When P(τ = ∞) > 0, E[|Sn|2] is bounded uniformly in n.

The following corollary follows easily from Theorem 2.5 and implies that the
diffusion constant is not monotone in the reinforcement function f .

Corollary 2.6 For f for which there exists ε > 0 such that Ef [τ
1+ε] < ∞,

the diffusion constant is a decreasing function of x = f(j) for each odd j.
However for each even j there exist f, g with f(m) = g(m) for m 6= j and
f(j) < g(j) but vg > vf .

Indeed for each even j there are examples where f is strictly positive and
increasing yet an increase in f(j) results in a decrease of the relevant diffusion
constant.

Interestingly, when f(l) = l, special hypergeometric functions become relevant
and various well known properties of these functions enable a proof of the
following proposition.

Proposition 2.7 The diffusion constant v of the senile random walk with re-
inforcement f(l) = l satisfies 0 < v < σ2 when |S| > 2. For the 1-dimensional
nearest-neighbour model,

lim
n→∞

log n

n
E[|Sn|2] =

1− log 2

2 log 2− 1
. (2.3)

We expect that (2.3) holds with a different constant whenever f(l) = (|S|−1)l,
and that some other scaling is appropriate when the reinforcement becomes
stronger, depending on which moments of τ are finite. Note that when f(l) =
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(|S| − 1)l, since P(τ = n) = O(n−2) (see (3.10) below), it is easy to show that
E[τ(log(τ + 1))−2] < ∞ but E[τ(log(τ + 1))−1] = ∞.

3 Proofs of qualitative results

In this section we prove Proposition 2.1 which in particular shows that when
P(τ = ∞) = 0, SeRW is almost surely recurrent(I) or almost surely tran-
sient(I). Two further lemmas, introduced in this section will be used in the
proof of Theorem 2.2. Lemma 3.1 shows that recurrence(I)/transience(I) and
recurrence(II)/transience(II) are equivalent when E[τ ] < ∞. Lemma 3.2 shows
that provided P(τ = ∞) = 0, the quantity E[τ ] is irrelevant in determining
recurrence(I)/transience(I) of a senile random walk.

Lemma 3.1 If E[τ ] < ∞ then P(No = ∞) = 1 if and only if E[No] = ∞.

Lemma 3.2 For every f : N 7→ [−1,∞) such that Pf (τ = ∞) = 0, there
exists g : N 7→ [−1,∞) satisfying Eg[τ ] < ∞ such that SeRWf,S is recur-
rent(I)/transient(I) if and only if SeRWg,S is recurrent(I)/transient(I).

3.1 Proof of Proposition 2.1

The number of edges that the walk leaves before getting stuck is Geometric
with parameter P(τ = ∞), and thus P(A1) ∈ {0, 1} and is equal to 1 if and
only if P(τ = ∞) > 0.

If |S| = 2 and f(1) = −1 then trivially P(A0) = 1.

Therefore we may assume that P(τ < ∞) = 1 and |S| + f(1) > 1. Suppose
that a fixed edge {y, y′} ∈ Zd is traversed infinitely often (for which we write
{y, y′} i.o.) and fix {x, x′} ∈ Zd, x 6= y, y′. Since S contains the unit vectors,
there is a finite set of edges connecting x and y. Since the walk does not get
stuck on any edge P-almost surely, it leaves the edge {y, y′} infinitely often
and returns infinitely often, P-almost surely. In particular, there are infinitely
many times (not necessarily every time, e.g. consider the one dimensional
nearest-neighbour case) at which the walk leaves {y, y′} from (without loss
of generality) y with probability at least q > 0 (depending on |x − y|, |S|,
f(1)) of traversing the edge {x, x′} before returning. Note that in the nearest-
neighbour case in 1 dimension this does hold for exactly one of y or y′ (the
one nearest x) using the fact that f(1) > −1. Each time the walk leaves the
edge {y, y′} at y, the event that the walk traverses {x, x′} before the next
traversal of {y, y′} is independent of previous departures from {y, y′} at y.
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Thus, P-almost surely, {x, x′} is traversed infinitely often if {y, y′} is. Since
there are countably many edges we have that

P(AZd|{y, y′} i.o.) = 1, (3.1)

whenever P({y, y′} i.o.) > 0.

Now the number of times that the walk leaves the first edge traversed is
geometric with parameter p ∈ [0, 1], and therefore P({o, S1} i.o.) ∈ {0, 1}.
If P({o, S1} i.o.) = 1 then by (3.1) we must have P(AZd) = 1. Similarly if
P({o, S1} i.o.) = 0 then P(AZd) = 0 and (3.1) implies that P({y, y′} i.o.) = 0
for each {y, y′} and therefore that P(A0) = 1.

For the last claim of the Proposition, if any f(l) = −1 then P(A1) = 0.
Otherwise we may assume that f > −1. The product (1.4) converges to a
non-zero constant if and only if

∞∑

l=1

log

( |S|+ f(l)

1 + f(l)

)
< ∞. (3.2)

Now

|S| − 1

|S|+ f(l)
≤ log

( |S|+ f(l)

1 + f(l)

)
≤ |S| − 1

1 + f(l)
. (3.3)

Since f > −1, the lower bound is summable if and only if the upper bound is
summable, so that (3.2) is finite if and only if 1/(1 + f(i)) is summable. 2

3.2 Proof of Lemma 3.1

Fix f such that E[τ ] < ∞ (whence P(τ < ∞) = 1) and recall that No is the
number of times that the walk visits the origin. From Proposition 2.1 we have
that P(No = ∞) ∈ {0, 1}.

