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Abstract

A birth-death chain is a discrete-time Markov chain on the in-
tegers whose transition probabilities pi,j are non-zero if and only if
|i − j| = 1. We consider birth-death chains whose birth probabilities
pi,i+1 form a periodic sequence, so that pi,i+1 = pi mod m for some m
and p0, . . . , pm−1. The trajectory (Xn)n=0,1,... of such a chain satisfies
a strong law of large numbers and a central limit theorem. We study
the effect of reordering the probabilities p0, . . . , pm−1 on the velocity
v = limn→∞Xn/n. The sign of v is not affected by reordering, but
its magnitude in general is. We show that for Lebesgue almost every
choice of (p0, . . . , pm−1), exactly (m− 1)!/2 distinct speeds can be ob-
tained by reordering. We make an explicit conjecture of the ordering
that minimises the speed, and prove it for all m ≤ 7. This conjecture
is implied by a purely combinatorial conjecture that we think is of
independent interest.

Keywords: birth and death processes, permutations, cyclic products.
MSC2020: 60C05, 60J10, 05A99.

1 Introduction and main results

Birth and death chains are (discrete-time, time-homogeneous) Markov
chains on Z with transition probabilities (pi,j)i,j∈Z satisfying pi,i+1 +
pi,i−1 = 1 for each i ∈ Z. Often “birth and death chain” allows pi,i > 0,
but here for simplicity we assume that pi,i = 0.

In this paper we consider cyclic birth and death chainsX = (Xn)n≥0
on Z, by which we mean that there exist m ∈ N and pm = (pi)

m−1
i=0 ∈
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(0, 1)m such that for each i ∈ Z, (pi,i = 0 and) pi,i+1 = pimodm. Such
models have been studied in general dimensions in e.g. [8, 11, 6], and
have been called random walks in periodic environment. To avoid any
confusion with periodicity of a Markov chain we will refer to them as
random walks in cyclic environment, or cyclic birth and death chains
(CBD). In the 1-dimensional setting there is an elementary criterion
for transience (|Xn| → ∞) and recurrence (Xn = 0 infinitely often), in
which the crucial quantity is

γ = γ(pm) =

m−1∏
i=0

ρi, where ρi =
1− pi
pi

.

The following result that can be proved using standard Markov chain
techniques. Each conclusion holds with probability 1.

Proposition 1. Let X be a CBD with pm := (pi)
m−1
i=0 ∈ (0, 1)m. Then

v(pm) := limn→∞ n−1Xn almost surely exists and is deterministic, and

• v(pm) > 0 iff γ < 1

• v(pm) < 0 iff γ > 1

• v(pm) = 0 and X is recurrent iff γ = 1.

Proof. Observe the chain X first at time 0, and thereafter observe the
chain X at times at which its displacement is ±m from the previous
observation. This new walk is (m×) a simple random walk that is
symmetric (hence recurrent, with velocity 0) in the third case above
and biased to the right or left otherwise (see Lemma 2 and its proof
below for more details). Since the expected time for X to reach ±m is
finite, this proves the claim for the original chain X as well. �

Motivated by trapping behaviour prevalent in random walk in ran-
dom environment on Z (where (pi,i+1)i∈Z are chosen to be i.i.d. ran-
dom variables), we are interested in how the velocity v depends on
the order of the pi for fixed m. According to Proposition 1, the sign
of v (or equivalently, whether or not Xn → ±∞) does not depend on
the order of the pi. If the velocity is 0 then it can’t be changed by
changing the order of the pi, but in this case the variance may be
of interest. Therefore we are primarily interested in the case where
Xn → ∞ (and v > 0) with probability 1. In particular, given a se-
quence pm = (pi)

m−1
i=0 ∈ (0, 1)m for which γ(pm) < 1, (so all velocities

arising from permutations will have positive sign), here are two natural
questions that one can ask:

Q1: What is the number N(pm) of distinct speeds achievable via per-
mutations of pm?
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Q2: In which order one should arrange these values to achieve the
minimum speed, or indeed the maximum speed?

The second of these questions has been considered elsewhere in some
special cases. In [3] Q2 is analysed in the case where p0 = 1. The
authors therein note the possible relevance of these kinds of combi-
natorial optimisation problems to e.g. constructing intruder-resilient
networks. In [7], a problem similar to Q2 is considered in the case of
vectors pm where each pi is either 1/2 or p for some fixed p. Naturally
each of these papers has features in common with our work, but we
shall see that e.g. the assumption p0 = 1 fundamentally changes the
nature of the optimisation problem.

Both Q1 and Q2 turn out to be interesting. In this paper we state
some conjectures and provide partial answers to these questions, with
our main results being Theorems 1 and 2 below. There is trivially only
1 possible speed when m = 1, 2. Theorem 1 states that for m ≥ 3 and
Lebesgue a.e. pm the answer to Q1 is (m−1)!/2. This value arises from
the fact that the velocity is typically only invariant to rotations and
reversal of the elements of pm. Note that invariance under rotations
is trivial, while invariance under reversal seems to be a new (and we
think surprising) result.

Theorem 1. For any m ≥ 3 and for Lebesgue a.e. pm ∈ (0, 1)m the
number of distinct speeds satisfies

N(pm) =
m!

2m
=

(m− 1)!

2
.

Moreover, N(pm) ≤ (m− 1)!/2 for every m ≥ 3 and pm ∈ (0, 1)m.

Obviously the equality in Theorem 1 cannot be satisfied (for m > 3)
for every pm = (p0, . . . , pm−1) ∈ (0, 1)m, since e.g. if pi = pj then the
permutation that simply switches i and j also preserves the speed.
Theorem 1 immediately implies that when m = 3 all rearrangements
of pm give the same velocity, while for m ≥ 4 and typical pm, multiple
different velocities are achievable via rearrangement.

