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Abstract

We study a particular model of a random medium, called the orthant
model, in general dimensions d ≥ 2. Each site x ∈ Zd independently has
arrows pointing to its positive neighbours x+ ei, i = 1, . . . , d with proba-
bility p and otherwise to its negative neighbours x− ei, i = 1, . . . , d (with
probability 1−p). We prove a shape theorem for the set of sites reachable
by following arrows, starting from the origin, when p is large. The argu-
ment uses subadditivity, as would be expected from the shape theorems
arising in the study of first passage percolation. The main difficulty to
overcome is that the primary objects of study are not stationary, which is
a key requirement of the subadditive ergodic theorem.

1 The model and main results

Fix d ≥ 2, and set [d] = {1, 2, . . . , d}. Let E+ = {ei}i∈[d] denote the set of

canonical basis vectors for Zd and let E− = {−ei}i∈[d] and E = E+ ∪ E−. Let o

denote the origin in Zd. Let µ be a probability measure on the power set of E .
Let (Gx)x∈Zd be i.i.d. with law µ. This induces a random directed graph on

Zd - insert arrows from x to each of the vertices {x + e : e ∈ Gx}. These kinds
of models are called degenerate random environments [5, 6], and their study
is motivated by the fact that they lay the foundation for understanding the
behaviour of random walks in non-elliptic random environments (see [8, 9] for
the non-elliptic setting and [14] for the general theory in the uniformly elliptic
setting). We are interested in the set of vertices Cx ⊂ Zd that can be reached
from x by following these arrows, as well as the sets Bx = {y ∈ Zd : x ∈ Cy}
and Mx = Cx ∩ Bx.

Our goal is to obtain a shape theorem for Co, under a particular choice of µ
(to be described below). See Theorem 1. As one would expect, this is proved
using the subadditive ergodic theorem. The key technical problem for us to
overcome is that the basic object of study (labelled βn(u) below) fails to have
the stationarity properties required by the subadditive ergodic theorem, because
of the special role of the origin o. Our approach is to find a substitute quantity
that does have the required stationarity, and then bootstrap our way from that
to βn(u) using geometric arguments and estimates based on large deviations
and the enumeration of self-avoiding walks. We hope that this approach will
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Figure 1: Coupled realisations of finite parts of the set Co for the orthant and
half-orthant models with p = 0.7 and d = 2. Note that the boundaries of the
two shaded clusters are the same (see Theorem L). fig:2d_e1e2

be useful in other situations, where the subadditive ergodic theorem does not
directly apply. We expand on the relationship between our arguments and
earlier work, at the end of Section 2.

The orthant model is an elegant example of this class of models in which
µ({E+}) = p = 1 − µ({E−}). When d = 2 this model is dual to oriented site
percolation (OTSP) on the triangular lattice [5, 6]. This fact has been exploited
to prove a shape theorem for Co in 2 dimensions, as well as to give improved
estimates of the critical parameter for OTSP. The left side of Figure 1 shows an
example of Co when d = 2. Figure 2 shows an example of Co when d = 3.

Let Ω+ = {x ∈ Zd : Gx = E+} and Ω− = Zd\Ω+. The orthant model has the
property that Co is almost surely infinite (this means that a random walk on the
random directed graph G = (Gx)x∈Zd will visit infinitely many sites), since e.g. it
contains an infinite path consisting entirely of e1 steps from Ω+ sites and −e2

steps from Ω− sites. It also has the property that Co is non-monotone in p under
the standard coupling of environments (as in site percolation, see e.g. (1) below).
Nevertheless it has recently been proved [7] that for each d ≥ 2 there is a phase
transition in the structure of Co as p varies. In order to state this result, we
define the half-orthant model to be the model with µ({E+}) = p = 1− µ({E}).
The orthant and half-orthant models can be defined on the same probability
space such that Co(p) ⊂ C∗o (p) for every p ∈ [0, 1] (where the asterisk refers
to the half-orthant model) as follows: Let (Ux)x∈Zd be i.i.d. standard uniform
random variables and set

Gx(p) = E+ ⇐⇒ G∗x(p) = E+ ⇐⇒ Ux ≤ p. (1) coupling

For x ∈ Zd let Lx := inf{k ∈ Z : x+ ke1 ∈ Co}, and L∗x := inf{k ∈ Z : x+ ke1 ∈
C∗o}. Then trivially Lx ≥ L∗x for every x.
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Figure 2: A simulation of part of the cluster Co(.95) for the orthant model,
viewed from 3 different angles. In each case the black/dark vertices are a cross-
section where the sum of coordinates is equal to 50. fig:3d

For z ∈ Zd we define z{1+} = {z + ke1 : k ∈ Z+}, and for A ⊂ Zd

A{1+} =
⋃
z∈A

z{1+}. (2) A1+

The following result is a special case of a theorem from [7], and shows that the
“left boundaries” of Co and C∗o are the same. Since C∗o (p) is monotone decreasing
in p, this gives a monotonicity result for the left boundary of Co(p).

thm:other1 Theorem L. Under the coupling (1), for each x ∈ Zd, and p ∈ (0, 1), Lx =
L∗x ∈ [−∞,∞) and (Co(p)){1+} = Co(p)∗, a.s.

The following result (also a special case of a theorem from [7]) then reveals
a phase transition for both models.

thm:other2 Theorem C. There exists pc ∈ (0, 1) such that:

if p < pc then C∗o (p) = Zd almost surely, and

if p > pc then L∗x(p) ∈ R for every x ∈ Zd almost surely (so C∗o (p) 6= Zd).

Our main result, Theorem 1 below, proves a shape theorem for C∗o when p is
large. In view of Theorem L this immediately implies a shape theorem for the
boundary of Co. For a set H ⊂ Rd, and s ≥ 0 we let sH = {sx : x ∈ H}. Recall
that a cone is any subset C of Rd such that sC = C for any s > 0. We will
prove that the region n−1C∗o for large n is asymptotically a convex cone. This
cone will have an “axis of symmetry” 1 :=

∑
e∈E+ e, so could be described as

∪s≥0sχ, where χ = C ∩ S1 is a convex subset of S1 := {x ∈ Rd : x · 1 = 1}. We
call χ the shape of C.
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Figure 3: Illustrations of βn(u) in 2 dimensions for two choices of u. The squiggly
(green) line is the boundary of Co. The (blue) line from nu to the squiggly line
is βn(u)1. In the first case βn(u) < 0, while in the second case βn(u) > 0. fig:beta

We will let Pp denote the law of the half-orthant model with p fixed. Let
1 =

∑
e∈E+ e. For u ∈ Zd and n ∈ N, let (see Figure 3)

βn(u) = inf{k ∈ Z : k1 + nu ∈ Co}.

Let Or = {x ∈ Zd : ‖x‖∞ ≤ r}. The following is our main result.

shapetheorem Theorem 1. Fix d ≥ 2. For the half-orthant model, there is a p1 < 1 such that
the following hold for p > p1.

(a) For u ∈ Zd there is a deterministic γ(u) such that βn(u)
n → γ(u), Pp-a.s.;

(b) γ(u+w) ≤ γ(u) + γ(w); γ(ru) = rγ(u); γ(u+ r1) = γ(u)− r for r ∈ Z+

and u,w ∈ Zd; γ is symmetric under permutation of coordinates; γ(u) ≥ 0
if u · 1 ≤ 0; γ(u) ≤ 0 if u lies in the positive orthant.

(c) γ extends to be a Lipschitz map Rd → R with these same properties but
for r ∈ [0,∞) and u,w ∈ Rd.

