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Abstract

We consider a class of reinforcement processes, called WARMs, on tree graphs. These processes
involve a parameter α which governs the strength of the reinforcement, and a collection of Poisson
processes indexed by the vertices of the graph. It has recently been proved that for any fixed bounded
degree graph with Poisson firing rates that are uniformly bounded above, in the very strong rein-
forcement regime (α � 1 sufficiently large depending on the maximal degree), the set of edges that
“survive” (i.e. that are reinforced infinitely often by the process) has only finite connected components.

The present paper is devoted to the construction of example in the opposite direction, that is, with
the set of surviving edges having infinite connected components. Namely, we show that for each fixed
α > 1 one can find a regular rooted tree and firing rates that are uniformly bounded from above,
for which there are infinite components almost surely. Joining such examples, we find a graph (with
unbounded degrees) on which for any α > 1 almost surely there are infinite connected components of
surviving edges.

1 Introduction and main result

Let G = (V,E) be a graph with finite degrees and let Λ be a Poisson point process on V × [0,∞) with
intensity λv ∈ (0,∞) on {v}× [0,∞). We consider a reinforcement process on the edges of this graph.
Namely, to every edge e ∈ E we associate a tally Nt(e) that is a piecewise-continuous function of the
time t, defined in the following way.

• It starts with a tally N0(e) = 1,

• Whenever the Poisson clock fires at some vertex v ∈ V at time t, we choose a random edge e
among those incident to v (write e ∼ v) with probability proportional to Nt−(e)α, where α > 0
is a parameter of the model. We then update the tally of the chosen edge Nt(e) = Nt−(e) + 1
and continue.

Such a process is called a WARM process on the graph G with firing rates (λv)v∈V . If G is an
infinite graph then it is not obvious that the process is well-defined. However, if G is of bounded
degree (i.e. the maximal degree is finite) and the λv are uniformly bounded above then the process is
indeed well-defined (see [6, Section 2]).

Such processes have been studied extensively in recent years [8, 9, 6, 7, 4], see also [1, 2, 11] for
some similar models. These models can be considered as collections of interacting Pólya urns, where
the interactions are graph-based. One of the quantities of interest is the (random) set of edges that
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“survive the competition”. There are two ways of defining it: one can consider either the set of edges
that are reinforced infinitely often,

E∞ = {e ∈ E : Nt(e)→∞},

or the set of those that are reinforced (at least) linearly often:

E+ = {e ∈ E : lim inf
t→∞

t−1Nt(e) > 0}.

These two sets actually (almost surely) coincide; in other words, almost surely an edge that is not
reinforced linearly often gets reinforced only finitely many times. This can be seen from the general
Pólya urn properties; we refer the reader to [7] for a discussion of these sets. However, we do not need
such an equality for the purposes of the present paper, and from now on we will concentrate on the
set of linearly reinforced edges E+.

In [6] it is shown that if G has bounded degree and the λv are uniformly bounded above then for
all α sufficiently large E∞ has no infinite component. A query of a referee for that paper motivated us
to find an example of a WARM process with bounded firing rates on a graph of bounded degree for
which E∞ can have an infinite component. Our main result, Theorem 1 below, concerns the existence
of such infinite components on trees.

A main ingredient in the proof of these results is the following, that seems to us to be of interest
in its own right. It describes the behaviour of a single Pólya urn with the parameter α > 1, starting
in a situation akin to a “cat against a thousand mice” (that is, in the initial state there are many
balls of one colour, competing against single balls of a lot of other colours). Informally speaking, for
an appropriate choice of the parameters, the cat will (with high probability) grow into a tiger, while
a few mice, even though they lose, will nonetheless grow to the size of a cat.

For convenience, when there are n + 1 colours these will be labelled 0, 1, . . . , n and we will write
(m0,m1, . . . ,mn) to represent the number of balls of each colour 0, . . . , n respectively at some time.

Theorem 0. Fix α > 1. For all sufficiently large m there exists n = n(α,m)≥ 5, such that the
following hold with probability greater than 4

5
for an α-Pólya urn on n + 1 colours with initial state

(m, 1, 1, . . . , 1):

• only colour 0 is selected more than 2m− 1 times; and

• there are at least 5 colours selected exactly m− 1 times.

Remark 1. As the reader will easily see from the proof, the number “5” of colours in the second
conclusion can be replaced with any other (arbitrarily large) number, and the probability 4/5 can be
replaced with any other p < 1. We proceed with these fixed numbers only to reduce the complexity
of the formulae and conclusions, making them a bit more readable.

In order to use this theorem in the proof of our main results, let us fix how the Pólya urn pro-
cess above is defined, via a sequence of i.i.d. standard uniform random variables (Ui)i∈N. The first
selection from the urn depends on the value of U1 and subsequently the ith selection depends on
Ui and the configuration after the previous i − 1 selections. Namely, starting with initial tallies
(N0(0), N0(1), . . . , N0(n)) = (m, 1, . . . , 1) we select colour i at time j ∈ N if∑

i′<iNj−1(i′)α∑n
i′=0 Nj−1(i′)α

< Uj ≤
∑
i′≤iNj−1(i′)α∑n
i′=0 Nj−1(i′)α

. (1)

Here and elsewhere in the paper, an empty sum is equal to 0 by convention.

Remark 2. Our WARM process will be defined on a probability space in terms of independent Pois-
son clocks located at the vertices v ∈ V of the graph and i.i.d. standard uniform random variables
(Uv,i)v∈V,i∈N from which the edge choice upon the ith firing at vertex v is made.
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A standard argument then allows us to deduce from Theorem 0 that the same conclusions hold
after a sufficiently large but finite number of steps:

Corollary 1. For any α,m, n as in Theorem 0 (with (m, 1, ..., 1) as the initial state) there exists M0

such that for any M ≥ M0 with probability greater than 4
5

, the values of U1, . . . , UM are such that in
the first M colour selections:

• only colour 0 is selected more than 2m− 1 times; and

• there are at least 5 colours selected exactly m− 1 times.

To state our main result, Theorem 1 below, let us first introduce some notation. Let T = Tn =
(V,E) be the rooted n-ary tree with the root x0, where the root has degree n and all other vertices
have degree n+ 1. Let d : V → N ∪ {0} be the distance to the root. Also, let us introduce the notion
of a “finitely-joined subgraph”:

Definition 1. For a graph G2 = (V2, E2) and its subgraph

G1 = (V1, E1), V1 ⊂ V2, E1 ⊂ E2,

we write G1 < G2 if E1,2 := E2 \E1 contains only finitely many edges incident to V1; in this case, we
say that G1 is a finitely-joined subgraph of G2. For WARM processes on G1 and G2 where G1 < G2,

we write G1

λ
< G2, if the WARM process on G2 has firing rates on V1 ⊂ V2 equal to those of the

WARM process on G1.

Our main result is the following theorem.

Theorem 1.

(i) For any α > 1 there exist n ∈ N, q ∈ (0, 1), such that for the graph Tn, equipped with the firing
rates λv = qd(v),

the set of linearly reinforced edges E+ for the corresponding WARM process almost surely
contains (infinitely many) infinite connected components.

Moreover, the above holds uniformly in a neighbourhood of α, i.e.

(ii) For any α > 1 there exists a neighbourhood Oα of α such that: there exist n ∈ N, q ∈ (0, 1), such
that for the graph Tn, equipped with the firing rates λv = qd(v),

for all α0 ∈ Oα, the set of linearly reinforced edges E+ for the corresponding WARM
process almost surely contains (infinitely many) infinite connected components.

Finally, (ii) above holds for any graph T ′ such that Tn
λ
< T ′.

