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2CNRS / Université de Pau et des Pays de l’Adour / E2S UPPA, Laboratoire de mathématiques et
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Abstract: The aim of online monitoring is to issue an alarm as soon as there is
significant evidence in the collected observations to suggest that the underlying data
generating mechanism has changed. This work is concerned with open-end, nonpara-
metric procedures that can be interpreted as statistical tests. The proposed monitoring
schemes consist of computing the so-called retrospective CUSUM statistic (or minor
variations thereof) after the arrival of each new observation. After proposing suitable
threshold functions for the chosen detectors, the asymptotic validity of the procedures
is investigated in the special case of monitoring for changes in the mean, both under
the null hypothesis of stationarity and relevant alternatives. To carry out the sequen-
tial tests in practice, an approach based on an asymptotic regression model is used
to estimate high quantiles of relevant limiting distributions. Monte Carlo experiments
demonstrate the good finite-sample behavior of the proposed monitoring schemes and
suggest that they are superior to existing competitors as long as changes do not occur
at the very beginning of the monitoring. Extensions to statistics exhibiting an asymp-
totic mean-like behavior are briefly discussed. Finally, the application of the derived
sequential change-point detection tests is succinctly illustrated on temperature anomaly
data.
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1. Introduction

In situations in which observations are continuously collected over time, the aim of sequential
or online change-point detection is to issue an alarm as soon as possible if it is thought
that the probabilistic properties of the underlying unobservable data generating mechanism
have changed. While this problem has a long history in statistical process control (see, e.g.,
Lai, 2001; Montgomery, 2007, for an overview), we adopt herein the alternative perspective
proposed in the seminal work of Chu, Stinchcombe and White (1996) and treat the issue
from the point of view of statistical testing. To fix ideas, assume that we have at hand an
initial stretch X1, . . . , Xm (frequently referred to as the learning sample) from a univariate
stationary time series (Xi)i∈Z. As new observations arrive, the aim is to look for evidence
against stationarity and issue an alarm if such evidence is deemed significant. Specifically,
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assuming that the kth observation has been collected, a positive statistic Dm(k) measuring
departure from stationarity is computed from the available observations X1, . . . , Xk and
compared to a suitably chosen threshold w(k/m). If Dm(k) > w(k/m), the hypothesis that
X1, . . . , Xk is a stretch from a stationary time series is rejected and the monitoring stops.
Otherwise, a new observation Xk+1 is collected and the previous steps are repeated using
X1, . . . , Xk+1.

Among such procedures, one can distinguish between closed-end approaches for which the
monitoring eventually stops if stationarity is not rejected after the arrival of observation
Xn, n > m, and open-end approaches which, in principle, can continue indefinitely. The
sequential testing procedures studied in this work pertain to this second category and, for
that reason, their null hypothesis is

H0 : X1, . . . , Xm, Xm+1, Xm+2, . . . , is a stretch from a stationary time series. (1.1)

Their interpretation as statistical tests implies that, given a significance level α ∈ (0, 1/2),
the thresholds w(k/m), k ≥ m+ 1, need to be chosen such that, ideally, under H0,

P{Dm(k) ≤ w(k/m) for all k ≥ m+ 1} = P
{

sup
m+1≤k<∞

Dm(k)

w(k/m)
≤ 1

}
≥ 1− α. (1.2)

The previous display shows how closely the choice of the so-called detector Dm and the
threshold function w are related. Intuitively, under H0, the sample paths of the stochastic
process {Dm(k)/w(k/m)}k≥m+1 should fluctuate but not exceed a constant threshold too
often while, when H0 is not true, they are expected to rapidly exceed it after a change in
the data generating process has occurred.

The starting point of our investigations is the recent seminal work of Gösmann, Kley
and Dette (2020) who study open-end monitoring schemes sensitive to potential changes
in a parameter θ (such as the mean) of a time series. A first natural approach to tackle
this problem, often referred to as the ordinary CUSUM (cumulative sum) in the sequential
change-point detection literature, consists of comparing an estimator θ1:m of θ computed
from the learning sample X1, . . . , Xm with an estimator θm+1:k of θ computed from the
observations Xm+1, . . . , Xk collected after the monitoring has started; see, e.g., Horváth
et al. (2004), Aue et al. (2006) as well as the references given in the recent review by Kirch
and Weber (2018). The idea of Gösmann, Kley and Dette (2020) is to define detectors that
take into account all of the differences θ1:j − θj+1:k, j ∈ {m + 1, . . . , k − 1}. This approach,
that can be regarded as adapted from retrospective (or offline, a posteriori) change-point
detection (which assumes that data collection has been completed before testing is carried
out), treats each j ∈ {m + 1, . . . , k − 1} as a potential change-point. In their experiments,
Gösmann, Kley and Dette (2020) found that their approach is not only more powerful than
the ordinary CUSUM but also more powerful than the so-called Page CUSUM procedure
which consists of defining a detector from the differences θ1:m−θj+1:k, j ∈ {m+1, . . . , k−1};
see, e.g, Fremdt (2015) and Kirch and Weber (2018).

When computed after the kth observation has been collected, the detector proposed by
Gösmann, Kley and Dette (2020) (thus involving all the differences θ1:j − θj+1:k, j ∈ {m +
1, . . . , k − 1}) does not however coincide with the so-called retrospective CUSUM statistic
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that could be computed from X1, . . . , Xk (also involving all the differences θ1:j − θj+1:k,
j ∈ {m+ 1, . . . , k− 1}; see, e.g., Csörgő and Horváth, 1997; Aue and Horváth, 2013 and the
references therein). Reasons that led Gösmann, Kley and Dette (2020) not to consider such
an approach are discussed in their Remark 2.1. As shall be explained in the next section,
we believe that an open-end monitoring scheme using the retrospective CUSUM statistic
as detector could be even more powerful than the procedure of Gösmann, Kley and Dette
(2020) as long as changes do not occur at the very beginning of the monitoring.

The aim of this work is to address the theoretical and practical issues associated with
defining a nonparametric detector for open-end monitoring such that it coincides at each k
with the retrospective CUSUM statistic. The theoretical issues are mostly related to the
choice of the threshold function, while the practical issues come from the fact that quantiles
of the underlying limiting distribution required to carry out the sequential test are harder
to estimate.

This paper is organized as follows. In the second section, we propose three open-end non-
parametric monitoring schemes related to the retrospective CUSUM statistic designed to be
sensitive to changes in the mean of univariate time series. Their asymptotic behavior as the
size m of the learning sample tends to infinity is studied in the third section both under
the null hypothesis of stationarity and relevant alternatives. Section 4 is concerned with the
estimation of high quantiles of related limiting distributions necessary in practice to carry
out the sequential tests. The fifth section presents a summary of extensive numerical exper-
iments demonstrating the good finite-sample properties of the resulting sequential testing
procedures. An extension to time series parameters whose estimators admit an asymptotic
mean-like linearization as considered in Gösmann, Kley and Dette (2020) is briefly discussed
in Section 6. A short illustration involving temperature anomaly data concludes the work.

All proofs are deferred to the appendices. Throughout the paper, all convergences are for
m → ∞ unless mentioned otherwise. A preliminary implementation of the studied tests is
available in the package npcp (Kojadinovic, 2020) for the R statistical system (R Core Team,
2020).

2. The retrospective CUSUM for monitoring changes in the mean

Our aim is to derive open-end nonparametric sequential change-point detection procedures
that are particularly sensitive to alternative hypotheses of the form

H1 : ∃ k? ≥ m such that E(X1) = · · · = E(Xk?) 6= E(Xk?+1) = E(Xk?+2) = . . . . (2.1)

After the arrival of the kth observation with k > m, the data at hand consist of the stretch
X1, . . . , Xk. If we were in the context of retrospective change-point detection, a natural test
statistic would be the so-called retrospective CUSUM statistic (see, e.g., Csörgő and Horváth,
1997; Aue and Horváth, 2013, and the references therein) defined by

Rk = max
1≤j≤k−1

j(k − j)
k3/2

|X̄1:j − X̄j+1:k|, (2.2)
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where

X̄j:k =


1

k − j + 1

k∑
i=j

Xi, if j ≤ k,

0, otherwise.

(2.3)

In the definition of Rk, we see that every j ∈ {1, . . . , k− 1} is treated as a potential change-
point in the sequence X1, . . . , Xk. The maximum over j then implies that Rk will be large
as soon as the difference between X̄1:j and X̄j+1:k is large for some j.

In the sequential context considered in this work, since X1, . . . , Xm is the learning sample
known to be a stretch from a stationary time series, a first natural modification of (2.2) is
to restrict the maximum over j to j ∈ {m, . . . , k − 1}. This is the idea considered by Dette
and Gösmann (2019) in a closed-end setting who, additionally, replaced the normalizing
factor k3/2 by m3/2 so that the asymptotics of the corresponding monitoring scheme could
be studied as the size m of the learning sample tends to infinity. The resulting detector is

Rm(k) = max
m≤j≤k−1

j(k − j)
m3/2

|X̄1:j − X̄j+1:k|, k ≥ m+ 1. (2.4)

In an open-end setting, Gösmann, Kley and Dette (2020) choose however not to consider the
detector Rm (see Remark 2.1 in the latter reference) but suggested instead the detector

Em(k) = max
m≤j≤k−1

k − j
m1/2

|X̄1:j − X̄j+1:k|, k ≥ m+ 1. (2.5)

The difference between Rm and Em evidently lies in the weighting of the absolute differences
of means |X̄1:j − X̄j+1:k|, j ∈ {m, . . . , k − 1}. Instead of weighting |X̄1:j − X̄j+1:k| by j(k −
j)/m2, (2.5) replaces j/m by 1. While this modification may be beneficial in terms of power
when k is close to m, it could have a negative impact when k is substantially larger than
m because, then, j(k − j)/m2 can be substantially larger than (k − j)/m. In other words,
we suspect that, for changes not occurring at the beginning of the monitoring, a suitable
detection scheme based on Rm could be more powerful than the one proposed by Gösmann,
Kley and Dette (2020) based on Em.

Remark 2.1. As mentioned in the introduction, the simplest detector in an open-end setting
is probably the so-called ordinary CUSUM initially considered by Horváth et al. (2004) for
investigating changes in the parameters of linear models. With the aim of detecting changes
in the mean, it can be defined by

Qm(k) =
k −m
m1/2

|X̄1:m − X̄m+1:k|, k ≥ m+ 1. (2.6)

Following Gösmann, Kley and Dette (2020), we will use it as a benchmark in our Monte
Carlo experiments.

As explained in the introduction, the choice of a detector needs to be accompanied by
the choice of a suitable threshold function. To heuristically justify our choice of a suitable
threshold function for the detector Rm in (2.4), we momentarily consider the closed-end
setting in which monitoring stops at the latest after observation Xn is collected. Following
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Dette and Gösmann (2019) among others, to be able to study the sequential testing scheme
asymptotically, we set n = bmT c for some real T > 1. Then, under H0 in (1.1), assuming
that the functional central limit theorem holds for (Xi)i∈Z, it can be verified using relatively
simple arguments (see, e.g., Dette and Gösmann, 2019, Section 3, or Kojadinovic and Verdier,
2020, Section 2.3) that {Rm(bmtc)}t∈[1,T ] converges in distribution to {L(t)}t∈[1,T ], where

L(t) = σ sup
1≤s≤t

|tW (s)− sW (t)|, t ∈ [1, T ],

W is a standard Brownian motion and σ2 =
∑

i∈Z Cov(X0, Xi) > 0 is the finite long-run
variance of (Xi)i∈Z. For any fixed t ∈ [1, T ], by Brownian scaling and the substitution u = s/t,
t−3/2σ−1L(t) is equal in distribution to

sup
1≤s≤t

∣∣∣W (s
t

)
− s

t
W (1)

∣∣∣ = sup
1/t≤u≤1

|W (u)− uW (1)|.

Hence, for large t, the distribution of t−3/2σ−1L(t) is close to that of the supremum of a Brow-
nian bridge on [0, 1]. As a consequence, underH0 in (1.1), the distribution of t−3/2σ−1Rm(bmtc)
stabilizes as m and t increase. The latter observation suggests the possibility of an open-end
sequential testing scheme based on Rm in (2.4) with a threshold function that is not too
different from t 7→ t3/2.

As shall become clear from Theorem 3.3 below, in order to ensure that (1.2) is fully
meaningful when Dm = Rm, the corresponding threshold function actually needs to diverge
to ∞ (as t→∞) slightly faster than t3/2. We propose to use as threshold function for Rm

wR(t) = t3/2+ηwγ(t), t ∈ [1,∞), (2.7)

where η > 0 is a real parameter and

wγ(t) = max

{(
t− 1

t

)γ
, ε

}
, t ∈ [1,∞), (2.8)

with γ ≥ 0 another real parameter and ε > 0 a technical constant that can be taken very
small in practice (we used ε = 10−10 in our implementation).

Let us first explain the role of the parameter η. Following the perspective adopted in
the discussion below (1.2), the resulting monitoring can be seen as consisting of computing
{wR(k/m)}−1Rm(k) for k ≥ m + 1. It is elementary that for any fixed k ≥ m + 1, as we
increase η both the mean and the variance of {wR(k/m)}−1Rm(k) decrease. The top-left plot
of Figure 1 displays one sample path of {{wR(k/m)}−1Rm(k)}m+1≤k≤m+5000 for m = 100,
γ = 0 and η = 0.1 computed from a sequence of independent standard normals (solid line)
and the sample path computed from the same sequence but with η = 0.001 instead (dotted
line). Unsurprisingly, because of the factor (k/m)−η in {wR(k/m)}−1Rm(k), the sample path
with η = 0.1 is below the sample path with η = 0.001. This effect of η is confirmed by the
top-right plot of Figure 1 which displays the corresponding empirical standard deviations at
k against k −m computed from 1000 sample paths. As expected, increasing the parameter
η increases the rate of convergence (as k → ∞) of {wR(k/m)}−1Rm(k) (and its mean and
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Fig 1. Left column: for m = 100, γ = 0 and ε = 10−10, the solid lines represent one sample path
of {{wR(k/m)}−1Rm(k)}m+1≤k≤m+5000 (first row), {{wS(k/m)}−1Sm(k)}m+1≤k≤m+5000 (second row) and
{{wT (k/m)}−1Tm(k)}m+1≤k≤m+5000 (third row) for η = 0.1 computed from an independent sequence of
standard normal random variables. The dotted lines represent the sample paths computed from the same
sequence but with η = 0.001 instead. Right column: corresponding empirical standard deviations at k against
k −m computed from 1000 sample paths.

variance) to zero. Intuitively, in the context of open-end monitoring, one would therefore
want η to be very small so that there is little reduction in variability as time elapses. The
practical choice of the parameter η will be discussed in detail in Section 4.