(d) the set C := {z ∈ Rd : γ(z) ≤ 0} is a closed convex cone, which is
symmetric under permutations of the coordinates, contains the positive
orthant, and is contained in the half-space {z : z · 1 ≥ 0}.

(e) 1
nCo → C in the sense that for every ε > 0 and every r <∞, the following
holds Pp-a.s. for sufficiently large (random) n:

(Or ∩
1

n
Co) ⊂ Oε + C and Or ∩ C ⊂ Oε +

1

n
Co.
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When p = 1, the shape χ of C is the simplex {x ∈ Rd+ : x · 1 = 1}, and if
also d = 3 then χ is a (filled) triangle. As we decrease p the triangle becomes
rounded. See for example the third picture in Figure 2. Note that (e) implies
convergence in the pointed Gromov-Hausdorff metric. See [1].

As remarked earlier, we will analyze βn(u) using subadditivity. The special
role of the origin creates a lack of stationarity, so these subadditivity arguments
are far from routine. Circumventing this obstacle is the main technical con-
tribution of this paper. In doing so, we will rely on the exponential decay of
certain probabilities, which is the main reason why we only have a proof for
large p, rather than for all p > pc. In other words, the following remains open:

Open problem 1. Prove that Theorem 1 holds for all p > pc.

Note that [2] uses a block argument to go from large p to all p > pc, in the
setting of oriented percolation in two dimensions. It would be interesting to find
some analogue to this approach, in the context of Theorem 1.

According to [7] there are phase transitions for more general models of de-
generate random environments. We introduced Lx above, which is analogous
to β1(u) except that e1 plays the role of 1. Under Condition 2 of [7], one could
attempt to formulate shape theorems for such general models, in which case it
may be more natural to use the Lx’s. We will therefore record the following
variation of (a) of Theorem 1 (still in the setting of the half-orthant model).
Let Z denote the discrete hyperplane {y ∈ Zd : y · e1 = 0}.

cor:Lxlimits Corollary 1. Assume the conditions of Theorem 1, and let p > p1. For each
v ∈ Z there exists a deterministic ζ(v) ∈ R such that

n−1Lnv → ζ(v), Pp − almost surely as n→∞. (3) eqn:openWshape

Open problem 2. Prove a version of (3) (or of Theorem 1) for more general
degenerate random environments e.g. assuming Condition 2 of [7].

A comparison with the shape theorems of first passage percolation might
suggest that the convergence in (e) of Theorem 1 (in which ε is fixed) fails to
capture the fine structure of 1

nCo. The following is intended to show that this
is not actually the case. For δ > 0, let Cδ = {z ∈ Rd : γ(z) ≤ −δ}.

cor:finestructure Corollary 2. Assume the conditions of Theorem 1, and let p > p1. Then for
every δ > 0 and every R <∞, the following holds Pp-a.s. for sufficiently large
(random) n:

OR ∩ Cδ ∩
1

n
Zd ⊂ 1

n
Co.

In other words, 1
nCo fills out the available lattice points of C, away from the

boundary of C.
All of the above results concern the forward cluster Co. A crucial difference

between forward and backward clusters is that Bo can be finite for the orthant
model. For example, if ei ∈ Ω+ and −ei ∈ Ω− for each i ∈ [d] (this has positive
probability for any p ∈ (0, 1)) then there are no arrows pointing to the origin,
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so Bo = {o}. For the half-orthant model B∗o will be infinite, since it contains
−Z+e1.

For x ∈ Zd, let Rx(p) = sup{k ∈ Z : x+ ke1 ∈ Bo(p)}, and R∗x(p) = sup{k ∈
Z : x+ ke1 ∈ B∗o(p)}. The following theorem is proved in [7].

thm:B Theorem 2. For the half-orthant model, let pc be as in Theorem C. Then

if p < pc then Bo = Zd almost surely, and

if p > pc then Rx is finite for every x ∈ Zd.

The proof of Theorem 1 can be adapted to work for the cluster Bo, with
β̂n(u) = sup{k ∈ Z : k1 + nu ∈ Bo}.

shapetheoremB Theorem 3. Fix d ≥ 2. For the half-orthant model, with p1 < 1 and γ,C as
in Theorem 1, the following hold for p > p1, Pp-a.s.

(a) For u ∈ Zd, β̂n(u)
n → −γ(−u);

(e) 1
nBo → −C in the sense that for every ε > 0 and every r < ∞, the
following holds for sufficiently large (random) n:

(Or ∩
1

n
Bo) ⊂ Oε +−C and Or ∩ −C ⊂ Oε +

1

n
Bo.

Section 2 is devoted to the proof of Theorem 1. Section 3 verifies the Lemmas
required for that proof. Corollaries 1 and 2 are proved in Section 4. The proof
of Theorem 3 is omitted.

2 Proof of Theorem 1
sec:subadditive

The results about limit cones in [6] used oriented percolation in Z2, and therefore
subadditivity in an indirect way (see [2]). The higher dimensional analogue in
Theorem 1 will directly rely on subadditivity, borrowing from the approach
taken with the shape theorems of first passage percolation. See [10] or [1]. In
particular, our goal is to prove a shape theorem analogous to that of Cox and
Durrett [4].

Recall that we are working with the half-orthant model, where µ({E+}) =
p = 1− µ({E}). We will prove Theorem 1 via a sequence of lemmas.

Recall that 1 = e1 + · · · + ed. Our notation for coordinates will be that
x[i] = x · ei for i ∈ [d]. For 0 ≤ η ≤ 1 consider the cone

Kη = {x ∈ Rd : x · 1 ≥ η‖x‖1}.

The case η = 0 is a half-space, while η = 1 is the positive orthant. The following
result (together with a simple application of the Borel-Cantelli Lemma) shows
that for each η ∈ [0, 1), if p is sufficiently large then Co ⊂ Kη −M1 for some
random M > 0 almost surely.
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SAWargument Lemma 1. There exists θ(d) > 1 such that the following holds. For η ∈ [0, 1)
there is a p0(η, d) < 1 for which p > p0 implies that there exists c1 = c1(η, d) > 0
such that Pp(Co 6⊂ Kη −m1) ≤ c1θ−md for each m ∈ Z+.

This result is a reformulation of Theorem 4.2 of [5]. We will nevertheless
give the full (but short) proof in Section 3, because a similar argument will be
needed in other settings, elsewhere in this paper.

A similar result holds for the cluster Bo, which then implies that the bi-
connected cluster Mo = Co ∩ Bo is finite whenever p > p0(η, d) for some η > 0.

biconnectedconjecture Open problem 3. For the orthant or half orthant model, show thatMo is a.s.
finite, whenever p > pc, where pc is as in Theorem C.

Before we continue with our sequence of lemmas, note that for every n ∈ N

βn(u+ r1) = βn(u)− nr, for any r ∈ Z. (4) beta+1

So if (a) of the Theorem holds for u, then it also holds for any u + r1 (r ∈ Z)
with γ(u + r1) = γ(u) − r. Since o ∈ Co, we know β1(o) ≤ 0. By Lemma 1,
β1(o) is an integrable random variable. By definition, βn(o) = β1(o), so in fact

γ(o) = lim
n→∞

1

n
βn(o) = 0. (5) fishy

Therefore part (a) of the theorem holds for u = o. By the above remark, it also
holds for u any multiple of 1, with γ(r1) = −r.