To simplify discussions about “optimal” permutations, it is conve-
nient (and loses no generality) to restrict attention henceforth to pm
for which the elements are non-increasing (so p0 ≥ p1 ≥ · · · ≥ pm−1).
In this case we believe that for fixed m there exists a permutation
σgreedy that is the universal minimiser of the speed for all such pm.
That is, for each m there is a unique (up to rotations and reversals)
permutation that minimises the speed no matter what the values of
the p0 ≥ p1 ≥ · · · ≥ pm−1.

Definition 1. Given a vector am = (a0, a1, . . . , am−1) ∈ (0,∞)m with
non-increasing entries, define the circular symmetric ordering to be

(a0, a2, a4, . . . , a5, a3, a1). J
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This ordering has been called the pendulum arrangement in [3]. We
have adopted the terminology of [1], which is the earliest paper that
we are aware of dealing with problems of this type.

Let Sm be the set of permutations of (0, 1, . . . ,m − 1). Of course,
Sm can be considered as the set of bijections from {0, 1, . . . ,m− 1} to
itself. We will use standard () notation for permutations, e.g. if m = 4
and σ = (0231) then σ(0) = 0, σ(1) = 2. For a vector x = (xi)

m−1
i=0 and

σ ∈ Sm, write xσ for the vector (xσ−1(i))
m−1
i=0 . For example, if m = 4

and σ = (0231) then σ(0) = 0, σ(1) = 2 etc., and xσ = (x0, x3, x1, x2).
We call the permutation corresponding to the circular symmetric

ordering σgreedy, because it groups large values of am with each other,
and small values of am with each other in a circular way.

Definition 2. The greedy permutation σgreedy is given by

σ−1greedy(i) = 2i and σ−1greedy(m− 1− i) = 2i+ 1,

for i = 0, 1, . . . , bm/2c − 1. J

By definition, the greedy permutation depends on m but not on
the actual values am, e.g. if m = 9 then σgreedy = (081726354). Let
am ∈ (0,∞)m with decreasing entries. For r ∈ [m] and a permutation
σ ∈ Sm define

Pr(σ;am) =

m−1∑
k=0

r−1∏
i=0

aσ−1(k+i),

with indices interpreted modm. This quantity has been considered
elsewhere (e.g. [1]) in the case r = 2. A version of this quantity in-
volving non-cyclic products has been analysed in [3]. The non-cyclic
version (which corresponds to setting some am−1 = 0) appears to be
easier to analyse.

The following conjecture says that the greedy permutation max-
imises Pr for each r. We think that it is an interesting standalone
open problem. It also immediately implies that the greedy permuta-
tion minimises the speed (see Proposition 2 and Conjecture 2 below).

Conjecture 1 (Greedy cyclic products are maximal). Let am ∈ (0,∞)m

have decreasing entries. Then for every r ∈ [m], and every σ ∈ Sm,

Pr(σgreedy;am) ≥ Pr(σ;am).

The cases r = 1 and r = m in Conjecture 1 are trivially true. The
case r = 2 is not difficult to prove, and appears as early as [1]. Such
facts are termed circular rearrangement inequalities in [12] (see also
[2]). We present a simple proof for the case r = 2 and also give a
(non-trivial) proof in the case r = 3. Observe that∏r−1

i=0 bj∏m−1
i=0 bj

=

m∏
i=r

1

bj
,
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from which we conclude that if a is the product of all elements of am
then

a−1Pr(σ;am) = Pm−r(σ;a−1m ), (1)

where a−1m = (a−10 , . . . , a−1m−1). This observation together with the
aforementioned results for r ≤ 3 gives rise to the following.

Theorem 2. The conclusion of Conjecture 1 holds for (m, r) such that
r ≤ 3 or m− 3 ≤ r ≤ m.

It is immediate from Theorem 2 that the conclusion of Conjecture
1 holds for all r ∈ [m] when m ≤ 7. A version of Conjecture 1 for
non-cyclic products is known to hold [3, Theorem 6].

The relevance of Conjecture 1 and Theorem 2 to Q2 can be seen
from the following explicit formula for the velocity, in which I denotes
the identity permutation and ρm = (ρ0, ρ1, . . . , ρm−1).

Proposition 2. For CBD with transition probabilities pm ∈ (0, 1)m

such that γ < 1 we have

v(pm) =
1− γ

1− γ + 2
m

∑m
r=1 Pr(I,ρm)

. (2)

Since for any r, sums over starting indices k of consecutive products
of ρ· are invariant under rotations and reversals (reversing the order
of pm), we can immediately conclude from (2) that v(pm) is invariant
under rotations and reversals of the elements of pm, as claimed earlier.
In particular, when m = 3 there is only one possible velocity, since all
permutations are combinations of

As noted earlier, we find the fact that the speed is invariant under
reversals to be somewhat surprising, and is not at all obvious from other
expressions for the velocity. For example, as in Lemma 1 in Section 2.1
below, the velocity can also be written as v(pm) =

∑m−1
i=0 πi(2pi − 1),

where π = (π0, . . . , πm−1) is the stationary distribution of the chain
X◦n = Xn modm. This stationary distribution behaves “nicely” under
rotations but not under reversal of the elements of pm- see Example 4
in Section 2.1 below.

Given pm ∈ (0, 1)m with non-increasing entries, and σ ∈ Sm, let
v(σ;pm) = v((pm)σ). As noted above, the following is an immediate
corollary of Conjecture 1 (and Proposition 2). It says that the greedy
permutation minimises the speed.