Let us now explain the role of the parameter γ. The multiplication by the function wγ
in (2.7) aims at possibly improving the finite-sample performance of the sequential testing
scheme at the beginning of the monitoring and has a negligible effect later. The use of such
a modification is common in the literature and can be found for instance in Horváth et al.
(2004), Fremdt (2015), Kirch and Weber (2018) and Gösmann, Kley and Dette (2020), among
many others. Notice that, unlike what is frequently done in the literature, we do not impose
that γ be strictly smaller than 1/2. To provide some further insight, consider the top-left
plot of Figure 2 which displays the empirical 95% quantile (solid line), empirical standard
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Fig 2. The solid (resp. dashed, dotted) line represents the empirical 95% quantile (resp. empirical standard
deviation, sample mean) of {wR(k/m)}−1Rm(k) with m = 100, η = 0.001 and γ ∈ {0, 0.1, 0.25, 0.45} against
k −m computed from 1000 sample paths.

deviation (dashed line) and sample mean (dotted line) of {wR(k/m)}−1Rm(k) for m = 100,
η = 0.001 and γ = 0 against k − m computed from 1000 sample paths computed from
independent standard normal sequences. As one can see, because of the small value of η, the
distribution of {wR(k/m)}−1Rm(k) appears to stabilize rather quickly as k increases. The
speed at which this occurs can be increased by increasing γ. For instance, by comparing
the top-left and bottom-left plots of Figure 2, one can clearly see that the distribution of
{wR(k/m)}−1Rm(k) stabilizes quicker as k increases for γ = 0.25 than for γ = 0. However,
as one can see from the plot for γ = 0.45, the value of γ should not be taken too large.

In addition to the detector Rm in (2.4), we shall also consider the detectors

Sm(k) =
1

m

k−1∑
j=m

j(k − j)
m3/2

|X̄1:j − X̄j+1:k|, k ≥ m+ 1, (2.9)

Tm(k) =

√√√√ 1

m

k−1∑
j=m

{
j(k − j)
m3/2

(X̄1:j − X̄j+1:k)

}2

, k ≥ m+ 1, (2.10)

with corresponding threshold functions

wS(t) = t5/2+ηwγ(t), (2.11)

wT (t) = t2+ηwγ(t). (2.12)

As one can see, Sm and Tm could be regarded as the L1 and L2 versions, respectively, of Rm

in (2.4).
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The parameters η and γ in (2.11) and (2.12) play the same role as in (2.7). For η, this can
be empirically verified from the second and third rows of graphs in Figure 1. For γ, plots
similar to Figure 2 for Sm and Tm reveal that values of γ larger than 0.25 seem meaningful for
these two detectors. Specifically, it seems possible to improve the finite-sample performance
of the corresponding schemes at the beginning of the monitoring by taking γ as large as 0.85
for Sm and as large as 0.45 for Tm.

3. Asymptotics of the procedures

To study the asymptotic behavior of the three considered monitoring schemes under H0

in (1.1), we follow Horváth et al. (2004), Aue et al. (2006), Fremdt (2015) and Gösmann,
Kley and Dette (2020), among others, and assume that the observations satisfy the following
condition.

Condition 3.1. The data are a stretch from a stationary time series (Xi)i∈Z such that
σ2 =

∑
i∈Z Cov(X0, Xi), the long-run variance of (Xi)i∈Z, is strictly positive and finite.

Furthermore, for all m ∈ N, there exists two independent standard Brownian motions Wm,1

and Wm,2 such that, for some 0 < ξ < 1/2,

sup
m+1≤k≤∞

1

(k −m)ξ

∣∣∣∣∣
k∑

i=m+1

{Xi − E(X1)} − σWm,1(k −m)

∣∣∣∣∣ = OP(1) (3.1)

and
1

mξ

∣∣∣∣∣
m∑
i=1

{Xi − E(X1)} − σWm,2(m)

∣∣∣∣∣ = OP(1). (3.2)

As mentioned in Remark 2.6 of Gösmann, Kley and Dette (2020), the validity of the
previous conditions is discussed in Section 2 of Aue and Horváth (2004) for different classes
of time series including GARCH and strongly mixing processes.

Remark 3.2. In the prototypical situation in which (Xi)i∈Z is a sequence of independent
normal random variables with variance σ2, there exists a probability space on which the
above conditions are trivially satisfied with OP(1) replaced with 0. This is essentially just
the statement that the increments of a Brownian motion are standard normal random vari-
ables. To be more precise, let (Bj)j≥0 be independent standard Brownian bridges that are
independent of (Xi)i∈Z. Without loss of generality, we may assume that the Xi are stan-
dard normal, and we can define W1,m by first specifying its values at integer times by

W1,m(k − m) =
∑k

i=m+1Xi, k ≥ m, and then interpolating between these values using
the bridges (Bm+j)j≥0: for t ∈ (k−m, k−m+ 1), set W1,m(t) = W1,m(k−m) +Bk{t− (k−
m)} + {t − (k −m)}{W1,m(k −m + 1) −W1,m(k −m)} (it is an exercise to check that the
resulting process W1,m is a standard Brownian motion). Then, the term in absolute values
in (3.1) is exactly 0 for each k and m. Similarly, setting W2,m(j) =

∑j
i=1 Xi for j ≤ m and

interpolating with the bridges (Bj)0≤j≤m−1 makes (3.2) hold with 0 in the absolute value for
each m. Furthermore, by construction, W1,m and W2,m are independent.

The following result is proven in Appendix A.
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Theorem 3.3. Under H0 in (1.1) and Condition 3.1, for any fixed η > 0, ε > 0 and γ ≥ 0,

σ−1 sup
m+1≤k<∞

{wR(k/m)}−1Rm(k) sup
1≤s≤t<∞

{wR(t)}−1|tW (s)− sW (t)|,

σ−1 sup
m+1≤k<∞

{wS(k/m)}−1Sm(k) sup
t∈[1,∞)

{wS(t)}−1

∫ t

1

|tW (s)− sW (t)|ds,

σ−1 sup
m+1≤k<∞

{wT (k/m)}−1Tm(k) sup
t∈[1,∞)

{wT (t)}−1

√∫ t

1

{tW (s)− sW (t)}2ds,

where the arrow ‘ ’ denotes convergence in distribution, the detectors Rm, Sm and Tm are
defined in (2.4), (2.9) and (2.10), respectively, the threshold functions wR, wS and wT are
defined in (2.7), (2.11) and (2.12), respectively, and W is a standard Brownian motion. In
addition, all the limiting random variables are almost surely finite.

Imposing that η is strictly positive in the previous theorem is necessary for ensuring that
the limiting random variables are almost surely finite. Recall the definition of the function
wγ in (2.8). Since the function t 7→ 1/wγ(t) is bounded from below by 1, the following result,
proven in Appendix A, implies that for the monitoring scheme based on Rm and wR, this
condition is necessary and sufficient.

Proposition 3.4. For any fixed M > 0,

P
{

sup
1≤s≤t<∞

1

t3/2
|tW (s)− sW (t)| ≥M

}
= 1,

where W is a standard Brownian motion.

Remark 3.5. We thus have that sup1≤s≤t<∞{wR(t)}−1|tW (s)− sW (t)| is almost surely finite
for η > 0 and infinite for η = 0. By the law of the iterated logarithm for Brownian motion,
this supremum remains finite if tη in wR in (2.7) is replaced by h(t), where h(t) =

√
log log t

when t > ee and h(t) = 1 when t ≤ ee. We expect that Theorem 3.3 remains valid with such
a modification which could be considered optimal in the sense that, as t → ∞, h diverges
slower to infinity than t 7→ tη for any η > 0. The latter implies that the use of h(t) instead
of tη entails the lowest possible variability reduction for the monitoring scheme (in the sense
of the discussion on the role of η in the previous section) in the limit as k →∞.

The next corollary provides an operational version of Theorem 3.3 to carry out the three
sequential change-point detection tests in practice.

Corollary 3.6. The statement of Theorem 3.3 remains true if the long-run variance σ2 is
replaced by an estimator σ2

m of σ2 computed from the learning sample X1, . . . , Xm such that
σ2
m − σ2 = oP(1).

To fix ideas, let us briefly explain how Corollary 3.6 can be used to carry out the se-
quential test based on Rm in (2.4). Given a significance level α ∈ (0, 1/2), it is first neces-
sary to accurately estimate qR,1−α, the (1 − α)-quantile of the continuous random variable
sup1≤s≤t<∞{wR(t)}−1|tW (s) − sW (t)| (this aspect will be discussed in detail in Section 4).
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Then, under H0 in (1.1), from the Portmanteau theorem,

P
{
σ−1
m sup

m+1≤k<∞
{wR(k/m)}−1Rm(k) ≤ qR,1−α

}
→ P

{
sup

1≤s≤t<∞
{wR(t)}−1|tW (s)− sW (t)| ≤ qR,1−α

}
= 1− α. (3.3)

Hence, for large m, we can expect that, under H0,

P{Rm(k) ≤ σmqR,1−αwR(k/m) for all k ≥ m+ 1} ≈ 1− α.

In practice, after the arrival of observation Xk, k > m, Rm(k) is computed from X1, . . . , Xk

and compared to the threshold σmqR,1−αwR(k/m) (or, equivalently, σ−1
m {wR(k/m)}−1Rm(k)

is computed and compared to the threshold qR,1−α). If Rm(k) > σmqR,1−αwR(k/m), the
null hypothesis is rejected and the monitoring stops. Otherwise, the next observation is
collected and the previous iteration is carried out with the k + 1 available data points.
Corollary 3.6 and (3.3) in particular guarantee that such a sequential testing procedure will
have asymptotic level α. Steps to carry out the tests based on Sm in (2.9) and Tm in (2.10)
can be obtained mutatis mutandis.

We now turn to the asymptotic behavior of the monitoring schemes under sequences of
alternatives related to H1 in (2.1). We start with the procedure based on Rm in (2.4) which
we study under a condition similar to the one used by Gösmann, Kley and Dette (2020,
Theorem 2.13).

Condition 3.7. The data are a stretch, for some m ∈ N, from the sequence of random
variables (X (m)

i )i∈N defined by

X (m)

i =

{
Y (0)

i , if i ≤ k?m,

Y (m)

i , otherwise,

where (k?m)m∈N is a sequence of integers such that k?m ≥ m and (Y (0)

i )i∈Z, (Y (1)

i )i∈Z, . . . ,
(Y (m)

i )i∈Z, . . . are sequences of random variables defined on the same probability space and
satisfying

(i) for each m ≥ 0,
(
E(Y (m)

i )
)
i∈Z is a constant sequence,

(ii)
√
m|E(Y (0)

1 )− E(Y (m)

1 )| → ∞,
(iii)

1√
k?m

k?m∑
i=1

{Y (0)

i − E(Y (0)

1 )} = OP(1), (3.4)

and either

(iv) there exist constants c > 0 and C1 > c1 > 0 such that c1 ≤ m−1k?m ≤ C1 for all m ∈ N
and

1√
m

k?m+bcmc∑
i=k?m+1

{Y (m)

i − E(Y (m)

1 )} = OP(1), (3.5)

10



or

(v) k?m/m→∞, and there exists a constant c > 0 such that

1√
k?m

k?m+bck?mc∑
i=k?m+1

{Y (m)

i − E(Y (m)

1 )} = OP(1). (3.6)

Remark 3.8. Statement (iv) (resp. (v)) in Condition 3.7 is related to what were called
early (resp. late) changes in Gösmann, Kley and Dette (2020) because k?m/m = O(1) (resp.
k?m/m→∞).

Remark 3.9. Suppose that (Y (0)

i )i∈Z is a stationary centered sequence for which the central
limit theorem holds, (am)m∈N is a sequence such that

√
mam → ∞ and, for any m ∈ N,

Y (m)

i = Y (0)

i + am, i ∈ Z. It is then easy to verify that the sequences (Y (m)

i )i∈Z, m ≥ 0, satisfy
(i) and (ii) in Condition 3.7. Let us verify that they also satisfy (iii), (iv) and (v). Let ε > 0.
Since the central limit theorem holds for (Y (0)

i )i∈Z, there exists M > 0 such that

sup
n∈N

P
(
n−1/2

n∑
i=1

Y (0)

i > M
)
< ε. (3.7)

Hence, (3.4) holds for any sequence (k?m)m∈N. For c = 1, the quantity on the left-hand side
of (3.5) is equal to

1√
m

k?m+m∑
i=k?m+1

Y (0)

i .

Since P(m−1/2
∑m

i=1 Y
(0)

i > M) = P(m−1/2
∑n+m

i=n+1 Y
(0)

i > M) for all m,n ∈ N, (3.7) implies

that supn∈N supm∈N P(m−1/2
∑n+m

i=n+1 Y
(0)

i > M) < ε which in turn implies that (3.5) holds
with c = 1 for any sequence (k?m)m∈N. Similarly, for c = 1, the quantity on the left hand side
of (3.6) is equal to

1√
k?m

2k?m∑
i=k?m+1

Y (0)

i ,

and since supn∈N P(n−1/2
∑2n

i=n+1 Y
(0)

i > M) < ε, (3.6) holds with c = 1 for any sequence
(k?m)m∈N.

The following result proven in Appendix B establishes the consistency of the procedure
based on Rm under Condition 3.7.