Therefore, to prove part (a) of the theorem we may assume u is not of the
form j1. Then there exists v ∈ Rd such that

u · v > 0 and v · 1 = 0, (6) wlogstuffforu

(for example, we may take v to be the projection of u onto the hyperplane
orthogonal to 1, i.e. v = u − u·1

d 1). Fix any such v. Then we may define
σ = σ(u, v) > 0 by

σ =
u · v

‖u‖1‖v‖∞
. (7) sigmaconstant

Define Λu,v(m,n) = {z ∈ Zd : mu · v ≤ z · v < nu · v}. In other words,
Λu,v(m,n) is a slab in Zd, running orthogonal to v, and containing mu and nu
on its boundary - see Figure 4. Note that if x is any point of Λu,v(m,n), then
x + k1 ∈ Λu,v(m,n) for every k ∈ Z. We also define Λu,v(−∞, n) = {z ∈ Zd :
z · v < nu · v} and Λu,v(n,∞) = {z ∈ Zd : z · v ≥ nu · v}.

For Λ ⊂ Zd and x ∈ Λ, let Cx[Λ] be x together with the set of y ∈ Zd we can
reach from x by following arrows (consistent with the environment) that start
in Λ. Note that y itself need not be in Λ. For n ∈ N, set Bn(u, v) = inf{k :
k1 + nu ∈ Co[Λu,v(0, n)]}. This is > −∞ by Lemma 1 but (as remarked in the
proof of Lemma 2) could = +∞.

Recall the notation p0(η, d) from Lemma 1, and henceforth write p0(d) for
p0(0, d). Write k+ = max{k, 0} and k− = max{−k, 0} for k ∈ R.
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Figure 4: An illustration of Λu,v(m,n) in two dimensions. Here Λu,v(m,n) is
the hatched region, including the solid line but not the dashed line. Λu,v(m) is
the region from the dotted line to the solid line, including the former but not
the latter. Λu,v(n,∞) is the region to the right of the dashed line. fig:Lambdamn

momentbounds Lemma 2. Assume (6) and that p > p0(d). There exist constants Γ and n0

such that

Ep[(Bn(u, v))−] ≤ Ep[(βn(u))−] ≤ Γ +
n

d
‖u‖1 for each n ∈ N, and

(βn(u))+ ≤ (Bn(u, v))+ ≤ n‖u‖1 for n ≥ n0.

Here Γ depends only on d, but n0 may depend on the choices of u and v (but not

p). There exists an integrable random variable Y ≥ 0 such that supn
|βn(u)|
n ≤ Y .

For n ≥ n0(u, v), Bn(u, v) has a moment generating function that is finite in a
neighbourhood of 0.

Lemma 2 will provide us with bounds that, together with a subadditivity
argument, give the following result.

lem:B_n Lemma 3. For any u ∈ Zd \ (Z1), there is a constant γ(u) ∈ R such that for
all p > p0(d), and all v ∈ Rd satisfying (6), Pp-almost surely,

γ(u) := lim
n→∞

Bn(u, v)

n
. (8)

Moreover, n−1Bn(u, v)→ γ(u) in L1, and γ(u) = infn≥1 n
−1Ep[Bn(u, v)].

We will need the following large-deviation type estimate.

lemma:exponentialfirstbound Lemma 4. Assume that u and v satisfy (6). For any p > p0(d) and δ > 0,

there is a c̄ > 0 and an n1 such that Pp
(
Bn(u, v) ≥ n(γ(u) + 4δ)

)
≤ e−nc̄

whenever n ≥ n1.

Since βn(u) ≤ Bn(u, v) it is clear that

lim sup
n→∞

βn(u)

n
≤ γ(u). (9) betalimsup
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Figure 5: A schematic illustrating the events A′n and A′′n. The dashed line lies
in direction u + γ(u)1. The squiggly (green) curve in the middle represents a
path from o to nu + Bn(u, v)1. A′′n(M) is the event that a path can be found
such as the squiggly (blue) one on the right, that reaches significantly below
the middle path, by first travelling into Λu,v(M + n,∞). A′n(M) is the event
that a path such as the squiggly (purple) one on the left can be found, that also
reaches well below the middle path, this time by first visiting Λu,v(−∞,−M). fig:stepfour

1

u

v

nu

Figure 6: A schematic illustrating the event Ân. The dashed line lies in direction
u+ γ(u)1. Ân is the event that a path can be found such as the squiggly (blue)
one, that reaches significantly below o, by first travelling into Λu,v(n,∞). fig:Anhat

To go further, we must address the possibility of paths that cross on either the
positive or negative side of Λu,v(0, n), and then backtrack, to get lower than
nγ(u).

For M,n ∈ N, let A′n(M) denote the event that there exists a self avoiding
path consistent with the environment, running from o to some point k1+nu with
k < nγ(u), that hits Λu,v(−∞,−M). See Figure 5. Similarly, let A′′n(M) be
the event that there exists a self avoiding path consistent with the environment,
running from o to some point k1+nu with k < nγ(u), that hits Λu,v(M+n,∞).
See Figure 5.

Finally let Ân be the event that there is a path from o to some k1 with
k < 0 that is consistent with the environment and which reaches Λu,v(n,∞).
See Figure 6.

lemma:exponentialsecondbound Lemma 5. Assume that u and v satisfy (6). There exist c = c(u, v) > 1
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and p1 = p1(d) ∈ [p0(d), 1) such that Pp(A′n(bcnc) i.o.) = Pp(A′′n(bcnc) i.o.) =

Pp(Ân i.o.) = 0 whenever p > p1.

Let c > 1 be as in Lemma 5. Define for n ∈ N

β0
n(u, v) = inf{k : k1 + nu ∈ Co[Λu,v(−∞, n)]}, (10) beta0

β1
n(u, v) = inf{k : k1 + nu ∈ Co[Λu,v(−∞, bncc+ n)]}, (11) beta1

so βn(u) ≤ β1
n(u, v) ≤ β0

n(u, v) ≤ Bn(u, v), and therefore lim sup
β1
n(u,v)
n ≤

lim sup
β0
n(u,v)
n ≤ γ(u).

lem:beta0 Lemma 6. For p > p1(d),
β0
n(u,v)
n → γ(u) Pp-a.s. and in L1.

lem:beta1 Lemma 7. For p > p1(d),
β1
n(u,v)
n → γ(u) a.s.

The above lemmas will be proved in Section 3. Assuming the above lemmas,
we are now ready to prove our main result.

Proof of Theorem 1.

(a): Let ε > 0 and Mn = bncc, where c is the constant of Lemma 5. If
βn(u)
n < γ(u)−2ε then there is a self avoiding path from o to some point k1+nu

with k < n(γ(u)− 2ε). Such a path must either stay in Λu,v(−∞,Mn +n) or it
must reach Λu,v(Mn + n,∞) (i.e. A′′n(Mn) occurs). By Lemmas 7 and 5 this is

only possible for finitely many n. Therefore βn(u)
n ≥ γ(u)−2ε for all sufficiently

large n a.s. Together with (9) this verifies (a), and in particular it shows that
γ(u) does not depend on the choice of v satisfying (6).

(b): Let r ∈ N, and let m = nr. From the definition of βn(u) we have that
βm/r(ru) = βm(u). From this and part (a) it follows that

γ(ru) = rγ(u) (12) homothety

for r ∈ N. This holds for r = 0 as well, by (5). The assertion that γ(u+ s1) =
γ(u)− s for all s ∈ Z was verified in the paragraph prior to (5).

