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Abstract

We derive a perturbation expansion for general self-interacting random walks, where steps are made
on the basis of the history of the path. Examples of models where this expansion applies are reinforced
random walk, excited random walk, the true (weakly) self-avoiding walk, loop-erased random walk,
and annealed random walk in random environment. In this paper we show that the expansion gives
rise to useful formulae for the speed and variance of the random walk, when these quantities are known
to exist. The results and formulae of this paper have been used elsewhere by the authors to prove
monotonicity properties for the speed (in high dimensions) of excited random walk and related models,
and certain models of random walk in random environment. We also derive a law of large numbers and
central limit theorem (with explicit error terms) directly from this expansion, under strong assumptions
on the expansion coefficients. The assumptions are shown to be satisfied by excited random walk in
high dimensions with small excitation parameter, a model of reinforced random walk with underlying
drift and small reinforcement parameter, and certain models of random walk in random environment
under strong ellipticity conditions.

1 Introduction

Recently, many models of random walks with a certain self-interaction have been introduced. A few
examples are self-reinforced random walks [11, 32, 34], excited random walks [3, 28, 29, 38, 39], true-self
avoiding walks and loop-erased random walks. Proofs in these models often rely on martingale methods,
or explicit comparisons to random walk properties. In some of the examples, laws of large numbers are
derived. The difficulty is that the limiting parameters are rather implicit, so that it is hard to derive
analytical properties of them. For example, it is quite reasonable to assume that the drift for excited
random walk is monotone increasing in the excitement parameter for each d ≥ 2, but a proof of this fact
is currently missing. Similarly, it has not been proved that the speed for once-reinforced random walk
on the tree is monotone decreasing in the reinforcement parameter (see [11]). See [33] for a survey of
self-interacting random walks with reinforcement.

In the past decades, the lace expansion has proved to be an extremely useful technique to investigate a
variety of models above their upper-critical dimension, where Gaussian limits are expected. Examples are
self-avoiding walks above 4 dimensions [6, 14, 35, 36, 37], lattice trees above 8 dimensions [9, 10, 13, 24],
the contact process above 4 dimensions [20, 21], oriented percolation above 4 dimensions [23, 30, 31],
and percolation above 6 dimensions [12, 15, 16]. An essential ingredient in the proofs is the fact that
the above models are self-repellent. There are many more models where a Gaussian limit is expected
above a certain upper critical dimension, but using the lace expansion for these models is hard as they
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are not strictly self-repellent. In this paper, we perform a first step for a successful application of the lace
expansion methodology, namely, we derive the expansion for general self-interacting random walks. The
goal is to use this expansion for some of the simpler self-interacting stochastic processes available.

We will study a particular version of once-reinforced random walk, where the initial weights are
such that the corresponding random walk has a non-zero drift. A similar situation was investigated in
[11], where once-reinforced random walk was investigated on the tree. We expect that our method can be
adapted to the tree setting to reprove some results in [11], when the reinforcement parameter is sufficiently
small. We also study excited random walk, where the random walker has a drift in the direction of the
first component each time when the walker visits a new site. It was shown that this process has ballistic
behaviour when d ≥ 2 in [3, 28, 29], while there is no ballistic behaviour in one dimension. For a third
application of our method we study random walk in (partially) random environments, similar to those
considered in [5].

In this paper we give a (self-contained) proof of a law of large numbers (d ≥ 6) and a central limit
theorem d ≥ 9) when the excitation parameter is sufficiently small. We also derive a law of large numbers
and central limit theorem for the once-reinforced random walk with drift when the reinforcement is
sufficiently small compared to the drift. These results were completed in 2006. Since then, substantial
progress has been made on these two models. Using renewal techniques, a strong law of large numbers
and invariance principle has been proved for the excited random walk in dimensions d ≥ 2 [4], while laws
of large numbers and local central limit theorems are obtained for a large class of ballistic self-interacting
random walks (including the reinforced random walk with drift in all dimensions) in [27]. We prove
similar results for annealed random walks in partially random environment similar to those in [5] in the
perturbative regime, with the difference being that the probability of taking a step in each coordinate
may be random. We believe that our results for random walk in random environment are new.

The renewal techniques often give strong results (as described above), but currently do not provide
much insight into how the results depend on the underlying parameters. As is done in this paper, our
expansion can be used independently to prove (sometimes weaker) results in the perturbative regime. In
doing so we obtain formulae and estimates of error terms for some of the relevant quantities of interest.
This is one of the main advantages of our method, but as illustrated by recent applications (see Section
2.5) we see a combination of our expansion with renewal and ergodic methods to be highly informative.

2 The main results

We start by introducing some notation. A path ω is a sequence {ωi}∞i=0 for which ωi ∈ Zd for all i ≥ 0.
We obtain random walk when the random vector {ωi+1 −ωi}∞i=0 is an i.i.d. sequence. We let P be the law
of a random walk law starting at the origin. We write �ωn for the vector

�ωn = (ω0, . . . , ωn), (2.1)

that is, for the first n positions of the walk and its starting point. Let

D(x) = P(ω1 = x) (2.2)

be the random walk transition probability, so that

P(�ωn = (x0, x1, . . . , xn)) =
n−1∏
i=0

D(xi+1 − xi). (2.3)

We restrict our attention to D with finite range L so that
∑

x:|x|>L D(x) = 0 and all moments of D exist.
For self-interacting random walks, a similar expression to (2.3) is valid, but the term appearing in the
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product may depend on the history of the path. Let Q(x0) denote the law of a self-interacting random
walk �ω = (ω0, ω1, . . . ) started at ω0 = x0, i.e.,

Q(x0)(�ωn = (x0, x1, . . . , xn)) =
n−1∏
i=0

p�xi(xi, xi+1), (2.4)

where
p�xi(xi, xi+1) = Q(x0)(ωi+1 = xi+1|�ωi = �xi).

In other words, for a general path �xi, we write p�xi(xi, xi+1) for the conditional probability that the walk
steps from xi to xi+1, given the history of the entire path �xi = (x0, . . . , xi). It is crucial to our analysis
that our self-interacting random walk law is translation invariant, i.e. for all �xn,

Q(x0)(�ωn = (x0, x1, . . . , xn)) = Q(o)(�ωn = (o, x1 − x0, . . . , xn − x0)).

We henceforth write Q = Q(o) and drop the dependence on the starting point x0 from the notation when
the history �xn of the path is given, e.g. Q(·|�ωn = �xn) = Q(x0)(·|�ωn = �xn).

The goal of this paper is to investigate the two-point function

cn(x) = Q(ωn = x). (2.5)

In this paper, we will derive an expansion for the two-point function in full generality. However, for
the analytical results we will focus on directed once-edge-reinforced random walks, excited random walks,
and random walks in partially random environments. In Sections 2.1, 2.2, and 2.3 below, we will define
the models and state the results.

2.1 Once edge-reinforced random walk with drift

In this section, we introduce an example of a once edge-reinforced random walk with drift. For a directed
edge b, denote the number of times the edge b is traversed up to time t by

�t(b) =
t∑

i=1

I{(ωi−1,ωi)=b}, (2.6)

where IA denotes the indicator of the event A, and let t �→ βt be a sequence of R-valued reinforcement
parameters. We use ws(b) to denote the weight of the edge b at time s. The main assumption for our
reinforced random walk is that w0(b) is translation invariant, and that∑

x

xw0(0, x) �= 0. (2.7)

Define ws(b) recursively by
wt(b) = wt−1(b) + I{(ωt−1,ωt)=b}β�t(b). (2.8)

We define a directed version of edge-reinforced random walk (ERRW) by setting

p�ωi(xi, xi+1) =
wi(xi, xi+1)∑

y wi(xi, y)
. (2.9)

We will deal with directed once-reinforced random walks, where βt = βδt,1 is taken sufficiently small,
however our results extend to directed boundedly-reinforced random walks, where we assume that

β =
∞∑
t=0

|βt| < ∞, is sufficiently small. (2.10)
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The parameters βs are allowed to be negative (provided w0(b) +
∑m

t=1 βt remains bounded away from 0).
Note that (2.7) implies that the random walk distribution arising for β = 0 has non-zero drift.

We denote by Qβ the distribution of the above once-reinforced random walk with drift, and we let
Eβ denote expectation with respect to Qβ. We denote by Varβ(ωn) the covariance matrix of the random

vector ωn under the measure Qβ. We also denote convergence in distribution by d=⇒, convergence in

probability under the law P by P−→ and write N (0,Σ) for the multivariate normal distribution with
mean the zero vector and covariance matrix Σ.

Theorem 2.1 (A CLT for finitely reinforced random walk with drift). Fix d ≥ 1 and assume (2.7).
There exist β0 = β0(d,w0) > 0, θ = θ(β,w0, d) ∈ [−1, 1]d and finite Σ = Σ(β,w0, d) such that, for all
β ≤ β0,
(a)

Eβ[ωn] = θn[1 + O(
1
n

)]. (2.11)

(b)

Varβ(ωn) = Σn[1 + O(
1
n

)]. (2.12)

(c) ωn satisfies a central limit theorem under Qβ, that is,

ωn − θn√
n

d=⇒ N (0,Σ). (2.13)

As noted in the introduction, this result has since been strengthened in [27], although without error
estimates. Parts of our methods apply to once-reinforced random walk where the initial weights induce
no drift. However, we are currently unable to prove the bounds on the expansion coefficients, one of the
crucial steps in the analysis. We shall comment on this issue in more detail in Section 6.5 below. In
Section 3.3-3.4, we shall further give formulas for the speed and variance appearing in Theorem 2.1.

2.2 Excited random walk

In this section, we introduce excited random walk (ERW), which is the second model to which we shall
apply our expansion method. It is defined for β ∈ [0, 1] by taking

p�ωi(xi, xi+1) = p0(xi+1 − xi)I{xi∈�ωi−1} + pβ(xi+1 − xi)
[
1 − I{xi∈�ωi−1}

]
, (2.14)

where {xi ∈ �ωi−1} denotes the event that xi = ωj for some 0 ≤ j ≤ i − 1, and where

p0(x) =
1
2d

I{|x|=1} (2.15)

is the nearest-neighbour step distribution and

pβ(x) =
1 + βe1 · x

2d
I{|x|=1}. (2.16)

Here e1 = (1, 0, . . . , 0) and x · y is the inner-product between x and y. In words, the random walker gets
excited and has a positive drift in the direction of the first coordinate each time he/she visits a new site.

That ERW has a positive drift (in the sense of a lower bound) was established for ERW in d ≥ 4 in
[3], for d = 3 in [28], and for d = 2 in [29]. For d = 1, it is known that ERW is recurrent and diffusive
(except the trivial case β = 1) [7]. Many generalisations of this model, described in terms of cookies, have
also been studied (see for example [38], [1], [2]).

4



We denote by Qβ the distribution of the above excited random walk started at the origin, and we let
Eβ denote expectation with respect to Qβ. We denote by Varβ(ωn) the covariance matrix of the random
vector ωn under the measure Qβ.

Our main result for excited random walk is the following theorem:

Theorem 2.2 (A CLT for ERW above 8 dimensions). Fix d > 8. Then, there exists β0 = β0(d) > 0,
θ = (θ1(β, d), 0, . . . , 0) and finite Σ = Σ(β, d) such that, for all β ≤ β0,
(a)

Eβ[ωn] = θn[1 + O(
1
n

)]. (2.17)

(b)

Varβ(ωn) = Σn[1 + O(
log n

n1∧ d−7
2

)]. (2.18)

(c) ωn satisfies a central limit theorem under Qβ, that is,

ωn − θn√
n

d=⇒ N (0,Σ). (2.19)

Unfortunately, our methods do not apply to general d ≥ 2. However, when d > 5, we can prove a
weak law of large numbers:

Theorem 2.3 (A LLN for ERW above 5 dimensions). Fix d > 5. Then, there exists β0 = β0(d) > 0 and
θ = (θ1(β, d), 0, . . . , 0) such that, for all β ≤ β0,
(a)

Eβ[ωn] = θn[1 + O(
log n

n1∧ d−5
2

)]. (2.20)

(b) ωn satisfies a law of large numbers under Qβ, that is,

ωn

n

Qβ−→ θ. (2.21)

As remarked in the introduction, these results have since been strengthened considerably in [4], and
indeed a strong law of large numbers was already implicit in [38]. One of the key purposes of this paper
is to obtain analytically tractable formulae for the coefficients θ(β, d) and Σ(β, d) in the central limit
theorem (see Section 3.2), allowing for a proof that β �→ θ(β, d) is monotonically increasing. This result
has since been proved for d ≥ 9 in [19], making crucial use of the methodology in this paper:

Theorem 2.1 ([19]). For excited random walk in dimensions d ≥ 9, the velocity θ1 is a strictly increasing
function of β ∈ [0, 1].

2.3 Random walk in a partially random environment

In this section, we introduce a model of random walk in (partially) random environment (RWpRE).
The model we consider is a (nearest-neighbour, for simplicity) random walk in Zd, where d = d0 + d1

with d1 ≥ 5. The random environment has the property that the random walker observed only when
stepping in the coordinates d0 + 1, . . . , d, behaves as a simple random walk in d1 dimensions. This is
similar to the model studied in [5], but with two important differences. Firstly, our results will only
apply in the perturbative regime, where the transition probabilities are sufficiently close to their expected
values. Secondly we allow the probability of stepping in the d0 + 1, . . . , d coordinates to depend on the
environment, provided that this probability is bounded away from 0, uniformly in the environment. This
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situation is not allowed in [5], so our results for this model can be seen as a non-trivial extension to [5] in
the perturbative regime.

To be more precise about the model that we study, we require some additional notation. Let d =
d0 + d1 ≥ 6 with d1 ≥ 5. Let Ud be the set of unit vectors in Zd, and P(Ud) be the set of probability
measures on Ud. Let W· = {W·(u)}u∈Ud

denote an element of P(Ud) and let μ be a probability measure
on P(Ud), satisfying the following:

(1) The weight assigned to Ud0 is not too large, i.e. there exists some δ > 0 such that

μ
( ∑

u∈Ud0

W·(u) ≤ 1 − δ
)

= 1.

(2) The weights assigned to Ud \ Ud0 are “fair”, i.e. for each v ∈ Ud \ Ud0 ,

μ

(
W·(v) =

1 −∑
u∈Ud0

W·(u)

2d1

)
= 1.

(3) The weights cannot vary too much, i.e. there exists some β < 1 such that for each u ∈ Ud,

μ (|W·(u) − Eμ[W·(u)]| < β) = 1, (2.22)

where Eμ denotes expectation with respect to μ.

Let ν be the product measure on P(Ud)Zd
obtained from μ, i.e. under ν, {Wx}x∈Zd are independent

with distribution μ. The RWpRE in environment W = {Wx}x∈Zd is the Markov chain {Xn}n≥0 such
that PW (X0 = 0) = 1, and PW (Xn+1 = Xn + u|X0, . . . ,Xn) = WXn(u). The annealed RWpRE is the
(non-Markovian) random walk with law Q obtained by averaging over all environments, i.e.