Theorem 3.10. Under Condition 3.7, for any fixed η ≥ 0, ε ≥ 0 and γ ≥ 0,

sup
m+1≤k<∞

{wR(k/m)}−1Rm(k)
P→∞,

where the arrow ‘
P→’ denotes convergence in probability.
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Assume that, under Condition 3.7, the estimator σ2
m appearing in Corollary 3.6 con-

verges in probability to a strictly positive constant. An immediate corollary of the previ-
ous theorem is then that, under Condition 3.7, for any fixed η ≥ 0, ε ≥ 0 and γ ≥ 0,
σ−1
m supm+1≤k<∞{wR(k/m)}−1Rm(k) diverges in probability to infinity. In other words, un-

der the considered conditions, for any fixed η ≥ 0, ε ≥ 0 and γ ≥ 0, and any threshold
κ > 0,

P
[
σ−1
m sup

m+1≤k<∞
{wR(k/m)}−1Rm(k) > κ

]
→ 1.

Proving the consistency of the procedures based on Sm in (2.9) and Tm in (2.10) for late
changes turns out to be more difficult. The following result, proven in Appendix B, shows
that they are consistent for early changes. Note that the considered condition is very similar
to those considered for instance in Dette and Gösmann (2019, Theorem 3.8) or Kojadinovic
and Verdier (2020, Proposition 2.7) in the context of closed-end monitoring.

Condition 3.11. The data are a stretch, for some m ∈ N, from the sequence of random
variables (X (m)

i )i∈N defined by

X (m)

i =

{
Yi, if i ≤ k?m,

Zi, otherwise,

where k?m = bmcc for some constant c ≥ 1, and (Yi)i∈Z and (Zi)i∈Z are stationary sequences
defined on the same probability space such that E(Y1) 6= E(Z1) and for which the functional
central limit theorem holds.

Theorem 3.12. Under Condition 3.11, for any fixed T > c, {m−1/2Hm(s, t)}1≤s≤t≤T con-
verges in probability to {Kc(s, t)}1≤s≤t≤T , where, for any 1 ≤ s ≤ t,

Hm(s, t) = m−3/2bmsc(bmtc − bmsc)(X̄ (m)

1:bmsc − X̄
(m)

bmsc+1:bmtc),

Kc(s, t) = (s ∧ c){(t ∨ c)− (s ∨ c)}{E(X (m)

k? )− E(X (m)

k?+1)},

and ∨ and ∧ are the maximum and minimum operators, respectively. Consequently, for any
fixed η ≥ 0, ε ≥ 0 and γ ≥ 0,

sup
m+1≤k<∞

{wS(k/m)}−1Sm(k)
P→∞ and sup

m+1≤k<∞
{wT (k/m)}−1Tm(k)

P→∞. (3.8)

Since the estimator σ2
m appearing in Corollary 3.6 converges in probability to a strictly

positive constant under Condition 3.11, an immediate corollary of Theorem 3.12 is that,
under the same conditions,

σ−1
m sup

m+1≤k<∞
{wS(k/m)}−1Sm(k)

P→∞ and σ−1
m sup

m+1≤k<∞
{wT (k/m)}−1Tm(k)

P→∞.

4. Estimation of high quantiles of the limiting distributions

From the discussion following Corollary 3.6, we know that accurate estimations of high quan-
tiles of the limiting distributions appearing in Theorem 3.3 are necessary to carry out the
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sequential tests based on the detectors Rm, Sm and Tm defined in (2.4), (2.9) and (2.10),
respectively. Before we present the approach considered in this work, let us briefly explain
how Horváth et al. (2004) and Gösmann, Kley and Dette (2020) proceeded for the proce-
dure based on Qm in (2.6) and the one based on Em in (2.5), respectively. From the latter
references, suitable threshold functions for these two detectors are wQ(t) = wE(t) = twγ(t),
t ∈ [1,∞), where the function wγ is defined in (2.7) but with γ restricted to the inter-
val [0, 1/2). Furthermore, from Gösmann, Kley and Dette (2020), under H0 in (1.1) and
Condition 3.1, one has

σ−1
m sup

m+1≤k<∞
{wQ(k/m)}−1Qm(k) sup

t∈[0,1]

W (t)

max(tγ, ε)
,

σ−1
m sup

m+1≤k<∞
{wE(k/m)}−1Em(k) sup

0≤s≤t≤1

1

max(tγ, ε)
|W (t)−W (s)|,

where W is a standard Brownian motion. Notice that, using the law of the iterated loga-
rithm/local modulus of continuity for Brownian motion, it can be verified, since γ < 1/2,
that the limiting random variables are almost surely finite even if ε is taken equal to zero.
When γ = 0, it seems particularly natural to estimate high quantiles of these limiting dis-
tributions by Monte Carlo simulation using an approximation of W on a fine grid of [0, 1]
(one should keep in mind that although simulating such a process at discrete times always
underestimates the true supremum, one can get arbitrarily close with probability as close
to 1 as one wishes by taking a sufficiently fine grid). Note that in practice Horváth et al.
(2004) and Gösmann, Kley and Dette (2020) use ε = 0 even when γ > 0.

The following result, proven in Appendix C, suggests that the latter approach could be at-
tempted for the first limiting distribution appearing in Theorem 3.3 related to the procedure
based on Rm in (2.4).

Proposition 4.1. For any fixed η > 0, ε > 0 and γ ≥ 0, the random variable

sup
1≤s≤t<∞

{wR(t)}−1|tW (s)− sW (t)| = sup
1≤s≤t<∞

1

t3/2+η max[{(t− 1)/t}γ, ε]
|tW (s)− sW (t)|

(4.1)
and the random variable

sup
0<u≤v≤1

u1/2+η

vmax{(1− u)γ, ε}
|W (v)−W (u)| (4.2)

are equal in distribution, where W is a standard Brownian motion.

Preliminary numerical experiments revealed however that there do not seem to be advan-
tages to work with expressions of the form (4.2) as these seem to transpose practical issues
due to the presence of ∞ in (4.1) into practical issues near zero. For that reason, we opted
for a heuristic estimation approach which we detail in the rest of this section in the case of
the procedure based on Rm in (2.4) (and which we used mutatis mutandis for the procedures
based on Sm in (2.9) and Tm in (2.10) as well).

Fix η > 0, γ ≥ 0 and α ∈ (0, 1/2), and let qR,1−α denote the (1 − α)-quantile of
sup1≤s≤t<∞{wR(t)}−1|tW (s) − sW (t)|. To estimate qR,1−α, we propose to take m relatively
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large and simulate a large number N of sample paths of {{wR(k/m)}−1Rm(k)}m+1≤k≤m+2p

for p large from sequences of independent standard normal random variables. At this point, it
may be tempting to use the (1−α)-empirical quantile of supm+1≤k≤m+2p{wR(k/m)}−1Rm(k)
as an estimate of qR,1−α. Although the latter is expected to be a good estimate of the (1−α)-
quantile of sup1≤s≤t≤T{wR(t)}−1|tW (s) − sW (t)| for T = 1 + 2p/m, it may underestimate
qR,1−α since the supremum for 1 ≤ s ≤ t < ∞ obviously dominates the supremum for
1 ≤ s ≤ t ≤ T for any T > 1. The latter will actually depend on the value η. Indeed,
recall from our discussion in Section 2 that, because of the factor (k/m)−η, increasing η
decreases the variance of {wR(k/m)}−1Rm(k) as k increases. This has two consequences as
far as the above mentioned empirical estimation of qR,1−α is concerned: (i) for any fixed
η > 0, since the variability of {wR(k/m)}−1Rm(k) decreases as k increases, if we could
set p large enough, we would be able to obtain a good estimate of qR,1−α; unfortunately,
our margin of action in that respect is limited by computational resources; (ii) for any
fixed p, as η decreases to 0, the probability that our estimate of the (1 − α)-quantile of
sup1≤s≤t≤1+2p/m{wR(t)}−1|tW (s)− sW (t)| is also a good estimate of the (1− α)-quantile of
sup1≤s≤t<∞{wR(t)}−1|tW (s)− sW (t)| decreases to zero; in other words, for any fixed p, as η
decreases, it is less and less likely that the distribution of supm+1≤k≤m+2p{wR(k/m)}−1Rm(k)
is a good approximation of the distribution of qR,1−α.

To try to empirically solve this quantile estimation problem, we propose, for any fixed
η > 0, to attempt to model the relationship between p and the (1 − α)-empirical quan-
tile of supm+1≤k≤m+2p{wR(k/m)}−1Rm(k), and to use the fitted model to extrapolate the
value of the quantile for larger p. To do so, we set m to 500, generated N = 15000
sample paths of {{wR(k/m)}−1Rm(k)}m+1≤k≤m+218 using a computer cluster and, for p ∈
{10, . . . , 18}, estimated the (1 − α)-quantiles of supm+1≤k≤m+2p{wR(k/m)}−1Rm(k). Let

q
(p)
R,1−α, p ∈ {10, . . . , 18}, denote the resulting estimates. Then, we fitted a so-called asymp-

totic regression model to the pairs (p, q
(p)
R,1−α), p ∈ {10, . . . , 18}. The considered model, often

used for the analysis of dose–response curves, is a three-parameter model with mean function
f(x) = c + (d − c){1 − exp(−x/e)}, where y = d is the equation of the upper horizontal
asymptote of f . Its fitting was carried out using the R package drc (Ritz et al., 2015). A
candidate estimate of qR,1−α, the (1− α)-quantile of sup1≤s≤t<∞{wR(t)}−1|tW (s)− sW (t)|,
is then the resulting estimate of the parameter d.

The first rows of graphs in Figure 3 shows the scatter plots of {(p, q(p)
R,1−α)}p∈{10,...,18} for

α = 0.05, γ = 0 and η ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0001}. The corresponding fitted
asymptotic regression models are represented by dashed curves. The estimated upper hor-
izontal asymptotes are represented by dotted horizontal lines whose equations are given in
the upper right corners of the plots.

As one can see from the first two graphs in the first row of Figure 3, the scatter plots
for η = 0.1 and η = 0.05 reveal the presence of a plateau for larger values of p. The
latter is an empirical indication of the fact that the distribution of the random variable
supm+1≤k≤m+2p{wR(k/m)}−1Rm(k), say for p = 18, seems to be a good approximation of the
distribution of supm+1≤k<∞{wR(k/m)}−1Rm(k) and thus of sup1≤s≤t<∞{wR(t)}−1|tW (s) −
sW (t)|. In other words, because of the relatively large values of η leading to a relatively
quick reduction of the variability of {wR(k/m)}−1Rm(k) as k increases, the supremum of
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Fig 3. For α = 0.05 and γ = 0, scatter plots of {(p, q(p)R,1−α)}p∈{10,...,18} (first row), {(p, q(p)S,1−α)}p∈{10,...,18}
(second row) and {(p, q(p)T,1−α)}p∈{10,...,18} (third row), corresponding fitted asymptotic regression mod-
els (dashed curves) and estimates of the upper horizontal asymptotes (dotted lines) for η ∈
{0.1, 0.05, 0.01, 0.005, 0.001, 0.0001}.

{{wR(k/m)}−1Rm(k)}m+1≤k<∞ tends to occur for k relatively close to m (and smaller than
m+218). Specifically, under H0 in (1.1) and with η = 0.1 (resp. 0.05), the standard deviation
of {wR(k/m)}−1Rm(k) at k = 218 could be very roughly approximated to be (218/500)−0.1 ≈
53% (resp. (218/500)−0.05 ≈ 73%) of the standard deviation of {wR(k/m)}−1Rm(k) in the
early stages of the monitoring. The corresponding standard deviation reductions for η = 0.01,
0.005, 0.001 and 0.0001 are very roughly 7%, 3%, 1% and less than 0.1%, respectively.

The previous approximate variance reduction calculations explain in some sense why, in
the first row of plots in Figure 3, the smaller η, the larger the estimated quantiles q

(p)
R,1−α,

p ∈ {10, . . . , 18}, and thus the larger the estimated horizontal asymptote (which is a can-
didate estimate of qR,1−α). As one can see, the rate of increase of the estimated quantiles
decreases as η decreases. For instance, there are hardly any differences between the plot
for η = 0.001 and the plot for η = 0.0001. Unsurprisingly, this last plot is actually hardly
indistinguishable from the plot for η = 0. The latter empirical observation practically im-
plies that the proposed estimation technique will provide a finite estimate of qR,1−α even
when, according to Proposition 3.4, qR,1−α is known to be infinite. It follows that it is not
meaningful in practice to consider values of η that are “very small”. Based on the previous
approximate variance reduction calculations and the plots given in Figure 3, our intuitive
recommendation is not to take η smaller than 0.001. Notice, that with m = 100, this value
of η induces an approximate standard deviation reduction under H0 for {wR(k/m)}−1Rm(k)
after 1010 monitoring steps of less than 2%.

The estimated quantiles for η = 0.001, α ∈ {0.01, 0.05, 0.1}, γ = 0 as well for the largest
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Table 1
For α ∈ {0.01, 0.05, 0.1}, estimated (1− α)-quantiles of the limiting distributions appearing in Theorem 3.3
related to the monitoring schemes based on Rm, Sm and Tm for η = 0.001 and different values of γ. The

quantiles were estimated using asymptotic regression models. Standard errors of the estimates are provided
between parentheses. Estimated quantiles for larger values of η are available in the R package npcp.

Rm Sm Tm

1− α γ = 0 γ = 0.25 γ = 0 γ = 0.85 γ = 0 γ = 0.45
0.99 2.157(0.006) 2.278(0.002) 1.145(0.019) 1.199(0.008) 1.246(0.006) 1.324(0.007)
0.95 1.956(0.009) 2.054(0.003) 1.007(0.015) 1.058(0.007) 1.121(0.011) 1.164(0.005)
0.90 1.837(0.008) 1.952(0.007) 0.939(0.014) 0.987(0.006) 1.046(0.010) 1.087(0.004)

meaningful value of γ (among those that were considered) for the three monitoring schemes
are reported in Table 1 along with standard errors. Estimated quantiles for larger values of
η are available in the R package npcp (Kojadinovic, 2020).