It is easy to join bounded-degree graphs together (see e.g. Figure 1) in order to prove the following.

Theorem 2. There exists a connected graph G = (V,E) and a bounded intensity function λ : V → R+,
such that for any α > 1 the WARM process on (G,λ) is well-defined and almost surely the corresponding
set E+ of linearly reinforced edges contains (infinitely many) infinite connected components.

Before we proceed with the detailed proof (assuming Theorem 0) of our main result Theorem 1, it
is useful to present sketches of the proofs which indicates the main features of the arguments.

1.1 Main ideas and plan of the paper

Sketch of the proof of Theorem 0. To prove Theorem 0 we will use Rubin’s construction [5]. Namely,
take families (ξj , ηj,k)j∈N,k=1,...,n of i.i.d. exponential random variables with mean 1. These random
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Figure 1: Example of a graph for Thm. 2. The firing rates are indicated at various vertices.

families can be coupled with the α-Pólya urn (starting with m balls of colour 0 and one ball of each
of the n other colours) in the following way. For r ∈ N consider the partial sums

S(r) =

m+r−1∑
j=m

ξj
jα

and Z
(r)
k =

r∑
j=1

ηj,k
jα

. (2)

of the series

S =

∞∑
j=m

ξj
jα

and Zk =

∞∑
j=1

ηj,k
jα

(3)

respectively.
The Pólya urn process can then be coupled with this collection in the following way. On the real

line one places a ball of colour 0 in the urn at each time in (S(r))r∈N and a ball of colour k in the urn

at each time in (Z
(r)
k )r∈N.

The winning colour is the one for which the sum of the full series (3) is smaller, and the final tallies
for the losing colours are one plus the numbers of the respective last partial sums (2) that are less
than the full sum of the winning series.

Now, note, that for a large m the series S =
∑∞
j=m

ξj
jα

has many terms of roughly the same
magnitude, thus (in the spirit of the Law of Large Numbers) its sum will probably be close to its
expectation, which itself is close to 1

(α−1)mα−1 ; see Proposition 5.

To ensure the conclusions of Theorem 0, we have to take the (large) number n of other colours
such that:

• It is sufficiently large, so that with high probability we observe at least 5 (random) colours

k = k1, . . . , k5 such that Z
(m−1)
k < S < Z

(m)
k .

• However, it is sufficiently small, so that with high probability Z
(2m)
k > S for all k.

We are doing this in Section 3. �

Sketch proof of Theorem 1. Fix m,n,M given by the conclusions of Corollary 1. In fact, we will see
that the conclusions of Theorem 1 actually hold for all sufficiently small q > 0. Namely, we will
observe the following process happening recurrently for vertices farther and farther from the root (and
thus occurring on larger and larger time-scales); its timeline is illustrated in Fig. 2.

(i). Before the vertex v has first fired, the edge (let’s call it 0v) from vertex v to its parent v̄ has
received m − 1 reinforcements from its parent, and will receive no more in the near future.
The firings at vertex v then start to occur, with reinforcements from these firings following the
α-power Pólya scheme (based on i.i.d. uniform random variables (Uv,i)i∈N).
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Its behaviour is then described by Theorem 0: with probability at least 4/5, the edge towards
its parent “wins”, becoming the only one to be reinforced by v substantially, while at least 5
edge-offspring (i.e. edges from a vertex to its children) of v get exactly m− 1 reinforcements.

(ii). From now on, v reinforces the edge towards its parent, while the children of v from step (i) act
each by repeating the same scenario, but on the q-slowed time scale.
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Figure 2: Timeline

(iii). Finally, after these children of v “raise” their own edge-offspring to the tally m (and meanwhile
the edges joining them to v get most of the reinforcement from them), the configuration starts
to converge to an equilibrium.

Namely, each vertex mainly reinforces the edge to its parent, with a small (but linear in time)
portion going to its edge-offspring. The limiting configuration contains a Galton-Watson tree
(associated to the behaviour in the Pólya urns), with the expected number of descendants ≈
4
5
· 5 > 1. Thus this G-W tree is infinite with positive probability.

Such a branching process actually starts from any given point with a positive (and bounded away
from 0) probability, thus ensuring the appearance of such a tree (and, moreover, of an infinite number
of such trees) almost surely.

We will formalise these arguments in Section 2. Proposition 4 therein states what we need to make
an induction argument, comparing a set of surviving edges to a G-W tree. The induction argument
itself is performed in Proposition 1; meanwhile, Proposition 3 provides the base for such an induction
(roughly speaking, stating, that every part of a tree has a chance to be disconnected from its parents
and to become a root of such dynamics). �

We deduce Theorem 2 from Theorem 1. Though the deduction is almost immediate due to the last
conclusion of the theorem (and the example shown on Figure 1), one has to check that the WARM
process on the constructed graph is well-defined (that is no more granted, as it is no longer a graph
with bounded degrees). This is done in Section 2.3.
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2 The WARM on trees

2.1 Initial definitions

Let (Ω,F ,P) denote a probability space on which for each v ∈ V , Tv = (Ti,v)i∈N are the points
of a Poisson processes with rate λv = qd(v), and (Tv)v∈V are independent of each other, and on
which (Ui,v)i∈N,v∈V are i.i.d. standard uniform random variables that are independent of (Tv)v∈V .
Let Uv = (Ui,v)i∈N.

From each non-root vertex v ∈ V , we fix a labelling of the incident edges e ∼ v as 0v, . . . , nv, where
0v always denotes the edge to the parent of v.

Starting with N0(e) = 1 for every e ∈ E, the process evolves as follows (compare with (1)): At the
jth firing moment t = Tj,v at vertex v, given the tallies of edges {Nt−(e)}e∼v we select edge iv if∑

i′<iNt−(i′v)α∑n
i′=0 Nt−(i′v)α

< Uj,v ≤
∑
i′≤iNt−(i′v)α∑n
i′=0 Nt−(i′v)α

, (4)

and we set Nt(iv) = Nt−(iv) + 1 (while Nt(e) = Nt−(e) for iv 6= e ∼ v). As almost surely there are no
infinite chains of dependence [6], this leads to a well-defined process. In particular, this implies that
the edge 0v joining v to its parent is reinforced by the j-th firing at v if and only if

0 < Uj,v≤
NTi,v−(0v)α∑
e∼v NTi,v−(e)α

. (5)

Now, for α > 1 let us choose and fix m and n satisfying the conclusions of Theorem 0. Also, let us
consider what happens after a large finite number M of Pólya urn steps. Namely, for all sufficiently
large M with probability greater than 4/5, after M steps of the α-Pólya urn process, starting with
(m, 1, . . . , 1) we get (x0, x1, . . . , xn) with

∀i = 1, . . . , n xi ≤ 2m

and
#{i = 1, . . . , n | xi = m} ≥ 5.