If P(No = ∞) = 1 then E[No] = ∞ holds trivially. Now suppose that E[No] =
∞, and let T1 = inf{n > 0 : Sn 6= o, Sn−1 6= o} denote the first time that
the walk traverses an edge not incident to the origin. Let τi be the random
number of consecutive traversals of the ith edge traversed. Then the τi are
independent, each with the same distribution as τ . Since

T1 − 1 ≡
∞∑

n=1

n∑

i=1

τi

n−1∏

j=1

1{τj even}1{τn odd} ≤ τ1 +
∞∑

n=2

n∑

i=1

τi

n−1∏

j=1
(j 6=i)

1{τj even}, (3.4)
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we have

E[T1]− 1 ≤E[τ ] +
∞∑

n=2

n∑

i=1

E[τi]
n−1∏

j=1
(j 6=i)

P(τj even)

=E[τ ] + E[τ ]
∞∑

n=2

nP(τ even)n−2, (3.5)

which is finite since E[τ ] < ∞ and f(1) < ∞ (so that P(τ even) < 1). In
particular T1 is almost surely finite.

Let σ0 = 0, and σ1 = inf{n > T1 : Sn = o} denote the first time after T1 that
the walk returns to the origin. We then define for i ≥ 2,

Ti = inf{n > σi−1 : Sn 6= o, Sn−1 6= o}, σi = inf{n > Ti : Sn = o}. (3.6)

As explained above, T1 is almost surely finite. This is also true of Ti − σi−1,
conditionally on {σi−1 < ∞}. In the degenerate case f(1) = −1 and |S| =
2 the claim of the Lemma holds trivially since N0 = 1, Pf -almost surely.
Otherwise P(σi < ∞) > 0 for every i, and an easy exercise in conditioning
shows that P(σi < ∞) = P(σ1 − T1 < ∞)i.

With probability one,

No ≤ T1 +
∞∑

i=2

(Ti − σi−1)1{σi−1<∞}. (3.7)

Therefore

E[No] ≤E[T1] +
∞∑

i=2

E
[
(Ti − σi−1)1{σi−1<∞}

]
(3.8)

=E[T1] +
∞∑

i=2

E
[
Ti − σi−1

∣∣∣{σi−1 < ∞}
]
P(σi−1 < ∞)

=E[T1] +
∞∑

i=2

E
[
T2 − σ1

∣∣∣{σ1 < ∞}
]
P(σ1 − T1 < ∞)i−1. (3.9)

It follows as in (3.5) (with minor modifications) that E[T2 − σ1|{σ1 < ∞}] <
∞. The left-hand side of (3.8) is infinite by assumption, which implies that
P(σ1 − T1 < ∞) = 1. Since this is true if and only if Pf (No = ∞) = 1, we
have the result. 2

3.3 Proof of Lemma 3.2

First observe that, since f is such that Pf (τ < ∞) = 1, the sequence of

edges {en}n≥1 ≡
{
{Sn−1, Sn}

}
n≥1

has the property that, almost surely, for
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every n0 there exists n1 ≥ n0 such that en1+1 6= en1 . Define a subsequence
of edges {enk

}k≥0 ⊆ {en}n≥0 by the following algorithm: Whenever an edge
e appears exactly 2m (resp., 2m − 1) times in succession in {en}n≥1, for any
m ≥ 1, only the first 2 (resp., 1) successive occurrences of this edge are listed
in the subsequence {enk

}k≥1. This sequence is almost surely well defined by
the previous observation, and depends only on the parity of the number of
consecutive traversals of each edge by the walk {Sn}n≥0.

The sequence {enk
}k≥1 defines a random walk {Rf

k}k≥0 by setting Rf
0 = 0 and

{Rf
k−1, R

f
k} = enk

. Since {Sn} spends an (i.i.d.) almost surely finite amount

of time traversing each edge before moving on, the walk {Rf
k} visits a vertex

infinitely often if and only if {Sn} does, and therefore by Proposition 2.1,
{Rf

k} is recurrent(I)/transient(I) if and only if {Sn} is (0-1 events). Now by
construction, and the fact that Pf (τ < ∞) = 1, the law of the walk {Rf

k} is
completely determined by ρ = Pf (τ odd) > 0.

If ρ = 1, which is possible only when f(1) = −1, then Ef [τ ] = 1 so that g ≡ f
satisfies the statement of the Lemma. Otherwise ρ < 1, and let g(1) = 1

ρ
(|S|−

1) − |S| > −1 and g(2) = −1. Then Pg(τ odd) = Pg(τ = 1) = |S|−1
|S|+g(1)

= ρ

and Eg[τ ] ≤ 2 < ∞. The walk {Rg
k} is recurrent(I)/transient(I) if and only if

SeRWg,S is. However {Rg
k} has the same law as {Rf

k} since it depends only on
ρ, and hence {Rg

k} is recurrent(I)/transient(I) if and only if SeRWf,S is. 2

3.4 Proof of Corollary 2.3

From Theorem 2.2 we know that the senile random walk with f(m) = Cm
is recurrent(I) (and therefore also recurrent (II)) in dimensions d = 1, 2 and
transient(I) in dimensions d > 2. Moreover it is transient(II) for d > 2 unless
E[τ ] = ∞ in which case it is recurrent(II). Since E[τ ] is monotone increasing in
the reinforcement, to complete the proof it is enough to show that E[τ ] < ∞
when C < |S| − 1 and E[τ ] = ∞ when C = |S| − 1.