Remark 4.2. It is a research project of its own to investigate more thoroughly the estimation
of the quantiles both empirically and theoretically. For instance, one may wish to investigate
bounds on the probability for a given η > 0 and T > 1 that sup1≤s≤t≤T{wR(t)}−1|tW (s) −
sW (t)| occurs at some (s, t) with t > T , and whether such occurrences tend to be associated
with small suprema or large suprema.

5. Monte Carlo experiments

To investigate the finite-sample properties of the studied open-end sequential change-point
detection procedures, we carried out extensive Monte Carlo experiments. One should however
keep in mind that numerical experiments cannot provide a full insight into the finite-sample
behavior of open-end approaches as finite computing resources impose that monitoring has
to be stopped eventually.

To estimate the long-run variance σ2 related to the learning sample, we used the approach
of Andrews (1991) based on the quadratic spectral kernel with automatic bandwidth selection
as implemented in the function lrvar() of the R package sandwich (Zeileis, 2004). We
considered 10 data generating models, denoted M1, . . . , M10. Models M1, . . . , M5 are
simple AR(1) models with normal innovations whose autoregressive parameter is equal to
0, 0.1, 0.3, 0.5 and 0.7, respectively. These models were chosen among others to allow a
comparison of our results with those of Gösmann, Kley and Dette (2020, Section 4.1). Model
M6 generates independent observations from the Student t distribution with 5 degrees of
freedom. Model M7 is a GARCH(1,1) model with normal innovations and parameters ω =
0.012, β = 0.919 and α = 0.072 to mimic SP500 daily log-returns following Jondeau, Poon
and Rockinger (2007). Models M8 and M9 are the nonlinear autoregressive model used
in Paparoditis and Politis (2001, Section 3.3) and the exponential autoregressive model
considered in Auestad and Tjøstheim (1990) and Paparoditis and Politis (2001, Section 3.3).
The underlying generating equations are

Xi = 0.6 sin(Xi−1) + εi

and
Xi = {0.8− 1.1 exp(−50X2

i−1)}Xi−1 + 0.1εi,
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respectively, where the εi are independent standard normal innovations. Note that, for all
time series models, a burn-out sample of 100 observations was used. Finally, in order to mimic
count data, model M10 generates independent observations from a Poisson distribution with
parameter 3.

In a first series of experiments, we attempted to assess how well the studied tests hold
their level. To do so, we generated 5000 samples from models M1–M10 and used the first m
observations of each sample as learning sample. All the sequential tests were carried out at
the 5% nominal level using the estimated quantiles available in the R package npcp (see also
Table 1). Because monitoring cannot go on indefinitely, we stopped the sequential testing
procedures after the arrival of observation n = m + 10000. The percentages of rejection of
H0 in (1.1) for the procedures based on Rm in (2.4), Sm in (2.9), Tm in (2.10) with γ = 0
and η ∈ {0.05, 0.01, 0.005, 0.001}, as well as for the procedures based on Em in (2.5) and Qm

in (2.6) with γ = 0, are reported in Table 2 (to carry out the procedures based on Qm and
Em, we used the quantiles reported in Table 1 of Horváth et al. (2004) and Gösmann, Kley
and Dette (2020), respectively). Given the closed-end nature of the experiments, one should
keep in mind that the empirical levels would have been higher had larger values of n been
considered. As one can see from Table 2, for most models, the empirical levels drop below
the 5% threshold rather quickly as m increases. When the tests are too liberal, it is probably
mostly a consequence of the difficulty of the estimation of the long-run variance σ2. It is for
instance unsurprising that a large value of m is necessary to obtain a reasonably accurate
estimate of σ2 for model M5 (the AR(1) model with the strongest serial dependence) or
model M9 (an exponential autoregressive model). Notice that, overall, the tests based on Em
and Qm are less liberal then the tests based on Rm, Sm and Tm when the serial dependence is
strong and m is small. The opposite tends to occur as m increases. Among the three proposed
procedures, the one based on Sm is the most conservative, followed by the procedure based
on Tm. The fact that the empirical levels are higher for large values of η is due to the factor
(k/m)−η which favors the occurrence of false alarms (threshold exceedences) at the beginning
of the monitoring.

In a second series of experiments, we studied the finite-sample behavior of the tests under
H1 in (2.1) using simulation scenarios similar to those considered in Gösmann, Kley and
Dette (2020, Section 4.1). We generated 1000 samples of size n = m + 7000 from models
M1 with m = 100 and M4 with m = 200 and, for each sample, added a positive offset of
δ to all observations after position k? ∈ {m,m + 500,m + 1000,m + 5000}. We started by
investigating the influence of η on the most conservative procedure according to Table 2.
The rejection percentages for the test based on Sm with γ = 0 and η ∈ {0.1, 0.01, 0.001}, as
well as for the procedures based on Em and Qm with γ = 0 are represented in Figure 4. As
one can see, when the change occurs right at the beginning of the monitoring, the larger η,
the more powerful the procedure based on Sm. As k? increases, the influence of the factor
(k/m)−η comes into effect and the opposite tends to occurs (although the difference in power
does not seem of practical importance for the monitoring periods under consideration). As
far as the procedures based on Em and Qm are concerned, they are more powerful than the
procedure based on Sm when the change occurs at the beginning of the monitoring but, as
expected, become less powerful as k? increases. The fourth column of plots in Figure 4 shows
that the difference in terms of power can be substantial. One should however keep in mind
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Table 2
Percentages of rejection of H0 in (1.1) for the procedures based on Rm, Sm, Tm with γ = 0 and

η ∈ {0.1, 0.05, 0.01, 0.001}, as well as for the procedures based on Em and Qm with γ = 0. The rejection
percentages are computed from 5000 samples of size n = m+ 10000 generated from the time series models

M1 – M10.
Rm with η = Sm with η = Tm with η =

Model m 0.05 0.01 0.005 0.001 0.05 0.01 0.005 0.001 0.05 0.01 0.005 0.001 Em Qm

M1 100 8.7 7.8 7.4 7.1 5.5 4.8 4.6 4.5 6.9 5.4 5.4 5.4 6.1 6.7
200 6.7 5.2 4.7 4.5 3.7 2.8 2.8 2.8 4.6 3.7 3.6 3.5 4.9 5.1
400 5.4 3.6 3.1 2.8 2.4 1.6 1.4 1.2 3.3 2.3 2.1 2.0 4.7 5.0
800 4.3 2.5 2.1 1.7 1.7 0.9 0.7 0.7 2.6 1.4 1.2 1.1 3.1 3.9

M2 100 9.0 8.2 7.8 7.6 6.0 5.1 4.9 4.8 7.2 6.1 5.9 6.0 6.3 6.6
200 6.9 5.3 5.0 4.7 3.8 3.0 2.9 2.8 4.9 3.8 3.7 3.6 4.8 5.2
400 5.4 3.6 3.2 2.7 2.4 1.6 1.4 1.3 3.5 2.3 2.2 2.1 4.8 5.1
800 4.2 2.5 2.1 1.9 1.7 0.9 0.7 0.7 2.6 1.4 1.2 1.1 3.2 3.9

M3 100 10.4 9.8 9.5 9.3 7.1 6.2 6.0 5.9 8.4 7.4 7.4 7.3 6.7 7.2
200 7.5 5.9 5.5 5.3 4.1 3.4 3.2 3.1 5.4 4.2 4.1 4.0 4.9 5.6
400 5.5 3.6 3.2 2.9 2.6 1.6 1.5 1.4 3.7 2.5 2.4 2.3 4.9 5.2
800 4.2 2.5 2.1 1.9 1.8 0.9 0.9 0.7 2.7 1.5 1.2 1.2 3.3 4.0

M4 100 13.1 12.3 11.9 11.6 9.0 8.2 8.0 7.9 10.7 9.7 9.6 9.6 7.5 7.8
200 8.9 7.3 6.8 6.4 4.8 4.0 3.8 3.6 6.3 5.0 4.8 4.7 5.3 6.0
400 6.1 4.0 3.6 3.3 2.8 1.8 1.7 1.6 4.0 2.7 2.5 2.5 5.0 5.4
800 4.4 2.4 2.1 1.9 1.9 1.0 0.9 0.8 2.8 1.7 1.5 1.4 3.3 4.0

M5 100 18.4 18.3 17.7 17.4 13.9 13.1 12.8 12.6 15.5 14.8 14.5 14.6 9.6 9.7
200 11.5 10.1 9.6 9.4 7.3 6.3 5.9 5.6 8.9 7.2 7.0 6.9 6.6 7.2
400 7.6 5.2 4.7 4.4 3.8 2.6 2.5 2.2 5.0 3.5 3.4 3.3 5.3 6.0
800 4.9 2.9 2.5 2.2 2.1 1.3 1.1 1.1 3.1 2.0 1.8 1.7 3.7 4.4

M6 100 10.8 10.0 9.4 8.9 6.8 5.9 5.7 5.6 8.2 6.9 6.8 6.8 6.8 6.9
200 8.3 6.4 5.8 5.4 4.3 3.3 3.1 2.9 5.7 4.4 4.2 4.1 5.2 5.6
400 5.9 3.8 3.4 3.1 2.9 1.8 1.7 1.6 3.7 2.7 2.4 2.3 4.7 5.2
800 4.5 2.4 2.1 1.9 1.9 1.0 1.0 0.9 2.7 1.6 1.4 1.4 3.4 3.8

M7 100 12.8 11.4 10.8 10.5 7.7 6.9 6.8 6.5 9.3 8.3 8.1 7.9 6.7 6.8
200 9.6 7.6 7.1 6.7 4.8 4.1 3.9 3.7 6.1 5.0 4.8 4.8 5.3 5.5
400 6.4 4.2 3.6 3.4 2.9 1.8 1.5 1.5 3.8 2.6 2.5 2.5 4.4 4.8
800 5.0 3.0 2.4 2.1 1.8 1.2 1.1 1.0 2.9 1.6 1.5 1.4 3.4 3.9

M8 100 9.3 8.5 8.0 7.8 6.7 5.9 5.7 5.6 7.9 6.8 6.7 6.6 6.6 7.1
200 6.9 5.6 5.2 4.9 4.1 3.4 3.2 3.1 5.1 3.9 3.8 3.7 5.1 5.5
400 5.4 3.5 3.1 2.8 2.5 1.5 1.4 1.3 3.9 2.4 2.1 2.1 4.8 5.1
800 4.2 2.4 2.2 1.9 1.8 1.0 0.9 0.8 2.8 1.5 1.4 1.3 3.7 4.1

M9 100 36.0 35.7 35.1 34.8 28.0 26.9 26.6 26.1 31.1 29.9 29.6 29.6 15.2 13.0
200 28.8 26.3 25.3 24.7 18.6 15.7 15.2 15.0 22.6 19.6 19.1 18.8 11.7 10.4
400 20.5 17.0 16.0 15.3 11.0 8.6 8.2 7.8 14.4 11.5 11.0 10.7 9.6 8.7
800 14.8 10.3 9.4 8.8 5.5 3.7 3.4 3.1 9.0 5.8 5.4 5.1 7.5 7.2

M10 100 8.9 7.9 7.4 7.1 5.5 5.0 4.8 4.8 6.6 5.6 5.6 5.6 6.4 6.5
200 7.8 5.6 5.1 4.9 4.2 3.2 3.1 3.0 5.1 4.3 4.2 4.0 5.0 5.4
400 5.0 3.3 2.9 2.6 2.4 1.5 1.4 1.3 3.5 2.2 2.0 2.0 5.0 5.2
800 4.1 2.3 2.1 1.9 1.5 0.9 0.8 0.7 2.4 1.3 1.2 1.1 3.5 3.6

that, because of the factor (k/m)−η, the test based on Em for instance may again become
more powerful than the procedure based on Sm for k? extremely large. Nevertheless, even if
we consider the least favorable setting (η = 0.1), we believe that such a scenario is extremely
unlikely to occur in practice given the (relatively) slow decrease of the function t 7→ t−η and
the fact that the weighting used in the definition of Em penalizes in some sense late changes
as explained in the discussion below (2.5).

From the second row of plots of Figure 4, we see that the previous conclusions seem to
remain qualitatively the same when model M4 is used although, unsurprisingly, the stronger
serial dependence gives the impression that the values of k? are smaller.

Figure 5 reports the rejection percentages of H0 in (1.1) for the same experiment but for
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Fig 4. Rejection percentages of H0 in (1.1) for the procedure based on Sm with γ = 0 and η ∈
{0.1, 0.05, 0.01, 0.001}, as well as for the procedures based on Em and Qm with γ = 0 estimated from 1000
samples of size n = m+ 7000 from model M1 with m = 100 or M4 with m = 200 such that, for each sample,
a positive offset of δ was added to all observations after position k?.

the procedures based on Rm, Sm, Tm with γ = 0 and η = 0.005, as well as for the procedures
based on Em and Qm with γ = 0. As one can see, among the three studied procedures, those
based on Rm and Tm seem more powerful than the one based Sm when the change occurs
at the beginning of the monitoring (which is in accordance with the fact that the procedure
based on Sm is the most conservative as can be seen from Table 2), while there seems to be
very little difference between the three tests when the change occurs later.

The increase in power resulting from taking γ equal to its largest meaningful value is
illustrated in Figure 6. As expected, the improvement is visible only when changes occur at
the beginning of the monitoring. In practice, we suggest to increase the value of γ only when
it is believed that the size m of the learning sample permits a reasonably accurate estimation
of the long-run variance σ2.

Finally, we report the results of an experiment involving a longer monitoring period with
late changes. Table 3 provides the percentages of rejection of H0 in (1.1) for the procedures
based on Rm, Sm, Tm with γ = 0 and η ∈ {0.1, 0.05, 0.01, 0.005, 0.001} estimated from 2000
samples of size n = 20000 from model M1 with m = 100 such that, for each sample, a
positive offset of δ = 0.1 was added to all observations after position k? = 15000. These
results highlight again the role of η and its influence on power through the factor (k/m)−η.
Notice that the corresponding rejection percentages of the procedures based Em and Qm are
less than 1%.