We will fix such a sufficiently large M (satisfying also some other lower bounds that are to be deter-
mined later). We also fix a sufficiently small value δ0 ∈ (0, 1

2
) such that(

3δ0
1− 2δ0

)α
<
δ0
2
. (6)

To state properties and propositions below we will need, in addition to n,m and M , to choose some
ε, q > 0. The order, in which we choose these parameter values is as follows: Fix α > 1. We choose
n,m as in Theorem 0, and M ≥ M0 as in Corollary 1. Then, ε ∈ (0, 1) is chosen to be sufficiently
small, and finally q > 0 is chosen to be sufficiently small (compare with Lemma 3 below). However,
for the intermediate propositions we will immediately assume the following inequalities (that can be
guaranteed when the choice is made in this order):

M > 4mn (7)

q <
ε2

M
∧ δ0ε

2

n
. (8)

Definition 2. On our probability space (Ω,F ,P), for fixed m,n,M, ε, q > 0, a vertex v ∈ V − :=
V \ {x0} is
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• Pólya-regular, if the variables (Uj,v)Mj=1 are such that the conclusions of Corollary 1 hold for the
discrete-time Pólya urn process defined from (1) with the variables (Uj)

M
j=1 defined by Uj := Uj,v,

and with starting configuration (m, 1, . . . , 1). In this case, the colours iv that are reinforced
exactly m− 1 times in this discrete-time process are called its P-children;

• Pólya-non-disturbing, if

∀j = M + 1, . . . ,M ′, Uj,v ≤ 1− n
(

2m+ ε−2qj

j/2

)α
, (9)

where M ′ := dε−2q−1Me.
• Pólya-well behaved, if

∀j > M ′, #
{
i ∈ {M ′ + 1, . . . , j} : Ui,v ≥ 1− δ0

2

}
≤ δ0j. (10)

• Pólya-good if it is Pólya-regular, Pólya-non-disturbing and Pólya-well behaved;

• time-regular, if for all k ∈ N the firing times Tk,v satisfy

ε
k

λv
< Tk,v < ε−1 k

λv
.

• time-good, if all its children (but not necessarily the vertex itself) are time-regular.

• tree-good, if it is time-good and Pólya-good.

Remark 3. Let Tv = Tv(α,m, n,M, ε, q) denote the event that vertex v is tree-good. Then, (Tv)v∈V−
are independent events since they depend on disjoint sets of independent random variables (v being
tree-good depends on Uv and the variables Tv′ for children v′ of v). Similarly, for each v, the events
that v is Pólya-regular, time-good, Pólya-non-disturbing, and Pólya-well behaved are independent.

For every vertex v fix the times

t0(v) :=
ε

λv
, t1(v) :=

M

ελv
.

By definition, a time-regular vertex v never fires before t0(v) and fires at least M times by t1(v). Since

M

εq
≤ ε
⌈ M
ε2q

⌉
= εM ′,

we also see that if v is time-regular then for any time-regular descendant v′ of v, by the time t1(v′)
the vertex v fires at most M ′ times; this motivates the occurrence of M ′ in the conditions above.

Definition 3. Let v̄ denote the parent of the vertex v ∈ V −. We call v̄ for v a

• nurturing parent, if by the moment t0(v) the edge v̄v is reinforced by v̄ exactly m− 1 times;

• non-disturbing parent, if between t0(v) and t1(v) the edge v̄v is never reinforced by v̄.

• good parent, if v̄ is both nurturing and non-disturbing.

Remark 4. The property of being a good parent depends on the Poisson clocks and uniform random
variables throughout the tree. Nevertheless we will develop an induction that works with independent
random variables at each vertex: see Proposition 4.

7



2.2 The crystallisation tree

For v ∈ V , let D(v) denote v and all its descendants.

Definition 4 (Crystallisation tree). The crystallisation tree Cv rooted at a tree-good vertex v ∈ V −
is defined in the following way. We start with the vertex v. Then, for each vertex that we have already
added, we append all tree-good P -children of that vertex (as well as the edges joining these vertices
to their parent). The procedure is then (possibly infinitely) repeated. If v is not tree-good then the
crystallisation tree Cv rooted at v is defined to be empty.

Remark 5. The crystallisation tree Cv depends only on the variables (Uu)u∈D(v) and (Tu)u∈D(v)\{v}

The reason for considering the crystallisation tree can essentially be seen from the following two
propositions.

Proposition 1. Let v ∈ V − be a time-regular, tree-good vertex with a good parent v̄. Then, the
crystallisation tree Cv rooted at v is contained in E+.

Proposition 2. For all α,m, n as in Theorem 0, the following holds. For all sufficiently large M =
M(n, α) ≥ 1 and sufficiently small ε = ε(M,n, α) > 0 and q = q(ε,M, n, α) > 0, conditionally on the
event that a vertex v ∈ V − is tree-good, its crystallisation tree Cv is a super-critical Galton-Watson
tree (with one vertex at the initial level).

In order to apply Proposition 1, one needs to ensure an appropriate “starting point” for such a
tree. To this end, let us introduce the following notation: let

B(v) := {v} ∪ {u : u ∼ v}

be the union of the vertex v with its neighbours, and let

Fv := σ
(
Uv, (Tu)u∈B(v)

)
be the σ-algebra generated by the Poisson clock rings for these vertices and the uniform variables
associated to the vertex itself. Also, denote by D(v) the tree of descendants of v (including v). Then,
for a vertex v and its parent v̄, the events associated to the construction of the crystallisation tree Cv
(that is, the tree goodness of v and its descendants, which depends only on (Tj,u)j∈N,u∈D(v)\{v} and
(Uj,u)j∈N,u∈D(v)), are independent from these belonging to Fv̄.

For v ∈ V such that d(v) ≥ 2, let Av̄ be the event that all the following occur:

• no vertices among the neighbours of v̄ fire before t0(v), and v is time-regular

• v̄ fires by t0(v) exactly m− 1 times, and after that doesn’t fire at all before t1(v);

• all these m− 1 firings at v̄ reinforce the edge 0v = v̄v

Proposition 3 (Initial spark). Let α,M, ε, q be fixed. Then, there exists pinit > 0 such that for any
v ∈ V such that d(v) ≥ 2,

(i) Av̄ ∈ Fv̄, and

(ii) on the event Av̄, v is time-regular and v̄ is a good parent for v, and

(iii)
P(Av̄) ≥ pinit.

Proof. The event that no vertices among the neighbours of v̄ fire before t0(v) depends only on (T1,u)u∈B(v̄)\{v̄}.
The event that v is time-regular depends only on Tv (and on this event v does not fire before t0(v)).
The event that v̄ fires by t0(v) exactly m − 1 times, and after that doesn’t fire at all before t1(v) de-
pends only on (Ti,v̄)mi=1. If these first two events occur then the occurrence of the event that all these
m− 1 firings at v̄ reinforce the edge 0v = v̄v depends only on (Uj,v̄)m−1

j=1 (this condition becomes the
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condition that a Pólya urn with the initial condition (1, . . . , 1) defined from the Uv̄ variables reinforces
a given fixed colour on each of the first m− 1 occasions). Therefore Av̄ ∈ Fv̄.

The claim (ii) is immediate from the definition of Av̄ and the definition of good parent.
The probability that the first two events (i.e. the first two bullet points above) in the definition of

Av̄ occur is positive and does not depend on v, since the products t0(v)λv = ε and t1(v)λv = M
ε

do not
depend on v. Meanwhile, conditionally on these events, the last event in Av̄ has positive probability
that again does not depend on v by the above urn observation. Thus P(Av̄) > 0 and this probability
does not depend on v. �

Next, we need many such “initial sparks”, where a Galton-Watson tree can be started indepen-
dently. To verify this, let us use the labelling scheme where the children of the root are labelled 1, . . . , n
and for any labelled vertex v of the tree that is not the root, its children are labelled v1, . . . , vn.

Lemma 1. There exist vertices (v(k))k∈N such that the sets B(v̄(k)) ∪D(v(k)) are disjoint.

Proof. For k ∈ N let v(k) denote the vertex whose label is 1 followed by k − 1 2’s, followed by three
ones. Then, B(v̄(k)) ∪D(v(k)) ⊂ D(¯̄v(k)), where ¯̄v(k) is the vertex with label 1, followed by k − 1 2’s,
followed by a 1. Clearly D(¯̄v(k)) are disjoint for different k since all descendants of ¯̄v(k) have labels
starting with the labelling of ¯̄v(k). �

To ensure that almost surely there is an infinite number of infinite connected components, we have
to ensure that these can be disconnected from each other. This can be achieved relatively easily in
the tree.