For the latter, observe that when C = |S| − 1,

E[τ ] =
∞∑

n=1

n

(
n−1∏

i=1

1 + (|S| − 1)i

|S|+ (|S| − 1)i

) |S| − 1

|S|+ (|S| − 1)n

=
∞∑

n=1

|S|n
|S|+ (|S| − 1)(n− 1)

|S| − 1

|S|+ (|S| − 1)n
= ∞, (3.10)

where we have used the fact that |S| + (|S| − 1)i = 1 + (|S| − 1)(i + 1) to
cancel terms in the numerator and denominator of the product to obtain the
second equality.
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When (|S| − 1)/C = 1 + 2α > 1, observe that

E[τ 1+α]

1 + 2α
=

∞∑

n=1

n1+α

1 + 2α

(
n−1∏

i=1

1 + Ci

|S|+ Ci

) |S| − 1

|S|+ Cn
≤

∞∑

n=1

nα
n−1∏

i=1

(
1− |S| − 1

|S|+ Ci

)

≤
∞∑

n=1

nα exp

(
−

n−1∑

i=1

1 + 2α

i + |S|/C

)
≤

∞∑

n=1

nα

(
1 + |S|/C
n + |S|/C

)1+2α

< ∞, (3.11)

where we compared the sum in the exponential with an integral. Thus E[τ ] is
finite as soon as C < |S| − 1. 2

4 Generating function analysis: the proof of Theorem 2.2

For z ∈ [0, 1] we define

Gz(x) =
∞∑

n=0

zn P(Sn = x). (4.1)

This is the Green’s function for senile random walk, and is obviously conver-
gent for z < 1. Note that G1(x) = E[Nx], so that the behaviour of Gz near
z = 1 has implications for the recurrence and transience properties of the
walk. For an absolutely summable function F : Zd 7→ R and k ∈ [−π, π]d we
write

F̂ (k) =
∑

x∈Zd

eik·xF (x) (4.2)

for the Fourier transform of F . Note in particular that for any |z| < 1, Gz is
absolutely summable and Ĝz(0) = (1 − z)−1. Our analysis of the generating
function will essentially involve the parity of τ .

In this section we analyse the Green’s function and prove Theorem 2.2. We first
expand Gz(x) in terms of two other quantities: uz(x) and vz(x) (Section 4.1).
We use inclusion-exclusion on those quantities (Section 4.2). After taking the
Fourier transform we are left with three equations in three unknowns (Ĝz(k),
ûz(k) and v̂z(k)) and that we can solve for Ĝz(k) (Section 4.3), the result
of which appears in Proposition 4.1. From this formula together with Lem-
mas 3.1–3.2 we easily obtain Theorem 2.2.

Before stating Proposition 4.1, we introduce a number of quantities. For any
z ∈ [0, 1] we define





az =
∞∑

n=2

zn P(τ ≥ n)1{n even},

bz =
∞∑

n=2

zn P(τ ≥ n)1{n odd},





pz =
∞∑

n=1

zn P(τ = n)1{n even}
|S| − 1

,

qz =
∞∑

n=1

zn P(τ = n)1{n odd}
|S| − 1

.

(4.3)
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The quantities az and bz converge for |z| < 1 trivially, and pz and qz converge
for |z| ≤ 1. It is easy to show that

z + az + bz = E
[
z(1− zτ )

1− z
1{τ<∞}

]
,





bz ≤ zaz,

az ≤ z2 + zbz,
(4.4)

and that a1 = E[b τ
2
c], b1 = E[b τ−1

2
c] and

1 + a1 + b1 = E[τ ]. (4.5)

Moreover, by definition we have p1 = 1
|S|−1

P(τ even), q1 = 1
|S|−1

P(τ odd) and

(|S| − 1)(p1 + q1) = P(τ < ∞). (4.6)

Next we define

Uz =1 + pz − (|S| − 1)(pz(1 + pz)− q2
z),

Xz =az(1 + pz)− (z + bz)qz + Uz,

Yz =(z + bz)(1 + pz)− azqz − |S|qz. (4.7)

Note that all of these quantities converge at z = 1 if E[τ ] < ∞, and that U1

converges for any f . Moreover,

Uz − |S|qz = (1 + pz − qz)
(
1− (|S| − 1)(pz + qz)

)
≥ 0, (4.8)

with equality iff z = 1, and P(τ < ∞) = 1,

and

Xz + Yz = (1 + pz − qz)(z + az + bz) + Uz − |S|qz ≥ 0, (4.9)

with equality iff z = 1, |S| = 2, and f(1) = −1.

The importance of the quantities discussed thus far in this section is given by
the form of the generating function presented in the following Proposition.

Proposition 4.1 For z < 1 and k ∈ [−π, π]d,

Ĝz(k) =
Xz + YzD̂(k)

Uz − |S|qzD̂(k)
. (4.10)

When f ≡ 0 we easily get that zUz = |S|qz, Xz = Uz and Yz = 0 which yields
the standard result for Ĝz(k) for simple random walk. It follows from (4.10)
and the definition of Ĝz(0) that

Xz + Yz

Uz − |S|qz

=
1

1− z
(z < 1). (4.11)
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Proof of Theorem 2.2 using Lemmas 3.1–3.2 and Proposition 4.1. Let f be
such that P(τ = ∞) = 0, and that f(1) 6= −1 if |S| = 2.