Conjecture 2 (Greedy is least speedy). For any pm with non-increasing
entries, such that γ < 1 (so all possible speeds will be positive), then
for every σ ∈ Sm,

v(σgreedy;pm) ≤ v(σgreedy;pm)
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For example, if m = 9 and the pi are decreasing in i with ρ(pm) < 1
then according to Conjecture 2, for any permutation σ ∈ Sm,

v
(
(p0, p2, p4, p6, p8, p7, p5, p3, p1)

)
≤ v((pm)σ).

As a consequence of Theorems 1 and 2 above we obtain the following
(we omit the proof).

Corollary 1. For m ≤ 7 and pm with non-increasing entries and
ρ < 1, the speed is minimised by the greedy permutation (i.e. Conjecture
2 holds for m ≤ 7).

Remark 1. Notice that for m ≤ 7 the ordering that minimises the
speed is also the one that minimises (interpret the following with in-
dices mod m),

L(pm) :=

m−1∑
i=0

(pi+1 − pi)2

(expand the square, and note that only the sum of mixed terms depends
on the order). One might interpret this as saying that the speed is
minimised by having a “smooth” ordering (a cyclic arrangement of the
elements of pm that has no large jumps). J

We stress that the maximiser of Pr appears to be universal. In other
words we believe that the greedy permutation maximises Pr for every
r and every am with decreasing entries. In the language of [12] this
says that the circular symmetrical order maximises Pr. In [12] it was
shown that the so-called circular alternating order minimises P2. The
following two examples (which can be verified by simply evaluating the
cyclic products for all possible permutations) show that the minimal
ordering is neither constant over r for fixed am, nor constant over am
for fixed r.

Example 1. For the vector am = (9, 7, 6, 5, 4, 3), the minimal value
of P2(I; ) is achieved by the ordering (9, 3, 7, 5, 6, 4) (and not by the
ordering (9, 3, 6, 7, 4, 5)) while the minimal value of P3(I; ) is achieved
by the ordering (9, 3, 6, 7, 4, 5) (and not by (9, 3, 7, 5, 6, 4)). J

Example 2. For the vector am = (10, 5, 4, 3, 2, 1), the minimal value
of P3(I; ) is achieved by the ordering (10, 1,4,5, 2, 3) (and not by the
ordering (10, 1,5,4, 2, 3)). For the vector a′m = (10, 9, 6, 5, 3, 1) the
minimal value of P3(I; ) is achieved by the ordering (10, 1,9,6, 3, 5)
(and not by (10, 1,6,9, 2, 3)).

Since the permutations which minimise products of r consecutive
terms in the cycle are not constant over r, The above observations
don’t give any conclusion for permutations that maximise the speed.
Nevertheless, we have the following.
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Example 3.

(i) If pm = (9, 8, 7, 6, 5, 4, 3)/10 then the maximum value of the
speed v((pm)σ) is obtained by v

(
(6, 7, 4, 9, 3, 8, 5)/10

)
≈ 0.19857,

corresponding to the permutation σ = (3510624).

(ii) If p′m = (8, 7, 6, 5, 4, 3.5, 3)/10 then the maximum value of the
speed v((p′m)σ′) is obtained by v

(
(6, 5, 3.5, 8, 3, 7, 4)/10

)
≈ 0.04675,

corresponding to the permutation σ′ = (3501624).

Moreover, in case (i) above the speed is not maximised at v((pm)σ′) ≈
0.19787, and in case (ii) above the speed is not maximised at v((p′m)σ) ≈
0.04668. J

The remainder of this paper is organised as follows: In Section 2 we
further discuss the context of our results: we present some elementary
(implicit) speed formulae, compare results about the velocity for the
cyclic birth and death chain to that of a related model of random walk
in random environment, and briefly discuss the central limit theorem.
In Section 3 we prove Proposition 2. To do this we follow an approach
that will be familiar to researchers in the area of Random Walk in
Random Environment (RWRE), and then manipulate the resulting
expression to get (2). Some understanding of discrete-time Markov
chains (specifically birth and death chains) is required to understand
Sections 2 and 3. The reader who is happy to start with (2) as given
can proceed directly to Sections 4 and 5 where we prove Theorems 1
and 2 respectively.

Theorem 1 will be proved by showing: (i) that the speed is invariant
to rotations and reversal of the elements of pm (the former is trivial,
while we find the latter to be rather surprising), and; (ii) for typical
pm these kinds of permutations are the only ones which do not change
the speed.

Theorem 2 will be proved by induction on m for r = 2, 3. The cases
3 < r < m− 3 remain open.

2 Discussion

In this section we further discuss the context of our results. Let us be-
gin with some simple (and standard) implicit formulas for the velocity.

2.1 Elementary speed formulae

Let X◦n = Xn modm. Then X◦ = (X◦n)n≥0 is also an irreducible
discrete-time Markov chain (typically non-reversible), with finite state
space {0, 1, . . . ,m − 1} and transition probabilities p0,m−1 = 1 − p0,
pm−1,0 = pm−1, and pi,i+1 = pi for i < m − 1 and pi,i−1 = 1 − pi
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for i > 1. Let π = (πi)
m−1
i=0 denote the stationary distribution of X◦

(which depends on pm). Then we have the following.

Lemma 1. v(pm) =
∑m−1
i=0 πi(2pi − 1).

Readers familiar with random walk in random environment might
interpret Lemma 1 as a formula for the speed given in terms of the
environment viewed from the particle. One can find an explicit (albeit
complicated) formula for π, and hence for v, by solving a recursion for
mean return times, but we will not present this here. The following
example however demonstrates that the invariance of the speed (under
all rotations) in the case m = 3 is not at all trivial.