Taking into account all the empirical results summarized in this section, we recommend to
set η to 0.005 or 0.001 and use either the procedure based on Tm or the procedure based on
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Fig 5. Rejection percentages of H0 in (1.1) for the procedures based on Rm, Sm, Tm with γ = 0 and
η = 0.005, as well as for the procedures based on Em and Qm with γ = 0 estimated from 1000 samples of
size n = m+ 7000 from model M1 with m = 100 or M4 with m = 200 such that, for each sample, a positive
offset of δ was added to all observations after position k?.
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Fig 6. For η = 0.001, rejection percentages of H0 in (1.1) for the procedures based on Rm with γ = 0, Rm
with γ = 0.25, Sm with γ = 0.85 and Tm with γ = 0.45 estimated from 1000 samples of size n = m + 7000
from model M1 with m = 100 or M4 with m = 200 such that, for each sample, a positive offset of δ was
added to all observations after position k?.

Sm as they are more conservative than the monitoring scheme based on Rm while almost as
powerful (except when changes occur at the beginning of the monitoring). If it is believed that
the size m of the learning sample permits a reasonably accurate estimation of the long-run
variance σ2, to improve the behavior of the procedures at the beginning of the monitoring,
one can additionally set γ to 0.45 for Tm and 0.85 for Sm.
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Table 3
Percentages of rejection of H0 in (1.1) for the procedures based on Rm, Sm, Tm with γ = 0 and

η ∈ {0.1, 0.05, 0.01, 0.005, 0.001} estimated from 2000 samples of size n = 20000 from model M1 with
m = 100 such that, for each sample, a positive offset of δ = 0.1 was added to all observations after position
k? = 15000. The corresponding rejection percentages of the procedures based on Em and Qm are 0.7 and

0.7, respectively.

η = 0.1 η = 0.05 η = 0.01 η = 0.005 η = 0.001
Rm 62.3 88.9 95.5 95.6 95.7
Sm 64.4 79.7 87.1 87.6 87.7
Tm 66.3 84.9 92.1 92.5 92.8

6. Extensions to parameters whose estimators exhibit a mean-like behavior

In their seminal work, Gösmann, Kley and Dette (2020) actually considered monitoring
schemes sensitive to changes in time series parameters whose estimators exhibit an asymp-
totic mean-like behavior. The aim of this section is to briefly demonstrate that the same
type of extension is possible for the sequential procedures studied in this work. For the
sake of keeping the notation simple, we restrict our discussion to univariate time series and
univariate parameters.

Let F be a univariate distribution function (d.f.) and let θ = θ(F ) be a univariate parame-
ter of F (such as the expectation, the variance, etc). Let Fj:k be the empirical d.f. computed
from the stretch Xj, . . . , Xk of available observations. More formally, for any integers j, k ≥ 1
and x ∈ R, let

Fj:k(x) =


1

k − j + 1

k∑
i=j

1(Xi ≤ x), if j ≤ k,

0, otherwise,

and let θj:k = θ(Fj:k) be the corresponding plug-in estimator of θ computed from the stretch
Xj, . . . , Xk. Natural extensions of the detectors Rm, Sm and Tm defined in (2.4), (2.9)
and (2.10), respectively, for monitoring changes in the parameter θ are then given, for any
k ≥ m+ 1, by

Rθ
m(k) = max

m≤j≤k−1

j(k − j)
m3/2

|θ1:j − θj+1:k|, (6.1)

Sθm(k) =
1

m

k−1∑
j=m

j(k − j)
m3/2

|θ1:j − θj+1:k|, (6.2)

T θm(k) =

√√√√ 1

m

k−1∑
j=m

{
j(k − j)
m3/2

(θ1:j − θj+1:k)

}2

. (6.3)

Furthermore, assuming it exists, let

IF (x, F, θ) = lim
ε↓0

θ{(1− ε)F + εδx} − θ(F )

ε
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denote the influence function related to θ and F at x ∈ R, where δx(·) = 1(x ≤ ·) is the
d.f. of the Dirac measure at x. To be able to study the asymptotic validity of monitoring
schemes based on Rθ

m in (6.1), Sθm in (6.2) and T θm in (6.3), we follow Gösmann, Kley and
Dette (2020) and focus on parameters θ that admit an asymptotic linearization in terms of
the influence function, that is, such that

θj:k − θ = θ(Fj:k)− θ(F ) =
1

k − j + 1

k∑
i=j

IF (Xi, F, θ) +Rj,k, (6.4)

where the remainders Rj,k are asymptotically negligible in the sense of the following condi-
tion.

Condition 6.1. The remainders in (6.4) satisfy

k−1/2 max
1≤i<j≤k

(j − i+ 1)Ri,j
as→ 0 as k →∞,

where the arrow ‘
as→’ denotes almost sure convergence.

In the rest of this section, we assume that H0 in (1.1) holds. Moreover, for any integers
j, k ≥ 1, let

ĪF j:k =


1

k − j + 1

k∑
i=j

IF (Xi, F, θ), if j ≤ k,

0, otherwise.

If the random variables IF (X1, F, θ), . . . , IF (Xm, F, θ), IF (Xm+1, F, θ), . . . were observable,
one could naturally consider analogues of the detectors Rm, Sm and Tm in (2.4), (2.9)
and (2.10), respectively, defined, for k ≥ m+ 1, by

RIF
m (k) = max

m≤j≤k−1

j(k − j)
m3/2

|ĪF 1:j − ĪF j+1:k|,

SIFm (k) =
1

m

k−1∑
j=m

j(k − j)
m3/2

|ĪF 1:j − ĪF j+1:k|,

T IFm (k) =

√√√√ 1

m

k−1∑
j=m

{
j(k − j)
m3/2

(ĪF 1:j − ĪF j+1:k)

}2

.

Upon assuming that Condition 3.1 holds for the sequence
(
IF (Xi, F, θ)

)
i∈Z, one immediately

obtains an analogue of Theorem 3.3 for the detectors RIF
m , SIFm and T IFm . The next result,

proven in Appendix C, shows that, if Condition 6.1 is additionally assumed, an analogue
of Theorem 3.3 also holds for the computable detectors Rθ

m in (6.1), Sθm in (6.2) and T θm
in (6.3).
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Proposition 6.2. Under H0 in (1.1) and Condition 6.1, for any η > 0, ε > 0 and γ ≥ 0,

sup
m+1≤k≤∞

{wR(k/m)}−1|Rθ
m(k)−RIF

m (k)| = oP(1),

sup
m+1≤k≤∞

{wS(k/m)}−1|Sθm(k)− SIFm (k)| = oP(1),

sup
m+1≤k≤∞

{wT (k/m)}−1|T θm(k)− T IFm (k)| = oP(1),

where the threshold functions wR, wS and wT are defined in (2.7), (2.11) and (2.12), respec-
tively.

Remark 6.3. As mentioned in Gösmann, Kley and Dette (2020), the verification of Condi-
tion 6.1 is highly non-trivial. When θ is the variance or a quantile of F , it was shown to
hold in probability in Section 4 of Dette and Gösmann (2019). In the multivariate param-
eter and time series case, it was verified in Gösmann, Kley and Dette (2020, Section 3.2)
for a time-dependent linear model. In a related way, note that an inspection of the proof
of Proposition 6.2 reveals that Condition 6.1 could actually be replaced by the requirement
that the remainders in (6.4) satisfy

sup
m+1≤k<∞

k−1/2 max
1≤i<j≤k

(j − i+ 1)|Ri,j| = oP(1).

7. Data example

As a small data example, we consider a fictitious scenario consisting of monitoring global
temperature anomalies for changes in the mean. Specifically, we use the time series of monthly
global (land and ocean) temperature anomalies available at http://www.climate.gov/

which covers the period January 1880 – May 2020. The time series in degrees Celsius is
represented in the left panel of Figure 7. The solid vertical line marks the beginning of the
fictitious monitoring and corresponds to September 1921 (and thus to a learning sample of
size m = 500). Note that this monitoring scenario is indeed fully fictitious, among other
things, because temperature anomalies are computed with respect to the 20th century av-
erage (see, e.g., Smith et al., 2008) and, therefore, the corresponding time series would not
have been available until the beginning of the current century.

The solid curve in the right panel of Figure 7 displays the evolution of the normalized
detector σ−1

m supm+1≤k<∞{wT (k/m)}−1Tm(k) with η = 0.001 and γ = 0.45 against k ≥ m+1.
The solid (resp. dashed) horizontal line represents the estimated 0.95-quantile (resp. 0.99-
quantile) of the corresponding limiting distribution in Theorem 3.3. The solid vertical line
represents the date at which the normalized detector exceeded the aforementioned 0.95-
quantile and corresponds to November 1939. Note that to estimate the point of change
corresponding to an exceedence at position k, it seems natural to use

argmaxm≤j≤k−1

j(k − j)
m3/2

|X̄1:j − X̄j+1:k|+ 1.

The date of change corresponding to an exceedence in November 1939 is thus estimated to
be April 1925 and is marked by a dashed vertical line in the right panel of Figure 7.
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Fig 7. Left: monthly global (land and ocean) temperature anomalies in degrees Celsius for the pe-
riod January 1880 – May 2020. The solid vertical line corresponds to September 1921 and marks
the beginning of the fictitious monitoring. Right: the solid curve displays the normalized detector
σ−1m supm+1≤k<∞{wT (k/m)}−1Tm(k) with η = 0.001 and γ = 0.45 against k ≥ m + 1. The solid (resp.
dashed) horizontal line represents the estimated 0.95-quantile (resp. 0.99-quantile) of the corresponding lim-
iting distribution in Theorem 3.3. The solid (resp. dashed) vertical line corresponds to November 1939, the
date of exceedence (resp. April 1925, the estimated date of change).

8. Concluding remarks

This work has demonstrated that it is relevant to define open-end sequential change-point
tests such that the underlying detectors coincide with (or are related to) the retrospective
CUSUM statistic at each monitoring step. From a practical perspective, when focusing on
changes in the mean, such an approach was observed to lead to an increase in power with
respect to existing competitors except when changes occur at the very beginning of the mon-
itoring. Given the potentially very long term nature of open-end monitoring (by definition),
it can be argued that having extra power for all but very early changes is strongly desir-
able. The price to pay for the additional power is a more complicated theoretical setting
and the fact that quantiles of the underlying limiting distributions required to carry out the
sequential tests in practice are harder to estimate. As far as monitoring for changes in other
parameters than the mean is concerned, extensions are possible as long as the underlying
estimators exhibit a mean-like asymptotic behavior as considered in Gösmann, Kley and
Dette (2020).
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Appendix A: Proofs of the results under H0

The three following lemmas are used in the proof of Theorem 3.3.
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Lemma A.1. Assume that Condition 3.1 holds and, for any k ≥ m+ 1, let

R̃m(k) = σm−1/2 max
m≤j≤k−1

∣∣∣∣ km{Wm,2(m) +Wm,1(j −m)} − j

m
{Wm,2(m) +Wm,1(k −m)}

∣∣∣∣ ,
(A.1)

S̃m(k) = σm−1/2 1

m

k−1∑
j=m

∣∣∣∣ km{Wm,2(m) +Wm,1(j −m)} − j

m
{Wm,2(m) +Wm,1(k −m)}

∣∣∣∣ ,
(A.2)

T̃m(k) = σm−1/2

√√√√ 1

m

k−1∑
j=m

[
k

m
{Wm,2(m) +Wm,1(j −m)} − j

m
{Wm,2(m) +Wm,1(k −m)}

]2

.

(A.3)

Then, for any fixed η > 0, ε > 0 and γ ≥ 0,

sup
m+1≤k≤∞

{wR(k/m)}−1|Rm(k)− R̃m(k)| = oP(1), (A.4)

sup
m+1≤k≤∞

{wS(k/m)}−1|Sm(k)− S̃m(k)| = oP(1), (A.5)

sup
m+1≤k≤∞

{wT (k/m)}−1|Tm(k)− T̃m(k)| = oP(1), (A.6)

where wR, wS and wT are defined in (2.7), (2.11) and (2.12), respectively, and Rm, Sm and
Tm are defined in (2.4), (2.9) and (2.10), respectively.

Proof. Let us first show (A.4). From (2.4) and (A.1), using the reverse triangle inequality for
the maximum norm, we have that, for any k ≥ m+1, {wR(k/m)}−1|Rm(k)−R̃m(k)| ≤ Um(k),
where

Um(k) = ε−1m−1/2

(
k

m

)−3/2−η

max
m≤j≤k−1

∣∣∣∣j(k − j)m
{X̄1:j − X̄j+1:k}

− k
m
σ{Wm,2(m) +Wm,1(j −m)}+

j

m
σ{Wm,2(m) +Wm,1(k −m)}

∣∣∣∣ , (A.7)

using the fact that t 7→ 1/wγ(t) is bounded by ε−1. From (2.3) and under Condition 3.1, we
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obtain that, for any k ≥ m+ 1 and j ∈ {m, . . . , k − 1},

j(k − j){X̄1:j − X̄j+1:k} =(k − j)
j∑
i=1

{Xi − E(X1)} − j
k∑

i=j+1

{Xi − E(X1)}

=k

j∑
i=1

{Xi − E(X1)} − j
k∑
i=1

{Xi − E(X1)}

=k
m∑
i=1

{Xi − E(X1)}+ k

j∑
i=m+1

{Xi − E(X1)}

− j
m∑
i=1

{Xi − E(X1)} − j
k∑

i=m+1

{Xi − E(X1)}.