Symmetry of γ under coordinate permutations is also straightforward, and
the statement that γ(u) ≤ 0 when u lies in the positive orthant follows from
the fact that Co contains this orthant. Setting η = 0 in Lemma 1 shows that if
p > p0(d) then there is an A ≥ 0 such that Co ⊂ K0−A1. If j1+nu ∈ K0−A1
then [(A+ j)1+nu] ·1 ≥ 0 so j ≥ −A− n

du ·1. This proves that γ(u) ≥ − 1
du ·1,

so γ(u) ≥ 0 whenever u · 1 ≤ 0.
The proof that γ is subadditive requires more care. We start by showing

that γ(u+w) ≤ γ(u)+γ(w) in the case that there is a v ∈ Rd such that u ·v > 0,
w · v > 0, and v · 1 = 0. Let

Λ̂u,v,w(n) = {z ∈ Zd : nu · v ≤ z · v < n(u+ w) · v}, (13) hatlambda
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and take (for n ∈ N)

B̂n(u, v, w) = inf{k : (Bn(u, v)+k)1+n(u+w) ∈ CBn(u,v)1+nu[Λ̂u,v,w(n)]} (14)

Because Λu,v(0, n) and Λ̂u,v,w(n) do not overlap, we know that the environ-

ments in Λ̂u,v,w(n) are independent of Bn(u, v). Therefore B̂n(u, v, w) has the

same law as Bn(w), and it follows from Lemma 3 that 1
n B̂n(u, v, w) converges

in probability to γ(w). Of course, 1
nBn(u, v) and 1

nBn(u + w, v) converge in

probability to γ(u) and γ(u + w). Now Λ̂u,v,w(n) ∪ Λu,v(0, n) ⊂ Λu+w,v(0, n),
so by concatenating paths we know that

Bn(u+ w, v) ≤ Bn(u, v) + B̂n(u, v, w).

Therefore γ(u+ w) ≤ γ(u) + γ(w).
It remains to show subadditivity when such a v does not exist. We start

with the case w = −u, and show that

γ(u) + γ(−u) ≥ 0 (= γ(u+ (−u)). (15) gammaofnegativeu

Suppose that (15) fails. Let ε > 0 be such that γ(u) + γ(−u) + 2ε < 0, and
nε ∈ N be such that nε > −2/(γ(u) + γ(−u) + 2ε). Choose v so u · v > 0 and
v · 1 = 0. For n� nε, set k = dn(γ(u) + ε)e, j = dn(γ(−u) + ε)e, z = nu+ k1,
and y = (j + k)1. Then with high probability there is a path in Co from o to z,
and a path in Cz from z to y. Concatenating them gives a path from o to y that
reaches Λu,v(n,∞). But j + k ≤ n[γ(u) + γ(−u) + 2ε] + 2 < 0, and therefore

Pp(Ân)→ 1, which contradicts Lemma 5. Thus (15) holds.
Now consider the general case that u,w ∈ Zd, yet no v exists as above. Write

u = s1+u′ and w = t1+w′ where u′ and w′ are ⊥ 1. Then s = 1
du·1 so du′ ∈ Zd,

and likewise dw′ ∈ Zd. The half-spaces {z : z · u′ > 0} and {z : z · w′ > 0}
do not intersect, as if they did, we could find a v in their intersection, that is
⊥ 1. Therefore in fact, u′ and w′ point in opposite directions. Thus there is an
x ∈ Zd and i, j ∈ Z such that du′ = ix and dw′ = jx. By interchanging u and
w if necessary, we may assume that |i| ≤ |j|. Replacing x by −x if necessary,
we may also assume that j ≥ 0 ≥ i. Then using the fact that i+ j ∈ Z+ we get

γ(du+ dw) = γ(du′ + dw′)− d(s+ t)

= γ((i+ j)x)− d(s+ t)

= (i+ j)γ(x)− d(s+ t)

= iγ(x)− ds+ jγ(x)− dt
= −γ(−ix)− ds+ γ(jx)− dt
≤ γ(ix)− ds+ γ(jx)− dt
= γ(du) + γ(dw).

Therefore γ(u+ w) ≤ γ(u) + γ(w) as required.

(c) and (d): It is now simple to extend the definition of γ(u) to u ∈ Qd, by
taking the limit over those n for which nu ∈ Zd. Then some algebra shows that
(b) can be extended to u,w ∈ Qd and r ∈ Q+.
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From subadditivity, we see that

|γ(w)− γ(u)| ≤ max(|γ(u− w)|, |γ(w − u)|).

Therefore Lemma 2 (which applies only to Zd) together with (12) implies that
for u,w ∈ Qd,

|γ(u)− γ(w)| ≤ ‖u− w‖1. (16) eqn:lipschitzcondition

This in turn implies the existence of an extension of γ to Rd that is uniformly
Lipschitz (for u ∈ Rd take γ(u) to be the limit of a sequence γ(um) where um
are rationals approaching u). One can now verify that (b) holds with u,w ∈ Rd
and r ∈ R+, by taking limits via sequences of rationals um, wm, rm converging
to u,w, r respectively. This shows (c). Now (d) also follows in turn, using the
properties (b) now established on Rd, R: C is closed because γ is continuous;
it is a cone because if x ∈ C and r ≥ 0 then γ(rx) = rγ(x) ≤ 0, so rx ∈ C
(so C is the cone with shape χ = {x ∈ C : x · 1 = 1}); C is convex because if
x, y ∈ C and s ∈ (0, 1) then sx ∈ C and (1 − s)y ∈ C and γ(sx + (1 − s)y) ≤
γ(sx) + γ((1− s)y) ≤ 0, so sx+ (1− s)y ∈ C. The remaining assertions of (d)
are straightforward.

(e): Fix r and ε, and an integer m > 4r
ε . The set U := Om+2 is finite, so by

part (a) we may find a random J such that if j ≥ J then |βj(u)
j − γ(u)| < 1

2 for

every u ∈ U . We will show the assertion of (e) for every n such that

n ≥ max(
Jm

r
,

4

ε
), (17) boundonn

so suppose n satisfies (17). Set k = dnrm e ≥
nr
m ≥ J .

We first show that Or ∩ C ⊂ Oε + n−1Co. Let z ∈ Or ∩ C, so γ(z) ≤ 0.
We know that if some y ∈ Rd satisfies ‖y‖∞ ≤ m then there is a u ∈ U with
u[i] ≤ y[i] ≤ u[i] + 1 for every i ∈ [d], and moreover that u′ = u+ 21 ∈ U . Since
‖nk z‖∞ ≤

nr
k ≤ m we may choose u and u′ as above, for y = n

k z. In particular,

‖k
n
u′ − z‖∞ =

k

n
‖u′ − n

k
z‖∞ ≤

2k

n
≤ 2

n
(
nr

m
+ 1) < ε

by the choice of m and the fact that 1
n <

ε
4 . So we need only show that ku′ ∈ Co.

Now γ(z) ≤ 0, so γ(nk z) ≤ 0, and because u + 1 − n
k z lies in the positive

quadrant, also γ(u+ 1− n
k z) ≤ 0. By subadditivity it follows that γ(u+ 1) ≤ 0

and hence γ(u′) ≤ −1. Because k ≥ J , our choice of J implies that βk(u′) < 0,
so in fact, ku′ ∈ Co as required.

Conversely, consider z ∈ Or ∩ 1
nCo, so that by definition, there is a path

consistent with the environment, from o to nz. Construct u, u′ ∈ U , as above,
so u[i] ≤ (nk z)

[i] ≤ u[i] +1 for each i ∈ [d]. Therefore k(u+1)−nz belongs to the
positive orthant, so there is also a path, consistent with the environment running
from nz to k(u + 1). Concatenating the two paths, we see that βk(u + 1) =
β1(k(u+ 1)) ≤ 0. Recalling (4), it follows that

βk(u′)

k
=
βk(u+ 1)

k
− 1 ≤ −1.