Example 4. For the case m = 3, the stationary distribution satisfies
(with subscripts interpreted mod 3) for i = 0, 1, 2,

πi(p0, p1, p2) =
pi+1pi+2 − pi+1 + 1

p0p1 + p0p2 + p1p2 − p0 − p1 − p0 + 3
.

The denominator d = d({p0, p1, p2}) is invariant under permutations.
Note that e.g.

π0(p2, p1, p0) =
p1p0 − p1 + 1

d
,

which is not equal to any of the πi(p0, p1, p2) in general. E.g. π(0.4, 0.6, 0.8) =
(22, 13, 21)/56, while π(0.8, 0.6, 0.4) = (16, 23, 17)/56. Nevertheless,
v(0.4, 0.6, 0.8) = v(0.8, 0.6, 0.4) = 27/140.

Proof of Lemma 1. Let (∆j,i : j = 0, . . . ,m−1, i ∈ N) be independent
random variables with

P(∆j,i = 1) = pj = 1− P(∆j,i = −1).

For j = 0, 1, . . . ,m − 1, and n ≥ 1, let Nn(j) = #{r < n :
Xr modm = j}. Then

Xn =

m−1∑
j=0

Nn(j)∑
i=1

∆j,i.

Thus,

n−1Xn =

m−1∑
j=0

Nn(j)

n

1

Nn(j)

Nn(j)∑
i=1

∆j,i.

Note that Nn(j) is the number of visits by (the irreducible, finite-state
DTMC) X◦ to j prior to time n. Therefore n−1Nn(j) → πj almost
surely. Since ∆j,i are independent this implies that

n−1Xn →
m−1∑
j=0

πjE[∆j,1] =

m−1∑
j=0

πj(2pj − 1).

�
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Let T denote the first hitting time of {−m,m} by the chain X, and
let h = P(XT = m) = 1 − P(XT = −m). Then a standard resistance
calculation gives h = (1 + γ)−1, and we have the following formula.

Lemma 2. v(pm) =
E[XT ]

E[T ]
= m · 2h− 1

E[T ]
.

Proof. Let T (0) = 0, and for i ≥ 1 let T (i) = inf{k > T (i−1) : Xk −
XT (i−1) ∈ {−m,m}}. Since n−1Xn → v almost surely we have that
XT (i)/T (i) → v as i→∞. By the law of large numbers, i−1T (i) → E[T ]
and i−1XT (i) → E[XT ] = m(P(XT = m)− P(XT = −m)). �

Let T+ denote the first hitting time of m by the chain X. Then
standard renewal arguments give the following.

Lemma 3. If γ < 1 then v(pm) =
m

E[T+]
.

Proof. Let T
(0)
+ = 0 and for i ≥ 1 let T

(i)
+ = inf{k > T

(i−1)
+ : Xk −

X
T

(i−1)
+

= m}, which is finite almost surely since γ < 1. Now proceed

as in the proof of Lemma 2. �

Each of the above representations for v is standard, but we would
describe as implicit in the sense that π in Lemma 1 and the expecta-
tions in the denominators in Lemmas 2 and 3 are not explicit functions
of pm. Nevertheless, we will use Lemma 3 to prove Proposition 2. It
is intuitively obvious that for γ < 1 the denominator in Lemma 3 is
strictly decreasing in each pi. This can be made rigorous via a simple
coupling argument to obtain the following.

Lemma 4. v(pm) is strictly increasing in each pi ∈ (0, 1).

Proof. Let pm ∈ (0, 1)m be given. Symmetry arguments allow us to
assume without loss of generality that γ = γ(pm) ≤ 1. Let p′m be
equal to pm except that p′i > pi. If γ = 1 then the claim holds by
Proposition 1. Otherwise γ < 1 and E[T+] < ∞ in Lemma 3. It is
easy (see e.g. [4, 5]) to define a probability space on which copies of the
CBD pm and the CBD p′m are both defined, and such that: (i) T ′+ ≤ T+
almost surely, and (ii) T ′+ < T+ with positive probability. This shows
that E[T ′+] < E[T ′+] in Lemma 3 which completes the proof. �

For u ∈ [0, 1), let Pm(u) = {pm ∈ (0, 1)m : v(pm) = u} denote the
set of (ordered) vectors of length m that have speed u. According to
Lemma 4, for each p1, . . . , pm−1 there is at most one value of p0 for
which v(pm) = u. Therefore Pm(u) is a subspace of dimension at most
m− 1, and it has Lebesgue measure 0.
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2.2 Comparison with RWRE

If one adds a uniform random shift of the environment (shift the envi-
ronment by i ∈ {0, 1, . . .m− 1} with probability 1/m for each i), this
model can be viewed as an example of a random walk in a (quenched)
ergodic environment. To be precise, given the vector of elements
pm = (pi)

m−1
i=0 let Ω be the set of bi-infinite sequences ω = (ωx)x∈Z tak-

ing values in {p0, . . . , pm−1} for which there exists some i ∈ 0, . . . ,m−1
such that (ωj)

m−1
j=0 = (p(j+i)modm)m−1j=0 and ωx = ωxmodm for each

x ∈ Z. There are at most m distinct elements in Ω. Let F be the
power set of Ω, and µ be the uniform measure on Ω. Then (Ω,F , µ)
is ergodic with respect to the shift operator θ((ωx)x∈Z) = (ωx+1)x∈Z
1. As such, any result from the theory of random walk in ergodic ran-
dom environment that holds for a.e. environment holds for the CBD
with ωx = pxmodm etc. For example, a law of large numbers with an
implicit formula for the speed, is known to hold for random walk in
ergodic random environment, see e.g. [13].