Hence, by the triangle inequality, we have that

sup
m+1≤k≤∞

{wR(k/m)}−1|Rm(k)−R̃m(k)| ≤ sup
m+1≤k≤∞

Um(k) ≤ ε−1(Im+I ′m+Jm+J ′m), (A.8)

where

Im =m−1/2 sup
m+1≤k<∞

(
k

m

)−1/2−η

max
m≤j≤k−1

∣∣∣∣∣
m∑
i=1

{Xi − E(X1)} − σWm,2(m)

∣∣∣∣∣ ,
I ′m =m−1/2 sup

m+1≤k<∞

(
k

m

)−1/2−η

max
m≤j≤k−1

∣∣∣∣∣
j∑

i=m+1

{Xi − E(X1)} − σWm,1(j −m)

∣∣∣∣∣ ,
Jm =m−1/2 sup

m+1≤k<∞

(
k

m

)−3/2−η

max
m≤j≤k−1

j

m

∣∣∣∣∣
m∑
i=1

{Xi − E(X1)} − σWm,2(m)

∣∣∣∣∣ , (A.9)

J ′m =m−1/2 sup
m+1≤k<∞

(
k

m

)−3/2−η

max
m≤j≤k−1

j

m

∣∣∣∣∣
k∑

i=m+1

{Xi − E(X1)} − σWm,1(k −m)

∣∣∣∣∣ .
(A.10)

To prove (A.4), it remains to show that Im, I ′m, Jm and J ′m converge to zero in probability.
For any ξ ∈ (0, 1/2),

Im =
1

mξ

∣∣∣∣∣
m∑
i=1

{Xi − E(X1)} −Wm,2(m)

∣∣∣∣∣mξ+η sup
m+1≤k<∞

k−1/2−η,

which, under Condition 3.1, is smaller than a term bounded in probability times mξ−1/2,
which converges to zero because ξ < 1/2. Similarly,

I ′m ≤ mη sup
m+1≤k<∞

k−1/2−η max
m≤j≤k−1

(j −m)ξ

× sup
m+1≤`<∞

1

(`−m)ξ

∣∣∣∣∣ ∑̀
i=m+1

{Xi − E(X1)} − σWm,1(`−m)

∣∣∣∣∣ .
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Using again Condition 3.1, the latter converges to zero in probability since

mη sup
m+1≤k<∞

k−1/2−η max
m≤j≤k−1

(j −m)ξ ≤ mη sup
m+1≤k<∞

k−1/2−η+ξ ≤ mξ−1/2 → 0.

The fact that Jm in (A.9) and J ′m in (A.10) converge to zero in probability can be checked
by proceeding similarly. Hence, we have shown (A.4). It remains to prove (A.5) and (A.6).

From (2.9) and (A.2), using the reverse triangle inequality for the L1 norm, it can be
verified that, for any k ≥ m+ 1,

{wS(k/m)}−1|Sm(k)− S̃m(k)| ≤ ε−1m−1/2

(
k

m

)−5/2−η
1

m

k−1∑
j=m

∣∣∣∣j(k − j)m
{X̄1:j − X̄j+1:k}

− k
m
σ{Wm,2(m) +Wm,1(j −m)}+

j

m
σ{Wm,2(m) +Wm,1(k −m)}

∣∣∣∣ ≤ k −m
k

Um(k),

where Um(k) is defined in (A.7). Similarly, from (2.10) and (A.3), using the reverse triangle
inequality for the Euclidean norm,

{wT (k/m)}−1|Tm(k)− T̃m(k)| ≤ ε−1m−1/2

(
k

m

)−2−η
(

1

m

k−1∑
j=m

[
j(k − j)

m
{X̄1:j − X̄j+1:k}

− k
m
σ{Wm,2(m) +Wm,1(j −m)}+

j

m
σ{Wm,2(m) +Wm,1(k −m)}

]2
)1/2

≤
√
k −m
k

Um(k).

The fact that (A.5) and (A.6) hold then immediately follows from the two previous dis-
plays, (A.8) and the fact that Im, I ′m, Jm and J ′m converge to zero in probability.

Lemma A.2. For any fixed η > 0, the random function Rη defined by

Rη(s, t) =
1

t3/2+η
|(t− s)W2(1) + tW1(s− 1)− sW1(t− 1)|, 1 ≤ s ≤ t <∞, (A.11)

where W1 and W2 are independent standard Brownian motions, is almost surely bounded and
uniformly continuous.

Proof. Fix η > 0 and let us first verify that Rη is almost surely bounded on A = {(s, t) ∈
[1,∞)2 : s ≤ t}. By the triangle inequality, sup1≤s≤t<∞Rη(s, t) is smaller than

sup
1≤s≤t<∞

t−3/2−η(t− s)|W2(1)|+ sup
1≤s≤t<∞

t−1/2−η|W1(s− 1)|+ sup
1≤s≤t<∞

t−3/2−ηs|W1(t− 1)|

≤ |W2(1)| sup
1≤s≤t<∞

t−1/2−η + sup
1≤s<∞

s−1/2−η|W1(s− 1)|+ sup
1≤t<∞

t−1/2−η|W1(t− 1)|

≤ |W2(1)|+ 2 sup
1≤t<∞

t−1/2−η|W1(t− 1)|.
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It thus remains to verify that sup1≤t<∞ t
−1/2−η|W1(t − 1)| is almost surely bounded. From

the law of the iterated logarithm for Brownian motion, we have that, almost surely,

lim sup
t→∞

t−1/2−η|W1(t− 1)| = lim
T→∞

sup
T≤t<∞

t−1/2−η|W1(t− 1)| = lim
T→∞

sup
T≤t<∞

(t+ 1)−1/2−η|W1(t)|

≤ lim
T→∞

sup
T≤t<∞

(2t log log t)−1/2|W1(t)| × lim
T→∞

sup
T≤t<∞

(2t log log t)1/2(t+ 1)−1/2−η

= 1× lim
t→∞

(2t log log t)1/2(t+ 1)−1/2−η = 0.

Hence, on one hand, there exists T ∈ (1,∞) such that supT≤t<∞ t
−1/2−η|W1(t − 1)| ≤ 1

almost surely. On the other hand, since t 7→ t−1/2−η|W1(t − 1)| is a process whose sample
paths are almost surely continuous, sup1≤t≤T < t−1/2−η|W1(t−1)| <∞ with probability one.

It remains to prove that Rη is almost surely uniformly continuous on A = {(s, t) ∈ [1,∞)2 :
s ≤ t}. Let ε > 0. We must show that there exists some (random) δ > 0 such that, for all
(s, t), (s′, t′) ∈ A such that d((s, t), (s′, t′)) < δ, |Rη(s, t)−Rη(s

′, t′)| ≤ ε.
By the law of the iterated logarithm, there exists Tε ≥ 2 random such that

sup
u≥Tε

|W1(u)|
u1/2+η

≤ ε

8
, (A.12)

and since W2(1) is almost surely finite we can choose Tε to also satisfy

|W2(1)|
(Tε)1/2+η

≤ ε

8
. (A.13)

Since [1, Tε + 3] is compact, there exists T ′ε > Tε + 5 (also random) such that

sup
u∈[1,Tε+3]

|W1(u)|
(T ′ε)

1/2+η
<
ε

8
. (A.14)

We will consider the following three subsets of A whose union is A:

A0 = {(s, t) ∈ A : s ≥ Tε + 2},
A1 = {(s, t) ∈ A : t ≤ T ′ε + 1},
A2 = {(s, t) ∈ A : s ≤ Tε + 2, t ≥ T ′ε + 1},

and find a single δ ≤ 1 that works no matter which of the above (s, t) is in.
Let (s, t) ∈ A0, and let (s′, t′) be such that d((s, t), (s′, t′)) ≤ 1 (so s′ ≥ Tε + 1). Then

|Rη(s, t)−Rη(s
′, t′)| ≤ 1

t3/2+η
|(t− s)W2(1) + tW1(s− 1)− sW1(t− 1)| (A.15)

+
1

t′3/2+η
|(t′ − s′)W2(1) + t′W1(s′ − 1)− s′W1(t′ − 1)| (A.16)

≤ 2|W2(1)|
(Tε)1/2+η

+
|W1(s− 1)|
(s− 1)1/2+η

+
|W1(s′ − 1)|
(s′ − 1)1/2+η

+
|W1(t− 1)|
(t− 1)1/2+η

+
|W1(t′ − 1)|
(t′ − 1)1/2+η

.

By (A.12) and (A.13), this is at most 6ε/8.
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Let (s, t) ∈ A2 and (s′, t′) be such that d((s, t), (s′, t′)) ≤ 1 (so s′ ≤ Tε + 3). Then,
using (A.15) and (A.16) again, we get that

|Rη(s, t)−Rη(s
′, t′)| ≤ 2|W2(1)|

(T ′ε)
1/2+η

+
|W1(s− 1)|
(T ′ε)

1/2+η
+
|W1(s′ − 1)|

(T ′ε)
1/2+η

+
|W1(t− 1)|
(t− 1)1/2+η

+
|W1(t′ − 1)|
(t′ − 1)1/2+η

.

Using (A.12), (A.14) and (A.13), we get that this is at most 6ε/8.
Finally, suppose that (s, t) ∈ A1. Since the set A′1 = {(s, t) ∈ A : t ≤ T ′ε + 2} (note

that A′1 ⊃ A1) is compact and Rη is continuous, it follows that Rη is uniformly continuous
on A′1, so there exists some (random) δ0 > 0 such that whenever (s, t), (s′, t′) ∈ A′1 and
d((s, t), (s′, t′)) ≤ δ0, then we have |Rη(s, t) − Rη(s

′, t′)| ≤ ε/2. Note that if (s, t) ∈ A1 and
d((s, t), (s′, t′)) ≤ 1, then (s, t) and (s′, t′) are both in A′1.

Let δ = min(δ0, 1). Then, whenever d((s, t), (s′, t′)) ≤ δ, we have that (s, t) is in (at least)
one of A0, A1, A2, so by the above |Rη(s, t)−Rη(s

′, t′)| < ε.

Lemma A.3. For any fixed η > 0, ε > 0 and γ ≥ 0,

sup
m+1≤k<∞

{wR(k/m)}−1R̃m(k) σ sup
1≤s≤t<∞

{wγ(t)}−1Rη(s, t), (A.17)

sup
m+1≤k<∞

{wS(k/m)}−1S̃m(k) σ sup
1≤t<∞

{wγ(t)}−1t−1

∫ t

1

|Rη(s, t)|ds, (A.18)

sup
m+1≤k<∞

{wT (k/m)}−1T̃m(k) σ sup
1≤t<∞

{wγ(t)}−1t−1/2

√∫ t

1

{Rη(s, t)}2ds, (A.19)

where wR, wS and wT are defined in (2.7), (2.11) and (2.12), respectively, R̃m, S̃m and T̃m
are defined in (A.1), (A.2) and (A.3), respectively, wγ is defined in (2.8) and the random
function Rη is defined in (A.11). In addition, all the limiting random variables are almost
surely finite.

Proof. Fix η > 0, ε > 0 and γ ≥ 0 and let W1 and W2 be independent standard Brownian
motions. Then, from (A.1), for any m ∈ N, supm+1≤k<∞{wR(k/m)}−1R̃m(k) is equal in
distribution to

σm−1/2 sup
m+1≤k<∞

{wR(k/m)}−1 max
m≤j≤k−1

∣∣∣∣ km{W2(m) +W1(j −m)}

− j

m
{W2(m) +W1(k −m)}

∣∣∣∣ .
Next, notice that, for any k ≥ m+ 1 and any j ∈ {m, . . . , k− 1}, there exists 1 ≤ s ≤ t such
that k = bmtc and j = bmsc. Hence, the previous expression can be rewritten as

σm−1/2 sup
t∈[1,∞)

{wR(bmtc/m)}−1 sup
s∈[1,t]

∣∣∣∣bmtcm {W2(m) +W1(bmsc −m)}

−bmsc
m
{W2(m) +W1(bmtc −m)}

∣∣∣∣ .
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By Brownian scaling, the latter is equal in distribution to

σ sup
1≤s≤t<∞

{wR(bmtc/m)}−1

∣∣∣∣bmtcm
{
W2(1) +W1

(
bmsc
m
− 1

)}
−bmsc

m

{
W2(1) +W1

(
bmtc
m
− 1

)}∣∣∣∣ ,
which, using (2.7), (2.8) and the function Rη defined in (A.11), can be expressed as

σ sup
1≤s≤t<∞

{wγ(bmtc/m)}−1Rη(bmsc/m, bmtc/m).

Using additionally the fact that, for any functions f, g,∣∣ sup
x
|f(x)| − sup

x
|g(x)|

∣∣ ≤ sup
x
|f(x)− g(x)|, (A.20)

we obtain that∣∣∣ sup
1≤s≤t<∞

{wγ(bmtc/m)}−1Rη(bmsc/m, bmtc/m)− sup
1≤s≤t<∞

{wγ(t)}−1Rη(s, t)
∣∣∣

≤ sup
1≤s≤t<∞

∣∣∣{wγ(bmtc/m)}−1Rη(bmsc/m, bmtc/m)− {wγ(t)}−1Rη(s, t)
∣∣∣

≤ sup
1≤s≤t<∞,1≤s′≤t′<∞
|s−s′|≤1/m,|t−t′|≤1/m

∣∣∣{wγ(t′)}−1Rη(s
′, t′)− {wγ(t)}−1Rη(s, t)

∣∣∣, (A.21)

since supt∈[1,∞) |bmtc/m− t| ≤ 1/m.
From Lemma A.2, we know that Rη is almost surely bounded and uniformly continuous on
{(s, t) ∈ [1,∞)2 : s ≤ t}. Furthermore, the function t 7→ 1/wγ(t) being bounded, continuous
and converging to zero as t→∞, it is also uniformly continuous on [1,∞). The latter facts
imply that the function (s, t) 7→ {wγ(t)}−1Rη(s, t) is almost surely bounded and uniformly
continuous on {(s, t) ∈ [1,∞)2 : s ≤ t} and, therefore, that (A.21) converges almost surely
to zero and, finally, that (A.17) holds with the limit being almost surely finite.

Let us now show (A.18). First, notice that the limiting random variable is almost surely
finite as an immediate consequence of the inequality

sup
1≤t<∞

t−1

∫ t

1

|Rη(s, t)|ds ≤ sup
1≤s≤t<∞

Rη(s, t).

