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Abstract. The method of ‘coupling from the past’ permits exact
sampling from the invariant distribution of a Markov chain on a
finite state space. The coupling is successful whenever the stochas-
tic dynamics are such that there is coalescence of all trajectories.
The issue of the coalescence or non-coalescence of trajectories of a
finite state space Markov chain is investigated in this note. The
notion of the ‘coalescence number’ k(µ) of a Markovian coupling µ
is introduced, and results are presented concerning the set K(P )
of coalescence numbers of couplings corresponding to a given tran-
sition matrix P .

1. Introduction

The method of ‘coupling from the past’ (CFTP) was introduced
by Propp and Wilson [4, 5, 8] in order to sample from the invariant
distribution of an irreducible Markov chain on a finite state space. It
has attracted great interest amongst theoreticians and practitioners,
and there is an extensive associated literature (see, for example, [7]).

The general approach of CFTP is as follows. Let X be an irreducible
Markov chain on a finite state space S with transition matrix P = (pi,j :
i, j ∈ S), and let π be the unique invariant distribution (see [3, Chap.
6] for a general account of the theory of Markov chains).

Let FS be the set of functions from S to S, and let PS be the set
of all irreducible stochastic matrices on the finite set S. We write N
for the set {1, 2, . . . } of natural numbers, and P for the appropriate
probability measure.
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Figure 1.1. An illustration of coalescence of trajecto-
ries in CFTP with |S| = 5.

Definition 1.1. A probability measure µ on FS is consistent with P ∈
PS, in which case we say that the pair (P, µ) is consistent, if

(1.1) pi,j = µ
(
{f ∈ FS : f(i) = j}

)
, i, j ∈ S.

Let L(P ) denote the set of probability measures µ on FS that are con-
sistent with P ∈ PS.

Let P ∈ PS and µ ∈ L(P ). The measure µ is called a grand coupling
of P . Let F = (Fs : s ∈ N) be a vector of independent samples from µ,

let
�

F t denote the composition F1 ◦F2 ◦ · · · ◦Ft, and define the backward
coalescence time

(1.2) C = inf
{
t :

�

F t(·) is a constant function
}
.

We say that backward coalescence occurs if C < ∞. On the event

{C <∞},
�

FC may be regarded as a random state.
The definition of coupling may seem confusing on first encounter.

The function F1 describes transitions during one step of the chain from
time −1 to time 0, as illustrated in Figure 1. If F1 is not a constant
function, we move back one step in time to −2, and consider the com-
position F1 ◦ F2. This process is iterated, moving one step back in
time at each stage, until the earliest (random) C such that the iterated

function
�

FC is constant. This C (if finite) is the time to backward
coalescence.

Propp and Wilson proved the following fundamental theorem.

Theorem 1.2 ([4]). Let P ∈ PS and µ ∈ L(P ). Either P(C <∞) = 0
or P(C < ∞) = 1. If it is the case that P(C < ∞) = 1, then the

random state
�

FC has law π.

Here are two areas of application of CFTP. In the first, one begins
with a recipe for a certain probability measure π on S, for example as
the posterior distribution of a Bayesian analysis. In seeking a sample
from π, one may find an aperiodic transition matrix P having π as
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unique invariant distribution, and then run CFTP on the associated
Markov chain. In a second situation that may arise in a physical model,
one begins with a Markovian dynamics with associated transition ma-
trix P ∈ PS, and uses CFTP to sample from the invariant distribution.
In the current work, we shall assume that the transition matrix P is
specified, and that P is finite and irreducible.

Here is a summary of the work presented here. In Section 2, we
discuss the phenomena of backward and forward coalescence, and we
define the coalescence number of a Markov coupling. Theorem 3.4
explains the relationship between the coalescence number and the ranks
of products of extremal elements in a convex representation of the
stochastic matrix P . The question is posed of determining the set
K(P ) of coalescence numbers of couplings consistent with a given P . A
sub-family of couplings, termed ‘block measures’, is studied in Section
4. It is shown in Theorem 4.4, via Birkhoff’s convex representation
theorem for doubly stochastic matrices, that |S| ∈ K(P ) if and only if
P is doubly stochastic. Some further results about K(P ) are presented
in Section 5.

2. Coalescence of trajectories

CFTP relies upon almost-sure backward coalescence, which is to say
that P(C <∞) = 1, where C is given in (1.2). For given P ∈ PS, the
occurrence (or not) of coalescence depends on the choice of µ ∈ L(P );
see for example, Example 2.2.