For a vertex v ∈ V −, let vn denote the last child of v. Also let Ev := E1
v ∩ E2

v , where

E1
v :=

⋂
j≥0

{
Uj+1,v ≤

(1 + (j/n))α

1 + (1 + (j/n))α

}
, (11)

E2
v :=

⋂
j≥0

{
Uj+1,vn ≥

1

1 + (1 + (j/n))α

}
. (12)

Thus, Ev depends only on Uv and Uvn .

Lemma 2 (Disconnecting). There exists p0 > 0 such that for every vertex v ∈ V −

(i) P(Ev) ≥ p0,

(ii) on the event Ev the edge vvn is never reinforced.

Proof. The first claim follows from the fact that we are intersecting independent events of probabilities
(1−O(j−α)), with α > 1, hence the product of probabilities converges to some positive value p0, (that
does not depend on the choice of the vertex v).

The second claim is proved by induction, noting that if by the moment of (j + 1)-st firing at the
vertex v the edge vvn has never been reinforced (neither from v, nor from vn), then at least one of the
other edges incident to v has tally at least 1 + j

n
(as the vertex v has already fired j times), and the

inequality (11) thus implies that the reinforcement will not go to the last edge vvn.
Similarly if by the moment of (j+1)-st firing at the vertex vn the edge vvn has never been reinforced

(neither by v, nor by vn), at least one of the other edges starting from vn has tally at least 1 + j
n

(as
the vertex vn has already fired j times). Again, the inequality (12) thus implies that the reinforcement
will not go to the first edge vvn. �
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2.3 Proof of Theorems 1 and 2

We are now ready to prove our main results (assuming Theorem 0).

Proof of Theorem 1. Let α > 1 be given. Fix n,m given by Theorem 0. Further, fix q, ε,M , given by
Corollary 2, so that the crystallisation Galton–Watson trees are supercritical. Let v(k) be the vertices
given in Lemma 1, and let z(k) denote the vertex v(k)n111, which is a descendant of v(k). For k ∈ N
consider the events

Jk := Ev(k) ∩Az̄(k) ∩ {#Cz(k) =∞}. (13)

As noted above Lemma 2, Ev(k) depends only on Uv(k) and Uv(k)n. The event Az̄(k) depends only
on Uz̄(k) = Uv(k)n11 and (Tu)u∈B(z̄(k))

, while the event {#Cz(k) =∞} depends only on (Uu)u∈D(z(k))

and (Tu)u∈D(z(k))\{z(k)}. Thus these three events are independent each has positive probability, and

therefore Jk has positive probability. Moreover, the events (Jk)k∈N are independent for different k.
Therefore infinitely many Jk occur almost surely. By Propositions 3(ii) and 1 the crystallisation trees
Cz(k) are all subsets of E+. They are also disconnected from each other by edges that are never
reinforced (these never reinforced edges are obviously in Ec+). Since infinitely many Jk occur this
implies that there are infinitely many infinite components of E+ as claimed in part (i).

Next, note that (ii) follows from the fact that the arguments above for a particular choice of
n,m, q,M, ε are preserved by a small perturbation of α (for a fixedM the strict inequality in Corollary 1
is preserved under a small perturbation by continuity).

Finally, note that if Tn
λ
< T ′ then since T ′ contains only finitely many edges that are connected to

Tn but not in Tn, the same argument above yields that infinitely of the events Jk occur in that part
of Tn that is “after” these finitely many edges, giving the final claim. �

Let us deduce Theorem 2 from Theorem 1.

Proof of Theorem 2. Part (ii) of Theorem 1 states that for any α ∈ (1,∞) there exist parameters
(n, q) and a neighbourhood Oα of α such that the connected components conclusion for the tree Tn
with λv = qd(v) holds simultaneously for all α′ ∈ Oα. Let us extract a countable cover {Oαj} of (1,∞)
by such neighbourhoods, and let (nj , qj) be the corresponding parameters.

Now, take the trees Tnj equipped with the respective functions λv,j := q
d(v)
j (where d is the distance

to the corresponding root), and let us attach the j-th such tree to the point j of the positive half-line.
That is, we take a disjoint union

G′ := tj≥1Tnj
of these trees, equipping it with the function λv that is the union of the respective functions λv,j , and
transform it into a connecting graph G by adding an edge from the root of Tnj to the root of Tnj+1

(see for example Figure 1) for each j ∈ N.
Then, to complete the proof of Theorem 2 we have only to check that the WARM process on G

is well-defined. Indeed, once this is established, for any α ∈ (1,∞) one of the neighbourhoods Oαj

covers α. By the choice of Oαj , nj and qj , as Tnj
λ
< G, this implies that the set E+ of linearly reinforced

edges almost surely contains (infinitely many) infinite connected components.
Let us now check that the WARM process is well-defined. Note that we cannot apply [6, Theorem 1]

directly, as the degrees of the graph G are not bounded. However, as in [6], for a WARM process to
be well-defined, it suffices to show that almost surely there are no infinite descending chains, that is,
sequences (vj , Tvj ,kj )j∈N such that for all j the vertex vj+1 is a neighbour of vj and Tvj+1,kj+1 < Tvj ,kj .
Indeed, the presence of such an chain (in which case the result of kj-th firing at the vertex vj cannot
be resolved without resolving kj+1-th firing at the vertex vj+1) is the only possible obstacle to the
well-definedness of a WARM process; see [6, Definition 1] (and the discussion after it).
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Assume now that such an infinite chain (vj , Tvj ,kj ) exists. Then, either all except for a finite
number of vertices vj are contained in the same tree Tn for some n, or shifts between these trees
infinitely many times. In the former case, removing the initial part that is not contained in Tn, we
get an infinite descending chain that consists only of the vertices from this tree. However, this almost
surely does not take place; indeed, any of these trees is a graph with bounded degrees, hence almost
surely contains no infinite descending chains due to [6, Proposition 1].

On the other hand, if an infinite descending chain changes trees infinitely many times, it contains an
infinite sub-chain visiting only the root vertices. This would be an infinite descending chain contained
in the half-line graph, that is formed by the roots of all Tn; again, such an infinite chain almost surely
does not exist, as N is also a graph with bounded degrees.

As both cases for the infinite descending chain almost surely are impossible, with probability 1
there are no such chains, and thus the WARM process on G is well-defined. This concludes the proof
of Theorem 2. �

2.4 Proof of Proposition 1

Proposition 1 will be proved by induction.

Proposition 4 (Main induction step). Assume that the vertex v has a good parent v̄ and that v is
tree-good and time-regular. Then:

• v is a good parent for all of its P-children, and

• the edge 0v = v̄v is reinforced with a frequency at least ελv/2, i.e.

lim inf
t→∞

1

t
Nt(v̄v) ≥ ελv

2
.

Proof. Let us describe the evolution of tallies on the edges adjacent to v.

• Before t0(v). Note that up to time t0(v) there were no firings at the vertex v due to its time-
regularity, thus, the only reinforcements for the v̄v edge are those coming from the parent v̄.
Also, the children of v are time-regular (as v is time-good). Hence they also do not fire by the
time t0(v), and moreover, will not fire even until q−1t0(v) > t1(v) (the inequality is due to (8)).
Since also v̄ is a nurturing parent for v, it reinforces the edge v̄v exactly m− 1 times by the time
t0(v). Hence the tallies of edges adjacent to v at time t0(v) are (m, 1, . . . , 1).

• Between t0(v) and TM,v. Since v is time-regular, TM,v < t1(v): the vertex v will fire at least
M = ελvt1(v) times by time t1(v).