Then, from (A.2), for any m ∈ N, supm+1≤k<∞{wS(k/m)}−1S̃m(k) is equal in distribution to

σm−1/2 sup
m+1≤k<∞

{wS(k/m)}−1 1

m

k−1∑
j=m

∣∣∣∣ km{W2(m) +W1(j −m)} − j

m
{W2(m) +W1(k −m)}

∣∣∣∣ .
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Using Brownian scaling, the latter is equal in distribution to

σ sup
m+1≤k<∞

{wS(k/m)}−1 1

m

k−1∑
j=m

∣∣∣∣ km{W2(1) +W1(j/m− 1)} − j

m
{W2(1) +W1(k/m− 1)}

∣∣∣∣
=σ sup

m+1≤bmtc<∞

{
wS

(
bmtc
m

)}−1

× 1

m

bmtc−1∑
j=m

∣∣∣∣bmtcm
{
W2(1) +W1

(
j

m
− 1

)}
− j

m

{
W2(1) +W1

(
bmtc
m
− 1

)}∣∣∣∣
=σ sup

1≤t<∞

{
wγ

(
bmtc
m

)}−1(bmtc
m

)−5/2−η

×
∫ t

1

∣∣∣∣bmtcm
{
W2(1) +W1

(
bmsc
m
− 1

)}
− bmsc

m

{
W2(1) +W1

(
bmtc
m
− 1

)}∣∣∣∣ ds
=σ sup

1≤t<∞

{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1 ∫ t

1

Rη

(
bmsc
m

,
bmtc
m

)
ds,

where the second equality follows from the fact that the integrand is zero on the interval
[bmtc/m, t] since bmsc = bmtc for s ∈ [bmtc/m, t]. Then, from (A.20), we obtain that∣∣∣∣∣ sup

1≤t<∞

{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1 ∫ t

1

Rη

(
bmsc
m

,
bmtc
m

)
ds

− sup
1≤t<∞

{wγ(t)}−1t−1

∫ t

1

Rη(s, t)ds

∣∣∣∣
≤ sup

1≤t<∞

∣∣∣∣∣
{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1 ∫ t

1

Rη

(
bmsc
m

,
bmtc
m

)
ds

−{wγ(t)}−1t−1

∫ t

1

Rη(s, t)ds

∣∣∣∣ ,
which is smaller than Im + Jm, where

Im = sup
1≤t<∞

{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1 ∣∣∣∣∫ t

1

Rη

(
bmsc
m

,
bmtc
m

)
ds−

∫ t

1

Rη(s, t)ds

∣∣∣∣ ,
Jm = sup

1≤t<∞

∣∣∣∣∣
{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1

− {wγ(t)}−1t−1

∣∣∣∣∣
∫ t

1

Rη(s, t)ds.

To show (A.18), we shall verify that both Im and Jm converge to zero almost surely. For Im,
we have

Im ≤ sup
1≤t<∞

{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1

t× sup
1≤s≤t<∞

∣∣∣∣Rη

(
bmsc
m

,
bmtc
m

)
−Rη(s, t)

∣∣∣∣ .
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Using (2.8) and the fact that sup1≤t<∞mt/bmtc ≤ 2 as soon as m ≥ 2, the first supremum
on the right is bounded by 2ε−1. The second supremum converges to zero almost surely from
the almost sure uniform continuity of Rη on {(s, t) ∈ [1,∞)2 : s ≤ t} shown in Lemma A.2.
For Jm, we have

Jm ≤ sup
1≤t<∞

∣∣∣∣∣
{
wγ

(
bmtc
m

)}−1
mt

bmtc
− {wγ(t)}−1

∣∣∣∣∣× sup
1≤s≤t<∞

Rη(s, t).

Since the second supremum on the right is almost surely bounded by Lemma A.2, it suffices
to verify that the first supremum converges to zero. The latter is smaller than

sup
1≤t<∞

∣∣∣∣∣
{
wγ

(
bmtc
m

)}−1
mt

bmtc
− {wγ(t)}−1 mt

bmtc
+ {wγ(t)}−1 mt

bmtc
− {wγ(t)}−1

∣∣∣∣∣
≤ 2 sup

1≤t<∞

∣∣∣∣∣
{
wγ

(
bmtc
m

)}−1

− {wγ(t)}−1

∣∣∣∣∣+ ε−1 sup
1≤t<∞

mt− bmtc
bmtc

.

The first term on the right-hand side converges to zero by the uniform continuity of the
function t 7→ 1/wγ(t) on [1,∞). The second term converges to zero since it is smaller than
ε−1m−1.

It remains to prove (A.19). Notice first that the limit in (A.19) is almost surely finite since

sup
1≤t<∞

t−1/2

√∫ t

1

{Rη(s, t)}2ds ≤ sup
1≤s≤t<∞

Rη(s, t).

Then, starting from (A.3) and proceeding as previously, it can be verified that the random
variable supm+1≤k<∞{wT (k/m)}−1T̃m(k) is equal in distribution to

σ sup
1≤t<∞

{
wT

(
bmtc
m

)}−1
(∫ t

1

[
bmtc
m

{
W2(1) +W1

(
bmsc
m
− 1

)}
bmsc
m

{
W2(1) +W1

(
bmtc
m
− 1

)}]2

ds

)1/2

= σ sup
1≤t<∞

{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1/2
√∫ t

1

{
Rη

(
bmsc
m

,
bmtc
m

)}2

ds.
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Then, from (A.20),∣∣∣∣∣∣ sup
1≤t<∞

{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1/2
√∫ t

1

{
Rη

(
bmsc
m

,
bmtc
m

)}2

ds

− sup
1≤t<∞

{wγ(t)}−1t−1/2

√∫ t

1

{Rη(s, t)}2ds

∣∣∣∣∣∣
≤ sup

1≤t<∞

∣∣∣∣∣∣
{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1/2
√∫ t

1

{
Rη

(
bmsc
m

,
bmtc
m

)}2

ds

−{wγ(t)}−1t−1/2

√∫ t

1

{Rη(s, t)}2ds

∣∣∣∣∣∣ ,
which is smaller than I ′m + J ′m, where

I ′m = sup
1≤t<∞

{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1/2

×

∣∣∣∣∣∣
√∫ t

1

{
Rη

(
bmsc
m

,
bmtc
m

)}2

ds−

√∫ t

1

{Rη(s, t)}2ds

∣∣∣∣∣∣ ,
J ′m = sup

1≤t<∞

∣∣∣∣∣
{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1/2

− {wγ(t)}−1t−1/2

∣∣∣∣∣
√∫ t

1

{Rη(s, t)}2ds.

Using Minkwoski’s inequality in the form |‖f‖2 − ‖g‖2| ≤ ‖f − g‖2, and using similar argu-
ments as previously,

I ′m ≤ sup
1≤t<∞

{
wγ

(
bmtc
m

)}−1(bmtc
m

)−1/2
√∫ t

1

{
Rη

(
bmsc
m

,
bmtc
m

)
−Rη(s, t)

}2

ds

≤ ε−1 sup
1≤t<∞

(
mt

bmtc

)1/2

× sup
1≤s≤t<∞

∣∣∣∣Rη

(
bmsc
m

,
bmtc
m

)
−Rη(s, t)

∣∣∣∣ as→ 0.

Proceeding as for Jm, J ′m
as→ 0 since

sup
1≤t<∞

∣∣∣∣∣
{
wγ

(
bmtc
m

)}−1(
mt

bmtc

)1/2

− {wγ(t)}−1

∣∣∣∣∣
≤
√

2 sup
1≤t<∞

∣∣∣∣∣
{
wγ

(
bmtc
m

)}−1

− {wγ(t)}−1

∣∣∣∣∣+ ε−1 sup
1≤t<∞

√
mt−

√
bmtc√

bmtc
as→ 0

by the uniform continuity of the functions t 7→ 1/wγ(t) and the fact that the argument of
the second supremum on the right hand side is at most bmtc−1.
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Proof of Theorem 3.3. From Lemmas A.1 and A.3, we have that, for any fixed η > 0,
ε > 0 and γ ≥ 0,

sup
m+1≤k<∞

{wR(k/m)}−1Rm(k) σ sup
1≤s≤t<∞

{wγ(t)}−1Rη(s, t),

sup
m+1≤k<∞

{wS(k/m)}−1Sm(k) σ sup
1≤t<∞

{wγ(t)}−1t−1

∫ t

1

|Rη(s, t)|ds,

sup
m+1≤k<∞

{wT (k/m)}−1Tm(k) σ sup
1≤t<∞

{wγ(t)}−1t−1/2

√∫ t

1

{Rη(s, t)}2ds,

where wγ is defined in (2.8) and the random function Rη is defined in (A.11).
It thus remains to verify that the expressions of the limiting random variables can be

simplified to coincide in distribution with those given in the statement of the theorem. The
latter is merely a consequence of the fact that the random functions

U(s, t) = (t− s)W2(1) + tW1(s− 1)− sW1(t− 1), 1 ≤ s ≤ t,

and
V (s, t) = tW (s)− sW (t), 1 ≤ s ≤ t,

are equal in distribution. Since U and V are centered Gaussian processes whose sample
paths are continuous almost surely, the equality in distribution is a direct consequence of
the equality of their covariance functions. Indeed, for any 1 ≤ s ≤ t and 1 ≤ s′ ≤ t′, it is an
exercise to verify by direct computation that

Cov{U(s, t), U(s′, t′)} = Cov{V (s, t), V (s′, t′)}.

Proof of Proposition 3.4. We have for all k ≥ 1

sup
1≤s≤t<∞

1

t3/2
|tW (s)− sW (t)| ≥ 1

(2k)3/2
|2kW (2k−1)− 2k−1W (2k)|

=
2k−1

23k/2
|W (2k−1)− {W (2k)−W (2k−1)}|

=
1

2k/2+1
|W (2k−1)− {W (2k)−W (2k−1)}|.

Consider an arbitrary fixed M > 0 and the events Dk = {|W (2k−1)−{W (2k)−W (2k−1)}| ≥
M2k/2+1}. It is sufficient to show that P (

⋃∞
k=1Dk) = 1 (since this shows that the supremum

is at least M with probability 1), or equivalently, P
(⋂∞

k=1D
C
k

)
= 0. Now,

P

(
∞⋂
k=1

DC
k

)
= lim

r→∞
P

(
r⋂

k=1

DC
k

)
= lim

r→∞
P(DC

1 )
r∏

k=2

P

(
DC
k

∣∣∣ k−1⋂
j=1

DC
j

)

= P(DC
1 ) lim

r→∞

r∏
k=2

{
1− P

(
Dk

∣∣∣ k−1⋂
j=1

DC
j

)}
,
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so that it is enough to show that there exists δM > 0 such that P
(
Dk |

⋂k−1
j=1 D

C
j

)
≥ δM for all

k ≥ 2. The latter holds with δM = P(|Z| ≥ 23/2M)/2 > 0, where Z is a standard normal ran-
dom variable, since for all k ≥ 2, withAk = {W (2k)−W (2k−1) and W (2k−1) have opposite sign},

P

(
Dk

∣∣∣ k−1⋂
j=1

DC
j

)
≥ P

(
Ak, |W (2k)−W (2k−1)| ≥M2k/2+1

)
= P

(
|W (2k)−W (2k−1)| ≥M2k/2+1

)
P(Ak)

= P(|Z| ≥ 23/2M)/2.

In the above we have used the fact that the sign of the increment and its magnitude are
independent of the past and each other, and that the increment is Gaussian with mean 0
and variance 2k−1.

Appendix B: Proofs of the results under alternatives

Proof of Theorem 3.10. Let us first prove the claim when (iv) in Condition 3.7 holds.
Recall the definition of the function wγ in (2.8) and notice that wγ(t) ≤ 1 for all t ∈ [1,∞),
ε ≥ 0 and γ ≥ 0. Thus, for all η ≥ 0, ε ≥ 0 and γ ≥ 0,

sup
m+1≤k<∞

{wR(k/m)}−1Rm(k) ≥ sup
m+1≤k<∞

(k/m)−3/2−ηRm(k)

k=k?m+bcmc
≥

(
k?m + bcmc

m

)−3/2−η

max
m≤j≤k?m+bcmc−1

j(k?m + bcmc − j)
m3/2

∣∣X̄ (m)

1:j − X̄
(m)

j+1:k?m+bcmc

∣∣
j=k?m
≥
(
k?m
m

+ c

)−3/2−η
k?mbcmc
m3/2

∣∣X̄ (m)

1:k?m
− X̄ (m)

k?m+1:k?m+bcmc

∣∣
≥
(
k?m
m

+ c

)−3/2−η
k?m(cm− 1)

m3/2

∣∣X̄ (m)

1:k?m
− E(X (m)

k?m
) + E(X (m)

k?m
)− E(X (m)

k?m+1)

+ E(X (m)

k?m+1)− X̄ (m)

k?m+1:k?m+bcmc

∣∣
≥ m1/2

(
k?m
m

+ c

)−3/2−η (
k?m
m

)(
c− 1

m

){
|E(X (m)

k?m+1)− E(X (m)

k?m
)|

− |X̄ (m)

1:k?m
− E(X (m)

k?m
)− X̄ (m)

k?m+1:k?m+bcmc + E(X (m)

k?m+1)|
}

(B.1)

by the triangle inequality. Since (iv) in Condition 3.7 holds, for m large enough, (B.1) is at
least (C1 + c)−3/2−η c1 (c/2) times

m1/2
{
|E(Y (m)

1 )− E(Y (0)

1 )| − |Ȳ (0)

1:k?m
− E(Y (0)

1 )− Ȳ (m)

k?m+1:k?m+bcmc + E(Y (m)

1 )|
}
. (B.2)

Notice that (3.4) implies that
√
m{Ȳ (0)

1:k?m
−E(Y (0)

1 )} = (m/k?m)1/2×
√
k?m{Ȳ

(0)

1:k?m
−E(Y (0)

1 )} =

OP(1) and that (3.5) implies that
√
m{Ȳ (m)

k?m+1:k?m+bcmc − E(Y (m)

1 )} = OP(1). Hence, (B.2)

diverges in probability to infinity as a consequence of of (ii) in Condition 3.7.
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Assume now that (v) in Condition 3.7 holds. Then, we can use the fact that

sup
m+1≤k<∞

{wR(k/m)}−1Rm(k)
k=k?m+bck?mc
≥

(
k?m + bck?mc

m

)−3/2−η

Rm(k?m + bck?mc)

≥ m3/2+η

(k?m + ck?m)3/2+η
max

m≤j≤k?m+bck?mc−1

j(k?m + bck?mc − j)
m3/2

∣∣X̄ (m)

1:j − X̄
(m)

j+1:k?m+bck?mc

∣∣
j=k?m
≥ mηk?m(ck?m − 1)

(k?m + ck?m)3/2+η

∣∣X̄ (m)

1:k?m
− X̄ (m)

k?m+1:k?m+bck?mc

∣∣
≥ mη(k?m)1/2−η(c− 1/k?m)

(1 + c)3/2+η

∣∣X̄ (m)

1:k?m
− E(X (m)

k?m
) + E(X (m)

k?m
)

− E(X (m)

k?m+1) + E(X (m)

k?m+1)− X̄ (m)

k?m+1:k?m+bck?mc

∣∣,
which, for m large enough, is larger than

m1/2c

2(1 + c)3/2+η

{
|E(Y (m)

1 )− E(Y (0)

1 )| − |Ȳ (0)

1:k?m
− E(Y (0)

1 )− Ȳ (m)

k?m+1:k?m+bck?mc
+ E(Y (m)

1 )|
}
. (B.3)

This time, since k?/m → ∞, (3.4) implies that
√
m{Ȳ (0)

1:k?m
− E(Y (0)

1 )} = (m/k?m)1/2 ×√
k?m{Ȳ

(0)

1:k?m
− E(Y (0)

1 )} = oP(1) while (3.6) implies that (m/k?m)1/2
√
k?m{Ȳ

(m)

k?m+1:k?m+bck?mc
−

E(Y (m)

1 )} = oP(1). Therefore, (B.3) diverges in probability to infinity as a consequence of (ii)
in Condition 3.7.