We first prove Theorem 2.2(2)–(3) using Proposition 4.1. For z ∈ (0, 1), Uz

is strictly positive, due to (4.8) and qz > 0. By rearranging (4.10), it follows
from (4.8) that for z ∈ (0, 1),

Ĝz(k) =
Xz

Uz

+

(
Xz

Uz
+ Yz

|S|qz

) |S|qz

Uz
D̂(k)

1− |S|qz

Uz
D̂(k)

=
Xz

Uz

+

(
Xz

Uz

+
Yz

|S|qz

) ∞∑

m=1

( |S|qz

Uz

)m

D̂(k)m. (4.12)

By Fourier inversion we obtain

Gz(x) =
Xz

Uz

δ0,x +

(
Xz

Uz

+
Yz

|S|qz

) ∞∑

m=1

( |S|qz

Uz

)m

D∗m(x), (4.13)

where D∗m denotes the m-fold convolution of D, and |S|qz/Uz tends to 1 as
z → 1 by (4.8).

If E[τ ] < ∞, then a1 and b1 are both finite, and so are X1 and Y1. Therefore
G1(x) is finite if and only if

∑∞
m=1 D∗m(x) is finite. This completes the proof

of Theorem 2.2(2).

If E[τ ] = ∞, then a1 and b1 are both +∞. Moreover, by the inequalities in
(4.4), az and bz both diverge in the same manner. Let Bz denote any quantity
(which may change in each expression) that is bounded uniformly in z ∈ [0, 1].
Since pz and qz are bounded uniformly, so is Uz. Using the inequalities in (4.4),
we have

az(1 + pz − qz) + Bz ≤Xz ≤ bz(1 + pz − qz) + Bz, and

bz(1 + pz − qz) + Bz ≤Yz ≤ az(1 + pz − qz) + Bz, (4.14)

where (1+pz−qz) > 0 for all z ∈ [0, 1] (since E[τ ] = ∞ excludes the degenerate
case). Therefore, Xz and Yz both diverge to +∞ as z ↑ 1, and G1(x) is infinite.
This completes the proof of Theorem 2.2(3).

It remains to prove Theorem 2.2(1). First we note that, by Lemma 3.2,
there is a reinforcement function g with Eg[τ ] < ∞ such that SeRWf,S
and SeRWg,S are type-I equivalent. By Lemma 3.1, the two types of recur-
rence/transience are equivalent for SeRWg,S . Then, by Theorem 2.2(2) proved
above, SeRWg,S is recurrent(II)/transient(II) if and only if SeRW0,S is recur-
rent(II)/transient(II). The proof is completed by collecting these statements.

We prove Proposition 4.1 in the remainder of this section.
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4.1 First stage of the expansion

In this subsection we explain the first stage of the expansion, in which we use
the notation

Py(· · · ) = P(· · · |S0 = y). (4.15)

By definition, we have

Gz(x) =δo,x + zD(x) +
∑

n≥2

zn

(
Po(Sn = x, τ ≥ n) + Po(Sn = x, τ < n)

)

=δo,x + zD(x) +
∑

n≥2

zn Po(Sn = x, τ ≥ n)

+
∑

l≥1

∑

n≥l+1

zn Po(Sn = x, τ = l). (4.16)

First we consider the third term on the right-hand side. If n is even, then we
have

Po(Sn = x, τ ≥ n) = Po(τ ≥ n) δo,x. (4.17)

If n is odd, then since D is uniform over S, we obtain

Po(Sn = x, τ ≥ n) =
∑
y∼o

Po(τ ≥ n, S1 = y) δy,x

=
Po(τ ≥ n)

|S|
∑
y∼o

δy,xPo(τ ≥ n) D(x). (4.18)

Therefore, we have

∑

n≥2

zn Po(Sn = x, τ ≥ n) = azδo,x + bzD(x), (4.19)

where az and bz are given by (4.3).

Next we consider the last term on the right-hand side of (4.16). First we note
that

Po(Sn = x, τ = l) =
∑
y∼o

Po(Sn = x, τ = l, S1 = y). (4.20)
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If l is even, then the right-hand side is

∑
y,u∼o
u6=y

Po(Sn = x, Sl+1 = u, τ = l, Sl = o, S1 = y)

=
∑

y,u∼o
u6=y

Po(Sn = x, Sl+1 = u | τ = l, Sl = o, S1 = y)Po(τ = l, Sl = o, S1 = y)

=
∑

y,u∼o
u6=y

Po(Sn−l = x, S1 = u |S1 6= y)︸ ︷︷ ︸
= |S|

|S|−1
Po(Sn−l = x, S1 = u)

Po(τ = l, Sl = o, S1 = y)︸ ︷︷ ︸
= 1

|S| P
o(τ = l)

=
Po(τ = l)

|S| − 1

∑
y∼o

Po(Sn−l = x, S1 6= y), (4.21)

where we have used the fact that Po(S1 6= y) = (|S|−1)/|S| in the penultimate
line.

If l is odd, then the right-hand side of (4.20) is

∑
y∼o

∑
u∼y
u6=o

Po(Sn = x, Sl+1 = u, τ = l, Sl = S1 = y)

=
∑
y∼o

∑
u∼y
u6=o

Po(Sn = x, Sl+1 = u | τ = l, Sl = S1 = y)︸ ︷︷ ︸
= |S|

|S|−1
Py(Sn−l = x, S1 = u)

Po(τ = l, Sl = S1 = y)︸ ︷︷ ︸
= 1

|S| P
o(τ = l)

=
Po(τ = l)

|S| − 1

∑
y∼o

Py(Sn−l = x, S1 6= o). (4.22)

Define

uz(x) =
∑

l≥1

zl
∑
y∼o

Po(Sl = x, S1 6= y), vz(x) =
∑

l≥1

zl
∑
y∼o

Py(Sl = x, S1 6= o).