12



Since k ≥ J , we obtain that γ(u′) ≤ − 1
2 < 0. Therefore u′ ∈ C and in turn

k
nu
′ ∈ C. As above, ‖ knu

′ − z‖∞ < ε, and the proof is complete. �

While the approach we have taken bears some relation to the subadditivity
arguments of first passage percolation, it is in many ways is closer to the ap-
proach used for oriented percolation (see [2]). Our setting is more challenging,
in part because there is no direction in which our model is fully oriented. For
oriented percolation, the orientation immediately gives independence properties,
which give rise to the stationarity required by the subadditive ergodic theorem.
In our setting, paths can wander away and then return, and we must control
the probabilities of that happening.

There is an alternative approach to our results that suggests itself, which
is more closely aligned with first passage percolation. Namely to study T (x, y)
defined as the number of steps it takes, consistent with the environment, to
travel from x to y. Then Co = {y : T (o, y) <∞}. Some aspects of the analysis
become easier in this context (for example, subadditivity). But other problems
arise, due to the fact that T (x, y) can be infinite – an issue also faced in [12]
and [3]. In our setting, the analysis of T (x, y) appears even less tractable than
in those works, because we have little control of T (o, y) as y approaches the
boundary of Co. The approach taken in the current paper is designed specifically
to deal with that boundary.

3 Proofs of Lemmas
sec:lemmas

Proof of Lemma 1. We let the constant c vary from line to line. There is a θ > 1
such that the number of self avoiding paths in Zd from o of length n is at most
θn. For m ∈ Z+, let ∂η,m be the set of vertices x adjacent to some vertex in
Kη −m1 but not in Kη −m1.

If Co 6⊂ Kη − m1 there is an x ∈ ∂η,m and a self avoiding path ω from

o to x consistent with the environment. Set x+ =
∑d
i=1 max{x · ei, 0} and

x− = −
∑d
i=1 min{x · ei, 0}. For some k ≥ 0, ω takes k+x+ steps in a direction

from E+, and k + x− steps in a direction from E−. Therefore at least k + x−

vertices come from Ω−. If θ2(1− p) < 1 then we obtain

Pp(Co 6⊂ Kη −m1) ≤
∑

x∈∂η,m

∞∑
k=0

θ‖x‖1+2k(1− p)k+x−

≤ c
∑

x∈∂η,m

θ‖x‖1(1− p)x
−
.

For x = y − m1 we have x · 1 = y · 1 − md and ‖y‖1 ≤ ‖x‖1 + md. If
x /∈ Kη −m1 then y /∈ Kη so

x+ − x− = x · 1 = y · 1−md < η‖y‖1 −md ≤ η‖x‖1 −md(1− η)

= η(x+ + x−)−md(1− η).
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Therefore x+ < 1+η
1−ηx

− −md so ‖x‖1 = x+ + x− < 2
1−ηx

− −md. The number

of such x with x− = j is therefore at most cjd, uniformly in m. Therefore

Pp(Co 6⊂ Kη −m1) ≤ cθ−md
∞∑
j=0

[θ
2

1−η (1− p)]jjd.

Provided p > 1− θ−
2

1−η , this gives us a bound cθ−md, as claimed. �

Proof of Lemma 2. For the first inequality, take η = 0 in Lemma 1 to see that
if p > p0(d) then there is an integrable A ≥ 0 such that Co ⊂ K0 −A1. Thus if
k = inf{j ∈ Z : j1+nu ∈ K0−A1}, it follows that Bn(u, v) ≥ βn(u) ≥ k and so
(Bn(u, v))− ≤ (βn(u))− ≤ k−. But j1+nu ∈ K0−A1⇔ [(A+ j)1+nu] ·1 ≥ 0
⇔ j ≥ −A − n

d

∑
ui. If this holds then j ≥ −A − n

d ‖u‖1, so in particular,
k ≥ −A− n

d ‖u‖1 and therefore

(βn(u))− ≤ A+
n

d
‖u‖1. (18) eqn:betaminus

Therefore the desired inequality holds, with Γ = Ep[A].
We know that Co contains the positive orthant, so k1 + nu ∈ Co whenever

all its coordinates are non-negative. In other words,

βn(u) ≤ nmax
i
{(u[i])−} ≤ n‖u‖1 (19) eqn:betaplus

for every n. Combined with (18), this shows that the supn
|βn(u)|
n ≤ Y , where

Y = A+ (1 + 1/d)‖u‖1 is integrable.
To complete the second set of inequalities of the Lemma, we use the same

argument that gave us (19), but this time for Bn(u, v). To make this work, we
must show that if x = k1 + nu lies in the positive orthant, then it also lies in
Co[Λu,v(0, n)]. We will be able to carry this out for n ≥ n0, where n0 is chosen
so that n0u · v > 2‖v‖∞. 1

We will construct a path y0, y1, . . . , ym from y0 = o to ym = x, where at
each stage yj+1 = yj + eij for some ij ∈ [d]. The ij ’s will be chosen so that
0 ≤ yj · v < nu · v (for j 6= m), and 0 ≤ y[i]

j ≤ x[i] for each i, j. This shows that
x ∈ Co[Λu,v(0, n)].

Suppose we’ve got as far as yj , and yj 6= x. Consider I = {i ∈ [d] : y[i]

j < x[i]},
which must be non-empty (since yj 6= x). If

‖v‖∞ ≤ yj · v < nu · v − ‖v‖∞, (20) middleregioneqn

then choose any i ∈ I as ij . Since

0 ≤ yj · v − ‖v‖∞ ≤ (yj + ei) · v ≤ yj · v + ‖v‖∞ < nu · v,
1To show that such a restriction on n is actually needed, suppose d = 3, v ·e2 < 0, v ·e3 < 0,

and v · e1 > −v · e2 > 0. Take u = −1001 + e1 + e2, k = 100, and n = 1. Then x = e1 + e2
and u · v = (e1 + e2) · v > 0. But if o ∈ Ω+ then we are unable to start a path that reaches x
via Λu,v(0, 1), since any initial step ei will exit Λu,v(0, 1).
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the iteration continues.
If (20) fails then either yj · v < ‖v‖∞ or yj · v ≥ nu · v − ‖v‖∞. In the first

case, choose ij to be any i ∈ I with ei · v > 0. Note that there must be some
such i, as otherwise

x · v =
∑
i∈I

x[i]v[i] +
∑
i/∈I

y[i]

j v
[i]

≤
∑
i∈I

y[i]

j v
[i] +

∑
i/∈I

y[i]

j v
[i]

= yj · v ≤ ‖v‖∞,

which contradicts the choice of n0 (recall that x · v = nu · v). Then 0 ≤ yj · v <
(yj+ei)·v ≤ 2‖v‖∞ < nu·v, because n ≥ n0, and again, the iteration continues.
In the second case, choose i ∈ I with ei · v ≤ 0, if possible. If there is indeed
such an i, then 0 < nu · v− 2‖v‖∞ ≤ (yj + ei) · v ≤ yj · v < nu · v (again because
n ≥ n0), and once more, the iteration continues. Finally, if in the second case
all i ∈ I have ei ·v > 0 then choose any i ∈ I as ij . As long as j < m, x is yj plus
a sum of multiple such ei, so we’ll have 0 ≤ yj · v < (yj + ei) · v < x · v = nu · v,
and again, the iteration continues.