Q(�ωn = �xn) =
∫

PW ( �Xn = �xn)dν.

The annealed transition probabilities are given by

p�xi(xi, xi+1) = Q(ωi+1 = xi+1|�ωi = �xi) = E[Wxi(xi+1 − xi)|�ωi = �xi]. (2.23)

Our main result for RWpRE is the following theorem, in which Qβ denotes the above annealed law for a
fixed (sufficiently small) choice of β.

Theorem 2.4 (A CLT for RWpRE for d1 > 7). Fix d1 > 7 and d0 ≥ 1. Then, for every δ > 0 there
exists β0 = β0(d1, d0, δ) > 0, θ(β, δ, d1, d0) and finite Σ = Σ(β, δ, d1, d0) such that, for all β ≤ β0,
(a)

Eβ[ωn] = θn
[
1 + O

( 1
n

)]
. (2.24)

(b)

Varβ(ωn) = Σn
[
1 + O

( log n

n1∧ d1−6
2

)]
. (2.25)

(c) ωn satisfies a central limit theorem under Qβ, that is,

ωn − θn√
n

d=⇒ N (0,Σ). (2.26)
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Theorem 2.5 (A LLN for RWpRE for d1 > 4). Fix d1 > 4 and d0 ≥ 1. Then for each δ, there exists
β0 = β0(d1, d0, δ) > 0 and θ = θ(d1, d0, δ) such that, for all β ≤ β0,
(a)

Eβ[ωn] = θn[1 + O(
log n

n1∧ d1−4

2

)]. (2.27)

(b) ωn satisfies a law of large numbers under Qβ, that is,

ωn

n

Qβ−→ θ. (2.28)

In the above theorems, the β0 arising from our analysis can be taken larger as δ increases.
Although results of a similar nature appear in [5] and some of the references therein, we believe that

this is a new result. In particular, we do not assume that the random components of the environment
are isotropic, nor that they have mean zero, nor that the random walker is transient in any particular
direction. However, as in [5], our analysis relies heavily on the fact that simple random walk in d1

dimensions is, loosely speaking, very transient.

2.4 Overview of the method

The main tool used is a perturbation expansion for the two-point function. Such an expansion is often
called a lace expansion, and takes the form of a recurrence relation

cn+1(x) =
∑
y

D(y)cn(x − y) +
∑
y

n+1∑
m=2

πm(y)cn+1−m(x − y) (2.29)

for certain expansion coefficients {πm}∞m=2, and where

D(x) = po(o, x) (2.30)

is the transition probability function for the first step. A recurrence relation such as (2.29) is derived
for the oriented percolation and self-avoiding walk two-point functions, and plays an essential part in
the proofs that these models are Gaussian above the upper-critical dimension. For self-avoiding walk,
cn(x) equals the number of n-step self-avoiding walks starting at 0 and ending at x, and

∑
x cn(x) equals

the total number of self-avoiding walks, which grows exponentially at a certain rate that needs to be
determined in the course of the proof. For self-interacting random walks,

∑
x cn(x) = 1. This essential

difference gives rise to a difference in the strategy for proofs.
In any lace expansion analysis, there are three main steps. The first is the expansion in (2.29), which,

for general self-interacting random walks, will be derived in Section 3. The second step is to derive
bounds on the lace expansion coefficients. These bounds will be derived in Section 6. The final step is the
analysis of the recurrence relation, using the bounds on the lace expansion coefficients. For this analysis,
we will make use of induction. The inductive analysis in this paper is intended for the perturbative regime
(sufficiently small β), and is similar to the one in [17], where a lace expansion was used to prove ballistic
behaviour and a central limit theorem for general one-dimensional weakly self-avoiding walk models. In
turn, this induction was inspired by the analyses in [18, 22].

In the induction argument, we shall make use of the characteristic function of the end-point of the
n-step self-interacting random walk, which is the Fourier transform

ĉn(k) =
∑

x∈Zd

eik·xcn(x). (2.31)
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Taking the Fourier transform of (2.29) yields

ĉn+1(k) = D̂(k)ĉn(k) +
n+1∑
m=2

π̂m(k)ĉn+1−m(k) (2.32)

We shall present two separate induction arguments. The first proves a law of large numbers as
in Theorem 2.3 under relatively weak assumptions on the expansion coefficients, the second is a more
involved induction argument proving the central limit theorem as in Theorems 2.1 and 2.2 under stronger
assumptions on the expansion coefficients.

The remainder of the paper is organised as follows. In Section 3, we present the expansion for self-
interacting random walks, which applies in the general context described in Section 2. We also establish
the formulae for the limiting speed and variance of the endpoint of the walk, assuming that these quantities
exist. In Sections 4 and 5, we describe the induction arguments for the law of large numbers and central
limit theorem respectively. In Section 6, we prove the bounds on the lace expansion coefficients for the
two models under consideration. In Section 3.4, we prove the formula for the variance stated in Theorem
3.2 in Section 3.

2.5 Recent applications of this method

In this paper we have concentrated on deriving the expansion and on obtaining laws of large numbers and
central limit theorems under strong conditions on the expansion coefficients. However in Sections 3.3 and
3.4 we also obtain formulae for the speed and variance, when these quantities are known to exist, under
much weaker conditions on the expansion coefficients.

The speed of excited random walk is known to exist in all dimensions, e.g. see [4] and the results of
this paper give a formula for that speed. This formula is shown in [19] to be monotone increasing in the
excitation parameter in dimensions d ≥ 9. Multi-excited random walks in high dimensions, where there
can be infinitely many cookies at each site, with positive or negative drifts are studied in [25]. A result
of [5] using cut-times and ergodicity shows that the speed of this model exists in high dimensions. A
formula for the annealed speed is then given by the results of this paper and it is shown in [25] that in
high dimensions the velocity is positive if the first cookie drift is sufficiently positive and is continuous
and monotone in certain parameters. It is then possible to give examples of excited random walks in non-
trivial cookie environments that have zero speed. In [26], certain models of random walk in i.i.d. random
environment (where there is a transient random walk component and where at each site either the left or
right step is not available) are studied. In these models the existence of the speed is given by an extension
of the LLN obtained in [5], a formula is provided by this paper, and it is possible to prove monotonicity
of the speed as a function of the probability p that the right step is available at the origin.

3 The expansion for self-interacting random walks

In this section, we perform and discuss the expansion for interacting random walks. In Section 3.1,
we derive the expansion in (2.29), in Section 3.2, we discuss the consequences of our expansion, and
in Sections 3.3 and 3.4, respectively, we identify the speed and variance from our expansion formula,
assuming that they exist and that the expansion formulae converge.
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3.1 Derivation of the expansion

Before we can start to prove (2.29), we need some more notation. We will make use of the convolution of
functions, which is defined for absolutely summable functions f, g on Zd by

(f ∗ g)(x) =
∑
y

f(y)g(x − y), (3.1)

so that we can rewrite (2.29) as

cn+1(x) = (D ∗ cn)(x) +
n+1∑
m=2

(πm ∗ cn+1−m)(x). (3.2)

If �η and �x are two paths of length at least j and m respectively and such that ηj = x0, then the
concatenation �ηj ◦ �xm is defined by

(�ηj ◦ �xm)i =

{
ηi when 0 ≤ i ≤ j,
xi−j when j ≤ i ≤ m + j.

(3.3)

Given �ηm, we define a probability measure Q�ηm on walk paths starting from ηm, by specifying its value
on particular cylinder sets (in a consistent manner) as follows

Q�ηm(�ωn = (x0, x1, . . . , xn)) ≡
n−1∏
i=0

p�ηm◦�xi(xi, xi+1), (3.4)

and extending the measure to all finite-dimensional cylinder sets in the natural (consistent) way. We
write E�ηm for the expected value with respect to Q�ηm , and define

c�ηm
n (ηm, x) = Q�ηm(ωn = x). (3.5)

Any path of length n + 1 is a path of length 1 concatenated with a path of length n, so that, in terms of
the above notation, we can use (2.30) to rewrite

cn+1(x) =
∑
�ω

(0)
1

D(ω(0)

1 )
∑

�ω
(1)
n :ω

(0)
1 →x

n−1∏
i=0

p�ω
(0)
1 ◦�ω(1)

i (ω(1)

i , ω(1)

i+1). (3.6)

If we had p�ω
(0)
1 ◦�ω(1)

i = p�ω
(1)
i for all �ω(0)

1 ◦ �ω(1)

i , then we would be back in the random walk case, since we
would arrive at

cn+1(x) =
∑
�ω

(0)
1

D(ω(0)

1 )
∑

�ω
(1)
n :ω

(0)
1 →x

n−1∏
i=0

p�ω
(1)
i (ω(1)

i , ω(1)

i+1) = (D ∗ cn)(x). (3.7)

For interacting random walks, p�ω
(0)
1 ◦�ω(1)

i does not equal p�ω
(1)
i in general, and we are left to deal with the

difference between the two. For given �ηm and �xi we can write

p�ηm◦�xi(xi, xi+1) = p�xi(xi, xi+1) +
(
p�ηm◦�xi − p�xi

)
(xi, xi+1). (3.8)

With this substitution, we have that

n−1∏
i=0

p�ω
(0)
1 ◦�ω(1)

i (ω(1)

i , ω(1)

i+1) =
n−1∏
i=0

[
p�ω

(1)
i (ω(1)

i , ω(1)

i+1) +
(
p�ω

(0)
1 ◦�ω(1)

i (ω(1)

i , ω(1)

i+1) − p�ω
(1)
i (ω(1)

i , ω(1)

i+1)
)]

. (3.9)
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In (3.9), the first term has ‘forgotten’ the first step, while the second term makes up for this mistake. We
would like to expand out the product in (3.9). Note that for all {ai}n−1

i=0 and {bi}n−1
i=0 ,

n−1∏
i=0

(ai + bi) =
n−1∏
i=0

ai +
n−1∑
j=0

( j−1∏
i=0

(ai + bi)
)
bj
( n−1∏

i=j+1

ai
)
, (3.10)

where the empty products arising in
∏j−1

i=0 (ai + bi) when j = 0 and
∏n−1

i=j+1 ai when j = n− 1, are defined
to be equal to 1. Applying this to (3.6) with

ai = p�ω
(1)
i (ω(1)

i , ω(1)

i+1), bi =
(
p�ω

(0)
1 ◦�ω(1)

i − p�ω
(1)
i
)
(ω(1)

i , ω(1)

i+1),

we arrive at

cn+1(x) =
∑
�ω

(0)
1

D(ω(0)

1 )
∑

�ω
(1)
n :ω

(0)
1 →x

n−1∏
i=0

p�ω
(1)
i (ω(1)

i , ω(1)

i+1)

+
n−1∑
j=0

∑
�ω

(0)
1

D(ω(0)

1 )
∑

�ω
(1)
n :ω

(0)
1 →x

[ j−1∏
i=0

p�ω
(0)
1 ◦�ω(1)

i (ω(1)

i , ω(1)

i+1)
](

p�ω
(0)
1 ◦�ω(1)

j − p�ω
(1)
j
)
(ω(1)

j , ω(1)

j+1)

×
[ n−1∏

i=j+1

p�ω
(1)
i (ω(1)

i , ω(1)

i+1)
]
. (3.11)

The first term equals (D ∗ cn)(x) by (3.7). To rewrite the second term, we need some more notation. We
abbreviate

Δ(1)

j+1 =
(
p�ω

(0)
1 ◦�ω(1)

j − p�ω
(1)
j
)
(ω(1)

j , ω(1)

j+1), (3.12)

so that (3.11) becomes

cn+1(x) = (D ∗ cn)(x) +
n−1∑
j=0

∑
�ω

(0)
1

D(ω(0)

1 )
∑

�ω
(1)
n :ω

(0)
1 →x

[ j−1∏
i=0

p�ω
(0)
1 ◦�ω(1)

i (ω(1)

i , ω(1)

i+1)
]
Δ(1)

j+1

[ n−1∏
i=j+1

p�ω
(1)
i (ω(1)

i , ω(1)

i+1)
]

= (D ∗ cn)(x) +
n−1∑
j=0

∑
�ω

(0)
1

D(ω(0)

1 )
∑

�ω
(1)
j+1:ω

(1)
0 =ω

(0)
1

[ j−1∏
i=0

p�ω
(0)
1 ◦�ω(1)

i (ω(1)

i , ω(1)

i+1)
]
Δ(1)

j+1

×
∑

(ω
(1)
j+2,...,ω

(1)
n ):ω

(1)
n =x

[ n−1∏
i=j+1

p�ω
(1)
i (ω(1)

i , ω(1)

i+1)
]
. (3.13)

From (3.5), we have that

∑
(ω

(1)
j+2,...,ω

(1)
n ):ω

(1)
n =x

[ n−1∏
i=j+1

p�ω
(1)
i (ω(1)

i , ω(1)

i+1)
]

= c
�ω

(1)
j+1

n−j−1(ω
(1)

j+1, x). (3.14)

Therefore, (3.13) is equal to

cn+1(x) = (D ∗ cn)(x) +
n−1∑
j=0

∑
�ω

(0)
1

D(ω(0)

1 )
∑
�ω

(1)
j+1

Q�ω
(0)
1 (�ωj = �ω(1)

j )Δ(1)

j+1 c
�ω

(1)
j+1

n−j−1(ω
(1)

j+1, x) (3.15)
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For the second step of the expansion, we note that a type of two-point function c
�ω

(1)
j+1

n−j−1(ω
(1)

j+1, x) appears
on the right side of (3.15). The second step of the expansion involves expanding out the dependence of
this two-point function on the history �ω(1)

j+1. Given �ω(1)

j+1 we write

c
�ω

(1)
j+1

n−j−1(ω
(1)

j+1, x) = cn−j−1(ω
(1)

j+1, x) +

(
c
�ω

(1)
j+1

n−j−1(ω
(1)

j+1, x) − cn−j−1(ω
(1)

j+1, x)

)
. (3.16)

The contribution to (3.15) from the first term on the right of (3.16) is

n−1∑
j=0

∑
y

⎡
⎢⎢⎣∑

�ω
(0)
1

D(ω(0)

1 )
∑
�ω

(1)
j+1

Q�ω
(0)
1 (�ωj = �ω(1)

j )Δ(1)

j+1I{ω(1)
j+1=y}

⎤
⎥⎥⎦ cn−j−1(x − y) ≡

n+1∑
m=2

∑
y

π(1)
m (y)cn+1−m(x − y),

(3.17)

where, for m ≥ 2,

π(1)
m (y) =

∑
�ω

(0)
1

D(ω(0)

1 )
∑

�ω
(1)
m−1

Q�ω
(0)
1 (�ωm−2 = �ω(1)

m−2)Δ
(1)

m−1I{ω(1)
m−1=y} (3.18)

To investigate the contribution to (3.15) from the term in brackets on the right of (3.16), we consider the
difference between c�ηm

n (ηm, x) and cn(ηm, x) for general �ηm, n and x. We first write

c�ηm
n (ηm, x) =

∑
�ω∗

n:ηm→x

n−1∏
i=0

p�ηm◦�ω∗
i (ω∗

i , ω
∗
i+1), (3.19)

and then use (3.8) and (3.10) to end up with

c�ηm
n (ηm, x) = cn(ηm, x) +

n−1∑
j=0

∑
�ω∗

n:ηm→x

[ j−1∏
i=0

p�ηm◦�ω∗
i (ω∗

i , ω
∗
i+1)

](
p�ηm◦�ω∗

j − p�ω∗
j
)
(ω∗

j , ω
∗
j+1)

n−1∏
i=j+1

p�ω∗
i (ω∗

i , ω
∗
i+1)

]
.