(4.23)

Then, by the above computation, the last term on the right-hand side of (4.16)
is rewritten as

∑

l≥1

∑

n≥l+1

znPo(Sn = x, τ = l) =
∑

l≥1

zlPo(τ = l)

|S| − 1

(
uz(x)1{l even} + vz(x)1{l odd}

)

= pzuz(x) + qzvz(x), (4.24)

where pz and qz are given by (4.3). Together with (4.16) and (4.19), we arrive
at

Gz(x) = (1 + az) δo,x + (z + bz) D(x) + pzuz(x) + qzvz(x). (4.25)
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4.2 Second stage of the expansion

In this subsection we derive equations for uz and vz in terms of Gz. By defin-
ition, it is easy to see that

uz(x) =
∑

l≥1

zl
∑
y∼o

(
Po(Sl = x)− Po(Sl = x, S1 = y)

)

= |S|
(
Gz(x)− δo,x

)
−∑

l≥1

zl
∑
y∼o

Po(Sl = x, S1 = y)

= (|S| − 1)
(
Gz(x)− δo,x

)
. (4.26)

Similarly, we can write vz as

vz(x) =
∑

l≥1

zl
∑
y∼o

(
Py(Sl = x)− Py(Sl = x, S1 = o)

)

=
∑
y∼o

(
Gz(x− y)− δy,x

)
−

(
zδo,x +

∑

l≥2

zl
∑
y∼o

Py(Sl = x, S1 = o)

)
,

(4.27)

where Py(Sl = x, S1 = o) can be written as

Py(Sl = x, S1 = o) =Py(Sl = x, τ ≥ l, S1 = o)

+
l−1∑

m=1

Py(Sl = x, τ = m, S1 = o). (4.28)

By the uniformity of D and translation invariance, the contribution from the
first term to (4.27) equals

∑

l≥2

zl
∑
y∼o

Py(Sl = x, τ ≥ l, S1 = o)

=
∑

l≥2

zl
∑
y∼o

Py(τ ≥ l, S1 = o)︸ ︷︷ ︸
= 1

|S| P
y(τ ≥ l)

(
δy,x 1{l even} + δo,x 1{l odd}

)

=
∑

l≥2

zlPo(τ ≥ l)
1

|S|
∑
y∼o

(
δy,x 1{l even} + δo,x 1{l odd}

)
= azD(x) + bzδo,x.

(4.29)

For the sum over m in (4.28), we follow a similar course to the proof of (4.24).
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If m is even, then by translation invariance we have

Py(Sl = x, τ = m, S1 = o) = Py(Sl = x, τ = m, Sm = y, S1 = o)

=
∑
u∼y
u6=o

Py(Sl = x, Sm+1 = u | τ = m, Sm = y, S1 = o)︸ ︷︷ ︸
= |S|

|S|−1
Py(Sl−m = x, S1 = u)

× Py(τ = m, Sm = y, S1 = o)︸ ︷︷ ︸
= 1

|S| P
y(τ = m)

=
Po(τ = m)

|S| − 1
Py(Sl−m = x, S1 6= o). (4.30)

Similarly, if m is odd, then we have

Py(Sl = x, τ = m, S1 = o) = Py(Sl = x, τ = m, Sm = S1 = o)

=
∑
u∼o
u6=y

Py(Sl = x, Sm+1 = u | τ = m, Sm = S1 = o)︸ ︷︷ ︸
= |S|

|S|−1
Po(Sl−m = x, S1 = u)

Py(τ = m, Sm = S1 = o)︸ ︷︷ ︸
= 1

|S| P
y(τ = m)

=
Po(τ = m)

|S| − 1
Po(Sl−m = x, S1 6= y). (4.31)

Therefore, the contribution to (4.27) from the sum over m in (4.28) equals

∑

m≥1

zmPo(τ = m)

|S| − 1

∑

l≥m+1

zl−m
∑
y∼o

(
Py(Sl−m = x, S1 6= o)1{m even}

+ Po(Sl−m = x, S1 6= y)1{m odd}
)

= pzvz(x) + qzuz(x). (4.32)

Summarizing the above and using (4.26), we obtain

vz(x) =
∑
y∼o

(
Gz(x− y)− δy,x

)
− zδo,x −

(
azD(x) + bzδo,x

)

−
(
pzvz(x) + qzuz(x)

)
. (4.33)

4.3 Completion of the expansion

Now we solve (4.25), (4.26) and (4.33) in terms of Gz. Taking the Fourier
transform of these expressions, we have

Ĝ− 1 = a + (z + b)D̂ + pû + qv̂, (4.34)

û = (|S| − 1)(Ĝ− 1), (4.35)

qû + (1 + p)v̂ = |S|D̂(Ĝ− 1)− (z + b + aD̂), (4.36)
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where we have abbreviated z and k (e.g. Ĝ for Ĝz(k)). Let

M =



1 0

q 1 + p


 , (4.37)

so that (4.35) and (4.36) are combined as

M


û

v̂


 = (Ĝ− 1)



|S| − 1

|S|D̂


−




0

z + b + aD̂


 . (4.38)

Since 1 + p > 0, the inverse M−1 exists and hence



û

v̂


 = (Ĝ− 1)M−1



|S| − 1

|S|D̂


−M−1




0

z + b + aD̂


 . (4.39)

Substituting this to (4.34), we obtain

Ĝ− 1 =a + (z + b)D̂ +



p

q


 ·



û

v̂




=a + (z + b)D̂ + (Ĝ− 1)



p

q


 · M−1



|S| − 1

|S|D̂




−


p

q


 · M−1




0

z + b + aD̂




=a + (z + b)D̂ + (Ĝ− 1)

(
(|S| − 1)p− |S| − 1

1 + p
q2 +

|S|q
1 + p

D̂

)