From the above we have |Bn(u, v)| ≤ A+ n‖u‖1. Finiteness of the moment
generating function of Bn(u, v) now follows, because Lemma 1 establishes an
exponential bound for the tail of the random variable A. �

Proof of Lemma 3. For n ∈ N, let B0,n(u, v) = Bn(u, v). For n > m > 0 let

Bm,n(u, v) = inf{k : (Bm(u, v) + k)1 + nu ∈ CBm(u,v)1+mu[Λu,v(m,n)]}. (21) Bmn

Then
Bn(u, v) ≤ Bm(u, v) +Bm,n(u, v), (22) Bsub

because concatenating the given paths from o to Bm(u, v)1+mu and from there
to (Bm(u, v) + Bm,n(u, v))1 + nu produces a path from o to the latter point,
that also stays in Λu,v(0, n).

We will apply the subadditive ergodic theorem (in a version due to Liggett
[11]) to the Bn(u, v). The stationarity properties required there follow easily
from our construction, and an independence argument. Specifically, the fact
that Λu,v(0,m) and Λu,v(m,n) are disjoint means that their environments are
independent. Therefore if we shift the environments of Λu,v(m,n) by a vector
Z1, where Z is determined by the environments of Λu,v(0,m), then we get
an environment whose law is the same, and which is still independent of the
environments of Λu,v(0,m). With Z = Bm(u, v), it is this shifted environment
that determines Bm,n(u, v). Therefore Bm,n(u, v) is independent of Bm(u, v).

It follows that for every k ≥ 1 and m ≥ 0, Bk and any Bm,m+k have the
same distribution. The remainder of hypotheses (1.8) and (1.9) of [11] follow
similarly. Note that later on, in the proof of Lemma 6], we will encounter a
similar situation where the analogous condition holds only for m ≥ 1, but not
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for m = 0. This means that the result of [11] won’t apply there, something we’ll
have to work around when we get to that point.

It remains only to check the moment hypotheses in [11] which are that
E[|Bn(u, v)|] < ∞ for every n, and E[Bn(u, v)] ≥ −cn for some c. In fact, it
is easily seen that the argument there works if we assume instead that these
inequalities hold for n ≥ n0, where n0 is fixed. The one point in Liggett’s
proof that isn’t a trivial change comes five lines after (2.4a), where he uses
that γn ≤ kγm + γ`, where ` is small and γ` is finite. But we can get around
that by using γn ≤ (k − i)γm + γim+` for some i chosen so γim+` < ∞. The
above inequalities then follow from Lemma 2. A similar remark applies to the
argument in [11] which shows that γ(u) = infn≥1 n

−1Ep[Bn(u, v)].
Applying the subadditive ergodic theorem, we have obtained that there is a

deterministic γ(u) ∈ (−∞,∞) such that Bn(u,v)
n → γ(u) a.s. and in L1. �

Proof of Lemma 4. Since lim
Ep[Bn(u,v)]

n = inf
Ep[Bn(u,v)]

n = γ(u) by Lemma 3,
we may choose j0 (non-random) so large that j0γ(u) ≤ Ep[Bj0(u, v)] ≤ j0(γ(u)+
δ). We may also ensure that j0 ≥ n0, where n0 is as in Lemma 2. Take n′1
sufficiently large that n′1 ≥ j0 and n′1δ > 2j0‖u‖1.

For n ≥ n′1, write n = j0K+j where j0 ≤ j < 2j0. Set Yk = B(k−1)j0,kj0(u, v)
and ȳ = Ep[Y1]. Then

Bn(u, v) ≤
K∑
k=1

Yk +Bj0K,n(u, v)

where the Yk are independent and identically distributed. Because n −Kj0 ≥
j0 ≥ n0, Lemma 2 implies that Bj0K,n(u, v) ≤ 2j0‖u‖1 < nδ. Therefore when-

ever Bn(u, v) ≥ n(γ(u) + 4δ), we must also have
∑K
k=1 Yk ≥ n(γ(u) + 3δ).

First suppose γ(u) ≥ 0. Then n(γ(u) + 3δ) ≥ Kj0(γ(u) + 3δ) ≥ Kj0(γ(u) +
2δ) ≥ K(ȳ + j0δ). Now assume instead that γ(u) < 0. Since nδ > 2j0‖u‖1 ≥
−2j0γ(u), and n ≤ j0(K+2), we have that n(γ(u)+3δ) ≥ j0(K+2)γ(u)+3nδ ≥
Kj0(γ(u)+2δ)+[nδ+2j0γ(u)] ≥ K(ȳ+j0δ). Therefore in either case, whenever

Bn(u, v) ≥ n(γ(u) + 4δ), we must also have
∑K
k=1 Yk ≥ K(ȳ + j0δ).

Lemma 2 shows that the moment generating function ψ of the Yk is finite
in a neighbourhood of 0. Standard large deviations estimates then give the
existence of a t > 0 such that Pp(

∑K
k=1 Yk ≥ K(ȳ + j0δ)) < e−tK for all K

sufficiently large (i.e. whenever n ≥ n1, for some choice of n1 ≥ n′1 that makes
K ≥ j0 as well as K ≥ 2).

Setting c̄ = t
2j0

we use the bound n ≤ j0K+2j0 = j0(K+2) to conclude that

c̄n ≤ t(K+2)
2 = tK( 1

2 + 1
K ) ≤ tK (the latter since K ≥ 2), and the conclusion of

the Lemma holds. �

Proof of Lemma 5. We will estimate Pp(A′n(M)) (where M = bcnc for some
c > 1 to be chosen later) using the argument of Lemma 1. See Figure 5. On the
event A′n(M) we have a self-avoiding path ω (consistent with the environment)
from o to a point x = j1 + nu with j < nγ(u) that reaches some point y0 ∈
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Zd with y0 · v ≤ −Mu · v. Recall that x+ =
∑d
i=1 max{x · ei, 0} and x− =

−
∑d
i=1 min{x · ei, 0}. The path takes k + x+ steps using directions in E+ and

k + x− steps using directions in E−, for some k ≥ 0. For a given k and x, the

probability that such a path ω exists is at most θ‖x‖1+2k(1− p)k+x− .
Choose 0 < α < 1 and set N = bnαc. Set η = 0 and assume p > p0(d).

Lemma 1 implies that there is an event G of probability at most c1θ
−Nd such

that off G we have x ∈ K0 −N1. Therefore x · 1 ≥ −Nd, and so

jd+ n‖u‖1 ≥ (j1 + nu) · 1 ≥ −Nd. (23) elephant1

Let n ≥ n0, where n0 is the constant in Lemma 2. Then since n−1βn(u) ≤ ‖u‖1
for n ≥ n0 (by Lemma 2) we have that j ≤ n‖u‖1. Choose n′0 ≥ n0 sufficiently
large to make Nd ≤ (d− 1)n‖u‖1 when n ≥ n′0. Together with (23) this gives

|j| ≤ n‖u‖1 for n ≥ n′0. (24) boundonj

It follows that for n ≥ n′0 we have

‖x‖1 ≤ n‖u‖1 + |j|d ≤ n‖u‖1(1 + d). (25) xnorm

Therefore for fixed k and x as above, the probability that such a path ω exists
is at most θn‖u‖1(1+d)+2k(1− p)k.