(3.20)
Therefore, similarly to (3.13)–(3.15), we obtain

c�ηm
n (ηm, x) = cn(ηm, x) +

n−1∑
j=0

∑
�ω∗

j+1

Q�ηm(�ωj = �ω∗
j )Δ

∗
j+1c

�ω∗
j+1

n−j−1(ω
∗
j+1, x). (3.21)

In (3.21), the first term is a regular two-point function, i.e., it does not depend on the history �ηm. In the

correction term a history-dependent two-point function c
�ω∗

j+1

n−j−1 appears to which we can iteratively use
(3.21). Thus, with m = j + 2,

cn+1(x) =(D ∗ cn)(x) +
n+1∑
m=2

(π(1)
m ∗ cn−m+1)(x) (3.22)

+
∑
j1,j2

∑
�ω

(0)
1

D(ω(0)

1 )
∑

�ω
(1)
j1+1

∑
�ω

(2)
j2+1

Q�ω
(0)
1 (�ωj1 = �ω(1)

j1
)Δ(1)

j1+1Q
�ω

(1)
j1+1(�ωj2 = �ω(2)

j2
)Δ(2)

j2+1c
�ω

(2)
j2+1

n−j1−j2−2(ω
(2)

j2+1, x),

where we write, for N ≥ 1,

Δ(N)

jN+1 =
(
p

�ω
(N−1)
jN−1+1◦�ω

(N)
jN − p

�ω
(N)
jN

)
(ω(N)

jN
, ω(N)

jN+1), (3.23)

11



with j0 ≡ 0.
For N ≥ 1, we let Am,N = {�j ∈ ZN

+ : j1 + · · · + jN = m − N − 1} and further define

π(N)
m (y) =

∑
�j∈Am,N

∑
�ω

(0)
1

∑
�ω

(1)
j1+1

· · ·
∑

�ω
(N)
jN +1

I{ω(N)
jN +1=y}D(ω(0)

1 )
N∏

n=1

Δ(n)
jn+1

jn−1∏
in=0

p
�ω

(n−1)
jn−1+1◦�ω

(n)
in

(
ω(n)

in
, ω(n)

in+1

)
(3.24)

=
∑

�j∈Am,N

∑
�ω

(0)
1

∑
�ω

(1)
j1+1

· · ·
∑

�ω
(N)
jN +1

I{ω(N)
jN +1=y}D(ω(0)

1 )
N∏

n=1

Δ(n)
jn+1Q

�ω
(n−1)
jn−1+1(�ωjn = �ω(n)

jn
).

which is zero when N + 1 > m. Note that (3.24) reduces to (3.18) in the case N = 1. Then define

πm(y) =
∞∑

N=1

π(N)
m (y). (3.25)

We emphasize that, conditionally on �ω(M)

jM+1, the probability measure Q
�ω

(M)
jM +1

M+1 is the law of �ω(M+1)

jM+1+1, i.e.,
that �ω(M)

jM+1 acts as the history for �ω(M+1)

jM+1+1.
Equation (2.29) follows by iteratively replacing the two-point function in (3.21) by using the equality

(3.21), until the second term on the right of (3.21) vanishes. This must happen when N = n + 1. This
completes the derivation of the expansion.

3.2 Discussion of the expansion

In this section, we discuss the consequences of the expansion in (2.29).

The lace expansion coefficients. The lace expansion coefficients involve the factors

Δ(N)

jN+1 =
(
p

�ω
(N−1)
jN−1+1◦�ω

(N)
jN − p

�ω
(N)
jN

)
(ω(N)

jN
, ω(N)

jN+1) (3.26)

in (3.23). This difference is identically zero when the histories �ω(N−1)

jN−1+1 ◦ �ω(N)

jN
and �ω(N)

jN
give the same

transition probabilities to go from ω(N)

jN
to ω(N)

jN+1. For excited random walk, Δ(N)

jN+1 is non-zero precisely
when ω(N)

jN
has already been visited by �ω(N−1)

jN−1+1, but not by �ω(N)

jN−1, so that

|Δ(N)

jN+1| ≤|Δ(N)

jN+1|I{ω(N)
jN

∈�ω
(N−1)
jN−1+1}

I{ω(N)
jN

/∈�ω
(N)
jN−1}

≤CβI{ω(N)
jN

∈�ω
(N−1)
jN−1+1}

I{ω(N)
jN

/∈�ω
(N)
jN −1}

≤ CβI{ω(N)
jN

∈�ω
(N−1)
jN−1

}.
(3.27)

For once-edge-reinforced random walk, the difference (3.23) is nonzero exactly when the vertex ω(N)

jN

has already been visited by �ω(N−1)

jN−1+1 via an edge that was not traversed by �ω(N)

jN
. Therefore, we also have

for once-edge-reinforced random walk that

|Δ(N)

jN+1| ≤ CβI{ω(N)
jN

∈�ω
(N−1)
jN−1

}. (3.28)

For RWpRE, a similar bound holds as follows. From (2.23),

Δ(N)

jN+1 = E
[
W

ω
(N)
jN

(ω(N)

jN+1 − ω(N)

jN
)
∣∣�ωjN−1+1+jN

= �ω(N−1)

jN−1+1 ◦ �ω(N)

jN

]− E
[
W

ω
(N)
jN

(ω(N)

jN+1 − ω(N)

jN
)
∣∣�ωjN

= �ω(N)

jN

]
.
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Figure 1: The diagrams for π(N)
m , N = 1, . . . , 5, arising from the expansion and the bound (3.28) for both

models. The subwalks (indicated by different shades) in the diagrams have the previous subwalk as their
history. An intersection of two subwalks and a small factor β appears at each vertex.

By definition the random environment is site-wise independent, so the only information about W
ω

(N)
jN

contained in the history of the path is in the departures from the site ω(N)

jN
. Trivially every departure

from ω(N)

jN
by �ω(N)

jN
is also a departure from ω(N)

jN
by �ω(N−1)

jN−1+1 ◦ �ω(N)

jN
, and any additional departures from

this site by �ω(N−1)

jN−1+1 ◦ �ω(N)

jN
are actually departures from ω(N)

jN
by �ω(N−1)

jN−1
. Thus Δ(N)

jN+1 is non-zero only if
ω(N)

jN
∈ �ω(N−1)

jN−1
. It then follows immediately from (2.22) that

|Δ(N)

jN+1| ≤ 2βI{ω(N)
jN

∈�ω
(N−1)
jN−1

}. (3.29)

We conclude that for all models under consideration, each factor |Δ(N)

jN+1|:
1. enforces an intersection between the path and its previous history;

2. gives rise to a factor β, making π(N)
m (y) small when β is sufficiently small and N is large.

The quantities π(N)
m (y) combined with the bound (3.28) for both models, can be represented by diagrams

of the form displayed in Figure 1 for N = 1, . . . , 5. The first step is special, as it has no history. Thereafter,
each subwalk �ω(i)

ji+1 (indicated by shading in Figure 1) has the previous subwalk �ω(i−1)

ji−1+1 as its history.
The apparent similarity with the self-avoiding walk diagrams (see for example [14]) is natural due to
the intersections enforced by the factors Δ(i)

ji+1 as described above. A small factor β arises from each
intersection (represented by vertices in Figure 1), and the number of intersections increases with the
complexity of the diagram.

The speed and variance. By convention our vectors are considered to be column vectors. Thus if
θ ∈ Rd, then θθt is a d × d matrix with real entries.

The limiting speed θ = θ(β, d) and covariance matrix Σ = Σ(β, d) appearing in Theorems 2.1–2.3 are
given by

θ(β, d) = θ∅ − i
∞∑

m=2

∇π̂m(0), (3.30)

Σ(β, d) = Σ∅ − θθt −
∞∑

m=2

∇2
[
e−iθ·k(m−1)π̂m(k)

]
k=0

, (3.31)
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where θ∅ is the expected drift of the transition probability D = po, i.e.,

θ∅ =
∑

x∈Zd

xD(x), (3.32)

while Σ∅ is the covariance matrix of D = po given by

(Σ∅)i,j =
∑

x∈Zd

xixjD(x), (3.33)

and ∇f(k) is the vector of derivatives of k �→ f(k), while ∇2f(k) is the matrix consisting of the double
derivatives of k �→ f(k).

These formulas can be heuristically derived from the recurrence relation (2.29). Indeed, take the
Fourier transform to obtain

ĉn+1(k) = D̂(k)ĉn(k) +
n+1∑
m=2

π̂m(k)ĉn+1−m(k). (3.34)

Now replace ĉl(k) throughout the recurrence relation by eiθ·kl− 1
2
ktΣkl, in accordance with Theorem 2.1(c)–

2.2(c). Then, dividing by eiθ·kn− 1
2
ktΣkn, we obtain

eiθ·k− 1
2
ktΣk ≈ D̂(k) +

n+1∑
m=2

π̂m(k)e−iθ·k(m−1)+ 1
2
ktΣk(m−1). (3.35)

Expanding to linear order in k yields (3.30) and expanding to second order in k yields (3.31), when we
note that Σ (as defined in (2.12) and (2.18)) must be symmetric, and

π̂m(0) = 0 and D̂(k) = 1 + ik · θ∅ − 1
2
ktΣ∅k + O(|k|3). (3.36)

The results in this paper, as well as the proofs, follow part of the ideas in [17], where it was shown
that certain weakly self-avoiding walk models in d = 1 behave ballistically.

3.3 The formula for the speed

In this section, we show that, when the speed is proved elsewhere to exist, and our formula for the
speed in (3.30) converges, then in fact (3.30) identifies the speed. For example, for ERW in dimensions
d = 2, . . . , 5, where Theorem 2.3 does not apply, it is known (e.g. [4]) that the speed exists almost surely.

Theorem 3.1 (The speed formula). If limn→∞
∑n

m=2

∑
x xπm(x) exists and n−1ωn

Q−→ θ, then

θ =
∑
x

xpo(o, x) +
∞∑

m=2

∑
x

xπm(x). (3.37)

Proof. Multiplying (2.29) by x = y+(x−y), summing, and using the facts that
∑

x cn(x) =
∑

x po(o, x) = 1
and

∑
x πm(x) = 0, we obtain

∑
x

xcn+1(x) =
∑
y

ypo(o, y) +
∑
x

xcn(x) +
n+1∑
m=2

∑
y

yπm(y). (3.38)
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Now
∑

x xcn(x) = E[ωn], so rearranging (3.38) we obtain

E[ωn+1 − ωn] = θ∅ +
n+1∑
m=2

∑
y

yπm(y). (3.39)

The right hand side converges if and only if the left hand side does. Thus, under the assumption that
limn→∞

∑n
m=2

∑
x xπm(x) ≡ θ̃ − θ∅ exists, we obtain that

lim
n→∞ E[ωn+1 − ωn] = θ̃. (3.40)

In turn, (3.40) implies that
lim

n→∞ E[n−1ωn] = θ̃. (3.41)

When n−1ωn
Q−→ θ, by bounded convergence and the fact that |ωn| ≤ nL since the maximal step size

of our self-interacting random walks is L, we have that

lim
n→∞ E[n−1ωn] = θ, (3.42)

so that, as required, θ = θ̃.

3.4 The formula for the variance

In this section we prove a result about the variance of the endpoint of the walk, similar to that obtained
above for the speed. Define a

[i]
m :=

∑
y y[i]πm(y). Then, we have the following formula for the variance of

self-interacting random walks in terms of the lace expansion coefficients:

Theorem 3.2 (The variance formula). Suppose that for each i, j ∈ {1, 2, . . . , d},

lim
n→∞

E[ω[i]
n ω

[j]
n ] − E[ω[i]

n ]E[ω[j]
n ]

n
= Σij , and

∞∑
m=2

∑
y

y[i]y[j]πm(y) < ∞, (3.43)

and that either

(i) E[ωn] = 0 for each n, or

(ii) n−1ωn
Q−→ θ, and

∑∞
m=2(m − 1)|a[i]

m| < ∞.

Then

Σij = (Σ∅)ij − θ[i]θ[j] −
∞∑

m=2

[
θ[i](m − 1)a[j]

m + θ[j](m − 1)a[i]
m −

∑
y

y[i]y[j]πm(y)

]
. (3.44)

The proof of Theorem 3.2 is an adaptation of that of the speed formula in Theorem 3.1 above, and is
deferred to Section 7.
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4 Induction for the weak law of large numbers

In this section we prove a law of large numbers from the recurrence relation (2.29), or, more precisely,
its Fourier transform (3.34), assuming certain bounds on the coefficients π̂m(k). The bounds roughly
correspond to upper bounds on the accuracy of the Taylor approximation of π̂m(k) up to first order.

We start by formulating a general assumption (which must be verified for a specific model), and prove
the main result, Theorem 4.1, under this assumption.

Assumption (LLN). There exists a sequence {bm}m≥1, independent of β and with b1 ≥ 1, and a constant
εβ = εβ(d) satisfying limβ→0 εβ(d) = 0 such that

π̂m(0) = 0, |∇π̂m(0)| ≤ εβbm, |∇2π̂m(0)| ≤ εβmbm, (4.1)

and uniformly in k ∈ [−π, π]d,

|π̂m(k)| ≤ εβ|k|bm, |π̂m(k) − k · ∇π̂m(0)| ≤ εβ |k|2mbm, (4.2)

where

B ≡
∞∑

m=1

bm < ∞ and B′ ≡ sup
n

(log (n ∨ 3))2

n

n∑
m=1

mbm < ∞. (4.3)

Theorem 4.1 (Weak law of large numbers). When Assumption (LLN) holds, there exist β0 = β0(d) > 0
and θ = θ(β) such that for all β ≤ β0,

Eβ[ωn] = θn
[
1 + O

( 1
n

∞∑
m=1

(n ∧ m)bm

)]
. (4.4)

Furthermore, there exists C > 0 such that for every k ∈ Rd,

log
(
Eβ[eik·ωn/n]

)
= ik · θ + O

(
|k|
n

eC|k|
∞∑

m=1

(n ∧ m)bm

)
+ O

(
|k|2
n

n∑
m=1

mbm

)
, (4.5)

where the constant θ given by (3.30) is model dependent.

Remark 4.1. Observe that n−1∑∞
m=1(n ∧ m)bm = o(1) and n−1∑n

m=1 mbm = o(1) when (4.3) holds.
Thus (4.5) implies that limn→∞ Eβ[eik·ωn/n] = eik·θ, which is equivalent to the statement of convergence

in probability, ωn/n
Qβ−→ θ.