The children of v do not fire before t1(v) due to their time-regularity. Also, v̄ is a non-disturbing
parent for v, hence from time t0(v) until t1(v) it does not reinforce v̄v. Hence, the only reinforce-
ments that can come to the edges adjacent to v during this period are those coming from the
firing at v. Thus the reinforcement of the edges adjacent to v during this time are determined
by the number of firings at v and the Pólya urn choices according to the Uj,v as in (4) with
(m, 1, . . . , 1) as the initial state. 1

Since v is Pólya-regular, after its first M firings the conclusions of Corollary 1 will hold. In
particular, v has at least 5 P -children, i.e. edge-offspring of v which have been reinforced exactly
m− 1 times after these M firings at v. Also, the tally of the edge 0v = v̄v at this moment is at
least m + (M − n(2m − 1)) = M − 2mn + m + n, as at most (2m − 1)n firings of the vertex v
went to other edges.

1Note that the sequence of edge reinforcements does not have the law of a Pólya urn with this initial state.
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Figure 3: Neighbourhood of the vertex v after M of its firings; the encircled vertices are time-regular.

• From TM,v to TM′,v. All the firings of v from (M + 1)-st to M ′-th reinforce the edge v̄v. We
will prove this by induction on j ∈ M + 1, . . . ,M ′, verifying both the base case j = M + 1 and
the induction step via the same argument. For j = M + 1, . . . ,M ′, the tally of the edge 0v = v̄v
just before the j-th firing at the vertex v is at least j − 2mn > j

2
: for the base case j = M + 1

this follows from the fact above that the tally of this edge is at least M + (m + n) − 2mn ≥
M + 1 − 2mn > (M + 1)/2 after M firings at v (the latter inequality following from (7)), and
then for all the other j this follows trivially from the induction hypothesis.

On the other hand, the tally of every other edge vv′ (joining v to one of its children v′) at this
moment does not exceed

NTj,v−(vv′) ≤ 2m+ ε−2qj;

the first summand here is an upper bound on the tally at TM,v, and the second is an upper
bound for the number of firings at v′ at this moment, which holds due to time-regularity of both
v and v′:

Tdε−2qje,v′ >
ε

λv′
ε−2qj =

1

qλv
ε−1qj > Tj,v.

Finally, the Pólya-non-disturbing condition (9) implies that with these tallies, the j-th firing will
also reinforce the edge 0v = v̄v. Indeed, using (9) and 1− x < 1/(1 + x) for all x ≥ 0 we have

Uj,v ≤ 1−n
(

2m+ ε−2qj

j/2

)α
<

(j/2)α

(j/2)α + n · (2m+ ε−2qj)α
<

NTj,v−(0v)α

NTj,v−(0v)α +
∑
i′>0 NTj,v−(i′v)α

,

and hence (recall (5)) the edge 0v = v̄v is reinforced by this firing.

The above description already suffices to conclude that the first claim of the proposition holds.
Indeed, for any child v′ of v, we have by (8) that t0(v′) = q−1t0(v) > t1(v) > TM,v. Therefore
since v is time-good and time-regular it has fired more than M times by time t0(v′). Thus the
edge towards any P -child v′ of v at this moment has a tally equal to m, so v is a nurturing
parent for v′. Meanwhile, TM′,v > q−1t1(v) = t1(v′), and thus v does not reinforce the edge vv′

between the times t0(v′) and t1(v′), and hence v is a non-disturbing parent for v′.
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• After TM′,v. Let us now proceed to the second claim of the proposition, to the asymptotic
reinforcement of the edge 0v = v̄v. We will prove by induction on j = M ′ + 1,M ′ + 2, . . . the
following statement: if Uj,v < 1− δ0

2
, then the j-th firing of the vertex v reinforces 0v.

To do so, let us estimate the tallies of the edges adjacent to v up to the moment of the (j+ 1)-st
firing. In the case j + 1 = M ′ + 1, the tally of the edge 0v satisfies

NTj,v−(0v) ≥ (M ′ −M) + (M − 2mn) = M ′ − 2mn,

which is the lower bound for NTM′,v (0v) obtained from the bounds in the previous time periods.
For all larger j, from the induction hypothesis, the tally of the edge 0v satisfies

NTj,v−(0v) ≥ (M ′ − 2mn) + #
{
i ∈ {M ′ + 1, . . . , j} : Ui,v < 1− δ0

2

}
.

In each case, due to (10) this sum is lower-bounded by

(M ′ − 2mn) + (j −M ′ − δ0j) = (1− δ0)j − 2mn > (1− 2δ0)j, (14)

where we have used (7), the fact that M ≤ ε2qM ′ < ε2qj, and (8). On the other hand, the sum
of tallies of the edges vv′, where v′ are children of v, does not exceed

n(2m+ ε−2qj) + δ0j = (δ0 + nε−2q)j + 2mn < 3δ0j. (15)

Indeed, the first summand in the left hand side of (15) bounds from above the sum of tallies at
the moment t0(v′), the second corresponds to the number of possible reinforcements by v′, and
the last one to those by v. The inequality in (15) arises similarly from (8) and (7) as above.

Hence, we have∑
i>0 NTj+1,v−(iv)

NTj+1,v−(0v)
≤ n(2m+ ε−2qj) + δ0j

(1− δ0)j − 2mn
<

3δ0j

(1− 2δ0)j
=

3δ0
1− 2δ0

.

Since α > 1, we obtain∑
i>0 NTj+1,v−(iv)α

NTj+1,v−(0v)α
≤
(∑

i>0 NTj+1,v−(iv)

NTj+1,v−(0v)

)α
<

(
3δ0

1− 2δ0

)α
<
δ0
2
,

where the last inequality is due to (6). Thus, if Uj,v < 1− δ0
2

, then due to (5) the (j+1)-st firing
also goes to 0v, thus proving both the base case and the induction step.

Hence, for each j ≥ M ′, (14) is a lower bound for the tally of the edge 0v at time Tj,v. Due to
the time-regularity of the vertex v and the fact that δ0 < 1/2 we obtain

lim inf
t→∞

1

t
Nt(v̄v) ≥ lim inf

j→∞

NTj,v (0v)

Tj+1,v
≥ lim
j→∞

(1− δ0)j − 2mn

(j + 1)/ελv
= (1− δ0)ελv >

ε

2
λv.

This proves the second claim of the proposition, and thus concludes the proof.

�

Proof of Proposition 1. Let us show that every node v′ of the crystallisation tree Cv has the following
properties

(i). v′ has a good parent, is time-regular and tree-good;

(ii). E+ contains the edge 0v′ .
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Let us start with the first claim. We proceed by induction on the distance of a vertex v′ in the
crystallisation tree to v. The base v′ = v is given by the assumptions of the proposition. Now, assume
that this statement holds for some vertex v′ ∈ Cv. Then, Proposition 4 is applicable to v′, and thus
v′ is a good parent for its P -children. Thus, any child v′′ of v′ that belongs to Cv has a good parent,
is time-regular (because v′ is time-good) and is tree-good (otherwise it wouldn’t be appended to the
crystallisation tree). This proves the induction step, and hence claim (i) for all the vertices in Cv.

Now, let v′ ∈ Cv. Again, Proposition 4 is applicable to v′, and from its second conclusion we get
that the edge 0v′ is reinforced with a lower-bounded intensity:

lim inf
t→∞

1

t
Nt(0v′) ≥

ελv′

2
> 0.