We next introduce the notion of ‘forward coalescence’, which is to
be considered as ‘coalescence’ but with the difference that time runs
forwards rather than backwards. As before, let P ∈ PS, µ ∈ L(P ),
and let F = (Fs : s ∈ N) be an independent sample from µ. For

i ∈ S, define the Markov chain X i = (X i
t : t ≥ 0) by X i

t =
�

F t(i) where
�

F t = Ft◦Ft−1◦· · ·◦F1. Then (X i : i ∈ S) is a family of coupled Markov
chains, running forwards in time, each having transition matrix P , and
such that X i starts in state i.

The superscript � (respectively, �) is used to indicate that time is
running forwards (respectively, backwards). For i, j ∈ S, we say that
i and j coalesce if there exists t such that X i

t = Xj
t . We say that

forward coalescence occurs if, for all pairs i, j ∈ S, i and j coalesce.
The forward coalescence time is given by

(2.1) T = inf{t ≥ 0 : X i
t = Xj

t for all i, j ∈ S}.

Clearly, if P is periodic then T = ∞ a.s. for any µ ∈ L(P ). A simple
but important observation is that C and T have the same distribution.



4 NON-COUPLING FROM THE PAST

Theorem 2.1. Let P ∈ PS and µ ∈ L(P ). The backward coalescence
time C and the forward coalescence time T have the same distribution.

Proof. Let (Fi : i ∈ N) be an independent sample from µ. For t ≥ 0,
we have

P(C ≤ t) = P
(�

F t(·) is a constant function
)
.

By reversing the order of the functions F1, F2, . . . , Ft, we see that this

equals P(T ≤ t) = P(
�

F t(·) is a constant function). �

Example 2.2. Let S = {1, 2, . . . , n} where n ≥ 2, and let Pn = (pi,j)
be the constant matrix with entries pi,j = 1/n for i, j ∈ S. Let F =
(Fi : i ∈ N) be an independent sample from µ ∈ L(Pn).

(a) If each Fi is a uniform random permutation of S, then T ≡ ∞
and

�

F t(i) 6=
�

F t(j) for all i 6= j and t ≥ 1.
(b) If (F1(i) : i ∈ S) are independent and uniformly distributed on

S, then P(T <∞) = 1.

In this example, there exist measures µ ∈ L(Pn) such that either (a)
a.s. no pairs of states coalesce, or (b) a.s. forward coalescence occurs.

For g ∈ FS, we let
g∼ be the equivalence relation on S given by i

g∼ j
if and only if g(i) = g(j). For f = (ft : t ∈ N) ⊆ FS and t ≥ 1, we
write

�

f t = f1 ◦ f2 ◦ · · · ◦ ft,
�

f t = ft ◦ ft−1 ◦ · · · ◦ f1.

Let kt(
�

f) (respectively, kt(
�

f)) denote the number of equivalence classes

of the relation
�
f t∼ (respectively,

�
f t∼). Similarly, we define the equivalence

relation
�
f∼ on S by i

�
f∼ j if and only if i

�
f t∼ j for some t ∈ N, and we

let k(
�

f) be the number of equivalence classes of
�
f∼ (and similarly for

�

f). We call k(
�

f) the backward coalescence number of
�

f , and likewise

k(
�

f) the forward coalescence number of
�

f . The following lemma is
elementary.

Lemma 2.3.

(a) We have that kt(
�

f) and kt(
�

f) are monotone non-increasing in

t. Furthermore, kt(
�

f) = k(
�

f) and kt(
�

f) = k(
�

f) for all large t.
(b) Let F = (Fs : s ∈ N) be independent and identically distributed

elements in FS. Then kt(
�

F ) and kt(
�

F ) are equidistributed, and

similarly k(
�

F ) and k(
�

F ) are equidistributed.

Proof. (a) The first statement holds by consideration of the definition,

and the second since k(
�

F ) and k(
�

F ) are integer-valued.
(b) This holds as in the proof of Theorem 2.1. �
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3. Coalescence numbers

In light of Theorem 2.1 and Lemma 2.3, we henceforth consider only
Markov chains running in increasing positive time. Henceforth, expres-
sions involving the word ‘coalescence’ shall refer to forward coalescence.
Let µ be a probability measure on FS, and let supp(µ) denote the sup-
port of µ. Let F = (Fs : s ∈ N) be a vector of independent and
identically distributed random functions, each with law µ. The law
of F is the product measure µ =

∏
i∈N µ. The coalescence time T is

given by (2.1), and the term coalescence number refers to the quanti-

ties kt(
�

F ) and k(
�

F ), which we denote henceforth by kt(F ) and k(F ),
respectively.