It takes at least ‖y0‖1 steps for the walk ω to reach y0 ∈ H := {y ∈ Zd : y·v ≤
−Mu · v}. But ‖y0‖1 · ‖v‖∞ ≥ −y0 · v ≥ Mu · v. Therefore ‖y0‖1 ≥ Mσ‖u‖1.
From there ω must travel back and reach the half-space H ′ := {y′ : y′·v ≥ nu·v},
and since ‖y′ − y0‖1‖v‖∞ ≥ (y′ − y0) · v ≥ (n+M)u · v for y′ ∈ H ′, this takes
at least σ(n + M)‖u‖1 steps. It follows that the total length 2k + ‖x‖1 of the
path ω is at least σ(n + 2M)‖u‖1. Therefore k ≥ 1

2 (σ(n + 2M)‖u‖1 − ‖x‖1).
For k ≥ n′0, (25) implies that

k ≥ 1

2

(
σ(n+ 2M)− n(1 + d)

)
‖u‖1. (26) lowerboundonk

Now choose c > 1 so large that σ(n+ 2bcnc) ≥ n(2 + d) for every n ≥ n′0, and

let M = bcnc. By (26) (with M = bcnc) we have k ≥ n‖u‖1
2 whenever n ≥ n′0.

By (24) there are at most 1 + 2n‖u‖1 possible choices for j (and hence x),
for any given n. Summing over k and these x’s, and adding back the probability
Pp(G) ≤ c1θ−Nd, we obtain that

Pp(A′n(bcnc)) ≤ c1θ−Nd + (1 + 2n‖u‖1)θn‖u‖1(1+d)
∑

k≥n‖u‖12

[θ2(1− p)]k

≤ c1θ−Nd +
1 + 2n‖u‖1

1− θ2(1− p)
θn‖u‖1(2+d)(1− p)

n‖u‖1
2

for n ≥ n′0. Recalling that N = bnαc, we see that these terms are summable for

any p > p1, provided θ2+d(1− p1)
1
2 < 1 and p1 ≥ p0(d). Note that p1 does not

depend on u and v, though c may. This proves the result for A′n. The claims
for A′′n and Ân are proved similarly. See Figures 5 and 6. �
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v
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nu
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Figure 7: A schematic illustrating the event An. The dashed line lies in direction
u + γ(u)1. The squiggly (blue) curve on the right represents a path from o to
nu+B0

n1 in Λu,v(−M,n). An is the event that this curve ends significantly below
the dashed line, as shown in the figure. The squiggly (purple) path on the left
connects a point z to o through Λu,v(−M,n) as in (28), where z lies significantly
above the dashed line. If both left and right paths exist, concatenating them
yields a path as in (29). fig:steptwo

Proof of Lemma 6. Let p > p0(d), and let ε > 0. Fix c > 1 as in Lemma 5, and
let M = bncc, g = dn(cγ(u) + 2ε)e, and h = bn(γ(u)− 3ε)c. Set z = −g1−Mu.
For n ∈ N take

B0
n = B0

n(u, v) = inf{k : k1 + nu ∈ Co[Λu,v(−M,n)]} (27) B0n

and
An = {B0

n < n(γ(u)− 3ε)}.
We will show that

Pp(An) ≤ Pp(o /∈ Cz[Λu,v(−M,n)]) (28) Anupperbound

+ Pp(∃ k1 + nu ∈ Cz[Λu,v(−M,n)] with k ≤ h) (29) Anupperbound2

→ 0, as n→∞.

See Figure 7. To see the inequality, suppose that An holds, so that there is a
path from o to some k1 + nu with k ≤ h that stays in Λu,v(−M,n). Either
there is no path from z to o that stays in Λu,v(−M,n), or there is such a path,
in which case concatenating the two would give a path from z to k1 + nu.

Next we must show that both terms (28) and (29) must→ 0. Consider (29).
By translation invariance it is equal to

Pp(∃ k1 + (M + n)u ∈ Co[Λu,v(0,M + n)] with k ≤ g + h)

= Pp(g + h ≥ BM+n(u, v))

≤ Pp((M + n+ 1)γ(u)− nε+ 1 ≥ BM+n(u, v))

→ 0, as n→∞,

since

g + h ≤ n(cγ(u) + 2ε) + 1 + n(γ(u)− 3ε) ≤ (M + n+ 1)γ(u)− nε+ 1.

18



Turning to (28), we have (as in the proof of Lemma 2) that if n ≥ n0,
and y = k1 for some k ≤ 0, then o ∈ Cy[Λu,v(−M,n)]. Therefore translation
invariance shows that for n ≥ n0,

Pp(o ∈ Cz[Λu,v(−M,n)]) ≥ Pp(∃ k1 ∈ Cz[Λu,v(−M,n)] with k ≤ 0)

= Pp(∃ k1 +Mu ∈ Co[Λu,v(0,M + n)] with k ≤ g)

≥ Pp(∃ k1 +Mu ∈ Co[Λu,v(0,M)] with k ≤ g)

= Pp(g ≥ BM (u, v)).

Because g ≥ n(cγ(u) + ε) ≥Mγ(u) + nε, this probability is at least

Pp(Mγ(u) + nε ≥ BM (u, v))→ 1, as n→∞.

Therefore Pp(o ∈ Cz[Λu,v(−M,n)]) → 1. This shows (28), and so Pp(An) → 0
as claimed.

We conclude from (28)-(29) and Lemma 5 that if p > p1 then Pp(An ∪
A′n)→ 0. Off this set, there can be no self avoiding path ω consistent with the
environment, that stays in Λu,v(−∞, n), and which runs from o to some point
k1 + nu with k < n(γ(u) − 3ε). For if ω stays in Λu,v(−M,n) then An would
hold, and if it leaves Λu,v(−M,n) then it enters Λu,v(−∞,−M) and A′n would
hold.

We conclude that off An ∪A′n we have
β0
n(u,v)
n ≥ γ(u)− 3ε. Combined with

Lemma 3 and the fact that β0
n(u, v) ≤ Bn(u, v), this means that

β0
n(u,v)
n → γ(u)

in probability. L1 convergence now also follows because βn(u)
n ≤ β0

n(u,v)
n ≤

Bn(u,v)
n and the latter → γ(u) in L1, while by Lemma 5, the former is bounded

below by an integrable random variable.
To extend the convergence in probability to almost surely convergence, we

must carefully examine the proof of the version of the subadditive ergodic the-
orem given in [11]. Define for 0 < m < n

B̃m,n(u, v) = inf{k : (β0
m(u, v) + k)1 + nu ∈ Cβ0

m(u,v)1+mu[Λu,v(m,n)]}.

Examining (21), we see that B̃m,n(u, v) has the same distribution as Bm,n(u, v).
We also know that for 0 < m < n,

β0
n(u, v) ≤ β0

m(u, v) + B̃m,n(u, v).

The required moment bounds (for n ≥ n0) follow from Lemma 2, as in the proof
of Lemma 3. We know that the joint distribution of (B̃m,m+k(u, v); k ≥ 1) does
not depend on m ≥ 1 (as in hypothesis (1.8) of [11]). We also know that for each
k ≥ 1, (B̃nk,(n+1)k(u, v);n ≥ 1) is a stationary process (as in hypothesis (1.9)

of [11]). What is not true is that β0
n(u, v) and B̃m,m+n(u, v) have the same law.