Hence, 0v′ ∈ E+, thus proving claim (ii). �

2.5 Proof of Proposition 2

In the construction of the crystallisation tree started at a tree-good vertex v, in order to determine
the number of offspring of v we need only look at Uv (to determine the number of P -children) and
Uv1, . . . ,Uvn and the times Tvij where i, j ∈ {1, . . . , n} (to determine which children of v are tree-
good). If a P -child viv is indeed tree-good for some iv ∈ {1, . . . , n}, then to determine its number of
offspring we need only look at Uviv again (to determine the number of P -children) and Uviv1, . . . ,Uvivn

and the times Tvivjk where j, k ∈ {1, . . . , n} (to determine which children of v are tree-good). All of
these random variables are independent, except that we may look at each Uv′ twice (once to determine
if v′ is tree-good, and once to determine its P -children).

Thus given that v is a tree-good vertex, the crystallisation tree Cv is a Galton Watson tree with
offspring distribution given by the number of tree-good P -children of v.

To show that the crystallisation tree can be made supercritical, we need to show that the average
number of offspring can be made greater than 1.

The main step that we have to make now is to show that the good events appearing in Definition 2
occur with high probability. Recall that V − := V \ {x0} denotes the family of non-root vertices of Tn.

Lemma 3 (High probability of good events). Let α > 1, n ≥ 2 and v ∈ V −. Then,

lim inf
M→∞

lim inf
ε→0

lim inf
q→0

P(Ei) = 1

for each of the following events E:

(I) E1 = {v is time-regular}
(II) E2 = {v is time-good}

(III) E3 = {v is Pólya non-disturbing}
(IV) E4 = {v is Pólya-well behaved}.

Note that since the distribution of the scaled variables {λvTk,v}k≥1 does not depend on v, neither
does the probability of the event Ei.

Proof. We show that
lim inf
M→∞

lim inf
ε→0

lim inf
q→0

P(Ei) ≥ 1− δ

for every fixed δ > 0.

(I) Note that the probability of this event does not depend on q or M at all. By the strong law of
large numbers, there exists k1 ≥ 1 such that

P
(
λvTk,v ∈ (k/2, 2k) for all k ≥ k1

)
≥ 1− δ/2.
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Fixing such a k1, we then choose ε ∈ (0, 1/2) sufficiently small such that

P
(
λvTk,v ∈ (kε, kε−1) for all k ≤ k1

)
≥ 1− δ/2.

(II) Follows immediately from part (I) since the number of children of any particle is fixed.

(III) Note that (a + b)α ≤ 2α(aα + bα) for any a, b, α > 0. Applying this to the condition in (9) we
obtain for every j (

2m+ ε−2qj

j/2

)α
≤ 8αmαj−α + 4αε−2αqα.

Hence, by the union bound,

1− P(E3) ≤
M′∑

j=M+1

n

(
2m+ ε−2qj

j/2

)α
≤ 8αmαn

∑
j>M

j−α + n4αε−2α · dε−2q−1Me︸ ︷︷ ︸
M′

·qα.

Since α > 1, for all M sufficiently large the first term on the right hand side is smaller than δ/2. On
the other hand, for any M, ε, the second term on the right hand side becomes less than δ/2 once q is
sufficiently small (it scales as qα−1).

(IV) Recall that δ0 is fixed (and does not depend on M , ε, q). By the strong law of large numbers,
there exists j1 ≥ 1 such that

P
(

sup
j−M′>j1

1

j
#
{
i ∈ {M ′ + 1, . . . , j} : Ui,v ≥ 1− δ0

2

}
≤ δ0

)
≥ 1− δ (16)

holds uniformly over M , ε and q. Fix such a j1.
Now, choose q sufficiently small such that j1/M

′ ≤ δ0. Then, for j ≤M ′+ j1 the inequality in (10)
holds automatically, as

sup
1≤j−M′≤j1

1

j
#
{
i ∈ {M ′ + 1, . . . , j} : Ui,v ≥ 1− δ0

2

}
≤ j1
M ′
≤ δ0;

joining this with (16) (that handles j > M ′ + j1), we conclude the proof. �

Recall that Tv denotes the event that v is tree-good.

Corollary 2. For α, n,m as in Theorem 0,

lim inf
M→∞

lim inf
ε→0

lim inf
q→0

P(Tv) > 4/5.

In particular, there exist sufficiently small q, sufficiently small ε and sufficiently large M , so that the
crystallisation tree is supercritical.

Proof. The first claim follows from the definition of tree good, Lemma 3 and Corollary 1 (the latter
shows that the probability that a vertex u is Pólya-regular is at least 4/5). The number of offspring
of such a vertex dominates a Binomial(5, 4/5) random variable (since 5 is the minimal number of
P -children of a tree-good vertex, and each child has probability at least 4/5 of being tree-good. Thus,
the expected number of children of a vertex u in the crystallisation tree is at least 4 = 5 · 4/5. �
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3 Single Pólya urn: proof of Theorem 0

Let α > 1 be fixed. As stated in the introduction, for the proof of Theorem 0 we will use Rubin’s con-
struction [5]. Namely, we introduce families (ξj , ηj,k)j∈N,k=1,...,n of i.i.d. exponential random variables

with mean 1, and consider partial sums S(r) and Z
(r)
k (see (2)) of the series

S =

∞∑
j=m

ξj
jα

and Zk =

∞∑
j=1

ηj,k
jα

, k = 1, . . . , n

respectively. As noted in the earlier sketch proof, these sums can be coupled with the Pólya urn: one
puts balls of the corresponding colours at these “times”.

The conclusion of Theorem 0 (for a particular realisation) will then be satisfied if

• There exist at least 5 (random) colours k = k1, . . . , k5 such that Z
(m−1)
k < S < Z

(m)
k .

• Z(2m)
k > S for all k.

Let us show that we can choose the number n of colours so that both of the above conditions are
fulfilled with probability greater than 4

5
. We will first deduce it from a chain of auxiliary statements,

postponing their proofs, and will subsequently prove these auxiliary statements.

3.1 Deducing the theorem from auxiliary statements

The first of these statements is devoted to the description of the random sum S =
∑∞
j=m

ξj
jα

. As it
has many (∼ m) terms of roughly the same magnitude (in the spirit of the Law of Large Numbers and
Central Limit Theorem) its sum is likely to be close to its expectation. This expectation is close to

1
(α−1)mα−1 due to a comparison with the integral

∫∞
m
x−αdx. More precisely, we have the following.

Proposition 5. There exists a constant C1 > 0 such that for all sufficiently large m one has

P
(∣∣∣S − 1/(α− 1)

mα−1

∣∣∣ < C1

mα− 1
2

)
≥ 1− 1

100
. (17)

From now on we fix the constant C1 given by Proposition 5, and let s−, s+ be the endpoints of the
confidence interval of values of S:

s± :=
1

(α− 1)mα−1
± C1

mα− 1
2

=

(
1

α− 1
± C1√

m

)
· 1

mα−1
. (18)

Then, Proposition 5 states that P(S /∈ (s−, s+)) < 1/100.
Consider now the sums

Z′k := Z
(m−1)
k =

m−1∑
j=1

ηj,k
jα

, Z′′k := Z
(2m)
k − Z′k =

2m∑
j=m

ηj,k
jα

.

As the behaviour of the sums Z
(r)
k is independent from that of S, it suffices to establish that the

following conclusions hold with sufficiently high probability for any s ∈ [s−, s+] (see Fig. 4)

(i). There exist at least 5 (random) colours k = k1, . . . , k5 such that Z′k < s < Z′k +
ηm,k
mα

.