It is natural to compare results for cyclic birth and death (CBD)
processes to those for (uniformly elliptic) i.i.d. RWRE with right step
probability from each site being uniformly selected from our set of prob-
abilities {p0, p1, . . . , pm−1} (counting multiplicites if there are any).
The results of Solomon [9] in this special setting become:

• The walker is transient to +∞ if and only if

m−1
m−1∑
i=0

log(ρi) < 0 ⇐⇒
m−1∏
i=0

ρi < 1. (3)

• If the walker is transient to +∞ then the velocity is strictly pos-
itive if and only if m−1

∑m−1
i=0 ρi < 1, in which case the velocity

is equal to
1−m−1

∑m−1
i=0 ρi

1 +m−1
∑m−1
i=0 ρi

.

In other words, the criteria for transience (for RW i.i.d. RE and for
cyclic birth and death chains) “match”, but the criteria for positivity
of the speed do not. Both of these observations are to be expected
- in the former case one can see the criteria as coming from a cal-
culation involving the resistance to +∞ (and −∞) together with the
LLN for the limiting proportion of time that each environment ap-
pears. In the latter case obviously the velocity of the RWRE above

1Indeed any B ∈ F can be expressed as an event depending only on the state of
(ω0, . . . , ωm−1), i.e. B = {(ω0, . . . , ωm−1) ∈ D} for some D. If µ(B) > 0 then there exists
i ∈ {0, 1, . . . ,m−1} such that (p(i+j)modm)m−1

j=0 ∈ B, and therefore at least one of θ−k(B)

occurs, so µ(∪n∈Nθ
−n(B)) = 1.
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should be invariant to permutations of the elements of pm since choos-
ing a uniform i.i.d. sample from pm ignores any ordering. Moreover,
the disorder in the environment allows much stronger traps to be cre-
ated. In view of the last observation, it is natural to ask whether
the speed for this RWRE is always less than the CBD (when (3)
holds). This can be easily checked when m = 2. Numerical exam-
ples (e.g. pm = (0.57, 0.87, 0.98, 0.79, 0.64, 0.56)) suggest that this is
not the case in general when m > 4. In other words we believe that for
each m > 4 there exist examples where the speed v(pm) of the CBD
is strictly positive, but smaller than the speed of the corresponding
RWRE. We interpret this observation as saying that when m is large
it is possible to create really bad traps in CBD by very specific order-
ings of pm and that traps as bad or worse occur extremely rarely in
the i.i.d. RE. When m is small any particular ordering of the pm will
appear fairly often in the i.i.d. RE, as will “even worse” traps.

2.3 CLT

Thus far we have only discussed how the deterministic limiting velocity
behaves as a function of pm. One might also ask about the variance,
and a central limit theorem. Let T0 = 0 and Tk = inf{n > Tk−1 :
|Xn −XTk−1

| = m} and Wk = m−1XTk . Then (Wk)k∈N is a nearest-
neighbour simple random walk on Z with P(Wk = Wk−1 + 1) = h. It
follows immediately that k−1Wk → 2h− 1 almost surely. Moreover,

k−1/2(Wk − k(2h− 1))
w→ N (0, 4h(1− h)).

We cannot apply the standard CLT for random walk in ergodic random
environment (e.g. [13, Theorem 2.2.1]) because our environment is non-
mixing (it is completely determined by its value in any interval of length
m). Nevertheless one can use the Markov chain central limit theorem
to obtain a CLT (see e.g. [8]): For each pm ∈ (0, 1)m there exists a
deterministic σ2 = σ2(pm) > 0 such that

Xn − nv√
n

w→ N (0, σ2).

The constant σ2 can be expressed in terms of π and k-step transition
probabilities for all k, but is not really tractable in this form. It would
be of interest to find a more explicit expression in terms of pm. In
the case v = 0, Takenami [11] has proved a local limit theorem for the
walk.
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3 Proof of Proposition 2

Fix m, pm, and recall Lemma 3. For i ≥ 0 let

Si := min{n ≥ 0 : Xn = i}.

Note that since the random walk is transient to the right, we have
that Si < ∞ a.s. We will derive a set of m linear equations for
E0[S1],E1[S2], . . . ,Em−1[Sm], where Ej denotes expectation with re-
spect to the law of the chain X, starting from state j. Note that

Ei[Si+1] = 1 + (1− pi)Ei−1[Si+1] = 1 + (1− pi)
(
Ei−1[Si] + Ei[Si+1]

)
.

Therefore piEi[Si+1] = 1 + (1− pi)Ei−1[Si]. This set of equations can
be written as Me = 1 where

M :=



p0 0 0 · · · 0 −(1− p0)
−(1− p1) p1 0 · · · 0 0

0 −(1− p2) p2 · · · 0 0
. . . · · · . .
. . . · · · . .
. . . · · · pm−2 0
0 0 0 · · · −(1− pm−1) pm−1


,

e := (E0[S1], . . . ,Em−1[Sm]) and 1 := (1, . . . , 1). From Cramer’s rule
we get that for i = 0, . . . ,m− 1,

Ei[Si+1] =
|M (i+1)|
|M |

where M (j) is the matrix obtained after replacing the j-th column
of M by 1, and |A| denotes the determinant of A. Since E[T+] =∑m−1
i=0 Ei[Si+1] we have from Lemma 3 that

v = m · |M |∑m−1
i=0 |M (i+1)|

.