Lemma 3.1. Let µ, µ1, µ2 be probability measures on FS.

(a) Let F = (Fs : s ∈ N) be a sequence of independent and identi-
cally distributed functions each with law µ. We have that k(F )
is µ-a.s. constant, and we write k(µ) for the almost surely con-
stant value of k(F ).

(b) If supp(µ1) ⊆ supp(µ2), then k(µ1) ≥ k(µ2).
(c) If supp(µ1) = supp(µ2), then k(µ1) = k(µ2).

We call k(µ) the coalescence number of µ.

Proof. (a) For j ∈ {1, 2, . . . , n}, let qj = µ(k(F ) = j), and k∗ = min{j :
qj > 0}. Then

(3.1) µ(k(F ) ≥ k∗) = 1.

Moreover, we may choose t ∈ N such that

κ := µ(kt(F ) = k∗) satisfies κ > 0.

For m ∈ N, write Fm = (Fmt+s : s ≥ 0). The events {kt(Fm) =
k∗}, m ∈ N, are independent, and each occurs with probability κ.
Therefore, almost surely at least one of these events occurs, and hence
µ(k(F ) ≤ k∗) = 1. By (3.1), this proves the first claim.

(b) Assume supp(µ1) ⊆ supp(µ2), and let k∗i be the bottom of the
µi-support of k(F ). Since, for large t, µ1(kt(F ) = k∗1) > 0, we have also
that µ2(kt(F ) = k∗1) > 0, whence k∗1 ≥ k∗2. Part (c) is immediate. �

Whereas k(F ) is a.s. constant (as in Lemma 3.1(a)), the equivalence

classes of
�
F∼ need not themselves be a.s. constant. Here is an example

of this, preceded by some notation.

Definition 3.2. Let f ∈ FS where S = {i1, i2, . . . , in} is a finite or-
dered set. We write f = (j1j2 . . . jn) if f(ir) = jr for r = 1, 2, . . . , n.
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Figure 3.1. Diagrammatic representations of the four
functions fi of Example 3.3. The corresponding equiva-
lence classes are not µ-a.s. constant.

Example 3.3. Take S = {1, 2, 3, 4} and any consistent pair (P, µ) with
supp(µ) = {f1, f2, f3, f4}, where

f1 = (3434), f2 = (4334), f3 = (3412), f4 = (3421).

Then k(µ) = 2 but the equivalence classes of
�
F∼ may be either {1, 3},

{2, 4} or {1, 4}, {2, 3}, each having a strictly positive probability. The
four functions fi are illustrated diagrammatically in Figure 3.1.

A probability measure µ on FS may be written in the form

(3.2) µ =
∑

f∈supp(µ)

αfδf ,

where α is a probability mass function on FS with support supp(µ),
and δf is the Dirac delta-mass on the point f ∈ FS. Thus, αf > 0 if
and only if f ∈ supp(µ). If µ ∈ L(P ), by (1.1) and (3.2),

(3.3) P =
∑

f∈supp(µ)

αfMf ,

where Mf denotes the matrix

(3.4) Mf = (1{f(i)=j} : i, j ∈ S),

and 1A is the indicator function of A.
Let ΠS be the set of permutations of S. We denote also by ΠS the

set of matrices Mf as f ranges over the permutations of S.

Theorem 3.4. Let µ have the representation (3.2), and |S| = n.

(a) We have that
(3.5)
k(µ) = inf

{
rank(MftMft−1 · · ·Mf1 : f1, f2, . . . , ft ∈ supp(µ), t ≥ 1

}
.

(b) There exists T = T (n) such that the infimum in (3.5) is achieved
for some t satisfying t ≤ T .
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Proof. (a) Let F = (Fs : s ∈ N) be drawn independently from µ. Then

Rt := MFtMFt−1 · · ·MF1

is the matrix with (i, j)th entry 1
{

�
F t(i)=j}

. Therefore, kt(F ) equals

the number of non-zero columns of Rt. Since each row of Rt contains
a unique 1, we have that kt(F ) = rank(Rt). Therefore, k(µ) is the
decreasing limit

(3.6) k(µ) = lim
t→∞

rank(Rt) a.s.