(ii). Z′k + Z′′k > s for all k.
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For a given value s we call k such that Z′k < s the candidate colours.
Note that these conditions, in a sense, disregard indices k such that Z′k > s: condition (ii) is

satisfied automatically, but such k cannot be one of those appearing in condition (i). We thus fix n in
such a way that even for the sum S taking the smallest possible non-discarded value s−, we still have
enough candidate colours k for the first condition. Namely, we fix

n :=
⌈ 100mα

P(Z′k < s−)

⌉
. (19)

Z ′k
Z ′k + Z ′′k

Z ′k Z ′k + Z ′′k

Z ′k Z ′k +
ηm,k
mα

1/(α−1)
mα−1

s− s+(1− δ)s−

s

Figure 4: Checking claims (i) and (ii) conditionally on {S = s}, where s ∈ [s−, s+]. Bold dots represent
candidate colours. They all belong to [(1− δ)s−, s]; we have to check Z ′k +Z ′′k > s for all of them (dashed
horizontal arrows, ensuring claim (ii)), and find at least five of them with Z ′k +

ηm,k
mα > s (curved arrow,

claim (i)).

The following will be used to show that conclusion (i) holds with probability close to 1.

Proposition 6. The density of the random variable Z′k is increasing on [0, s+] for all sufficiently
large m. In particular, for every s ∈ [s−, s+] one has

nP
(
s− 1

mα
< Z′k < s

)
> 100. (20)

Let us now ensure that the condition (ii) is satisfied with high probability. On the one hand, the
added sum Z′′k =

∑2m
j=m

ηj,k
jα

also consists of many comparable summands, and hence admits a Large
Deviation Theorem-type lower bound.

Proposition 7. There exists a constant c2 > 0 such that for all sufficiently large m,

P
(
Z′′k >

1

10 · (2m)α−1

)
≥ 1− e−c2m. (21)

On the other hand, the values of S are (for large m) quite small, while the random variable Z′k is a
sum of many independent random variables, and its density (or the partition function) should decrease
quite fast near 0; we give a rigorous treatment of this informal argument below (see Definition 5 below).
In particular, it is natural to expect all of the estimated ∼ 100mα values of Z′k that fall on [0, s−] to
be concentrated near the right end of this interval. This is guaranteed by the following.

Proposition 8. For every δ > 0,

lim
m→∞

mαP(Z′k < (1− δ)s−)

P(Z′k < s−)
= 0.

Finally, we have that the expected number of candidate colours grows sub-exponentially with m.
This will be combined with the previous two propositions to establish (ii) with high probability.
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Proposition 9. There is a constant C2 > 0 such that for all m sufficiently large one has

nP(Z′k < s+) < eC2
√
m.

Proof of Theorem 0. Fix α > 1. Let Jm be the event that only colour 0 is selected more than 2m− 1
times and there are at least 5 colours selected exactly m−1 times. We need to show that for sufficiently
large m (and with n as in (19)), P(Jm) > 4/5.

For s ∈ [s−, s+], let Km,s = #{k ∈ 1, . . . , n : Z′k < s < Z′k+
ηm,k
mα
}, and Im,s = ∩nk=1{Z′k+Z′′k > s}.

Let

Jm,s := {Km,s ≥ 5} ∩ Im,s. (22)

We will show that for all m sufficiently large,

inf
s∈[s−,s+]

P(Jm,s) ≥ 89/100. (23)

Note that

Rk := {Z′k < s < Z′k +
1

mα
} ∩ {ηm,k > 1} ⊂ {Z′k < s < Z′k +

ηm,k
mα
}.

By Proposition 6 we have that P(Z′k < s < Z′k + 1
mα

) > 100/n and since ηm,k is independent of Z′k
and P(ηm,k > 1) = e−1 we have P(Rk) ≥ 100/(en) ≥ 30/n. Let X be the number of k for which Rk
occurs. Now P(X < 5) ≤ P(|X − E[X]| > E[X]− 5), which by Chebyshev’s inequality is at most

nP(Rk)

nP(Rk)− 5
· 1

nP(Rk)− 5
≤ 30

252
<

1

10
.

Thus P(X ≥ 5) ≥ 9/10 and since Km,s ≥ X we have P(Km,s ≥ 5) ≥ 9/10 for all s ∈ [s−, s+].
Turning our attention to the event Im,s, let C = {k ≤ n : Z′k < s}. Then, (up to sets of measure

0) Im,s is equal to the event I ′m,s := {Z′k + Z′′k > s for every k ∈ C} (because if k /∈ C then Z′k ≥ s so
Z′k + Z′′k > s a.s.). Choose

δ =
α− 1

20 · 2α ,

and let s′− = (1− δ)s−. If Z′k > s′− and Z′′k >
1

10·(2m)α−1 then

Z′k + Z′′k > (s− − δs−) +
1

10 · (2m)α−1
(24)

>
1

mα−1
·
(

1

α− 1
− C1√

m
− δ

α− 1
+

1

10 · 2α−1

)
(25)

=
1

mα−1
·
(

1

α− 1
− C1√

m
+

1

20 · 2α−1

)
. (26)

For m sufficiently large we have 1
20·2α−1 > 2 C1√

m
, and hence for all such m,

Z′k + Z′′k >
1

mα−1
·
(

1

α− 1
+

C1√
m

)
= s+ ≥ s,

so

I ′m,s ⊃
{
∀k ∈ C we have Z′k > s′− and Z′′k >

1

10 · (2m)α−1

}
(27)

⊃
{
Z′k > s′− ∀k ∈ [n]

}
∩
{
Z′′k >

1

10 · (2m)α−1
∀k ∈ C

}
. (28)

18



Thus,

(I ′m,s)
c ⊂

(
∪nk=1 {Z′k < s′−}

)
∪
{
Z′′k ≤

1

10 · (2m)α−1
for some k ∈ C

}
. (29)

The probability of the event in brackets () on the right hand side of (29) is at most n · P(Z′k < s′−)
which by the choice of n satisfies

n · P(Z′k < s′−) ≤
[

100mα

P(Z′k < s−)
+ 1

]
P(Z′k < s′−) (30)

=
100mαP(Z′k < s′−)

P(Z′k < s−)
+ P(Z′k < s′−). (31)

By Proposition 8 the sum of these terms is less than 1/100 for m sufficiently large.
Now we turn to the probability of the second event on the right hand side of (29). It is equal to

P
(
Z′′k ≤

1

10 · (2m)α−1
for some k ∈ C

)
≤ E

[
E
[∑
k∈C

1{
Z′′
k
≤ 1

10·(2m)α−1

} ∣∣∣ C]] (32)

= P
(
Z′′1 ≤

1

10 · (2m)α−1

)
E[#C], (33)

where in the last step we have used the fact that the Z′′k are independent of C. Note that #C is
dominated by a Bin(n,P(Z′k < s+)) random variable, so by Propositions 9 and 7, (33) is at most

e−c2m · eC2
√
m = o(1) as m→∞.

In particular, this probability becomes less than 1/100 for all sufficiently large m, so for all such m,
P(Im,s) = P(I ′m,s) ≥ 98/100 for all s ∈ [s−, s+].

We have shown that for all m sufficiently large (and n defined by (19)), for all s ∈ [s−, s+],

P(Jcm,s) ≤
1

10
+

1

100
.

Therefore the claim (23) holds. To complete the proof, we simply condition on S. Note that

P(Jm) ≥ P
(
Jm|S ∈ (s−, s+)

)
P
(
S ∈ (s−, s+)

)
(34)

≥ inf
s∈[s−,s+]

P(Jm,s) · P
(
S ∈ (s−, s+)

)
(35)

≥ 89

100
· 99

100
>

4

5
, (36)

where the penultimate bound uses Proposition 5, and is valid for all m sufficiently large. �

3.2 Proofs of auxiliary statements

Proof of Proposition 5. Let us estimate the expectation and the variance of the variable S:

E[S] =

∞∑
j=m

1

jα
.