Note that since D has finite range, there exists a constant C1 ≥ 1 independent of β such that

|D̂(k) − 1 − ik · θ∅| ≤ C1|k|2, (4.6)

and let K1 = 2C1, which is independent of β.
We will frequently use the following lemma, whose proof follows easily by applying Taylor’s Theorem

at t = 0 to the map from R → C given by t �→ etx:

Lemma 4.2. For all x ∈ C, j ∈ N, ∣∣∣∣∣∣ex −
j∑

l=0

xl

l!

∣∣∣∣∣∣ ≤
|x|j+1

(j + 1)!
e|Re(x)|,

where Re(x) is the real part of x.
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Set θ1 = θ∅, and, for n ≥ 2, we define the following approximation to θ:

θn = θ∅ − i
n∑

m=2

∇π̂m(0). (4.7)

Our induction hypothesis for the law of large numbers in Theorem 4.1 is that the following bound
holds for all β ≤ β0, some δ < 1 independent of β and all 0 ≤ j ≤ n:

For |k| ≤ δ log(n ∨ 3)/n and some K ≥ 1 independent of β we can write,

ĉj(k) = exp
[ j∑

l=1

(
ik · θl + el(k)

)]
where |ej(k)| ≤ K|k|2

j∑
l=1

lbl, (4.8)

where the empty sum, arising when j = 0, is defined to be 0, and where, for n = 0, the equation is valid
for all k ∈ [−π, π]d.

The initialisation of the induction (the n = 0 case) holds trivially since 1 = e0. In Section 4.1 we will
advance the induction hypothesis. In Section 4.2 we will use it to prove Theorem 4.1.

4.1 The LLN induction advanced

We fix n ≥ 0. The induction step will be achieved as soon as we are able to write

ĉn+1(k)
ĉn(k)

= exp
[
ik · θn+1 + en+1(k)

]
, (4.9)

for en+1(k) satisfying the required bound. For this, we write

ĉn+1(k)
ĉn(k)

= 1 + ik · θn+1 + e′n+1(k) (4.10)

and then set
en+1(k) = log

[
1 + ik · θn+1 + e′n+1(k)

] − ikθn+1. (4.11)

The following lemma is a trivial consequence of (3.32) and (4.7):

Lemma 4.3. We have |θ∅| ≤ L and when Assumption (LLN) holds we have |θn| ≤ L + εβB for every n.

Let

Bn =
n∑

m=1

mbm. (4.12)

We note that by the second bound in (4.3), and uniformly in k such that |k| ≤ δn−1 log (n ∨ 3), we have

Bn+1|k| ≤ δB′, nBn|k|2 ≤ δ2B′. (4.13)

These bounds will be frequently used in what follows.
Choose β0 > 0 so that εβ ≤ 1 for all β ≤ β0, and suppose that the required bound (4.8) holds for

e′n+1(k) with constant K1. By Lemma 4.3, |k||θn+1| + |e′n+1(k)| ≤ 1/2 for |k| ≤ δ log(n ∨ 3)/n when
δ ≤ (2(L + B + K1B

′) log 3)−1. Therefore we may apply Taylor’s Theorem | log(1 + x) − x| ≤ 4|x|2 for
|x| ≤ 1/2, to (4.11). This implies that when the required bound holds for e′n+1(k) with constant K1, it also
holds for en+1(k) for some K independent of β, since the terms of order k in (4.11) cancel. Specifically,
if |e′n+1(k)| ≤ K1|k|2Bn+1, then, using also (4.13) and (x + y)2 ≤ 2x2 + 2y2,

|en+1(k)| ≤4(|k||θn+1| + |e′n+1(k)|)2 + |e′n+1(k)|
≤8|k|2(L + B)2 + 8K2

1B2
n+1|k|4 + K1Bn+1|k|2 ≤ |k|2(8(L + B)2 + 8Bn+1K

2
1δB′ + Bn+1K1)

≤KBn+1|k|2, (4.14)
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for K ≥ 8(L + B)2 + 8δB′K2
1 + K1, which is independent of β.

The rest of this section will be devoted to the proof of the following lemma:

Lemma 4.4. There exists β0 such that for all β ≤ β0, if ej(k) satisfies the bound in (4.8) for all j ≤ n
and |k| ≤ δ(n + 1)−1 log ((n + 1) ∨ 3) then for such k,

|e′n+1(k)| ≤ K1Bn+1|k|2. (4.15)

Proof. Divide the recursion relation (2.32) by ĉn(k) and use the equality π̂m(0) = 0 of (4.1) to obtain

ĉn+1(k)
ĉn(k)

= D̂(k) +
n+1∑
m=2

[π̂m(k) − π̂m(0)]
ĉn+1−m(k)

ĉn(k)
. (4.16)

We can rewrite (4.16) as

ĉn+1(k)
ĉn(k)

= 1 + ik · θn+1 + e′n+1(k),

where

e′n+1(k) = [D̂(k) − 1 − ik · θ∅] +
n+1∑
m=2

[
π̂m(k) − k · ∇π̂m(0)

]
+

n+1∑
m=2

π̂m(k)
[ ĉn+1−m(k)

ĉn(k)
− 1

]
.

The first term is taken care of by (4.6). Furthermore, by (4.2), we have that

n+1∑
m=1

|π̂m(k) − k · ∇π̂m(0)| ≤ εβ |k|2
n+1∑
m=1

mbm = εβBn+1|k|2. (4.17)

Finally, using Lemma 4.2 and the induction hypothesis (4.8) for el(k) with l ≤ n, which is allowed since
|k| ≤ δ log((n + 1) ∨ 3)/(n + 1) implies that also |k| ≤ δ log(n ∨ 3)/n,
∣∣∣ ĉn+1−m(k)

ĉn(k)
− 1

∣∣∣ =
∣∣∣ exp

[
−

n∑
l=n+1−m

(
ik · θl + el(k)

)]− 1
∣∣∣ ≤ m(|k|(L + B) + KBn+1|k|2)emKBn+1|k|2

≤m(|k|(L + B) + KBn+1|k|2)eKB′δ2
, (4.18)

by the second inequality in (4.13).
Using the first bound in (4.2), it follows that

∣∣∣ n+1∑
m=2

π̂m(k)
[ ĉn+1−m(k)

ĉn(k)
− 1

]∣∣∣ ≤ n+1∑
m=2

|k|εβbmeKB′δ2
m(|k|(L + B) + Bn+1K|k|2)

≤εβ |k|2Bn+1e
KB′δ2

(
(L + B) + Bn+1K|k|

)
≤εβ |k|2Bn+1e

KB′δ2(
(L + B) + δB′K

)
, (4.19)

where in the last inequality we used the first bound in (4.13). Summarising (4.17)-(4.19) we have

|e′n+1(k)| ≤ C1|k|2 + εβBn+1|k|2 + εβeKB′δ2(
(L + B) + δB′K

)
Bn+1|k|2. (4.20)

Recall that K1 = 2C1 and Bn+1 ≥ b1 ≥ 1. We choose β0 sufficiently small so that both εβ ≤ 1 for all
β ≤ β0 and

εβ

(
1 + eKB′δ2(

(L + B) + δB′K
)) ≤ K1

2
. (4.21)

Then, we conclude that C1 + εβBn+1
(
1 + eKB′δ2(

(L + B) + δB′K
)) ≤ K1Bn+1 and therefore (4.15)

holds as required for all β ≤ β0. This completes the proof of Lemma 4.4.
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4.2 Proof of Theorem 4.1

To prove (4.4), we note that from (4.8), which is now known to be valid for all n,

Eβ[ωn] = −i∇ĉn(0) = −i
n∑

j=1

[
iθj + ∇ej(0)

]
. (4.22)

Since |ej(k)| = O(|k|2), we have that ∇ej(0) = 0. Therefore,

Eβ[ωn] =
n∑

j=1

θj = nθ +
n∑

j=1

[θj − θ]. (4.23)

By (3.30), (4.7) and (4.1), we have that
n∑

j=1

[θj − θ] = i
n∑

j=1

∞∑
s=j+1

∇π̂s(0) = i
∞∑

s=2

(n ∧ (s − 1))∇π̂s(0) = O

( ∞∑
s=1

(n ∧ s)bs

)
. (4.24)

For (4.5), let k ∈ Rd. Then for n ≥ eδ−1|k| we can apply (4.8) in the form

ĉn

(
kn−1) = eikn−1·θn exp

[ n∑
l=1

[ikn−1 · (θl − θ) + el

(
kn−1)]], (4.25)

with

|ej(kn−1)| ≤ K
|k|2
n2

j∑
l=1

lbl. (4.26)

By (4.24),
n∑

l=1

ikn−1 · (θl − θ) = O

(
|k|
n

∞∑
s=1

(n ∧ s)bs

)
. (4.27)

Similarly,
n∑

j=1

|ej(kn−1)| ≤ K
|k|2
n2

n∑
j=1

j∑
l=1

lbl ≤ K
|k|2
n2

n∑
l=1

(n − l + 1)lbl ≤ K
|k|2
n

n∑
l=1

lbl. (4.28)

Together (4.27) and (4.28) prove (4.5) for n ≥ eδ−1|k|.
For n < eδ−1|k| the result is trivial by writing

ikn−1 · ωn = ik · θ + O(|k|(L + θ)) = ik · θ + O(|k|eδ−1 |k|n−1). (4.29)

5 Induction for the central limit theorem

In this section we prove a central limit theorem from the recurrence relation (2.29), or more precisely
its Fourier transform (3.34), assuming certain bounds on the coefficients π̂m(k). The bounds roughly
correspond to upper bounds on the accuracy of the Taylor approximation of π̂m(k) up to second order,
and the argument is an extension of the one in Section 4. In this section, for a d× d matrix Σ, we define
its L1-norm by

|Σ| =
d∑

i,j=1

|(Σ)ij |. (5.1)

We start by formulating a general assumption, and prove the main result, Theorem 5.1, under this
assumption.
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Assumption (CLT). There exists a non-increasing sequence {bm}m≥1 independent of β with b1 ≥ 1,
and a constant εβ with limβ↓0 εβ = 0, such that
(i)

π̂m(0) = 0, |∇π̂m(0)| ≤ εβbm, |∇2π̂m(0)| ≤ εβmbm. (5.2)

(ii) for all k ∈ [−π, π]d,

∣∣π̂m(k) − k · ∇π̂m(0)
∣∣ ≤ εβ |k|2mbm,

∣∣∣π̂m(k) − k · ∇π̂m(0) − 1
2
kt∇2π̂m(0)k

∣∣∣ ≤ εβ |k|3m2bm. (5.3)

Moreover, B∗ ≡ ∑∞
m=1 mbm < ∞, and there exists γ ∈ (0, 1/2) such that

dn ≡
n∑

m=2

mbm

n∑
l=n+1−m

bl+1 = o(1), as n → ∞, and

an ≡
n∑

m=1

m2+γbm ≤ Ca

√
n

log (n + 1)
, for all n and some Ca ≥ 1. (5.4)

Similarly to (4.12), we define

An =
n∑

j=1

aj , Dn =
n∑

j=1

dj , En =
∞∑

m=1

(m ∧ n)mbm. (5.5)

We will prove a generalised version of Theorems 2.1 and 2.2, which is formulated below:

Theorem 5.1 (Central limit theorem). When Assumption (CLT) holds, there exist β0 = β0(d) > 0, and
θ = θ(β), and Σ = Σ(β) such that, for all β ≤ β0,
(a)

Eβ[ωn] = θn

[
1 + O

(
1
n

)]
. (5.6)

(b)
Varβ(ωn) = Σn + O (Dn) + O (En) . (5.7)

(c) there exists C > 0 such that for every k ∈ Rd

log
(

Eβ

[
e
ik· (ωn−θn)√

n
])

= −1
2
ktΣk+O(|k|eC|k|2n−1/2)+O

(|k|3n−3/2An
)
+O

(|k|2eC|k|2n−1(Dn+En)
)
. (5.8)

The constants θ and Σ (given by (3.30), (3.31)) are model dependent.

It is not hard to see that each of the O terms in (5.8) is indeed an error term when we assume that
Assumption (CLT) holds. However, in the general set-up in Assumption (CLT), it is not clear to us which
term on the right-hand side of (5.8) is typically the largest.

Note that since D has finite range, there exists a constant C2 ≥ 1 independent of β such that

|D̂(k) − 1 − ik · θ∅ − 1
2
ktΣ∅k| ≤ C2|k|3, (5.9)

and let K2 = 2C2, which is independent of β.
Recall (4.7) and define the following approximation to Σ:

Σn = Σ∅ − θnθt
n −

n∑
m=2

∇2
[
e−iθn · k(m − 1)π̂m(k)

]
k=0

. (5.10)
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Let B ≡ ∑
m bm and d∗ ≡ supn dn.

Our induction hypothesis for the central limit theorem is that the following bound holds for all β ≤ β0,
all 0 ≤ j ≤ n, and some δ ∈ (0, 1), independent of β:

For k such that |k|2 ≤ δ log(n ∨ 3)/n, and some K independent of β we can write,

ĉj(k) = exp
[ j∑

l=1

[
ik · θl − 1

2
ktΣlk + rl(k)

]]
with |rj(k)| ≤ K(|k|2dj + |k|3aj), (5.11)

where again the empty sum appearing when j = 0 is defined to be zero, and for n = 0, (5.11) is assumed
to hold for all k ∈ [−π, π]d.

The initialisation of the induction (n = 0 case) holds trivially as 1 = e0.