In other words hypothesis (1.8) of [11] does not apply in the present setting.
To get around this, set γ0

n = Ep[β0
n(u, v)] and γn = Ep[Bn(u, v)]. From (22)

(and the fact that Ep[Bm,n(u, v)] = Ep[Bn−m(u, v)] = γn−m) we know that γn
is a subadditive sequence, and therefore lim γn

n = inf γnn = γ(u). We also have
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γ0
n ≤ γn, and γ0

m+n ≤ γ0
m + γn for every m and n. Since also lim

γ0
n

n = γ(u), we
conclude that

γ(u) = lim
n→∞

γ0
n

n
= inf
n≥1

γn
n
,

which is a replacement for (2.1) of [11].
It turns out that this is enough to make the rest of Liggett’s proof work for

us. In other words, once the above analogue to his (2.1) is shown, then the
arguments for his (2.2), (2.3), and (2.4) all follow as written. From which we

conclude that if p > p1 then
β0
n(u,v)
n → γ(u) a.s. �

Proof of Lemma 7. Let ε > 0. Let c be as in Lemma 5, c̄ be as in Lemma
4, and c1 = c1(0, d) be as in Lemma 1. Take δ < ε

1+5c and M = bncc. For
i ≤ n(γ(u)− ε) let wi = i1 + nu. Define the event Ci = {@ k ≤ (M + n)(γ(u)−
δ) with k1 + (M + n)u ∈ Cwi [Λu,v(n,M + n)]}. By translation invariance,

Pp(Ci) = Pp
(
BM (u, v) ≥ (M + n)(γ(u)− δ)− i

)
≤ Pp(BM (u, v) ≥M(γ(u) + 4δ)) ≤ e−Mc̄,

since

(M + n)(γ(u)− δ)− i ≥ (M + n)(γ(u)− δ)− n(γ(u)− ε)
= Mγ(u)− (M + n)δ + nε

≥Mγ(u) + δ(n(1 + 5c)− (M + n))

≥M(γ(u) + 4δ).

Define the event

Dn = {β0
M+n(u, v) > (M + n)(γ(u)− δ) but β1

n(u, v) ≤ n(γ(u)− ε)}.

On Dn, there exists a path in Co[Λu,v(−∞,M + n)] from o to some i01 + nu
with i0 ≤ n(γ(u) − ε). Choose 0 < α < 1 and set N = bnαc. Then either

i0 < −N − n‖u‖1
d or (by Lemmas 2 and 3) −N − n‖u‖1

d ≤ i0 ≤ n(γ(u) − ε) <
nγ(u) ≤ n‖u‖1.

In the first case, [(N+i0)1+nu]·1 = (N+i0)d+nu·1 < −n‖u‖1+n‖u‖1 = 0,
so (N + i0)1+nu /∈ K0. In other words, i01+nu /∈ K0−N1, which by Lemma
1 has probability at most c1θ

−Nd.
There cannot be a path in Λu,v(n,M + n) from wi0 to any k1 + (M + n)u

with k ≤ (M + n)(γ(u)− δ), because concatenating the two paths would make
β0
M+n(u, v) ≤ (M + n)(γ(u)− δ). Therefore

Pp(Dn) ≤ c1θ−Nd+

n‖u‖1∑
i=−N−n‖u‖1d

Pp(Ci) ≤ c1θ−Nd+[1+N+n‖u‖1(1+
1

d
)]e−Mc̄.

Summing over n shows that
∑
n Pp(Dn) <∞. Lemma 6 tells us that if p > p1

then β0
M+n(u, v) > (M + n)(γ(u) − δ) eventually, and therefore β1

n(u, v) ≥
n(γ(u) − ε) for all but finitely many n. In other words, 1

nβ
1
n(u, v) → γ(u)

a.s. �
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4 Proofs of Corollaries
sec:corollaries

Proof of Corollary 2 . Fix δ > 0 and R < ∞. Set ε = δ
d ∧ 1 and r = R + 1.

Choose n so large that the inclusions of (e) of Theorem 1 hold for n, with this
ε and r.

Let z ∈ OR ∩ Cδ ∩ 1
nZ

d. Then ‖ε1‖1 ≤ δ, so by (16) and the fact that
γ(z) ≤ −δ, we see that γ(z′) ≤ 0, where z′ = z−ε1. Thus z′ ∈ C. Since z ∈ OR
and ε ≤ 1, we know that z′ ∈ Or. So by choice of n, there is a w ∈ 1

nCo such
that ‖w − z′‖∞ < ε. Therefore w′ = ε1 − (w − z′) lies in the positive orthant
and we have z = w + w′. That implies that o connects to nw and nw connects
to nz, so z ∈ 1

nCo, as claimed. �

We know that γ(e1) ≤ 0. But it will be useful to know that this inequality
is strict.

Lemma 8. Assume the conditions of Theorem 1, and let p > p1. Then γ(e1) <
0.lem:e1strictnegativity

Proof. Let n, k > 0. Consider a path from o, constructed as follows. At sites in
E+, follow e1. At the first n sites in E−, follow −e2. At the next n sites in E−,
follow −e3. Do the same in turn for −e4, . . . ,−ed till n steps have been taken
in the direction of each. After that, follow e1 at sites in E−.

This path will reach n(ke1−1) provided there are at least n(d−1) sites in E−
among the first n[(k−1)+d−1] sites visited. Choose k so that (1−p)[k+d−2] >
d−1. Then the law of large numbers implies that the above event has probability
→ 1, when n→∞.

In other words, βn(ke1−1) ≤ 0 with probability→ 1. Since 1
nβn(ke1−1)→

γ(ke1 − 1) in probability, we get that γ(ke1 − 1) ≤ 0. Therefore

γ(e1) =
1

k
γ(ke1) =

1

k
[γ(ke1 − 1)− 1] ≤ −1

k
< 0.

�

Proof of Corollary 1 . Fix w ∈ Zd. Let ζ(w) = inf{t ∈ R : γ(w + te1) ≤ 0}. If
s < t then

γ(w+ te1) ≤ γ(w+ se1) + γ((t− s)e1) = γ(w+ se1) + (t− s)γ(e1) < γ(w+ se1)

by Lemma 8. So γ is strictly decreasing and continuous, and therefore

γ(w + te1) ≤ 0⇒ t ≥ ζ(w) (30) zetaineq1

γ(w + te1) ≥ 0⇒ t ≤ ζ(w). (31) zetaineq2

Set s = lim inf Lnwn and S = lim sup Lnw
n and let M ∈ Z. We will show that

S ∧M ≤ ζ(w) ≤ s, from which the desired result is immediate.
Consider the upper inequality first. Lemma 1 implies that s > −∞. There

is nothing to show if s =∞, so assume s ∈ R. Then we may find a sequence nk
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such that 1
nk
Lnkw → s. Therefore nkw+Lnkwe1 ∈ Co. Set r = ‖w‖∞+ |s|+1 <

∞. Then for any ε > 0, (e) of Theorem 1 shows that for k sufficiently large,

w +
1

nk
Lnkwe1 ∈ Or ∩

1

nk
Co ⊂ Oε + C.

The latter is closed, so taking limits, we have w+ se1 ∈ Oε +C for every ε > 0.
Since C is closed, in fact w + se1 ∈ C, so γ(w + se1) ≤ 0. By (30) we get that
s ≥ ζ(w), as claimed.

To show the lower inequality, we argue similarly. If S = −∞ there is nothing
to show, so assume this is not the case. Let 1

nk
Lnkw → S. Therefore nkw +

min(Lnkw − 1, nkM)e1 /∈ Co. Set R = ‖w‖∞ + |S ∧M | + 1 < ∞. Then for k
sufficiently large

w +
1

nk
min(Lnkw − 1, nkM)e1 ∈ [OR ∩

1

nk
Zd] \ 1

nk
Co.

If δ > 0, then for k sufficiently large, Corollary 2 implies that the above point
/∈ Cδ. In other words, γ(w + 1

nk
min(Lnkw − 1, nkM)e1) ≥ −δ. Taking limits,

we get that γ(w + (S ∧M)e1) ≥ −δ. Since δ > 0 was arbitrary, in fact γ(w +
(S ∧M)e1) ≥ 0. By (31) we obtain that S ∧M ≤ ζ(w) as claimed, and we are
done. �
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