Proof of Theorem 3.12. We adapt the proof of Proposition 2.7 of Kojadinovic and Verdier
(2020) to the current setting. Given a set S ⊂ [0,∞), let `∞(S) denote the space of all
bounded real-valued functions on S equipped with the uniform metric. Fix T > c. For any
s ∈ [1, T ], let

Wm,Y (s) = m−1/2

bmsc∑
i=1

{Yi − E(Y1)} and Wm,Z(s) = m−1/2

bmsc∑
i=1

{Zi − E(Z1)}.

From Condition 3.11, we have that Wm,Y converges weakly to a standard Brownian mo-
tion WY in `∞([1, T ]) and Wm,Z converges weakly to a standard Brownian motion WZ in
`∞([1, T ]).

Let Jm(s, t) = m−1/2Hm(s, t) −Kc(s, t), (s, t) ∈ ∆T = {(s, t) ∈ [1, T ]2 : s ≤ t}. The fact

that m−1/2Hm
P→ Kc in `∞(∆T ) is proven if we show that

sup
(s,t)∈∆T

|Jm(s, t)| P→ 0. (B.4)

The supremum on the left-hand side of (B.4) is equal to

max

{
sup

1≤s≤t≤c
|Jm(s, t)|, sup

1≤s≤c≤t≤T
|Jm(s, t)|, sup

c≤s≤t≤T
|Jm(s, t)|

}
. (B.5)
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Notice first that

Kc(s, t) =


0, if 1 ≤ s ≤ t ≤ c,
s(t− c){E(Y1)− E(Z1)}, if 1 ≤ s ≤ c ≤ t ≤ T,
c(t− s){E(Y1)− E(Z1)}, if c ≤ s ≤ t ≤ T.

(B.6)

Furthermore, for any (s, t) ∈ ∆T ∩ [1, c]2, let

Dm,Y (s, t) =
√
mλm(s, t){X̄ (m)

bmsc+1:bmtc − E(X (m)

k?m
)} = Wm,Y (t)−Wm,Y (s),

where λm(s, t) = (bmtc − bmsc)/m, (s, t) ∈ ∆T , and, for any (s, t) ∈ ∆T ∩ [c, T ]2, let

Dm,Z(s, t) =
√
mλm(s, t){X̄ (m)

bmsc+1:bmtc − E(X (m)

k?m+1)} = Wm,Z(t)−Wm,Z(s).

Under the assumptions of the theorem, from the continuous mapping theorem, Dm,Y  DY

in `∞(∆T ∩ [1, c]2) and Dm,Z  DZ in `∞(∆T ∩ [c, T ]2), where DY (s, t) = WY (t) −WY (s)
and DZ(s, t) = WZ(t)−WZ(s).

From the expression of Kc given in (B.6), for the first supremum in (B.5), we obtain that

sup
1≤s≤t≤c

|Jm(s, t)| = m−1/2 sup
1≤s≤t≤c

|Hm(s, t)| = o(1)×OP(1)
P→ 0,

since Hm converges weakly to (s, t) 7→ (t − s)DY (0, s) − sDY (s, t) in `∞(∆T ∩ [1, c]2) as
a consequence of the fact that, for any 1 ≤ s ≤ t ≤ c, Hm(s, t) = λm(s, t)Dm,Y (0, s) −
λm(0, s)Dm,Y (s, t) and sup(s,t)∈∆T

|λm(s, t)−(t−s)| ≤ 2/m, and from the continuous mapping
theorem.

Regarding the second supremum, for any 1 ≤ s ≤ c ≤ t ≤ T , we have that

λm(s, t)X̄bmsc+1:bmtc = λm(s, c)X̄bmsc+1:bmcc + λm(c, t)X̄bmcc+1:bmtc.

Thus, on one hand,

m−1/2Hm(s, t) = λm(0, s){λm(s, t)X̄1:bmsc − λm(s, c)X̄bmsc+1:bmcc − λm(c, t)X̄bmcc+1:bmtc}.

On the other hand, from (B.6) and using again the fact that sup(s,t)∈∆T
|λm(s, t)− (t− s)| ≤

2/m,

Kc(s, t) = λm(0, s){λm(s, t)E(Y1)− λm(s, c)E(Y1)− λm(c, t)E(Z1)}+O(1/m),

where the term O(1/m) is uniform in s, t, c. By the triangle inequality and using the fact
that sup(s,t)∈∆T

|λm(s, t)| ≤ T , it then follows that

sup
1≤s≤c≤t≤T

|Jm(s, t)| ≤ m−1/2 T

[
sup

1≤s≤c
|Dm,Y (0, s)|

+ sup
1≤s≤c

|Dm,Y (s, c)|+ sup
c≤t≤T

|Dm,Z(c, t)|
]

= o(1)×OP(1).
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Similarly, for the third supremum, for any c ≤ s ≤ T ,

λm(0, s)X̄1:bmsc = λm(0, c)X̄1:bmcc + λm(c, s)X̄bmcc+1:bmsc,

and, hence, on one hand, for any c ≤ s ≤ t ≤ T ,

m−1/2Hm(s, t) = λm(s, t){λm(0, c)X̄1:bmcc + λm(c, s)X̄bmcc+1:bmsc − λm(0, s)X̄bmsc+1:bmtc},

while, on the other hand,

Kc(s, t) = λm(s, t){λm(0, c)E(Y1) + λm(c, s)E(Z1)− λm(0, s)E(Z1)}+O(1/m),

with the term O(1/m) again uniform in s, t, c. Finally, by the triangle inequality,

sup
c≤s≤t≤T

|Jm(s, t)| ≤ m−1/2T [|Dm,Y (0, c)|

+ sup
c≤s≤T

|Dm,Z(c, s)|+ sup
c≤s≤t≤T

|Dm,Z(s, t)|
]

= o(1)×OP(1),

which completes the proof of (B.4).
It remains to prove (3.8). Recall that from the definition of the function wγ in (2.8),

wγ(t) ≤ 1 for all t ≥ 1, ε > 0 and γ ≥ 0. Hence,

sup
m+1≤k<∞

{wS(k/m)}−1Sm(k) ≥ sup
m+1≤k≤bmT c

(k/m)−5/2−η 1

m

k−1∑
j=m

j(k − j)
m3/2

|X̄ (m)

1:j − X̄
(m)

j+1:k|

= sup
t∈[1,T ]

(
bmtc
m

)−5/2−η ∫ t

1

|Hm(s, t)|ds ≥ sup
t∈[1,T ]

t−5/2−η
∫ t

1

|Hm(s, t)|ds

≥ T−5/2−ηm1/2 sup
t∈[1,T ]

∫ t

1

|m−1/2Hm(s, t)|ds P→∞

since, by the continuous mapping theorem,

sup
t∈[1,T ]

∫ t

1

|m−1/2Hm(s, t)|ds P→ sup
t∈[1,T ]

∫ t

1

|Kc(s, t)|ds > 0.

Similarly, supm+1≤k<∞{wT (k/m)}−1Tm(k) is larger than

sup
m+1≤k≤bmT c

(k/m)−2−η

√√√√ 1

m

k−1∑
j=m

{
j(k − j)
m3/2

(X̄1:j − X̄j+1:k)

}2

≥ sup
t∈[1,T ]

t−2−η

√∫ t

1

{Hm(s, t)}2ds

≥ T−2−ηm1/2 sup
t∈[1,T ]

√∫ t

1

{m−1/2Hm(s, t)}2ds
P→∞

38



since, by the continuous mapping theorem,

sup
t∈[1,T ]

√∫ t

1

{m−1/2Hm(s, t)}2ds
P→ sup

t∈[1,T ]

√∫ t

1

{Kc(s, t)}2ds > 0.

Appendix C: Proofs of Propositions 4.1 and 6.2

Proof of Proposition 4.1. For any fixed η > 0, ε > 0 and γ ≥ 0, we have

sup
1≤s≤t<∞

1

t3/2+η max[{(t− 1)/t}γ, ε]
|tW (s)− sW (t)|

= sup
1≤s≤t<∞

1

t3/2+η max{(1− 1/t)γ, ε}

∣∣∣∣tss W (s)− st

t
W (t)

∣∣∣∣
= sup

1≤s≤t<∞

ts

t3/2+η max{(1− 1/t)γ, ε}

∣∣∣∣1sW (s)− 1

t
W (t)

∣∣∣∣
= sup

1≤s≤t<∞

s

t1/2+η max{(1− 1/t)γ, ε}

∣∣∣∣1sW (s)− 1

t
W (t)

∣∣∣∣ .
Let u = 1/t and v = 1/s. Then, the last expression on the right is equal to

sup
1≤1/v≤1/u<∞

1/v

(1/u)1/2+η max{(1− u)γ, ε}
|vW (1/v)− uW (1/u)|

= sup
0<u≤v≤1

u1/2+η

vmax{(1− u)γ, ε}
|vW (1/v)− uW (1/u)|.

The claim finally follows from the Brownian inversion property stating that {tW (1/t)}t≥0 is
also a standard Brownian motion.

Proof of Proposition 6.2. Fix η > 0, ε > 0 and γ ≥ 0, and, for any k ≥ m+ 1, let

Vm(k) = ε−1 sup
m+1≤k≤∞

(k/m)−3/2−η max
m≤j≤k−1

j(k − j)
m3/2

|θ1:j − θj+1:k − ĪF 1:j + ĪF j+1:k|

= ε−1 sup
m+1≤k≤∞

(k/m)−3/2−η max
m≤j≤k−1

j(k − j)
m3/2

|R1,j −Rj+1:k|. (C.1)

Then, using the reverse triangle inequality for the maximum norm,

sup
m+1≤k≤∞

{wR(k/m)}−1|Rθ
m(k)−RIF

m (k)| ≤ Vm(k)

≤ ε−1mη sup
m+1≤k≤∞

k−3/2−η
{

max
m≤j≤k−1

j(k − j)|R1,j|+ max
m≤j≤k−1

j(k − j)|Rj+1,k|
}

= oP(1)
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since

mη sup
m+1≤k≤∞

k−3/2−η max
m≤j≤k−1

j(k − j)|R1,j| ≤ mη sup
m+1≤k≤∞

k−1/2−η max
m≤j≤k−1

j|R1,j|

≤ mη sup
m+1≤k≤∞

k−η × sup
m+1≤k≤∞

k−1/2 max
m≤j≤k−1

j|R1,j|

≤ sup
m+1≤k≤∞

k−1/2 max
1≤i<j≤k

(j − i+ 1)|Ri,j| = oP(1)

as a consequence of Condition 6.1 and, similarly,

mη sup
m+1≤k≤∞

k−3/2−η max
m≤j≤k−1

j(k − j)|Rj+1,k| ≤ mη sup
m+1≤k≤∞

k−1/2−η max
m≤j≤k−1

(k − j)|Rj+1,k|

≤ mη sup
m+1≤k≤∞

k−η × sup
m+1≤k≤∞

k−1/2 max
m≤j≤k−1

(k − j)|Rj+1,k|

≤ sup
m+1≤k≤∞

k−1/2 max
1≤i<j≤k

(j − i+ 1)|Ri,j| = oP(1).

Using the reverse triangle inequality for the L1 norm, the claim for Sθm and SIFm follows from
the fact that

sup
m+1≤k≤∞

{wS(k/m)}−1|Sθm(k)− SIFm (k)|

≤ ε−1 sup
m+1≤k≤∞

(k/m)−5/2−η 1

m

k−1∑
j=m

j(k − j)
m3/2

|R1,j −Rj+1:k| ≤
k −m
k

Vm(k),

where Vm is defined in (C.1). Similarly, the claim for T θm and T IFm follows from the fact that

sup
m+1≤k≤∞

{wT (k/m)}−1|T θm(k)− T IFm (k)|

≤ ε−1 sup
m+1≤k≤∞

(k/m)−2−η

√√√√ 1

m

k−1∑
j=m

{
j(k − j)
m3/2

(R1,j −Rj+1:k)

}2

≤
√
k −m
k

Vm(k).
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