5.1 The CLT induction advanced

We follow the same strategy as in Section 4.1, now expanding the Fourier transform one order further.
We fix n ≥ 0. The induction step will be achieved as soon as we are able to write

ĉn+1(k)
ĉn(k)

= exp
[
ik · θn+1 − 1

2
ktΣn+1k + rn+1(k)

]
, (5.12)

for rn+1(k) satisfying the required bound. For this, we write

ĉn+1(k)
ĉn(k)

= 1 + ik · θn+1 − 1
2
kt(Σn+1 + θn+1θ

t
n+1)k + r′n+1(k) (5.13)

and then set

rn+1(k) = log
[
1 + ik · θn+1 − 1

2
kt(Σn+1 + θn+1θ

t
n+1)k + r′n+1(k)

] − ik · θn+1 +
1
2
ktΣn+1k. (5.14)

The following lemma is an easy consequence of (3.33) and (5.10):

Lemma 5.2. We have |θ∅| ≤ L and |Σ∅| ≤ d2L2, and, when Assumption (CLT) holds, for all n,
|θn| ≤ L + εβB, and

|Σn| ≤d2L2 + (L + εβB)2 + 2d2(L + εβB)B∗ + εβB∗, and

|Σn + θnθt
n| ≤d2L2 + 2d2(L + εβB)B∗ + εβB∗. (5.15)

Suppose that the required bound (5.11) holds for r′n+1(k) with constant K2. Then, by the assumption
on aj in (5.4), we have that, for k satisfying |k|2 ≤ δ log (n ∨ 3)/n ≤ 2δ, and since δ < 1,

|r′n+1(k)| ≤ K2δ(d∗ +
√

δCa) ≤ K2δ(d∗ + Ca). (5.16)

Choose β0 so that εβ ≤ 1 for all β ≤ β0, so that, by Lemma 5.2, for k satisfying |k|2 ≤ δ log (n ∨ 3)/n ≤ 2δ
in (5.11), and using L,B∗ ≥ 1,

|k||θn+1| + 1
2
|k|2|Σn+1 + θn+1θ

t
n+1| + |r′n+1(k)| (5.17)

≤
√

2δ(L + εβB) + δ
(
d2L2 + (L + εβB)2 + 2d2(L + εβB)B∗ + εβB∗)+ K2δ(d∗ + Ca)

≤
√

2δ(L + B) + δ
(
5d2(L + εβB)B∗ + K2(d∗ + Ca)

)
≤ 1/2,
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when we take δ ≤ δ∗, which is defined by

δ∗ = min
{
(L + B)−2/32,

(
4
(
5d2(L + B)B∗ + K2(d∗ + Ca)

))−1 }
. (5.18)

Therefore we may apply Taylor’s Theorem | log(1 + x) − x + x2

2 | ≤ 8|x|3 for |x| ≤ 1/2 to (5.14). This
implies that when the required bound holds for r′n+1(k) with constant K2, it also holds for rn+1(k) for
some K independent of β, since the terms of order k and |k|2 in (5.14) cancel. Specifically, if |r′n+1(k)| ≤
K2(|k|2dn+1 + |k|3an+1) then using Taylor’s Theorem, followed by the assumed bound on r′n+1(k) , we
obtain

|rn+1(k)| ≤|r′n+1(k)| + |k||θn+1|
(

1
2
|k|2|Σn+1 + θn+1θ

t
n+1| + |r′n+1(k)|

)

+
1
2

(
1
2
|k|2|Σn+1 + θn+1θ

t
n+1| + |r′n+1(k)|

)2

+ 8
(
|k||θn+1| + 1

2
|k|2|Σn+1 + θn+1θ

t
n+1| + |r′n+1(k)|

)3

≤CK3
2(|k|2dn+1 + |k|3an+1) ≤ K(|k|2dn+1 + |k|3an+1), (5.19)

when K ≥ CK3
2 . Here C ≥ 1 is a constant that depends on Ca, B,B∗, d∗, L, d, but is independent of β and

δ, and we have used that |r′n+1(k)|2 ≤ CK2
2 (|k|2dn+1 + |k|3an+1) since an+1 ≥ 1 and |k|2 ≤ δ log (n ∨ 3)/n,

and similarly for |r′n+1(k)|3.
Most of this section will be devoted to the proof of the following lemma:

Lemma 5.3. If (5.11) holds for all j ≤ n and |k|2 ≤ δ(n + 1)−1 log ((n + 1) ∨ 3) then for such k

|r′n+1(k)| ≤ K2(|k|2dn+1 + |k|3an+1). (5.20)

5.1.1 Proof of Lemma 5.3

The proof involves expressing r′n+1(k) as a sum of three terms and showing that each term is bounded in
absolute value by the right hand side of (5.20).

Recall (5.13), then

r′n+1(k) = I + II,

where

I = [D̂(k) − 1 − ik · θ∅ +
1
2
ktΣ∅k] +

n+1∑
m=2

[
π̂m(k) − k · ∇π̂m(0) − 1

2
kt∇2π̂m(0)k

]
,

II =
n+1∑
m=2

[
π̂m(k)

[ ĉn+1−m(k)
ĉn(k)

− 1
]
+ k · ∇π̂m(0)i(m − 1)k · θn+1

]
.

We will bound |I| and |II|, and then choose β0 sufficiently small so that |I| + |II| satisfies the bound on
the right hand side of (5.20). By (5.9) and (5.3) in Assumption (CLT), and the fact that an+1 ≥ 1 we
have

|I| ≤ C2|k|3 +
∑n+1

m=2 εβ|k|3m2bm ≤ (C2 + εβ)|k|3an+1. (5.21)
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To bound II, we first split II = II1 + II2, with

II1 =
n+1∑
m=2

[π̂m(k) − k · ∇π̂m(0)]
[
ĉn+1−m(k)

ĉn(k)
− 1

]
,

II2 =
n+1∑
m=2

k · ∇π̂m(0)
[
ĉn+1−m(k)

ĉn(k)
− 1 + i(m − 1)k · θn+1

]
.

For II1, we use the first bound in (5.3) in Assumption (CLT) and Lemma 4.2 for j = 0, to get

|II1| ≤
n+1∑
m=2

|π̂m(k) − k · ∇π̂m(0)|
∣∣∣∣ ĉn+1−m(k)

ĉn(k)
− 1

∣∣∣∣
≤

n+1∑
m=2

εβ |k|2mbm

∣∣∣∣∣∣exp

⎡
⎣− n∑

l=n+2−m

[
ik · θl − 1

2
ktΣlk + rl(k)

]⎤⎦− 1

∣∣∣∣∣∣ ,

≤ εβ|k|2
n+1∑
m=2

mbmeχm,n(k)
n∑

l=n+2−m

[
|k||θl| + 1

2
|k|2|Σl| + |rl(k)|

]
,

with

χm,n(k) =
n∑

l=n+2−m

[ |k|2
2

|Σl| + |rl(k)|
]
. (5.22)

Since an is increasing, for |k|2 ≤ δ log ((n + 1) ∨ 3)/(n + 1), we have that

χm,n(k) ≤ m|k|2(C + Kd∗ + an|k|) ≤ m|k|2(C + Kd∗ +
√

δKCa), (5.23)

where we recall that d∗ = supn dn. Also, for |k|2 ≤ δ log ((n + 1) ∨ 3)/(n + 1),

m|k|2 ≤ δ log (m ∨ 3)
log ((n + 1) ∨ 3)

n + 1
m

log (m ∨ 3)
≤ δ log (m ∨ 3), (5.24)

since x �→ log (x∨3)
x is decreasing for x ≥ 0. As a result, we obtain that, with ν = δ(C + Kd∗ +

√
δKCa),

eχm,n(k) ≤ (m ∨ 3)ν . (5.25)

Note that, by picking δ > 0 sufficiently small, we can make ν < γ.
For |k|2 ≤ δ log ((n + 1) ∨ 3)/(n + 1) it follows from Lemma 5.2 and (5.11), using a similar argument

as in (5.23), that

|k||θl| + |k|2
2

|Σl| + |rl(k)| ≤
(
(L + εβB) + (

√
δC +

√
δKd∗ + δKCa)

)
|k| ≡ C(1)

K |k|. (5.26)

Therefore,

|II1| ≤ C(1)
K εβ |k|3

n+1∑
m=2

m2+γbm = C(1)
K εβ |k|3an+1. (5.27)
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For II2 we use (5.11) and Lemma 4.2 for j = 1 to obtain

|II2| ≤ |k|
n+1∑
m=3

εβbm

∣∣∣∣∣∣exp

⎡
⎣− n∑

l=n+2−m

[
ik · θl − 1

2
ktΣlk + rl(k)

]⎤⎦− 1 + ik · θn+1(m − 1)

∣∣∣∣∣∣
≤ εβ |k|

n+1∑
m=2

bm

n∑
l=n+2−m

[
|k||θn+1 − θl| + |k|2

2
|Σl| + |rl(k)|

]

+εβ|k|
n+1∑
m=2

bm

⎡
⎣ n∑

l=n+2−m

[
|k||θl| + |k|2

2
|Σl| + |rl(k)|

]⎤⎦
2

eχm,n(k).

For |k|2 ≤ δ log ((n + 1) ∨ 3)/(n + 1), the second sum can be bounded, using (5.26) and (5.25), as

(
C(1)

K

)23γεβ |k|3
n+1∑
m=2

m2+γbm ≡ C(2)
K εβ |k|3an+1. (5.28)

By a similar argument as in (5.23), we have for |k|2 ≤ δ log ((n + 1) ∨ 3)/(n + 1),

|k|2
2

|Σl| + |rl(k)| ≤ C(1 + Kd∗ + KCa

√
δ)|k|2 ≡ C(3)

K |k|2. (5.29)

Therefore,

εβ |k|
n+1∑
m=2

bm

n∑
l=n+2−m

[ |k|2
2

|Σl| + |rl(k)|
]
≤ C(3)

K εβ|k|3
n+1∑
m=2

mbm ≤ C(3)
K εβ|k|3an+1. (5.30)

We continue with the remaining contribution to II2. Since {bm}m≥1 is a decreasing sequence,

|θn+1 − θl| ≤ εβ

n+1∑
s=l+1

bs ≤ εβ(n − l + 1)bl+1. (5.31)

Thus,
n+1∑
m=2

bm

n∑
l=n+2−m

|θn+1 − θl| ≤ εβ

n+1∑
m=2

mbm

n∑
l=n+2−m

bl+1 = εβdn+1. (5.32)

We conclude that
|II2| ≤ εβ

(
εβ|k|2dn+1 + (C(2)

K + C(3)
K )|k|3an+1

)
. (5.33)

We have shown that

|I| + |II| ≤ ε2
β |k|2dn+1 + (C2 + εβ + εβ(C(1)

K + C(2)
K + C(3)

K ))|k|3an+1. (5.34)

Choose β0 sufficiently small so that for all β ≤ β0, εβ + εβ(C(1)
K + C(2)

K + C(3)
K ) ≤ 1

2K2. Recall that
K2 = 2C2 ≥ 1. Then for β ≤ β0,

|I| + |II| ≤ (C2 +
1
2
K2)(|k|2dn+1 + |k|3an+1) ≤ K2(|k|2dn+1 + |k|3an+1), (5.35)

as required. This completes the proof of Lemma 5.3.

24



5.2 Proof of Theorem 5.1

We will make use of the following lemma:

Lemma 5.4. For all β ≤ β0, and all j ∈ N,

(i) ∇rj(0) = 0, and

(ii) |∇2rj(0)| ≤ 3Kd2dj .

Proof. The induction hypothesis (5.11), now verified for all j, states that |rj(k)| ≤ K(|k|2dj + |k|3aj).
Therefore, letting [∇rj(0)]i denote the ith coordinate of the vector ∇rj(0), we have

|[∇rj(0)]i| = lim
ki→0

|rj(0, . . . , 0, ki, 0, . . . , 0)|
|ki| ≤ lim

ki→0

K(|ki|2dj + |ki|3aj)
|ki| = 0 (5.36)

Since all partial derivatives of ĉn(k) up to second order exist and are continuous, and ĉn(0) = 1, we have
from (5.13) and (5.14) that all partial derivatives of rj(k) up to second order exist in a neighbourhood of
0 and are continuous. Let (∇2rj(0))lm denote the (l,m)th entry of the matrix ∇2rj(0) and suppose that
|rj(k)| ≤ J1|k|2 + J2|k|3. We claim that this implies that |(∇2rj(0))lm| ≤ 3J1 for each m, l, from which
part (ii) of the lemma follows immediately. Without loss of generality we suppose that l,m ∈ {1, 2}.

Let h(k1, k2) = rj(k1, k2, 0, . . . , 0). By the second order mean value theorem, fu1,u2(t) ≡ h(tu1, tu2)
satisfies

fu1,u2(t) = fu1,u2(0) + f ′
u1,u2

(0)t + f ′′
u1,u2

(t∗)
t2

2
(5.37)

for some t∗ ≡ t∗(t, u1, u2) ∈ (0, t).
Now fu1,u2(0) = h(0, 0) = 0 and

|f ′
u1,u2

(0)| = lim
t→0

∣∣∣∣h(tu1, tu2) − h(0, 0)
t

∣∣∣∣ = lim
t→0

∣∣∣∣h(tu1, tu2)
t

∣∣∣∣ ≤ lim
t→0

∣∣∣∣∣Cu1,u2(t
2 + t3)

t

∣∣∣∣∣ = 0 (5.38)

where we have used the bound on |rj(k)| in the last inequality. Thus (5.37) reduces to

fu1,u2(t) = f ′′
u1,u2

(t∗)
t2

2
, (5.39)

and by hypothesis the left hand side is bounded in absolute value by J1t
2(u2

1 + u2
2) + J2t

3(u2
1 + u2

2)
3/2.

We now set tn = 1/n and let t∗n = t∗(tn, u1, u2). Then for each n, |f ′′
u1,u2

(t∗n)| ≤ 2J1(u2
1 + u2

2) +
2n−1J2(u2

1 + u2
2)

3/2. By the multivariate chain rule d
dth(�g(t)) = ∇h · �g′(t) we have

f ′′
u1,u2

(t∗n) = u2
1h11(t∗nu1, t

∗
nu2) + u2

2h22(t∗nu1, t
∗
nu2) + 2u1u2h12(t∗nu1, t

∗
nu2), (5.40)

and thus

∣∣u2
1h11(t∗nu1, t

∗
nu2) + u2

2h22(t∗nu1, t
∗
nu2) + 2u1u2h12(t∗nu1, t

∗
nu2)

∣∣ ≤ 2J1(u2
1 + u2

2) +
J2

n
(u2

1 + u2
2)

3/2. (5.41)

Putting u1 = 1, u2 = 0 in (5.41) gives |h11(t∗n, 0)| ≤ 2J1+2n−1J2, and similarly |h22(t∗n, 0)| ≤ 2J1+2n−1J2.
Letting n → ∞ and using the fact that t∗n ∈ (0, tn) (so that tn = 1/n → 0 implies that t∗n → 0 as n → ∞)
we have |h11(0, 0)| ≤ 2J1 by continuity of the partial derivatives. Similarly, by taking u1 = 0, u2 = 1, we
obtain |h22(0, 0)| ≤ 2J1. Next, set u1 = u2 = 1 in (5.41) and use |a + b| ≤ d ⇒ |a| ≤ d + |b| to see that

2|h12(t∗nu1, t
∗
nu2)| ≤ |h11(t∗nu1, t

∗
nu2) + h22(t∗nu1, t

∗
nu2)| + 2J1(u2

1 + u2
2) +

2J2

n
(u2

1 + u2
2)

3/2. (5.42)
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Now use the triangle inequality and let n → ∞ to get |h12(0, 0)| ≤ 3J1.
We are now ready to prove the statements in Theorem 5.1(a)–(c) one by one.

Proof of Theorem 5.1(a): Using (5.11) and Lemma 5.4(i), we have

∑
x∈Zd

xcn(x) = −i∇ĉn(0) = −i
n∑

j=1

[
iθj + ∇rj(0)

]
= nθ +

n∑
j=1

[θj − θ], (5.43)

so that it suffices to prove that
n∑

j=1

[θj − θ] = O(1). (5.44)

For this, we use (3.30), (4.7) as well as the second bound in (5.2) and to note that

n∑
j=1

|θj − θ| ≤
n∑

j=1

∞∑
m=j+1

|∇π̂m(0)| ≤ εβ

∞∑
j=1

∞∑
m=j+1

bm = εβ

∞∑
m=1

mbm = O(1), (5.45)

by the assumption that B∗ =
∑∞

m=1 mbm < ∞.