Now note that

|M | = p0p1 · · · pm−1 − (1− p0)(1− p1) · · · (1− pm−1)

=

m−1∏
i=0

pi −
m−1∏
i′=0

(1− pi′),

which is invariant under permutations on the sub-indices 0, 1, . . . ,m−1.
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Also note that

|M (m)| =
m−2∏
j=0

pj +

m−3∏
j=0

pj(1− pm−1) +

m−4∏
j=0

pj(1− pm−2)(1− pm−1)

+ · · ·+ p0

m−1∏
j=2

(1− pj) +

m−1∏
j=1

(1− pj)

=

m−1∑
j=0

j−1∏
i1=0

pi1

m−1∏
i2=j+1

(1− pi2),

while the other M (i+1) are of the same form but with the indices ro-
tated. Let Rm be the set of rotation permutations, that is, composi-
tions of the permutation (123 . . . 0). It follows that the velocity can be
written as

v(pm) = m ·

m−1∏
i=0

pi −
m−1∏
i=0

(1− pi)

∑
σ∈Rm

m−1∑
j=0

j−1∏
i1=0

pσ(i1)
m−1∏
i2=j+1

(1− pσ(i2))

=

m ·
m−1∏
i=0

pi · (1− ρ)

m−1∑
k=0

m−1∑
j=0

(pj+k + (1− pj+k))
j−1∏
i1=0

pi1+k
m−1∏
i2=j+1

(1− pi2+k)

.

The denominator is equal to

m−1∑
k=0

m−1∑
j=0

j∏
i1=0

pi1+k

m−1∏
i2=j+1

(1−pi2+k)+

m−1∑
k=0

m−1∑
j=0

j−1∏
i1=0

pi1+k

m−1∏
i2=j

(1−pi2+k).

This can be written as

m−1∏
i=0

pi ·

[
m−1∑
j=0

m−1∑
k=0

m−1∏
i2=j+1

ρi2+k +

m−1∑
j=0

m−1∑
k=0

m−1∏
i2=j

ρi2+k

]
. (4)

Letting r = m − j and i = m − 1 − i2 and using the fact that the
sum over k is a sum over the whole cycle, we see that the second term
in the square brackets in (4) is equal to

m∑
r=1

m−1∑
k=0

r−1∏
i=0

ρi+k.

By separating off the term j = m − 1, and using the fact that an
empty product is equal to 1, the first term in the square brackets in
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(4) is

m−2∑
j=0

m−1∑
k=0

m−1∏
i2=j+1

ρi2+k +

m−1∑
k=0

1 =

m−2∑
j=0

m−1∑
k=0

m−1∏
i2=j+1

ρi2+k +m. (5)

Now let r = m− j − 1 and i = m− 1− i2 to see that this is equal to

m−1∑
r=1

m−1∑
k=0

r−1∏
i=0

ρi+k +m =

m∑
r=1

m−1∑
k=0

r−1∏
i=0

ρi+k −mγ +m.

It follows that

v(pm) = m · 1− γ

m−mγ + 2
m∑
r=1

m−1∑
k=0

r−1∏
i=0

ρi+k

.

Cancelling factors of m and using the definition of Pr completes the
proof. �

4 Proof of Theorem 1

Given a subset E ⊂ Rd and x ∈ Rd, we write E + x = {y + x : y ∈ E}
and define

Ex = E ∩ (E + x),

and for a sequence (xn)n≥1 we define Ex1,x2 = (Ex1)x2 = E ∩ (E +
x1) ∩ (E + x2) ∩ (E + x1 + x2), and recursively

Ex1,...,xn+1
= (Ex1,...,xn)xn+1

.

In what follows we will denote the Lebesgue measure on Rd by λ
and for y ∈ Rd, |y|2 its l2-norm. We will need the following multi-point
version of Steinhaus’s Theorem (see [10]) in Rd. Although we have not
found this particular statement in the literature, we expect that it is
well-known, so we omit the proof.

Lemma 5. Let E ⊂ Rd with λ(E) > 0. Then, for every n ∈ N, there
exists a δ = δ(n,E) > 0 such that for all y1, . . . , yn ∈ Rd with |yi|2 < δ,
1 ≤ i ≤ n, the set

Ey1,...,yn

is non-empty.

Note that

v(pm) =
1− γ

1− γ +
2

m

m∑
r=1

m−1∑
k=0

r−1∏
i=0

ρi+k

=
1− γ

1 + γ +
2

m

m−2∑
r=0

m−1∑
k=0

r∏
i=0

ρi+k

.
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Proof of Theorem 1. The set of pm for which γ = 0 has Lebesgue
measure 0, so we may assume that γ 6= 0. By symmetry (apply the
result to 1 − pm when γ > 1) we may assume that γ < 1, so we can
use the formula (2).

The statement is trivial for m = 3 since there is exactly 1 speed for
each pm in this case. We fix m ≥ 4 in what follows.

Let Jm denote the set of permutations of {0, . . . ,m − 1} that are
not compositions of rotations and reversal. To prove the theorem,
it is sufficient to show that for Lebesgue a.e. pm any permutation
σ ∈ Jm does not give the same velocity, i.e. v(pm) 6= v((pm)σ). Given
a permutation σ of {0, . . . ,m−1}, for i 6= j, 0 ≤ i, j ≤ m−1, we will say
that σ(i) is adjacent to σ(j) if σ(i) = σ(j)+1 or σ(i) = σ(j)−1, where
the sum is mod m. Note that Jm is precisely the set of permutations
that do not preserve all adjacency relations, i.e. σ ∈ Jm if and only
if there exists a k ∈ {0, . . . ,m − 1} such that σ(k) is not adjacent to
σ(k + 1).

Step 1. Let σ ∈ Jm. It is enough to show that the set E of ρm =
(ρ0, . . . , ρm−1) ∈ (0,∞)m for which

m−2∑
r=0

m−1∑
k=0

r∏
i=0

ρi+k =

m−2∑
r=0

m−1∑
k=0

r∏
i=0

ρσ(i+k) (6)

has Lebesgue measure 0. We will assume that λ(E) > 0 and obtain a
contradiction.