Equation (3.5) follows since k(µ) is integer-valued and deterministic.
(b) Since the rank of a matrix is integer-valued, the infimum in (3.5)

is attained. The claim follows since, for given |S| = n, there are bound-
edly many possible matrices Mf . �

Let

K(P ) =
{
k : there exists µ ∈ L(P ) with k(µ) = k

}
.

It is a basic question to ask: what can be said about K as a function
of P? We first state a well-known result.

Lemma 3.5. We have that 1 ∈ K(P ) if and only if P ∈ PS is aperi-
odic.

Proof. For f ∈ FS, let µ({f}) =
∏

i∈S pi,f(i). This gives rise to |S|
chains with transition matrix P , starting from 1, 2, . . . , n, respectively,
that evolve independently until they meet. If P is aperiodic (and irre-
ducible) then all n chains meet a.s. in finite time.

Conversely, if P is periodic and pi,j > 0 then i and j can never
coalesce, so 1 /∈ K(P ). �

Remark 3.6. In a variety of cases of interest including, for example,
the Ising and random-cluster models (see [2, Exer. 7.3, Sect. 8.2]), the
set S has a partial order, denoted ≤. For P ∈ PS satisfying the so-
called FKG lattice condition, it is natural to seek µ ∈ L(P ) whose
transitions preserve this partial order, and such µ may be constructed
via the relevant Gibbs sampler (see, for example, [3, Sect. 6.14]). By
the irreducibility of P , the trajectory starting at the least state of S
passes a.s. through the greatest state of S. This implies that coalescence
occurs, so that k(µ) = 1.

4. Block measures

We introduce next the concept of a block measure.
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Definition 4.1. Let P ∈ PS and µ ∈ L(P ). For a partition S = {Sr :
r = 1, 2, . . . , l} of S with l = l(S) ≥ 1, we call µ an S-block measure
(or just a block measure with l blocks) if

(a) for f ∈ supp(µ), there exists a unique permutation π = πf of
I := {1, 2, . . . , l} such that, for r ∈ I, fSr ⊆ Sπ(r), and

(b) k(µ) = l.

The action of an S-block measure µ is as follows. Since blocks are
mapped a.s. to blocks, the measure µ of (3.2) induces a random per-
mutation Π of the blocks which may be written as

(4.1) Π =
∑

f∈supp(µ)

αfδπf .

The condition k(µ) = l implies that

(4.2) for r ∈ I and i, j ∈ Sr, the pair i, j coalesce a.s.,

so that the equivalence classes of
�
F∼ are a.s. the blocks S1, S2, . . . , Sl. If,

as the chain evolves, we observe only the evolution of the blocks, we see
a Markov chain on I with transition probabilities λr,s = P(Π(r) = s)
which, since P is irreducible, is itself irreducible.

Example 3.3 illustrates the existence of measures µ that are not block
measures, when |S| = 4. On the other hand, we have the following
lemma when |S| = 3. For P ∈ PS and µ ∈ L(P ), let C = C(µ) be the
set of possible coalescing pairs,

(4.3) C =
{
{i, j} ⊆ S : i 6= j, µ(i, j coalesce) > 0

}
.

Lemma 4.2. Let |S| = 3 and P ∈ PS. If (P, µ) is consistent then µ
is a block measure.

Proof. Let S, (P, µ) be as given. If C is empty then k(µ) = 3 and µ is
a block measure with 3 blocks.

If |C| ≥ 2, we have by the forthcoming Proposition 5.1(a, b) that
k(µ) ≤ 1, so that µ is a block measure with 1 block.

Finally, if C contains exactly one element then we may assume, with-
out loss of generality, that element is {1, 2}. By Proposition 5.1(b), we
have k(µ) = 1, whence a.s. some pair coalesces. By assumption only
{1, 2} can coalesce, so in fact a.s. we have that 1 and 2 coalesce, and
they do not coalesce with 3. Therefore, µ is a block measure with the
two blocks {1, 2} and {3}. �

We show next that, for 1 ≤ k ≤ |S|, there exists a consistent pair
(P, µ) such that µ is a block measure with k(µ) = k.
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Lemma 4.3. For |S| = n ≥ 2 and 1 ≤ k ≤ n, there exists an aperiodic
P ∈ PS such that k ∈ K(P ).