Proof of Theorem 5.1(b): Recall that Varβ(ωn) is the covariance matrix of ωn. Then

(Varβ(ωn))lm =
∑
x

xlxmcn(x) −
(∑

x

xlcn(x)

)(∑
x

xmcn(x)

)
. (5.46)

By (5.11) and Lemma 5.4(i-ii), and writing [θp]l for the lth component of θp,∑
x∈Zd

xlxmcn(x) = −(∇2ĉn(0))lm

=
n∑

p=1

(
(Σp)lm − (∇2rp(0))lm

)
−

n∑
p,q=1

(i[θp]l + [∇rp(0)]l) (i[θq]m + [∇rq(0)]m)

=
n∑

p=1

((Σp)lm + O(dp)) +
n∑

p=1

[θp]l
n∑

q=1

[θq]m. (5.47)

It follows from (5.43) that
∑

x xlcn(x) =
∑n

p=1[θp]l and from (5.46) and (5.47) that

(Varβ(ωn))lm =
n∑

p=1

((Σp)lm + O(dp))

= n(Σ)lm + O

⎛
⎝ n∑

p=1

dp

⎞
⎠+

n∑
p=1

((Σp)lm − (Σ)lm).

Therefore to complete the proof, it is sufficient to show that for p ≤ n,

|(Σp)lm − (Σ)lm| = O (1 ∨ (p ∧ n)pbp) . (5.48)
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By (3.31) and (5.10), the left hand side of (5.48) is bounded by

|[θ]l[θ]m − [θp]l[θp]m| +
∞∑

r=p+1

∣∣∣[(∇2e−i(r−1)k·θπ̂r(k))lm
]
k=0

∣∣∣
+

p∑
r=2

∣∣∣[(∇2ei(r−1)k·θp π̂r(k))lm
]
k=0

−
[
(∇2ei(r−1)k·θπ̂r(k))lm

]
k=0

∣∣∣
≤ |[θ]l||[θ]m − [θp]m| + |[θp]m||[θ]l − [θp]l|

+
∞∑

r=p+1

(
(r − 1)

(
|[θ]m||[∇π̂r(0)]l| + |[θ]l||[∇π̂r(0)]m|

)
+ |(∇2π̂r(0))lm|

)

+ |θp − θ|
p∑

r=2

|[∇π̂r(0)]|, (5.49)

since π̂r(0) = 0 by (5.2). The first two terms are O(1) using the fact that |θ| is finite and the |θp| are
uniformly bounded together with (5.45). By (5.2), the third term is bounded by

εβ |θ|
n∑

p=1

∞∑
r=p+1

rbr ≤ εβ|θ|
∞∑

r=1

(r ∧ n)rbr,

while, again by (5.2), the last term is bounded. This completes the proof.

Proof of Theorem 5.1(c): Fix k ∈ Rd. Then for n ≥ e
|k|2

δ , we can apply (5.11) in the form

ĉn(n− 1
2 k) = exp

[ n∑
j=1

(
in− 1

2 k · θj − 1
2
n−1ktΣjk + rj(n− 1

2 k)
)]

= exp
[
ik · θ√n − 1

2
ktΣk

]
(5.50)

× exp
[ n∑

j=1

in− 1
2 k · [θj − θ] − 1

2
n−1kt

n∑
j=1

[Σj − Σ]k
]
exp

n∑
j=1

rj(n− 1
2 k).

From (5.45) we have
∣∣∣ n∑
j=1

in− 1
2 k · [θj − θ]

∣∣∣ ≤ n− 1
2 |k|

n∑
j=1

|θj − θ| = O(n− 1
2 |k|), (5.51)

and using (5.48) we obtain
∣∣∣ kt

2n

n∑
j=1

[Σj − Σ]k
∣∣∣ ≤ |k|2

2n

n∑
j=1

|Σj − Σ| = O
( |k|2

n

∞∑
m=1

(m ∧ n)mbm

)
. (5.52)

Finally we use (5.11) to get
n∑

j=1

|rj(n− 1
2 k)| ≤ O

( |k|2
n

n∑
j=1

dj

)
+ O

( |k|3
n3/2

n∑
j=1

aj

)
. (5.53)

This proves the bound in Theorem 5.1(c) for n ≥ e
|k|2

δ . The bound holds trivially for n ≤ e
|k|2

δ by writing

ik · (ωn − nθ)√
n

+
1
2
ktΣk = O(|k|2 + |k|n 1

2 ) = O(|k|2n−1(Dn + En)n + |k|n− 1
2 n)

= O(|k|2n−1(Dn + En)eδ−1|k|2 + |k|n− 1
2 eδ−1|k|2).
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6 Bounds on the lace expansion

In this section, we give bounds on the lace expansion coefficients, and verify that these bounds imply
Theorems 2.1, 2.2 and 2.3. We start in Section 6.1 by formulating some general bounds on π̂m(0),∇π̂m(0)
and ∇2π̂m(0) that will reduce the bounds on the derivatives of π̂m(k) to a single bound, which we will
prove separately for each model. In Section 6.2, we prove the bounds on the lace expansion coefficients
for once edge-reinforced random walk with drift, and complete the proof of Theorem 2.1. In Section 6.3,
we prove the bounds on the lace expansion coefficients for excited random walk, and complete the proof
of Theorems 2.2–2.3. In Section 6.4 we give the corresponding results for the random walk in partially
random environment.

6.1 Reduction to a single bound

Recall (3.24) and the definition Am,N = {(j1, . . . , jN ) ∈ ZN
+ :

∑N
l=1 jl = m − N − 1}, and define

π(N)
m (x, y) =

∑
�j∈Am,N

∑
�ω

(0)
1

∑
�ω

(1)
j1+1

· · ·
∑

�ω
(N)
jN +1

I{ω(N)
jN

=x,ω
(N)
jN+1=y}D(ω(0)

1 )
N∏

n=1

Δ(n)
jn+1

jn−1∏
in=0

p
�ω

(n−1)
jn−1+1◦�ω

(n)
in

(
ω(n)

in
, ω(n)

in+1

)
,

(6.1)

so that
π(N)

m (y) =
∑
x

π(N)
m (x, y). (6.2)

We also let

πm(x, y) =
∞∑

N=1

π(N)
m (x, y). (6.3)

The starting point for the bounds on the lace expansion coefficients for self-interacting random walks is
the following proposition:

Proposition 6.1 (Reduction of the bounds on the expansion coefficients).
For a self-interacting stochastic process with range L < ∞, where π(N)

m (y) is given by (3.24), the following
bounds hold:

π̂m(0) = 0, (6.4)

|∇π̂m(0)| ≤
√

dL
∑
x,y

|πm(x, y)|, (6.5)

|∇2π̂m(0)| ≤ (dL)2(2m − 1)
∑
x,y

|πm(x, y)|, (6.6)

|π̂m(k)| ≤ |k|L
∑
x,y

|πm(x, y)|, (6.7)

∣∣π̂m(k) − k · ∇π̂m(0)
∣∣ ≤ |k|2mL2

∑
x,y

|πm(x, y)|, (6.8)

∣∣π̂m(k) − k · ∇π̂m(0) − 1
2
k∇2π̂m(0)kt

∣∣ ≤ |k|3m2L3
∑
x,y

|πm(x, y)|. (6.9)

Proof. We note that for every x ∈ Zd and N ≥ 1,

∑
y

Δ(N)

jN+1I{ω(N)
jN

=x,ω
(N)
jN +1=y} =

∑
y

(
p

�ω
(N−1)
jN−1+1◦�ω

(N)
jN (x, y) − p

�ω
(N)
jN (x, y)

)
= 1 − 1 = 0
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from which it follows immediately that, for every x ∈ Zd,∑
y

πm(x, y) = 0. (6.10)

Summing (6.10) over x establishes (6.4). Furthermore, again by (6.10), we have that

[∇π̂m(0)]l = i
∑
y

ylπm(y) = i
∑
x,y

ylπm(x, y) = i
∑
x,y

xlπm(x, y) + i
∑
x,y

[yl − xl]πm(x, y)

= i
∑
x,y

[yl − xl]πm(x, y). (6.11)

For walks with range L, we have that |yj − xj | ≤ L, so that

|[∇π̂m(0)]l| ≤ L
∑
x,y

|πm(x, y)|, (6.12)

which establishes (6.5) since
∑d

l=1 u2
l ≤ dmaxl |ul|2. Similarly,

−[∇2π̂m(0)]st =
∑
y

ysytπm(y) =
∑
x,y

ysytπm(x, y)

=
∑
x,y

xsxtπm(x, y) +
∑
x,y

[ys − xs]xtπm(x, y)

+
∑
x,y

[yt − xt]xsπm(x, y) +
∑
x,y

[ys − xs][yt − xt]πm(x, y)

=
∑
x,y

[ys − xs]xtπm(x, y) +
∑
x,y

[yt − xt]xsπm(x, y) +
∑
x,y

[ys − xs][yt − xt]πm(x, y).

We use that |yj − xj | ≤ L and |xj | ≤ L(m − 1) to obtain

|[∇2π̂m(0)]st| ≤ (2m − 1)L2
∑
x,y

|πm(x, y)|.

This establishes (6.6) by (5.1).
By (6.10),

π̂m(k) =
∑
x,y

eik·yπm(x, y) =
∑
x,y

eik·x[eik·(y−x) − 1]πm(x, y). (6.13)

Since |x − y| ≤ L, this immediately yields (6.7). Together with (6.11), (6.13) gives

π̂m(k) − k · ∇π̂m(0) =
∑
x,y

[
[1 + (eik·x − 1)][eik·(y−x) − 1] − ik · (y − x)

]
πm(x, y),

=
∑
x,y

[eik·x − 1][eik·(y−x) − 1]πm(x, y) +
∑
x,y

[eik·(y−x) − 1 − ik · (y − x)]πm(x, y).

By Lemma 4.2, |eiu − 1| ≤ |u| and |eiu − 1 − iu| ≤ 1
2u2. Together with the finite range properties of the

walk this proves (6.8). The final claim is proved similarly by first showing that

π̂m(k) − k · ∇π̂m(0) − 1
2
k∇2π̂m(0)kt =

∑
x,y

[
[eik·(y−x) − 1 − ik · (y − x) +

1
2
k(y − x)t(y − x)kt]

+ [eik·x − 1 − ik · x][eik·(y−x) − 1]

+ ik · x[eik·(y−x) − 1 − ik · (y − x)]
]
πm(x, y),
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and then using |eiu − 1 − iu + 1
2u2| ≤ 1

6 |u|3 together with the previous estimates.

We conclude that the bounds in (4.1), (4.2), (5.2) and (5.3) follow if we can show that∑
x,y

|πm(x, y)| ≤ εβbm, (6.14)

for some sequence {bm}m≥1 satisfying the appropriate conditions formulated in Assumptions (LLN) and
(CLT). In the following proposition, we state the precise form of our bounds on the lace expansion
coefficients, followed by the proof of our main results subject to these bounds.

Proposition 6.2 (Bounds on the expansion coefficients for each of our models).
(a) For OERRWD, there exist β0 > 0 and J > 0 such that for all |β| ≤ β0,∑

x,y

|πm(x, y)| ≤ Cβe−Jm, (6.15)

where J depends on β0, w0, d but is independent of β.
(b) For ERW with d − 1 > 4, there exist β0 > 0 and C > 0 such that for all β ≤ β0

∑
x,y

|πm(x, y)| ≤ Cβ

(m + 1)
d−3
2

. (6.16)

(c) For RWpRE with d1 > 4, there exist β0 > 0 and C > 0 such that for all β ≤ β0

∑
x,y

|πm(x, y)| ≤ Cβ

(m + 1)
d1−2

2

. (6.17)

We now complete the proofs of our main results subject to Proposition 6.2:

Proof of Theorem 2.1 subject to Proposition 6.2(a). We use Proposition 6.1 and 6.2 as well as Theorem
5.1 to complete the proof of Theorem 2.1. When bm = e−Jm, Assumption (CLT) is satisfied. Also, (2.11)
is directly implied by (5.6). Furthermore, the error terms in (5.7) can all be seen to be O(1), which proves
(2.12). Finally, for each k, as n → ∞ (5.8) implies that

Eβ[eik·(ωn−θn)/
√

n] → e−
1
2
ktΣk. (6.18)

Clearly, this implies (2.13).

Proof of Theorems 2.2 and 2.3 subject to Proposition 6.2(b). By Propositions 6.1 and 6.2(b), Assumption
(LLN) holds with εβ = Cβ and bm = (m + 1)−(d−3)/2 when d > 5 (i.e. d − 1 > 4). Thus, Theorem 4.1
applies, and it is an easy exercise to see that when bm = (m + 1)−(d−3)/2 and d > 5, the error terms given
in (4.4) and (4.5) are sufficient to prove Theorem 2.3.

Similarly, Propositions 6.1 and 6.2(b) show that Assumption (CLT) holds with εβ = Cβ and bm =
(m + 1)−(d−3)/2 when d > 7 (i.e. d − 1 > 6). Thus, Theorem 5.1 applies and we now show that when
bm = (m + 1)−(d−3)/2 and d > 8, the error terms given in (5.7) and (5.8) are sufficient to prove Theorem
2.2.

Indeed, note that En =
∑∞

m=1(m ∧ n)mbm = O(n−(d−9)/2 log n) = o(n), when d > 7. Furthermore,
by [22, Lemma 3.2] and the fact that (d − 3)/2 > 1 when d > 5, we obtain that dn = O(n−(d−5)/2),
so that Dn =

∑n
m=1 dm = O(1) for d > 7. Finally, an =

∑n
m=1 m2+γbm = O(nγ−(d−9)/2 ∨ 1), which

is O(nc) for some c < 1/2 when d > 8 (i.e. d − 1 > 7) and γ is sufficiently small. In this case, also
An =

∑n
m=1 am = o(n3/2). This identifies all error terms in (5.7) and (5.8).
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Proof of Theorems 2.4 and 2.5 subject to Proposition 6.2(c). Theorems 2.4 and 2.5 follow exactly as in
the proofs of Theorems 2.2 and 2.3, when d1 > 7 and d1 > 4, respectively.

We will prove (6.14) for once-edge-reinforced random walk in Section 6.2 and for excited random walk
in Section 6.3 below.

6.2 Bounds for once-edge-reinforced random walk

In this section we prove Proposition 6.2(a). The bounds in this section are based on the following large
deviations estimates.

Lemma 6.1 (Large deviations). Whenever θ∅ �= 0, there exist β0 = β0(D(·), w0(·)) > 0 and I =
I(D(·), w0(·)) > 0 such that for all |β| ≤ β0,

sup
�η

Q
�η
β(ωn = ω0) ≤ e−In, and (6.19)

sup
z,�ω

(i−2)
ji−2+1

∑
�ω

(i−1)
ji−1+1

Q
�ω

(i−2)
ji−2+1

β (�ωji−1 = �ω(i−1)

ji−1
)I{ω(i−1)

ji−1
=z}Q

�ω
(i−1)
ji−1+1

β (ωji = ω(i−1)

l ) ≤ Ke−I(ji−1−l+ji), (6.20)

where the supremum is over all (ji−2 + 1)-step random walk paths �ω(i−2)

ji−2+1, and K is a constant that
depends only on L, d. The law of the ith walk �ω(i)

ji+1 depends on the (i − 1)st walk �ω(i−1)

ji−1+1 but not on the
(i − 2)nd walk �ω(i−2)

ji−2+1.