−
(

z + b

1 + p
q +

aq

1 + p
D̂

)
, (4.40)

which is equivalent to

(Ĝ− 1)

(
1− (|S| − 1)p +

|S| − 1

1 + p
q2 − |S|q

1 + p
D̂

)

= a− z + b

1 + p
q +

(
z + b− aq

1 + p

)
D̂, (4.41)

or, by multiplying both sides by 1 + p > 0 and using U,X, Y in (4.7),

Ĝ(U − |S|qD̂) = X + Y D̂. (4.42)

Since U − |S|q > 0 for z < 1 (cf., (4.8)), this completes the proof of Proposi-
tion 4.1. 2
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5 Diffusion constant: the proof of Theorem 2.5

In this section we discuss the diffusion constant assuming E[τ 1+ε] < ∞ for
some ε > 0 and excluding the degenerate case where |S| = 2 and f(1) = −1
(see below Theorem 2.5 for the degenerate case).

First we note that, since Gz(x) = δ0,x +
∑∞

n=1 zn P(Sn = x), it is easy to see

that −∇2Ĝz(0) is the generating function of
∑

x |x|2P(Sn = x):

−∇2Ĝz(0) =
∞∑

n=1

zn
∑

x∈Zd

|x|2P(Sn = x) (z < 1). (5.1)

However, by differentiating (4.10) twice with respect to ki and using the fact
that ∇D̂(0) = 0 (by the symmetry of D), we obtain

−∇2Ĝz(0) =
−∇2D̂(0) Yz

Uz − |S|qzD̂(0)
+
−∇2D̂(0)

(
Xz + YzD̂(0)

)
|S|qz

(
Uz − |S|qzD̂(0)

)2

=
|S|qzXz + UzYz

(Uz − |S|qz)2
σ2, (5.2)

where σ2 =
∑

x |x|2D(x). Using (4.11), we obtain

−∇2Ĝz(0) =
czσ

2

(1− z)2
, where cz =

|S|qzXz + UzYz

(Xz + Yz)2
, (5.3)

with the denominator (Xz + Yz)
2 strictly positive, as explained in (4.9).

Now we investigate (5.3) using a Tauberian theorem to derive the formula
(2.2) for the diffusion constant. First we rewrite cz, by simple algebra and
using (4.11), as

cz =
|S|q1

X1 + Y1

+
|S|q1((X1 + Y1)− (Xz + Yz))

(X1 + Y1)(Xz + Yz)
+
|S|(qz − q1)

Xz + Yz

+
Yz(1− z)

Xz + Yz

.

(5.4)

Note that a1 − az and b1 − bz are O((1 − z)ε), while p1 − pz and q1 − qz are
O(1− z), since for example,

0 ≤ a1 − az =
∑

n≥2

(1− zn)P(τ ≥ n)1{n even}

≤(1− z)ε
∑

n≥2

nε P(τ ≥ n) ≤ (1− z)εE[τ 1+ε], (5.5)

where we have used the inequality 1 − zn ≤ (1 − z)εnε, which holds for all
n ≥ 1, z ∈ [0, 1] and ε ∈ [0, 1] as follows. For z = 1 the inequality is trivial so
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we may assume that z < 1. Let h(x) = ((1− z)n)x − (1− zn). Then h(0) ≥ 0
and h(1) ≥ 0, and h′(x) = ((1−z)n)x log((1−z)n) is nonnegative if and only if
(1−z)n ≥ 1. Thus for each fixed n, z, the function h(x) is either nonincreasing
or nondecreasing, and thus is never negative. The term b1− bz can be handled
in the same way, and p1 − pz and q1 − qz are handled similarly using ε = 1.
Therefore, the last two terms in (5.4) are O(1− z). Also, the second term of
(5.4) is O((1− z)ε) because X1−Xz and Y1−Yz are sums of factors of a1−az

and b1 − bz, as well as factors of p1 − pz and q1 − qz.

We have proved that

−∇2Ĝz(0) =
c1σ

2

(1− z)2
+O((1− z)−2+ε), where c1 =

|S|q1

X1 + Y1

. (5.6)

The error term has radius of convergence at least 1 and it follows from [14,
Lemma 6.3.3] that its coefficients in zn satisfy |an| ≤ O(n1−ε/2). Since (1 −
z)−2 =

∑
n≥0(n + 1)zn, we obtain

v = lim
n→∞

1

n

∑

x∈Zd

|x|2P(Sn = x) = c1σ
2 =

|S|q1

X1 + Y1

σ2. (5.7)

Now use (4.5), (4.9) and the expressions for p1, q1 (stated above (4.6)) to
complete the result. 2

Proof of Corollary 2.6. For the first claim, observe that for j odd, P(τ even)
is an increasing function of x = f(j), and therefore P(τ odd) is a decreasing
function of x = f(j). Since E[τ ] is an increasing function of x = f(j), the first
claim follows from (2.2).