Comparing to the integral gives

∞∑
j=m

1

jα
>

∫ ∞
m

x−αdx =
1

(α− 1)mα−1
>

∞∑
j=m+1

1

jα
,
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hence ∣∣∣∣E[S]− 1

(α− 1)mα−1

∣∣∣∣ ≤ 1

mα
.

In the same way,

Var(S) =

∞∑
j=m

1

j2α
,

and thus
1

(2α− 1)m2α−1
< Var(S) <

1

(2α− 1)m2α−1
+

1

m2α
.

This gives a standard deviation of the type const ·m−(α− 1
2

). Applying Chebyshev’s inequality, we see
that there exists a constant C1 such that for all sufficiently large m one has

P
(∣∣∣S − 1

(α− 1)mα−1

∣∣∣ < C1

mα− 1
2

)
≥ 1− 1

100
. (37)

�

Proof of Proposition 6. First, the density of the sum
ηk,1
1α

+
ηk,2
2α

can be computed explicitly as

ρ(t) =
2α

2α − 1

[
e−t − e−2αt

]
1{t>0}.

The derivative is positive for t < (2α − 1)−1 log 2α, so if m is sufficiently large then ρ is increasing on
[0, s+].

Next, if a (density) function is supported on R+ and is increasing on [0, s+], its convolution with
any density function supported on the positive numbers is still increasing on [0, s+]. This proves the
first claim of the proposition. It also implies that for 0 ≤ a < b ≤ s+ we have (b − a)−1P(a < Z′k <
b) ≥ b−1P(Z′k < b), whence for any s ∈ [s−, s+] we have

nP
(
s− 1

mα
< Z′k < s

)
≥ nP

(
s− −

1

mα
< Z′k < s−

)
≥ nP(Z′k < s−) · 1

mαs−

≥ 100mα · 1

mαs−

which is greater than 100 for m sufficiently large so that s− < 1. �

Proof of Proposition 7. The sum Z′′k can be estimated from below as

Z′′k =

2m∑
j=m

ηj,k
jα

>
1

(2m)α

2m∑
j=m

ηj,k ≥
1

2 · (2m)α−1
· 1

m

2m∑
j=m+1

ηj,k.

The statement of the proposition then follows directly from standard large deviations estimates (Cher-
noff’s bound) applied to the i.i.d. exponential(1) random variables ηj,k, since with exponentially small
probability

1

m

2m∑
j=m+1

ηj,k ≤
1

5
.

�

In order to prove Proposition 9 we will use the following lemma.
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Lemma 4. For any s′ > s > 0 we have

P(Z′k < s′) <

(
s′

s

)m
P(Z′k < s).

Proof. Let ρj(x) := jα exp(−jαx)1{x>0} denote the density of j−αηj,k. Then

P(Z′k < s′) =

∫
x1+···+xm−1<s′

m−1∏
i=1

ρi(xi) dx1 · · ·dxm−1. (38)

Now, let us make a change of variables in (38), denoting yj = s
s′ xj . We get(

s′

s

)m−1 ∫
y1+···+ym−1<s

m−1∏
i=1

ρi
(s′
s
yi
)

dy1 · · ·dym−1,

and as all the densities ρj are monotone decreasing, and s′

s
yj > yj , this is less than(

s′

s

)m−1 ∫
y1+···+ym<s

m−1∏
i=1

ρi(yi) dy1 · · ·dym−1 =

(
s′

s

)m−1

P(Z′k < s) ≤
(
s′

s

)m
P(Z′k < s).

�

Proof of Proposition 9. We apply Lemma 4 with s = s− and s′ = s+ to obtain

P(Z′k < s+) <

(
s+

s−

)m
P(Z′k < s−).

Now,

s+

s−
=

1 + C1(α−1)√
m

1− C1(α−1)√
m

=
(

1 +
2C1(α− 1)√

m
+ o(

1√
m

)
)
.

As nP(Z′k < s−) ∼ 100mα due to (19), we have

nP(Z′k < s+) < 100mα(1 + o(1)) ·
(

1 +
2C1(α− 1)√

m
+ o(

1√
m

)

)m
< e(2C1(α−1)+1)

√
m

for all m large enough. �

To prove Proposition 8, we will need an estimate in the other direction than for the proof of
Proposition 9. If the estimates of Lemma 4 are saying that the partition function grows at most as
mth power of the argument, for the proof of this proposition, we will need a lower estimate, though
by some smaller power. Namely, let us introduce the following definition.

Definition 5. For s > 0, a non-atomic positive random variable ξ is p-growing up to s if for any
0 < x < y ≤ s one has

P(ξ < x) ≤ e
(
x

y

)p
P(ξ < y). (39)

Next, note that establishing such a growth for a sum of a part of the summands in a large sum
implies the same growth for the total sum:

Lemma 5. Let ξ, η be independent random variables, where ξ is p-growing up to s, and η is positive.
Then, ξ + η is also p-growing up to s.
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Proof. First, for any a > 0 the shifted random variable ξ + a is p-growing up to s: for x ≤ a
the inequality (39) holds automatically, while for x > a it follows immediately from the inequality
x−a
y−a <

x
y

. Thus,

P(ξ + η < x | η) ≤ e
(
x

y

)p
P(ξ + η < y | η)

almost surely, and taking expectations gives the result. �

Our final lemma finally establishes the desired growth:

Lemma 6. There exists β > 0 such that for all m sufficiently large Z′k is mβ-growing on [0, s−].

Proof. Actually, we will show that the conclusion of the lemma is satisfied (for all m large enough)

for any β < α−1
α

. Namely, let p = dmβe and consider the sum Z
(p)
k of the first p summands in the

definition of Z′k. We are going to show that there exists a constant Cp such that one has

∀x ∈ [0, s−]
1

e
Cpx

p ≤ P(Z
(p)
k < x) ≤ Cpxp. (40)

It is easy to see that (40) implies that Z
(p)
k is p-growing on [0, s−], and due to Lemma 5 this will imply

the desired p-growth of Z′k = Z
(p)
k + η, where η is the sum of the last m − 1 − p summands in the

definition of Z′k.
Now, the probability P(Z

(p)
k < x) is given (cf. (38)) by an integral

P(Z
(p)
k < x) =

∫
x1+···+xp<x

p∏
i=1

ρi(xi) dx1 · · ·dxp, (41)

where ρj(xj) = jα exp(−jαxj)1{xj>0}. The volume of the domain of integration is equal to xp

p!
, and

the function under the integral is equal to

ρ1(x1) · · · ρp(xp) = (p!)α · exp(−
p∑
j=1

jαxj).

Hence,
xp

(p!)1−α · exp(−pαx) < P(Z
(p)
k < x) <

xp

(p!)1−α , (42)

where we have used the inequalities
∑p
j=1 j

αxj ≤ pα
∑p
j=1 xj ≤ pαx that hold on the domain of

integration in (41). Now, take Cp := 1
(p!)1−α ; then (42) implies the desired (40), once pαs− < 1. As

s− < 1
(α−1)mα−1 , and p ∼ mβ , this inequality holds for all sufficiently large m if αβ < α − 1. The

conclusion of the lemma holds (for all sufficiently large m) for any β < α−1
α

, thus concluding the
proof. �

Proof of Proposition 8. Fix β > 0 as in Lemma 6 taking x = (1 − δ)s− and y = s− in (39) then
provides the upper bound

mαP(Z′k < (1− δ)s−)

P(Z′k < s−)
< mαe (1− δ)m

β

, (43)

and for any fixed δ > 0 the right hand side of (43) converges to 0 as m→∞. �
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