Proof. Under Q0, �ω is a simple random walk with bounded increments and non-zero drift (without loss
of generality assume the drift is in the positive coordinate direction(s)). It follows that for z sufficiently
small (and negative)

EQ0[exp{z · (ω1 − ω0)}] = 1 + z · EQ0[ω1 − ω0] + O(z2L2) < 1. (6.21)

Thus, by Cramér’s Theorem (e.g. see [8, Theorem 2.2.30]) there exists J = J(D(·), w0(·)) > 0 such that
Q0(ωn = ω0) ≤ e−Jn for all n. Let Ω denote the support of D(x). It is easy to show that for every
β ∈ [0, β0] and �ν,

p�ν(x, y) ≤ (1 + Cβ0) D(y − x) (6.22)

when C ≥ 1/w0(x, y) (similarly for β ∈ [−β0, 0] when C ≥ (|Ω| − 1)/(
∑

u∼x w0(x, u) − β0(|Ω| − 1)).
By translation invariance, w0(·) ≥ W is uniformly bounded from below as a function on Ω. We fix

C ≥max

{
|Ω| − 1

1
2

∑
u∼0 w0(0, u)

, sup
y∼0

1
w0(0, y)

}
, and

β0 ≤min
{∑

u∼0 w0(0, u)
2(|Ω| − 1)

, J/(2C)
}

, (6.23)

where the constant C > 0 shall be determined in the course of the proof, and recall that

Q
�η
β(ωn = x) =

∑
�ωn:ωn=x

n−1∏
i=0

p�ωi◦�η(�ωi+1 − �ωi). (6.24)

The bound (6.19) with I = J/2 follows immediately from this by (6.22) by choosing β0 sufficiently small
so that log(1 + Cβ0) ≤ J/2.
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The second bound is obtained similarly, using (6.22) after the lth step of �ω(i−1), with the constant
arising from the “missing” transition probability corresponding to the sum over ω(i−1)

ji−1+1. This proves
(6.20) with I = J/2.
Proof of Proposition 6.2(a). We bound

∑
x,y |π(N)

m (x, y)| and sum the resulting bound over N . For N = 1,
m ≥ 2, (6.1) and (3.28) give

∑
x,y

|π(1)
m (x, y)| ≤

∑
x,y

∑
ω

(0)
1

D(ω(0)

1 )
∑

�ω
(1)
m−1

Q
�ω

(0)
1

β (�ωm−2 = �ω(1)

m−2)|Δ(1)

m−1|I{ω(1)
m−2=x}I{ω(1)

m−1=y}

≤ CβQβ(ωm−2 = ω0) ≤ Cβe−I(m−2) ≤ Cβe−Im, (6.25)

where we have applied the first bound of Lemma 6.1 in the last line, and the value of C changes from
place to place.

For general N , we have that

∑
x,y

|π(N)
m (x, y)| ≤

∑
�j∈Am,N

∑
�ω

(0)
1

∑
�ω

(1)
j1+1

· · ·
∑

�ω
(N)
jN +1

D(ω(0)

1 )
N∏

n=1

|Δ(n)
jn+1|Q

�ω
(n−1)
jn−1+1

β (�ωjn = �ω(n)

jn
), (6.26)

where, by (3.28), ∑
ω

(i)
ji+1

|Δ(i)

ji+1| ≤ Cβ

ji−1∑
li−1=0

I{ω(i)
ji

=ω
(i−1)
li−1

}. (6.27)

Let N ≥ 2, and for q ∈ {0, 1} let Aq = {i ≤ N : (N − i) mod 2 = q} and Bq be the set of �j ∈ Am,N

such that
∑

i∈Aq
(ji + 1) ≥ m/2. For r = 0, . . . , N − 1, denote by lr ≤ jr the number of steps in the rth

walk �ω(r)

jr+1 up to the intersection point as in (6.27) (in particular, l0 = 0). Then, combining (6.26) and
(6.27),

∑
x,y

|π(N)
m (x, y)| ≤(Cβ)N

∑
�j∈Am,N

∑
�l

∑
�ω

(0)
1

∑
�ω

(1)
j1+1

· · ·
∑

�ω
(N)
jN +1

D(ω(0)

1 )
N∏

n=1

I{ω(n)
jn

=ω
(n−1)
ln−1

}Q
�ω

(n−1)
jn−1+1

β (�ωjn = �ω(n)

jn
).

(6.28)

The bound is now split into four cases, depending on whether N is even or odd, and on whether �j ∈ B0

or �j ∈ B1 \ B0. See Figure 2.
(a) The bound for N even and �j ∈ B0. When N is even we bound the contribution to (6.26) from

�j ∈ B0 by using the following two bounds, the first of which follows immediately from the second bound
of Lemma 6.1, while the last holds (with equality) trivially.

The first fact is that for each even i ∈ [2, N ], uniformly in �ω(i−2)

ji−2+1,

∑
�ω

(i−1)
ji−1+1

I{ω(i−1)
ji−1

=ω
(i−2)
li−2

}Q
�ω

(i−2)
ji−2+1

β (�ωji−1 = �ω(i−1)

ji−1
)
∑

�ω
(i)
ji+1

I{ω(i)
ji

=ω
(i−1)
li−1

}Q
�ω

(i−1)
ji−1+1

β (�ωji = �ω(i)

ji
) ≤ Ce−I(ji+(ji−1−li−1)).

(6.29)

The second fact is that, ∑
�ω

(0)
1

D(ω(0)

1 ) ≤ 1. (6.30)
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Figure 2: Illustration of the four cases of the diagrammatic bounds for OERRWD. On the left N is even
(N = 4) and on the right N is odd (N = 5). In the first row �j ∈ B0, while in the second, �j ∈ B1 \ B0.
In each case the thick lines indicate the loops (whose total length is of order half of the total length m of
the diagram) that give an exponentially small bound.

By successive applications of (6.29) and lastly (6.30), when N is even we obtain a bound on the
contribution to (6.26) from �j ∈ B0 (whence

∑
i≤N,even ji ≥ (m − N)/2), of

(Cβ)N
∑

�j∈B0

∑
�l

∏
2≤i≤N, even

e−I(ji+(ji−1−li−1)) ≤ (Cβ)Ne−Im/2
∑

�j∈B0

∑
�l

∏
2≤i≤N, even

e−I(ji−1−li−1),

(6.31)

where the constant has changed (to accommodate a factor eIN/2). Using the fact that there are at most
ji + 1 possible values {0, 1, . . . , ji} for li, this is bounded above by

(Cβ)Ne−Im/2
∑
�j

N∏
i=1

(ji + 1), (6.32)

which in turn can be bounded by the integral

e−Im/2(Cβ)N
∫ m+3

0
x1

∫ m+3−x1

0
x2 · · ·

∫ m+3−(x1+···+xN−1)

0
xNdxN · · · dx1. (6.33)

It is an easy exercise in integration by parts that

∫ a−
∑j−1

i=1
xi

0

xj

(2(N − j))!

⎛
⎝a −

j∑
i=1

xi

⎞
⎠

2(N−j)

dxj =
1

(2(N − (j − 1)))!

⎛
⎝a −

j−1∑
i=1

xi

⎞
⎠

2(N−(j−1))

. (6.34)

Applying (6.34) N times, we bound (6.33) by

e−Im/2(Cβ)N
(m + 3)2N

(2N)!
≤ e−Im/2Cβ(Cβ)N/2 (m + 3)2N

(2N)!
. (6.35)
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(b) The bound for N even and �j ∈ B1 \ B0. When N is even we bound the contribution to (6.26)
from �j ∈ B1 \ B0 by using the following three facts, the first of which is obtained by simply evaluating
the sum, while the second and third follow immediately from Lemma 6.1.

The first fact is that uniformly in �ω(N−1)

jN−1+1,

∑
�ω

(N)
jN +1

I{ω(N)
jN

=ω
(N−1)
lN−1

}Q
�ω

(N−1)
jN−1+1

β (�ωjN
= �ω(N)

jN
) ≤ C, (6.36)

where the constant (which depends only on L, d) is a result of summing over
∑

ω
(N)
jN +1

. The second fact is

that for each odd i ∈ [3, N − 1], uniformly in �ω(i−2)

ji−2+1, (6.29) holds. The third fact is that

∑
�ω

(0)
1

D(ω(0)

1 )Q�ω
(0)
1 (ω(1)

j1
= ω(0)

l0
) ≤ e−Ij1 (6.37)

By first applying (6.36), followed by successive applications of (6.29) and lastly (6.37), when N is
even we obtain a bound on the contribution to (6.26) from �j ∈ B1, of

(Cβ)N
∏

1≤i≤N−1, odd

∑
�l

e−I(ji+(ji−1−li−1)) ≤ (Cβ)Ne−Im/2
∑

�j∈B1

∑
�l

∏
1≤i≤N−1, odd

e−I(ji−1−li−1)

≤ (Cβ)Ne−Im/2
∑
�j

N∏
i=1

(ji + 1), (6.38)

which is bounded by (6.35) just as in the previous case.
(c),(d) The bounds for N odd. The bounds for N ≥ 3 odd are similar to the bounds described above,
and we will omit the details. When N is odd, we bound the contribution from �j ∈ B0 by using the bound
(6.29) successively for each i ∈ [3, N ], and finally (6.37). For �j ∈ B1 \B0, we use (6.36), (6.29) and finally
(6.30). In both cases we obtain the same bound (6.35).

To complete the proof of Proposition 6.2(a), we sum (6.35) over N ≥ 2, giving at most

Cβe−(I/2−(Cβ)1/4)m. (6.39)

Choosing β0 sufficiently small so that (Cβ)1/4 ≤ I/4 for all |β| ≤ β0, we have that (6.39) is bounded by
Cβe−Jm, where J = I/4 is independent of β.

6.3 Bounds for excited random walk

In this section we prove Proposition 6.2(b).
In bounding the diagrams arising from the expansion applied to excited random walk, we will make

use of the following lemma, in which Q�η denotes the law of an excited random walk with history �η, where
�η is a finite path:

Lemma 6.2. For excited random walk in d > 2 dimensions,

sup
x,�η

Q�η(ωm = x) ≤ C

(m + 1)
d−1
2

. (6.40)
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Proof. Let Ym = #{k ≤ m : ωk /∈ {ωk−1 ± e1}} denote the number of steps taken in the dimensions
2, . . . , d by the excited random walk up to time m. Note that for excited random walk and simple random
walk, Yn has the same distribution. Then Ym ∼ Bin(m, q) where q = (d − 1)/d > 1

2 for d > 2, and
standard large deviations estimates give P(Ym < m/2) ≤ e−mI for some I > 0.

Now for each �η, with endpoint u,

Q�η(ωm = x) ≤Q�η(ω[2,...,d]
m = x[2,...,d]) = Pu(ω[2,...,d]

m = x[2,...,d]), (6.41)

where Pu denotes the law of a simple random walk starting at u. For m even, this is bounded by

P0(ω[2,...,d]
m = 0[2,...,d]) ≤

m∑
k=m/2

P0(ω[2,...,d]
m = 0[2,...,d]|Ym = k)P(Ym = k) + P(Ym < m/2)

≤
m∑

k=m/2

C

(k + 1)
d−1
2

P(Ym = k) + e−Im

≤ C

(m + 1)
d−1
2

m∑
k=m/2

P(Ym = k) + e−Im ≤ C

(m + 1)
d−1
2

. (6.42)

For m odd, (6.41) is bounded by 2dP0(ω
[2,...,d]
m+1 = 0[2,...,d]) and we proceed as in (6.42).

Recall that Am,N ≡ {�j ∈ ZN
+ :

∑
ji = m − N − 1}, and that for N ≥ 1,

∑
x,y

|π(N)
m (x, y)| ≤(Cβ)N sup

�η

∑
�j∈Am,N

∑
�l

∑
�ω

(0)
1

∑
�ω

(1)
j1+1

· · ·
∑

�ω
(N)
jN +1

p�η(u, ω(0)

1 )
N∏

n=1

I{ω(n)
jn

=ω
(n−1)
ln−1

}Q
�ω

(n−1)
jn−1+1

β (�ωjn = �ω(n)

jn
)

=(Cβ)N sup
�η

Π(N),�η
m , (6.43)

where u is the endpoint of the finite path �η, and we take this expression as the definition of Π(N),�η
m . See

the top diagram in Figure 3.

Proposition 6.3 (Bounds on the expansion coefficients for ERW). For excited random walk with d > 5,
the following bound holds: ∑

x,y

|π(N)
m (x, y)| ≤ (Cβ)N

(m + 1)
d−3
2

. (6.44)

In view of (6.43), the conclusion of Proposition 6.3 follows immediately from the following lemma:

Lemma 6.3. For d > 5, there exists C independent of β such that

sup
u,�η

Π(N),�η
m ≤ CN

(m + 1)
d−3
2

. (6.45)

Proof. We first prove by induction on N ≥ 1 that

∑
�j∈Am,N

∑
l1,...,lN−1

∑
�ω

(1)
j1+1

· · ·
∑

�ω
(N)
jN +1

N∏
n=1

I{ω(n)
jn

=ω
(n−1)
ln−1

}Q
�ω

(n−1)
jn−1+1

β (�ωjn = �ω(n)

jn
) ≤ CN

(m + 1)
d−3
2

. (6.46)
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0

uη

Figure 3: A diagrammatic representation of Π(N),�η
m (u) for N = 5, followed by the decomposition of the

diagram when j1 > m/2 and when j1 ≤ m/2 respectively. In each case, the induction hypothesis is
applied to the subdiagram of length m − (j1 + 1) that excludes the first walk, and the required decay
comes from the part of the diagram with thick lines.