Proof. Let S = {Sr : r = 1, 2, . . . , l} be a partition of S, and let G ⊆ FS
be the set of all functions g satisfying: there exists a permutation π
of {1, 2, . . . , l} such that, for r = 1, 2, . . . , l, we have gSr ⊆ Sπ(r). Any
probability measure µ on FS with support G is an S-block measure.

Let µ be such a measure and let P be the associated stochastic matrix
on S, given in (1.1). For i, j ∈ S, there exists g ∈ G such that g(i) = j.
Therefore, P is irreducible and aperiodic. �

We identify next the consistent pairs (P, µ) for which either k(µ) =
|S| or |S| ∈ K(P ).

Theorem 4.4. Let |S| = n ≥ 2 and P ∈ PS. We have that

(a) k(µ) = n if and only if supp(µ) contains only permutations of
S,

(b) n ∈ K(P ) if and only if P is doubly stochastic.

Before proving this, we remind the reader of Birkhoff’s theorem [1]
(sometimes attributed also to von Neumann [6]).

Theorem 4.5 ([1, 6]). A stochastic matrix P on the finite state space
S is doubly stochastic if and only if it lies in the convex hull of the set
ΠS of permutation matrices.

Remark 4.6. We note that the simulation problem confronted by CFTP
is trivial when P is irreducible and doubly stochastic, since such P are
characterized as those transition matrices with the uniform invariant
distribution π = (πi = n−1 : i ∈ S).

Proof of Theorem 4.4. (a) If supp(µ) contains only permutations, then
a.s. kt(F ) = n for every t ∈ N. Hence n ∈ K(P ). If supp(µ) contains a
non-permutation, then with positive probability k1(F ) < n and hence
k(µ) < n.

(b) By Theorem 4.5, P is doubly stochastic if and only if it may be
expressed as a convex combination

(4.4) P =
∑
f∈ΠS

αfMf ,

of permutation matrices Mf (recall (3.3) and (3.4)).
If P is doubly stochastic, let the αf satisfy (4.4), and let

(4.5) µ =
∑
f∈ΠS

αfδf ,

as in (3.2). Then µ ∈ L(P ), and k(µ) = n by part (a).
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If P is not doubly stochastic and µ ∈ L(P ), then µ has no represen-
tation of the form (4.5), so that k(µ) < n by part (a). �

Finally in this section, we present a necessary and sufficient condition
for µ to be an S-block measure. Let P ∈ PS, and let S = {Sr : r =
1, 2, . . . , l} be a partition of S with l ≥ 1. For r, s ∈ I := {1, 2, . . . , l}
and i ∈ Sr, let

λ(i)
r,s =

∑
j∈Ss

pi,j.

Since a block measure comprises a transition operator on blocks, com-
bined with a shuffling of states within blocks, it is necessary in order
that µ be an S-block measure that

(4.6) λ(i)
r,s is constant for i ∈ Sr.

When (4.6) holds, we write

(4.7) λr,s = λ(i)
r,s, i ∈ Sr.

Under (4.6), the matrix Λ = (λr,s : r, s ∈ I) is the irreducible transition
matrix of the Markov chain derived from P by observing the evolution
of blocks, which is to say that

(4.8) λr,s = µ(Π(r) = s), r, s ∈ I,
where Π is given by (4.1). Since l ∈ K(Λ), we have by Theorem 4.4
that Λ is doubly stochastic, which is to say that

(4.9)
∑
r∈I

λr,s =
∑
r∈I

∑
j∈Ss

pir,j = 1, s ∈ I,

where each ir is an arbitrarily chosen representative of the block Sr.
By (4.6), equation (4.9) may be written in the form

(4.10)
∑
i∈S

∑
j∈Ss

1

|Sr(i)|
pi,j = 1, r, s ∈ I,

where r(i) is the index r such that i ∈ Sr. We summarise this in a
theorem.

Theorem 4.7. Let S be a non-empty, finite set, and let S = {Sr : r =
1, 2, . . . , l} be a partition of S. For P ∈ PS, a measure µ ∈ L(P ) is an
S-block measure if and only if (4.6), (4.10) hold, and also k(µ) = l.

Proof. The necessity of the conditions holds by the definition of block
measure and the above discussion.