Step 2. Note that the terms in (6) with r = 0 and r = m − 2 cancel
out, so we have that (ρ0, . . . , ρm−1) ∈ E if and only if

H(ρ0, . . . , ρm−1) = 0,

where

H(x0, . . . , xm−1) =
m−3∑
r=1

m−1∑
s=0

∏
i=0

xi+s −
m−3∑
r=1

m−1∑
s=0

r∏
i=0

xσ(i+s)

Step 3. For each 0 ≤ i ≤ m− 1, h > 0 and function g : Rm → R define

∆i
hg(x0, . . . , xm−1)

= 1
h (g(x0, . . . , xi−1, xi + h, xi+1, . . . , xm−1)− g(x0, . . . , xm−1)) .

Note that the operator ∆i
h is simply a discrete derivative.

Let us describe how iterations of these operators act on products
of ρi, which is a central component of the proof. Consider a function
G : Rm → R of the form

G(x0, . . . , xm−1) =
∏
i∈A

xi,
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where A ⊂ {0, 1, . . . ,m− 1}. It is easy to see that

∆j
hG(x0, . . . , xm−1) =

{∏
i∈A\{j} xi, if j ∈ A

0, otherwise.

It follows that if #A ≤ ` then

∆j`
h . . .∆

j2
h ∆j1

h G(x0, . . . , xm−1) =

{
1 if {j1, . . . , j`} = A

0 otherwise.
(7)

For 0 ≤ j ≤ m− 1 and a permutation σ′ let

Hσ′,j(x0, . . . , xm−1) =

m−1∏
i=2

xσ′(i+j).

Note that xσ′(j) and xσ′(j+1) are “missing” from this product.
Since σ ∈ Jm, there exists k ∈ {0, . . . ,m − 1} such that σ(k) and

σ(k + 1) are not adjacent. It follows from (7) that

∆
σ(2+k)
h ∆

σ(3+k)
h · · ·∆σ(m−1+k)

h Hσ,j(x0, . . . , xm−1) = δj,k.

Recall that I is the identity permutation. Then HI,j(x0, . . . , xm−1) =∏m−1
i=2 xi+j is missing xj and xj+1, where j and j+1 are adjacent. The

set {σ(i+k) : i = 2, . . . ,m− 1} is missing σ(k) and σ(k+ 1) which are
not adjacent. It follows that {σ(k), σ(k + 1)} 6= {j, j + 1} so by (7),

∆
σ(2+k)
h ∆

σ(3+k)
h · · ·∆σ(m−1+k)

h HI,j(x0, . . . , xm−1) = 0.

There are m − 2 discrete derivatives here, and in the definition of H,
only r = m− 3 gives a product of m− 2 terms. From (7) we see that

∆
σ(2+k)
h · · ·∆σ(m−1+k)

h H(x0, . . . , xm−1) (8)

= ∆
σ(2+k)
h · · ·∆σ(m−1+k)

h

[
m−1∑
s=0

m−3∏
i=0

xi+s −
m−1∑
s=0

m−3∏
i=0

xσ(i+s)

]
.

Using the substitution j = s−2 (mod m) shows that the term in square
brackets is

m−1∑
j=0

HI,j(x0, . . . , xm−1)−
m−1∑
j=0

Hσ,j(x0, . . . , xm−1),

and therefore (8) is equal to 0− 1 = −1 for every (x0, . . . , xm−1).
Now, suppose that λ(E) > 0. From Lemma 5 (with d and n

therein both equal to m), there exists δ(m,E) > 0 such that for all
y0, . . . , ym−1 ∈ Rm with |yi|2 < δ, 0 ≤ i ≤ m − 1, the set Ey0,...,ym−1
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is non-empty. Taking yi = hei+1 for h ∈ (0, δ), where e1, . . . , em
are the canonical basis vectors in Rm, it follows that there exists a
point (ρ0, . . . , ρm−1) ∈ E such that (ρ0 + h, ρ1, . . . , ρm−1), (ρ0, ρ1 +
h, ρ2, . . . , ρm−1), (ρ0 + h, ρ1 + h, ρ2, . . . , ρm−1), etc., are all in E also.
Let B be this set of points. Then

B ⊂ {(x0, . . . xm−1) : xi ∈ {ρi, ρi + h} for every i = 0, . . . ,m− 1}.

By definition

∆
σ(2+k)
h ∆

σ(3+k)
h · · ·∆σ(m−1+k)

h H(ρ0, . . . , ρm−1) (9)

is a linear combination of terms of the form H(xi0, . . . , x
i
m−1) with each

xi ∈ B. But by Step 2 H(x) = 0 for all x ∈ B, so (9) is equal to 0,
which contradicts the fact that (7) is equal to 1 for all x. �

5 Proof of Theorem 2

In this section we prove Theorem 2. Recall that for r ∈ [m] and a
permutation σ ∈ Sm we have

Pr(σ;am) :=

m−1∑
k=0

r−1∏
i=0

aσ−1(k+i),

with indices interpreted modm.
Suppose that we prove the result for r = k ∈ [m]. Since the entries

of am are decreasing, the reciprocals a−1m of am listed in reverse or-
der (write this vector as a†m) are also increasing. So we know that the
σgreedy maximises Pk(·,a†m). But each Pr is trivially invariant to rever-
sals so σgreedy maximises Pk(·,a−1m ). The observation (1) then shows
that σgreedy maximises Pm−k(·,am). It therefore suffices to prove the
claim for r = 2, 3. We prove each of these results by induction on m.