For N = 1, j1 = m − 2 and (6.46) is less than or equal to

sup
v,�η

∑
�ω

(1)
m−1

I{ω(1)
m−2=v}Q

�η
β(�ωm−2 = �ω(1)

m−2) = C sup
v,�η

Q
�η
β(ωm−2 = v) ≤ C

(m + 1)
d−1
2

, (6.47)

where the first constant arises from the sum over ω(1)

m−1.
For N ≥ 2, (6.46) is bounded by

sup
v,�η

∑
j1≤m−2

∑
l1≤j1

∑
�ω

(1)
j1+1

I{ω(1)
j1

=v}Q
�η
β(�ωj1 = �ω(1)

j1
)

×
∑

�j′∈Am−j1−1,N−1

∑
l2,...,lN−1

∑
�ω

(2)
j2+1

· · ·
∑

�ω
(N)
jN +1

N∏
n=2

I{ω(n)
jn

=ω
(n−1)
ln−1

}Q
�ω

(n−1)
jn−1+1

β (�ωjn = �ω(n)

jn
)

≤ sup
v,�η

∑
j1≤m−2

CN−1

(m − j1 − 1)
d−3
2

∑
l1≤j1

∑
�ω

(1)
j1+1

I{ω(1)
j1

=v}Q
�η
β(�ωj1 = �ω(1)

j1
) (6.48)

≤
∑

j1≤m−2

CN−1

(m − j1)
d−3
2

j1
C ′

(j1 + 1)
d−1
2

≤ CN−1
∑

j1≤m−2

1

(m − j1)
d−3
2

C ′

(j1 + 1)
d−3
2

, (6.49)

using the induction hypothesis to get (6.48) and (6.47) to get (6.49). The result (6.46) now follows by
splitting the sum over j1 into the cases j1 ≤ m/2+1 and j1 > m/2+1, taking the term of order m−(d−3)/2

outside the sum and performing the remaining finite (since d > 5) sum.
To prove (6.45), for N = 1, we have from (6.43) and Lemma 6.2 that

Π(1),�η
m =

∑
�ω

(0)
1

∑
�ω

(1)
m−2

p�η(u, �ω(0)

1 )I{ω(1)
m−3=ω

(0)
0 }Q

�ω
(0)
1

β (�ωm−3 = �ω(1)

m−3)

≤ sup
v,�η′

Q
�η
β(ωm−3 = v)

∑
ω

(1)
m−2

1 ≤ C

(m + 1)
d−1
2

, (6.50)
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uniformly in �η, which initialises the induction hypothesis.
For N ≥ 2, and for any �η, proceeding as in the proof of (6.46),

Π(N),�η
m ≤

∑
j1≤m−2

∑
l1≤j1

∑
�ω

(0)
1

∑
�ω

(1)
j1+1

p�η(u, �ω(0)

1 )I{ω(1)
j1

=ω
(0)
0 }Q

�ω
(0)
1

β (�ωj1 = �ω(1)

j1
)

×
∑

�j′∈Am−(j1+1),N−1

∑
�l′

∑
�ω

(2)
j2+1

· · ·
∑

�ω
(N)
jN +1

N∏
n=2

I{ω(n)
jn

=ω
(n−1)
ln−1

}Q
�ω

(n−1)
jn−1+1

β (�ωjn = �ω(n)

jn
) (6.51)

≤CN−1
∑

j1≤m−N−1

1

(m − j1)
d−3
2

j1
C ′

(j1 + 1)
d−1
2

, (6.52)

using (6.50) and (6.46). The result follows as for (6.49).
This completes the proof of Lemma 6.3, and hence also Proposition 6.3.

6.4 Bounds for random walk in a partially random environment

In this section we prove Proposition 6.2(c), proceeding similarly to the excited random walk case. The
main ingredient needed is the analogue of Lemma 6.2 for RWpRE, which is the following Lemma.

Lemma 6.4. For RWpRE with d1 ≥ 1 dimensions,

sup
x,�η

Q�η(ωm = x) ≤ C

(m + 1)
d1
2

. (6.53)

Proof. Let Ym = #{k ≤ m : ωk /∈ {ωk−1 ± ei, i = 1, . . . , d0}} denote the number of steps taken in the
dimensions d0 + 1, . . . d by the RWpRE up to time m. Then there exists a sequence of random variables
Y ′

m ∼ Bin(m, δ) such that Y ′
m ≤ Ym for all m, and P(Ym < m δ

2) ≤ P(Y ′
m < m δ

2) ≤ e−Im for some I > 0,
by standard large deviations estimates. Now proceed as in the proof of Lemma 6.2 to get the result.

Since for RWpRE as defined in Section 2.3, the Δ factors satisfy the same bounds (3.29) as excited
random walk (3.27), the analysis continues exactly as in Section 6.3 except that the exponents have
changed in Proposition 6.3 and Lemma 6.3 from d−3

2 = d−1
2 − 1 to d1

2 − 1. In the inductive analysis we
then use the fact that when d1

2 − 1 > 1 (i.e. d1 > 4),

∑
j≤m−2

1

(m − j)
d1
2
−1

j
1

(j + 1)
d1
2

≤ C

(m + 1)
d1
2
−1

.

6.5 Discussion of the bounds

In the examples given in this paper, an estimate of the form

sup
�η,x

Q�η(ωm = x) ≤ A(m) (6.54)

is crucially used in bounding the diagrams, where A(m) is decreasing sufficiently rapidly in m. In the
case of the reinforced random walk with drift, Cramér’s Theorem enabled such a result with A(m)
exponentially small in m. For excited random walk, the simple random walk behaviour in all but the
first dimension gave such a result with A(m) = (m + 1)−(d−1)/2. Similarly for random walk in partially
random environment with A(m) = (m + 1)−d1/2. In these examples, we ignore considerable information
contained in the expansion in order to bound certain quantities arising from the expansion in terms of
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diagrams. In the case of excited random walk, we bounded these diagrams using very simple, but non-
optimal estimates. The diagrammatic estimates are used to verify a set of non-optimal assumptions under
which the central limit theorem holds. Improvements in any of these areas could lead to a reduction in
the dimension above which our methods imply a central limit theorem for excited random walk. We note
that different bounds, valid for all β ∈ [0, 1], are proved in [19] for ERW in order to prove monotonicity
of β �→ θ(β, d) when d ≥ 9.

The approach taken above works more generally. We can obtain a LLN and CLT for any translation
invariant self-interacting random walk model that has the properties that

(1) p�ηm◦�xn(xn, xn+1) − p�xn(xn, xn+1) �= 0 ⇒ xn ∈ �ηm,

(2) this difference in transition probabilities is small (uniformly) for all possible histories, and

(2) the walker is “sufficiently transient” (uniformly) for all possible histories,

can be handled in the same way as we have handled the models above. For an explicit example, one
can take an (annealed) multi-cookie random walk in an i.i.d. random cookie environment with multi-
dimensional excitement, provided that there are d1 > 4 (sufficiently transient) coordinates where the
walker is behaving as a simple random walk.

It would require a great advance in our understanding and analysis of the recursion equation, in
order for us to apply this methodology to a “non-repulsive” model such as the once reinforced random
walk. Inductive arguments as in [18, 22] have been used rather successfully for oriented percolation [23],
the contact process [20], and various related problems. However all of these made crucial use of the
self-repellent nature of the problems involved.

7 Proof of the variance formula in Theorem 3.2

Multiplying both sides of (2.29) by x[i]x[j] = (x[i] − y[i] + y[i])(x[j] − y[j] + y[j]) and summing over x we
obtain,

E[ω[i]
n+1ω

[j]
n+1] =

∑
y

y[i]y[j]D(y)
∑
x

cn(x − y) +
∑
y

y[i]D(y)
∑
x

(x[j] − y[j])cn(x − y)

+
∑
y

y[j]D(y)
∑
x

(x[i] − y[i])cn(x − y) +
∑
y

D(y)
∑
x

(x[i] − y[i])(x[j] − y[j])cn(x − y)

+
n+1∑
m=2

∑
y

y[i]y[j]πm(y)
∑
x

cn+1−m(x − y) +
n+1∑
m=2

∑
y

y[i]πm(y)
∑
x

(x[j] − y[j])cn+1−m(x − y)

+
n+1∑
m=2

∑
y

y[j]πm(y)
∑
x

(x[i] − y[i])cn+1−m(x − y)

+
n+1∑
m=2

∑
y

πm(y)
∑
x

(x[i] − y[i])(x[j] − y[j])cn+1−m(x − y). (7.1)
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Since
∑

x cn(x) = 1 =
∑

y D(y) and
∑

y πm(y) = 0, many terms simplify, so that (7.1) becomes

E[ω[i]
n+1ω

[j]
n+1] =

∑
y

y[i]y[j]D(y) +
∑
y

y[i]D(y)
∑
x

x[j]cn(x) +
∑
y

y[j]D(y)
∑
x

x[i]cn(x)

+
∑
x

x[i]x[j]cn(x) +
n+1∑
m=2

∑
y

y[i]y[j]πm(y) +
n+1∑
m=2

∑
y

y[i]πm(y)
∑
x

x[j]cn+1−m(x)

+
n+1∑
m=2

∑
y

y[j]πm(y)
∑
x

x[i]cn+1−m(x)

=E[ω[i]
1 ω

[j]
1 ] + E[ω[i]

1 ]E[ω[j]
n ] + E[ω[j]

1 ]E[ω[i]
n ] + E[ω[i]

n ω[j]
n ]

+
n+1∑
m=2

∑
y

y[i]y[j]πm(y) +
n+1∑
m=2

a[i]
mE[ω[j]

n+1−m] +
n+1∑
m=2

a[j]
m E[ω[i]

n+1−m]. (7.2)

Turning this into a statement about covariances we have, with C(X,Y ) = E[XY ]−E[X]E[Y ] denoting
the covariance between the random variables X and Y ,

C(ω[i]
n+1, ω

[j]
n+1) − C(ω[i]

n , ω[j]
n ) =E[ω[i]

1 ω
[j]
1 ] +

n+1∑
m=2

∑
y

y[i]y[j]πm(y)

+ E[ω[i]
1 ]E[ω[j]

n ] + E[ω[j]
1 ]E[ω[i]

n ] − E[ω[i]
n+1]E[ω[j]

n+1] + E[ω[i]
n ]E[ω[j]

n ]

+
n+1∑
m=2

a[i]
mE[ω[j]

n+1−m] +
n+1∑
m=2

a[j]
m E[ω[i]

n+1−m]. (7.3)

If the right hand side converges then by the first condition of (3.43) it must converge to Σij , since the left
hand side summed from n = 0 to k− 1 is C(ω[i]

k , ω
[j]
k ). Note that if E[ωn] = 0 for each n then the last two

lines of (7.3) are zero and the claimed result then follows immediately (with θ[i] = 0 for all i). Otherwise
we need to show that under the conditions of (3.43) and (ii) the right hand side of (7.3) converges to that
of (3.44).

Use the relationship

E[ω[i]
n+1] = E[ω[i]

1 ] +
n+1∑
m=2

a[i]
m + E[ω[i]

n ] ≡ θ
[i]
n+1 + E[ω[i]

n ],

to see that

E[ω[i]
n+1]E[ω[j]

n+1] =
(
θ
[i]
n+1 + E[ω[i]

n ]
) (

θ
[j]
n+1 + E[ω[j]

n ]
)

=θ
[i]
n+1θ

[j]
n+1 + θ

[i]
n+1E[ω[j]

n ] + θ
[j]
n+1E[ω[i]

n ] + E[ω[i]
n ]E[ω[j]

n ]. (7.4)

Thus the right hand side of (7.3) is

E[ω[i]
1 ω

[j]
1 ] +

n+1∑
m=2

∑
y

y[i]y[j]πm(y) +
n+1∑
m=2

a[i]
mE[ω[j]

n+1−m] +
n+1∑
m=2

a[j]
m E[ω[i]

n+1−m]

+ E[ω[i]
1 ]E[ω[j]

n ] + E[ω[j]
1 ]E[ω[i]

n ] − θ
[i]
n+1θ

[j]
n+1 − θ

[i]
n+1E[ω[j]

n ] − θ
[j]
n+1E[ω[i]

n ]

= E[ω[i]
1 ω

[j]
1 ] +

n+1∑
m=2

∑
y

y[i]y[j]πm(y) +
n+1∑
m=2

a[i]
mE[ω[j]

n+1−m] +
n+1∑
m=2

a[j]
m E[ω[i]

n+1−m]

− E[ω[j]
n ]

n+1∑
m=2

a[i]
m − E[ω[i]

n ]
n+1∑
m=2

a[j]
m − θ

[i]
n+1θ

[j]
n+1. (7.5)
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Collecting terms, we can rewrite (7.3) as

C(ω[i]
n+1, ω

[j]
n+1) − C(ω[i]

n , ω[j]
n ) =E[ω[i]

1 ω
[j]
1 ] − θ

[i]
n+1θ

[j]
n+1 +

n+1∑
m=2

a[i]
m

(
E[ω[j]

n+1−m] − E[ω[j]
n ]
)

+
n+1∑
m=2

∑
y

y[i]y[j]πm(y) +
n+1∑
m=2

a[j]
m

(
E[ω[i]

n+1−m] − E[ω[i]
n ]
)

=E[ω[i]
1 ω

[j]
1 ] − θ

[i]
n+1θ

[j]
n+1 −

n+1∑
m=2

a[i]
m

n∑
r=n+2−m

θ[j]
r

+
n+1∑
m=2

∑
y

y[i]y[j]πm(y) −
n+1∑
m=2

a[j]
m

n∑
r=n+2−m

θ[i]
r .

The right hand side is equal to

E[ω[i]
1 ω

[j]
1 ] − θ

[i]
n+1θ

[j]
n+1 −

n+1∑
m=2

a[i]
m

n∑
r=n+2−m

⎛
⎝θ[j] −

∞∑
k=r+1

a[j]
m

⎞
⎠

+
n+1∑
m=2

∑
y

y[i]y[j]πm(y) −
n+1∑
m=2

a[j]
m

n∑
r=n+2−m

⎛
⎝θ[i] −

∞∑
k=r+1

a
[i]
k

⎞
⎠

= E[ω[i]
1 ω

[j]
1 ] − θ

[i]
n+1θ

[j]
n+1 − θ[j]

n+1∑
m=2

a[i]
m(m − 1) +

n+1∑
m=2

∑
y

y[i]y[j]πm(y) − θ[i]
n+1∑
m=2

a[j]
m (m − 1) (7.6)

+
n+1∑
m=2

a[i]
m

n∑
r=n+2−m

∞∑
k=r+1

a
[j]
k +

n+1∑
m=2

a[j]
m

n∑
r=n+2−m

∞∑
k=r+1

a
[j]
k .

The first line of the last equality of (7.6) converges to (3.44). It therefore remains to show that the
terms on the second line of the last equality of (7.6) converge to zero. Since i and j are arbitrary, it
suffices to verify the result for the first term on the second line of the last equality of (7.6). For n ≥ 4
this term is equal to

n+1∑
m=2

a[i]
m

n∑
r=n+2−m

∞∑
k=r+1

a
[j]
k =

∞∑
k=2

a
[j]
k

n+1∑
m=(n+3−k)∨2

a[i]
m((k − 1) + (m − n − 1)). (7.7)

This is bounded in absolute value by

∞∑
k=2

|a[j]
k |(k − 1)

n+1∑
m=(n+3−k)∨2

|a[i]
m| +

∞∑
k=2

|a[j]
k |

n+1∑
m=(n+3−k)∨2

|a[i]
m|(m − 1) (7.8)

The first term of (7.8) is

�n/2�∑
k=2

|a[j]
k |(k − 1)

n+1∑
m=(n+3−k)∨2

|a[i]
m| +

∞∑
k=�n/2�+1

|a[j]
k |(k − 1)

n+1∑
m=(n+3−k)∨2

|a[i]
m|

≤
∞∑

k=2

|a[j]
k |(k − 1)

n+1∑
m=n/2

|a[i]
m| +

∞∑
k=�n/2�+1

|a[j]
k |(k − 1)

∞∑
m=2

|a[i]
m|, (7.9)

which converges to 0 as n → ∞, since each of these is the tail of a convergent series multiplied by a
convergent series. Similarly the second term of (7.7) converges to 0.
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