For the second claim, for a fixed even j and reinforcement function F such
that EF [τ 1+ε] < ∞ for some ε > 0, let Fx denote the reinforcement function
with Fx(i) = F (i) when i 6= j and Fx(j) = x. Let v(x) ≡ vFx , and Px ≡ PFx .
By (2.2) for every x,

v(x) =
Px(τ odd)

1− 2
|S|Px(τ odd)

σ2

Ex[τ ]
, (5.8)

and elementary differentiation rules show that v′(x) S 0 is equivalent to

|S|
2
Ex[τ ]Px(τ odd, τ ≥ j + 1) S Px(τ odd)

( |S|
2
− Px(τ odd)

)

× Ex[(τ − j)1{τ≥j+1}]. (5.9)

Fix 0 < η ≤ 1
2
. Let F (j + 1) = −1 so that PF (τ ≤ j + 1) = 1, and choose

F (1), . . . , F (j− 1) and F (j) = x0 sufficiently large such that PF (τ = j + 1) >
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1 − η. Since j is even, 1 − η < Px(τ odd) < 1 whenever x ≥ x0, so that the
“>” inequality in (5.9) holds for all x ≥ x0 if

|S|
2

(j + 1)(1− η)2 >
|S|
2
− (1− η), (5.10)

which holds by our choice of η. Thus for this choice of F we have shown
that v(x) is increasing for x ≥ x0 and therefore f = Fx0 and g = Fx0+1 are
reinforcement functions satisfying the second claim of the corollary.

6 Critical Senile linearly reinforced random walk in 1 dimension

In this section we fix the reinforcement function to be f(m) = m. As long
as |S| > 2 it follows from (3.11) that this senile random walk is such that
E[τ 1+α] < ∞ for some α > 0. In particular by Theorem 2.5 the diffusion
constant for this walk is given by (2.2). The critical case for f(m) = m is when
|S| = 2 which corresponds to the nearest-neighbour model in 1 dimension. In
analyzing this model we will use the fact that for all |S| ≥ 2, when f(m) = m
special hypergeometric functions enter the analysis. Special properties of the
hypergeometric functions will be used to prove Proposition 2.7 in the following
subsections.

6.1 Special hypergeometric functions and analytic continuation

We begin by investigating the quantities in (4.3) and (4.7) using the hyper-
geometric function 2F1(c, c

′, c′′; z) defined as

2F1(c, c
′, c′′; z) =

∞∑

n=0

zn

n!

(c)n (c′)n

(c′′)n

, (6.1)

where (c)n is defined by (c)0 = 1 and c + n− 1) · (c)n−1 for n ≥ 1.

When f(m) = m, we can rewrite az, bz, pz and qz for |S| ≥ 2 and z ∈ (0, 1) as





az = |S| ∑

n≥2, even

zn

n!

(1)n(1)n

(|S|)n

= a−z,

bz = |S| ∑

n≥2, odd

zn

n!

(1)n(1)n

(|S|)n

= −b−z,





pz =
∑

n≥1, even

zn

n!

(1)n(1)n

(|S|+ 1)n

= p−z,

qz =
∑

n≥1, odd

zn

n!

(1)n(1)n

(|S|+ 1)n

= −q−z,

(6.2)

where, as in the proof of Corollary 2.3, a1 and b1 do not converge in the critical
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case |S| = 2. Let

Fz = 2F1(1, 1, |S|+ 1; z), F ∗
z = 2F1(1, 1, |S|; z). (6.3)

Represented in terms of these hypergeometric series, az and pz are given re-
spectively by

az =|S|∑
n≥2

zn

n!

(1)n (1)n

(|S|)n

1 + (−1)n

2

=
|S|
2

((
F ∗

z − 1− z

|S|

)
+

(
F ∗
−z − 1 +

z

|S|

))
=
|S|
2

(F ∗
z + F ∗

−z)− |S|,
(6.4)

pz =
∑

n≥1

zn

n!

(1)n (1)n

(|S|+ 1)n

1 + (−1)n

2

=
1

2

(
(Fz − 1) + (F−z − 1)

)
=

1

2
(Fz + F−z)− 1. (6.5)

Similarly we have

bz =
|S|
2

(F ∗
z − F ∗

−z)− z, qz =
1

2
(Fz − F−z). (6.6)

Further arithmetic shows that




Uz = U−z = −(|S| − 1)FzF−z +
|S|
2

(Fz + F−z),

Xz = X−z = −(|S| − 1)FzF−z +
|S|
2

(F ∗
z F−z + F ∗

−zFz),

Yz = −Y−z =
|S|
2

(F ∗
z F−z − F ∗

−zFz).

(6.7)

Of course, the parity of these az, bz, pz, qz, Uz, Xz and Yz are invariant for any
reinforcement function.

Euler’s formula for the hypergeometric function shows that

2F1(1, 1, c; z) = (c− 1)
∫ 1

0

(1− t)c−2

1− tz
dt (6.8)

is the analytic continuation of 2F1(1, 1, c; z) to C \ [1,∞), and 2F1(1, 1, c; 1) <
∞ whenever c > 2. It follows that az, bz, pz, qz and hence Uz, Xz, Yz have
analytic continuation (determined by (6.8)) to the region ∆ ≡ C\{(−∞,−1]∪
[1,∞)}. In addition (6.8) shows that for z ∈ [0, 1]

Fz ≤ |S|
|S| − 1

, with equality only when z = 1. (6.9)
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Also, (6.8) shows that F−z > 0 for z ∈ [−1, 1]. It is easy to show that
(|S|+n
|S|

)
≡

(|S| + 1)n/(1)n is an increasing sequence and thus taking the first two terms
in the series for F−1 (the remainder is guaranteed to be positive) we have

F−1 =
∞∑

n=0

(−1)n (1)n

(|S|+ 1)n





≤ 1,

≥ 1− 1

|S|+ 1
>
|S| − 2

|S| − 1
.