Suppose conversely that the stated conditions hold. Let Λ = (λr,s)
be given by (4.6)–(4.7). By (4.7) and (4.10), Λ is doubly stochastic. By
Theorem 4.4, we may find a measure ρ ∈ L(Λ) supported on a subset of
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the set ΠI of permutations of I, and we let Π have law ρ. Conditional
on Π, let Z = (Zi : i ∈ S) be independent random variables such that

P(Zi = j | Π) =

{
pi,j/λr,s if Sr 3 i, Ss 3 j, Π(r) = s,

0 otherwise.

The law µ of Z is an S-block measure that is consistent with P . �

5. The set K(P )

We begin with a triplet of conditions.

Proposition 5.1. Let S = {1, 2, . . . , n} where n ≥ 3, and let P ∈ PS
and µ ∈ L(P ). Let C = C(µ) be the set of possible coalescing pairs, as
in (4.3).

(a) k(µ) = n if and only if |C| = 0.
(b) k(µ) = n− 1 if and only if |C| = 1.
(c) If |C| comprises the single pair {1, 2}, then P satisfies

(5.1)
n∑
j=3

p1,j =
n∑
j=3

p2,j =
n∑
i=3

(pi,1 + pi,2).

Proof. (a) See Theorem 4.4(a).
(b) By part (a), k(µ) ≤ n − 1 when |C| = 1, It suffices, therefore,

to show that k(µ) ≤ n − 2 when |C| ≥ 2. Suppose that |C| ≥ 2.
Without loss of generality we may assume that {1, 2} ∈ C and either
that {1, 3} ∈ C or (in the case n ≥ 4) that {3, 4} ∈ C. Let F = (Fs :
s ∈ N) be an independent sample from µ. Let M be the Markov time

M = inf{t > 0 :
�

F t(1) =
�

F t(2) = 1}, and write J = {M < ∞}. By
irreducibility, µ(J) > 0, implying that k(µ) ≤ n− 1. Assume that

(5.2) k(µ) = n− 1.

We shall obtain a contradiction, and the conclusion of the lemma will
follow.

Suppose first that {1, 2}, {1, 3} ∈ C. Let B be the event that there

exists i ≥ 3 such that
�

FM(i) ∈ {1, 2, 3}. On B∩J , we have k(F ) ≤ n−2
a.s., since

µ(at least 3 states belong to coalescing pairs) > 0.

Thus µ(B ∩ J) = 0 by (5.2). On B ∩ J , the
�

FM(i), i ≥ 3, are by (5.2)
a.s. distinct, and in addition take values in S \ {1, 2, 3}. Thus there

exist n−2 distinct values of
�

FM(i), i ≥ 3, but at most n−3 values that
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they can take, which is impossible, whence µ(B ∩ J) = 0. It follows
that

(5.3) 0 < µ(J) = µ(B ∩ J) + µ(B ∩ J) = 0,

a contradiction.
Suppose secondly that {1, 2}, {3, 4} ∈ C. Let C be the event that

either (i) there exists i ≥ 3 such that
�

FM(i) ∈ {1, 2}, or (ii) {
�

FM(i) :
i ≥ 3} ⊇ {3, 4}. On C∩J , we have k(F ) ≤ n−2 a.s. On C∩J , by (5.2)

the
�

FM(i), i ≥ 3, are a.s. distinct, and in addition take values in S \
{1, 2} and no pair of them equals {3, 4}. This provides a contradiction
as in (5.3).

(c) Let F1 have law µ. Write Ai = {F1(i) ∈ {1, 2}}, and

M = |{i ≤ 2 : Ai occurs}|, N = |{i ≥ 3 : Ai occurs}|.

If µ(Ai ∩ Aj) > 0 for some i ≥ 3 and j 6= i, then {i, j} ∈ C, in
contradiction of the assumption that C comprises the singleton {1, 2}.
Therefore, µ(Ai ∩ Aj) = 0 for all i ≥ 3 and j 6= i, and hence

µ(N ≥ 2) = 0,(5.4)

µ(M ≥ 1, N = 1) = 0.(5.5)

By similar arguments,

µ(M < 2, N = 0) = 0,(5.6)

µ(M = 1) = 0.(5.7)

It follows that

µ(N = 1) = µ(N = 1,M = 0) by (5.5)

= µ(M = 0) by (5.6) and (5.4)

= µ(A1 ∩ A2)

= µ(Ar), r = 1, 2, by (5.7).

Therefore,

µ(N = 1) = µ(Ar) = µ(F1(r) ≥ 3) =
n∑
j=3

pr,j, r = 1, 2.