Proof for r = 2. For the base case m = 2 there is nothing to prove.
We will assume the result for m and prove it for m+ 1. Let am+1 be
such that a0 ≥ · · · ≥ am. Write am+1 = (am, am). Let σ denote a
permutation of {0, 1, . . . ,m}, and let jσ = σ(m). We have that

P2(σ,am+1) = P2(σ, (am, am)) =

m∑
i=0

aσ−1(i)aσ−1(i+1) =

m∑
i=0

bibi+1,

where bi = aσ−1(i) (and bm+1 = b0). Note that bjσ = am. Let σ̂ denote
the permutation of {0, 1, . . . ,m− 1} defined by

σ̂−1(i) =

{
σ−1(i), if i < jσ

σ−1(i+ 1), if i ∈ [jσ,m− 1],
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where if jσ = m, the second situation doesn’t arise. Now note that

P2(σ, (am, am)) = P2(σ̂,am) +R(σ,am+1),

where

R(σ,am+1) = bjσ−1am + bjσ+1am − bjσ−1bjσ+1.

We claim the the greedy permutation σgreedy(m + 1) on {0, 1, . . . ,m}
maximises both P2(σ̂,am) and R(σ,am+1), and hence it maximises
P2(σ, (am, am)).

Note that σ̂greedy(m+ 1) = σgreedy(m). By the induction hypothe-
sis, σgreedy(m+ 1) then maximises P2(σ̂,am).

Let f(x, y) = xam + yam − xy be defined for all x, y ≥ am, and
note that R(σ,am+1) = f(bjσ−1, bjσ+1). The partial derivatives are
f1(x, y) = am − y ≤ 0 and f2(x, y) = am − x ≤ 0. Therefore the
largest possible value of f(x, y) for x = bi, y = bi′ with i 6= i′ occurs
with {bi, bi′} = {am−1, am−2}. In other words, any permutation σ
that puts am between am−1 and am−2 maximises R(σ,am+1). Since
σgreedy(m+1) has this property, this completes the proof for r = 2. �

We now prove the result for r = 3, using the same notation as
above.

Proof for r = 3. For m = 3 there is nothing to prove. Note that

P3(σ,am+1) = P3(σ̂,am) +R(σ,am+1),

where now

R(σ,am+1) = bjσ−2bjσ−1am + bjσ−1bjσ+1am + bjσ+1bjσ+2am

− bjσ−2bjσ−1bjσ+1 − bjσ−1bjσ+1bjσ+2.

By the induction hypothesis, the term P3(σ̂,am) is maximised by any
σ such that σ̂ = σgreedy(m). Note that σ = σgreedy(m + 1) has this
property.

For x−2, x−1, x1, x2 ∈ [am, 1) let

f(x−2, x−1, x1, x2) = x−2x−1am+x−1x1am+x1x2am−x−2x−1x1−x−1x1x2.

Note thatR(σ,am+1) = f(bjσ−2, bjσ−1, bjσ+1, bjσ+2). The partial deriva-
tives are:

f1(x−2, x−1, x1, x2) = x−1(am − x1) ≤ 0

f2(x−2, x−1, x1, x2) = x−2(am − x1) + x1(am − x−2) ≤ 0

f3(x−2, x−1, x1, x2) = x−1(am − x2) + x2(am − x−1) ≤ 0

f4(x−2, x−1, x1, x2) = x1(am − x−1) ≤ 0.
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The term R(σ,am+1) is therefore maximised at some σ for which
{bjσ−2, bjσ−1, bjσ+1, bjσ+2} = {am−4, am−3, am−2, am−1}. Note that
σgreedy(m + 1) also has this property. We proceed assuming that
{bjσ−2, bjσ−1, bjσ+1, bjσ+2} = {am−4, am−3, am−2, am−1}, and we will
show that σgreedy(m+ 1) maximises R(σ,am+1) among all σ for which
{bjσ−2, bjσ−1, bjσ+1, bjσ+2} = {am−4, am−3, am−2, am−1}. This suffices
to prove then that σgreedy(m+ 1) maximises P3(σ,am+1).

Now note that by adding and subtracting the terms bjσ+2bjσ−2bjσ−1
and bjσ+1bjσ+2bjσ−2 we can write

R(σ,am+1) = P3

(
I5, (bjσ−2, bjσ−1, am, bjσ+1, bjσ+2)

)
− P3

(
I4, (bjσ−2, bjσ−1, bjσ+1, bjσ+2)

)
,

where Ik is the identity permutation on k elements. The first term on
the right hand side is equal to

2∏
i=−2

bjσ−i × P2

(
I5, (1/bjσ−2, 1/bjσ−1, 1/am, 1/bjσ+1, 1/bjσ+2)

)

=

4∏
i=0

am−i × P2

(
I5, (1/bjσ−2, 1/bjσ−1, 1/am, 1/bjσ+1, 1/bjσ+2)

)
.

The product prefactor is constant. By the result already established
for r = 2 and the symmetry of the greedy permutation, the quantity
P2 here is maximised (among those as above) by any permutation σ for
which the vector (1/bjσ−2, 1/bjσ−1, 1/am, 1/bjσ+1, 1/bjσ+2) is already
the greedy ordering (or a symmetry of it) of {am−4, . . . , am}. Note
that σ = σgreedy(m+ 1) has this property.

Finally, the term P3

(
I4, (bjσ−2, bjσ−1, bjσ+1, bjσ+2)

)
is equal to

P1

(
I4, (1/bjσ−2, 1/bjσ−1, 1/bjσ+1, 1/bjσ+2)

)
,

and since P1 does not depend on the permutation, we have that σgreedy(m+
1) is a minimiser of this term as well. This completes the proof. �
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