(6.10)

One of Gauss’ relations for contiguous functions is that for z ∈ C \ [1,∞),

2F1(α, β, γ; z)γ(1− z) + 2F1(α, β, γ + 1; z)(γ − β)z = 2F1(α− 1, β, γ; z)γ.
(6.11)

At α = β = 1 and γ = |S| we have |S|(1− z)F ∗
z − |S|+ (|S| − 1)zFz = 0, and

therefore,

|S|F ∗
z − (|S| − 1)Fz

|S| − (|S| − 1)Fz

=
1

1− z
. (6.12)

This is equivalent to (4.11), with qz, Uz, Xz and Yz in (6.6)–(6.7). It may be
of interest to see what formulae the relation (4.11) gives for |z| < 1 for more
general choices of reinforcement. Of course one can also obtain the relation
(Xz +Yz)/(Uz−|S|qz) = (1− z)−1 for all z ∈ ∆ using the fact that both sides
of this inequality have analytic continuation to ∆ (provided Uz − |S|qz 6= 0 in
this region) and they agree on 0 < z < 1.

When |S| = 2 (i.e. the 1-dimensional nearest-neighbour model), since

F ∗
z =

∫ 1

0

1

1− tz
dt =

1

z
log

1

1− z
(z < 1), (6.13)

while F1, F−1 and F ∗
−1 all converge, by (6.7) we have

Xz = −FzF−z + F ∗
z F−z + F ∗

−zFz

Yz = F ∗
z F−z − F ∗

−zFz



 ∼ F−z

z
log

1

1− z
, as z → 1 in ∆.

(6.14)

6.2 Proof of Proposition 2.7

For the first claim fix d ≥ 2. Then |S| > 2, and (5.7) (=(2.2)) holds as we noted
at the beginning of Section 6. By (6.6)–(6.7) and (6.10) with F1 = |S|/(|S|−1)
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and F ∗
1 = (|S| − 1)/(|S| − 2), we have

v

σ2
=

|S|
2

(F1 − F−1)

−(|S| − 1)F1F−1 + |S|F ∗
1 F−1

=
|S| − 2

2

( |S|
F−1(|S| − 1)

− 1

)
∈ (0, 1).

(6.15)

To prove the final claim, we apply the following trivial extension (to the case
where there are 2 singularities) of a result of Flajolet and Odlyzko, see Corol-
lary 5 on page 230 of [6].

Proposition 6.1 (Flajolet-Odlyzko) Suppose that f(z) =
∑

n≥0 znfn has
analytic continuation in the region ∆ = C \ {(−∞,−1] ∪ [1,∞)}, and that

f(z) =





K(1− z)−2(log 1
1−z

)−1

(
1 +O

(
(log 1

1−z
)−1

))
(z → 1),

O(log(1 + z)) (z → −1).
(6.16)

Then fn ∼ Kn/ log n as n →∞.

To verify that we can apply Proposition 6.1, it suffices to prove the following
Lemma. Once the lemma is proved, the integral (6.8) with c = 3 (≡ 2 + 1)
and z = ±1 shows that F1/F−1 = (2 log 2− 1)−1 and that the constant below
in (6.17) takes its value of (2.3).

Lemma 6.2 Let f(m) = m. Then −∇2Ĝz(0) has analytic continuation in
the region ∆ ≡ C \ {(−∞,−1] ∪ [1,∞)}. In particular, for the 1-dimensional
nearest-neighbour model,

−∇2Ĝz(0) =





F1−F−1

2F−1(1−z)2
(log 1

1−z
)−1

(
1 +O

(
(log 1

1−z
)−1

))
(z → 1 in ∆),

O(log(1 + z)) (z → −1 in ∆).

(6.17)

Proof. Observe that Uz − |S|qz = (−(|S| − 1)Fz + |S|)F−z is non-zero for
z ∈ (−1, 1) and is the product of two non-zero complex numbers (and hence
non-zero) when z is not real-valued. The fact that −∇2Ĝz(0) has analytic
continuation in ∆ then follows from (5.2), (6.6)–(6.7) and the fact that (6.8)
gives analyticity of Fz and F ∗

z in C \ [1,∞).

Now consider the 1-dimensional nearest-neighbour model. From (5.2) and us-
ing the parity of qz, Uz, Xz and Yz, we have

−∇2Ĝ−z(0) =
−(2qzXz + UzYz)

Uz + 2qz

= O
(

log(1− z)
)
, (6.18)
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due to (6.14) and the fact that the denominator converges to 4q1 > 0 as z → 1.
This verifies the limit in (6.17) as z → −1.

To prove the other limit in (6.17), we use (5.3)–(5.4) for z ∈ ∆: −∇2Ĝz(0) =
cz(1− z)−2, where

cz =
2q1

Xz + Yz

+
2(qz − q1)

Xz + Yz

+
Yz(1− z)

Xz + Yz

. (6.19)

It is immediate from (6.14) that the first term is O((log 1
1−z

)−1), while the last

term is O(1−z). The second term contains qz−q1 = 1
2
((Fz−F1)−(F−z−F−1)),

due to (6.6). Using (6.8) for z ∈ ∆, we have

Fz − F1 = (1− z)
∫ 1

0

−2t

1− zt
dt = (1− z)O

(
log(1− z)

)
, (6.20)

F−z − F−1 = (1− z)
∫ 1

0

2t(1− t)

(1 + zt)(1 + t)
dt = O(1− z), (6.21)

so that the second term in (6.19) is also O(1− z). Therefore, the first term is
the slowest term. Using (6.14) and isolating the main factor F ∗

z = 1
z
log 1

1−z
,

we can rewrite cz in (6.19) as

cz =
2q1

2F ∗
z F−z − FzF−z

+O(1− z)

=
q1

F−1

1

F ∗
z

(
1 +O

(
(log 1

1−z
)−1

))
+O(1− z). (6.22)

The proof of (6.17) is now completed by using (6.6) at z = 1. This completes
the proof of Proposition 2.7.
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