By (5.4),

µ(N = 1) = µ(N) =
n∑
i=3

µ(Ai) =
n∑
i=3

(pi,1 + pi,2),

where µ(N) is the mean value of N . This yields (5.1). �
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The set K(P ) can be fairly sporadic, as illustrated in the next two
examples.

Example 5.2. Consider the matrix

P =

1
2

1
2

0

0 1
2

1
2

1
2

0 1
2

 .(5.8)

Since P is doubly stochastic, by Theorem 4.4(a), there exists µ ∈ L(P )
such that k(µ) = 3 (one may take µ(123) = µ(231) = 1

2
). By Lemma

3.5, we have that 1 ∈ K(P ), and thus {1, 3} ⊆ K(P ). We claim that
2 /∈ K(P ), and we show this as follows.

Let µ ∈ L(P ), with k(µ) < 3, so that |C| ≥ 1. There exists no
permutation of S for which the matrix P satisfies (5.1), whence |C| ≥ 2
by Proposition 5.1(c). By parts (a, b) of that proposition, k(µ) ≤ 1. In
conclusion, K(P ) = {1, 3}.
Example 5.3. Consider the matrix

P =


1
2

1
2

0 0

0 1
2

1
2

0

0 0 1
2

1
2

1
2

0 0 1
2

 .(5.9)

We have, as in Example 5.2, that {1, 4} ⊆ K(P ). Taking

µ(1234) = µ(2244) = µ(1331) = µ(2341) = 1
4

reveals that 2 ∈ K(P ), and indeed µ is a block measure with blocks
{1, 2}, {3, 4}. As in Example 5.2, we have that 3 /∈ K(P ), so that
K(P ) = {1, 2, 4}.

We investigate in greater depth the transition matrix on S with
equal entries. Let |S| = n ≥ 2 and let Pn = (pi,j) satisfy pi,j = n−1 for
i, j ∈ S = {1, 2, . . . , n}.
Theorem 5.4. For n ≥ 2 there exists a block measure µ ∈ L(Pn) with
k(µ) = l if and only if l | n. In particular, K(Pn) ⊇ {l : l | n}. For
n ≥ 3, we have n− 1 /∈ K(Pn).

We do not know whether K(Pn) = {l : l | n}, and neither do we
know if there exists µ ∈ L(Pn) that is not a block measure.

Proof. Let n ≥ 2. By Lemma 3.5 and Theorem 4.4, we have that
1, n ∈ K(Pn). It is easily seen as follows that l ∈ K(Pn) whenever
l | n. Suppose l | n and l 6= 1, n. Let

Sr = (r − 1)n/l + {1, 2, . . . , n/l}, r = 1, 2, . . . , l.
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We describe next a measure µ ∈ L(Pn). Let Π be a uniformly chosen
permutation of {1, 2, . . . , l}. For i ∈ S, let Zi be chosen uniformly at
random from SΠ(i), where the Zi are conditionally independent given
Π. Let µ be the block measure governing the vector Z = (Zi : i ∈ S).
By symmetry,

qi,j := µ
(
{f ∈ FS : f(i) = j}

)
, i, j ∈ S,

is constant for all pairs i, j ∈ S. Since µ is a probability measure,
Q = (qi,j) has row sums 1, whence qi,j = n−1 = pi,j, and therefore
µ ∈ L(Pn). By examination of µ, µ is an S-block measure.

Conversely, suppose there exists an S-block measure µ ∈ L(Pn)
with corresponding partition S = {S1, S2, . . . , Sl} with index set I =
{1, 2, . . . , l}. By Theorem 4.7, equations (4.6) and (4.10) hold. By
(4.6), the matrix Λ = (λr,s : r, s ∈ I) satisfies

(5.10) λr,s =
|Ss|
n
, r, s ∈ I.

By (4.10),
|Ss|
|Sr|

= 1, s, r ∈ I,

whence |Ss| = n/l for all s ∈ I, and in particular l | n.
Let n ≥ 3. We prove next that k(µ) 6= n − 1 for µ ∈ L(Pn). Let
C = C(µ) be given as in (4.3). By Proposition 5.1(b), it suffices to
prove that |C| 6= 1. Assume on the contrary that |C| = 1, and suppose
without loss of generality that C contains the singleton pair {1, 2}.
With P = Pn, the necessary condition (5.1) becomes

(n− 2)
1

n
= (n− 2)

2

n
,

which is false when n ≥ 3. Therefore, |C| 6= 1, and the proof is com-
plete. �
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