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Abstract

SQ2
This note extends the result of Tﬁ in order to use thteeisrilsductive approach to study models with critical
dimension other than 4. The results are applied in [3| to study sufficiently spread-out lattice trees in
dimensions d > 8 and may also be applicable to percolation in dimensions d > 6.

1 Introduction

This note consists of large parts of the material in Tsﬁo]z, reproduced verbatim, but with the 1ntr0duct10n of
parameters 6(d) > 2 and p* > 1. Such an extension of 9 was proposed in 1O The case 0 = 7, and p* =1
is that dealt with in T2]2 The result of this appendix is shown in 3o apply to lattice trees with d > 8,
0= % and p* = 2. We also expect the result to be applicable to other models where the analysis uses the
lace expansion above a critical dimension d. > 4. In such cases the lace expansion for d > d. suggests setting
0= df@ In particular the above statement for pegccoslsetlon in dimensions d > d. = 6 would give 0 = u

The chapter is organised as follows. In Section 2 we state the form of the recursion relation, and the
assumptions S, D, Ey, and Gy on the quantltles appearing in the recursion equation. We also state the “6-
theorem” to be proved. In Section E’: we introduce the induction hypotheses on f,, that will be used to prove
the 6- theorem and derlve some consequences of the induction hypotheses. The induction is advanced in

sec:assthm

Section 4. In Section 5 The #-theorem stated in Section 3 are proved.

2 Assumptions on the Recursion Relation

sec:assthm

When applied to self-avoiding walks, oriented percolation and lattice trees, the lace expansion gives rise to a
convolution recursion relation of the form

n+l fkrec
Jny1(k;2) = Z Im(k; 2) far1-m(k; 2) + eny1(k; 2) (n >0), (1)
m=1

with fo(k;z) = 1. Here, k € [~m,7]? is a parameter dual to a spatial lattice variable z € Z9, and z is a
positive parameter. The functions Im, and e,, are to be regarded as given, and the goal is to understand the

rec

behaviour of the solution f,(k; z) of (1



July 10, 2006 — 18: 08 DRAFT 2

2.1 Assumptions S,D,E,Gy

rec

The first assumption, Assumption S, requires that the functions appearing in the recursion equation (fl
respect the lattice symmetries of reflection and rotation, aré(()i that f, remains bounded in a weak sense. We
have strengthened this assumption from that appearing in [2|, as one requires smoothness of f,, and g, which
holds in all of the applications.

Assumption S. For every n € N and z > 0, the mapping k — f,(k; 2) is symmetric under replacement of
any component k; of k by —k;, and under permutations of the components of k. The same holds for e,(+; z)
and g,(-; 2). In addition, for each n, |f,(k; )| is bounded uniformly in k& € [, 7]¢ and z in a neighbourhood
of 1 (which may depend on n). We also assume that f, and g, have continuous second derivatives in a
neighbourhood of 0 for every n. It is an immediate consequence of Assumption S that the mixed partials of
fn and g, at k = 0 are equal to zero.

The next assumption, Assumption D, incorporates a “spread-out” aspect to the recursion equatifon. It
introduces a function D which defines the underlying random walk model, about which Equation (ﬁecis a
perturbation. The assumption involves a non-negative parameter L, which will be taken to be large, and
which serves to spread out the steps of the random walk over a large set. We write D = Dy, in the statement
of Assumption D to emphasise this dependence, but the subscript will not be retained elsewhere. An example
of a family of D’s obeying the assumption is taking D(-) uniform on a box side length 2L, centred at the
origin. In particular Assumption D implies that D has a finite second moment and we define

= YY)t en@) | =Y #fpE). @)
i T T

k=0

2

o?=-V2D(0) = — Z ;kz > " D(x)

J ) x k=0

The assumptions involve a parameter d, which corresponds to the spatial dimension in our applications,

and a parameter 6 > 2 which will be model dependent.
Let

a(k) =1— D(k). (3)

Assumption D. We assume that
fi(k;2) = zDp(k), ei(k;z) =0. (4)

In particular, this implies that g1 (k; z) = zﬁL(k:). As part of Assumption D, we also assume:
(i) Dy, is normalised so that Dr(0) = 1, and has 2 4+ 2e¢ moments for some € > 0, i.e.,

momentD
> 2D (z) < oo (5)

x€Z4

(ii) There is a constant C' such that, for all L > 1,

beta, sigmadef

|Dp||oe < CL™Y, 02 =02 < CIL?, (6)
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(iii) There exist constants 7, c1,ca > 0 such that

Dbound1

aL?k? <ap(k) < eoL?k?  (||klleo < L7Y), (7)
Dbound2

ar(k) >n (|kllee = L7, . (i)

ar(k) <2-n (k€ [-m7]%). (9)

Assumptions E and G of TSQ(T are now adapted to general 6 > 2 as follows. The relevant bounds on f,,,
which a priori may or may not be satisfied, are that for some p* > 1, some nonempty B C [1,p*] and

SIS

B=p0)= (10)

we have for every p € B,

fbdsp

. K
1D fin(52)llp <~ [fm(O2)| S K, [V2fin(052)] < Kom, (11)

Lom2s NG’
for some positive constant K. The full generality in which this has been presented is not required for our
apphcatlon to lattice trees where we have p* = 2 and B = {2}. This is because we require only the p = 2 case
in 115)p to estimate the diagrams arising from the lace expansion for lattice trees and verify the assumptions
Ey, Gy which follow. In other applications it may be that a larger collection of || e ||, norms are required to
verify the assumptions and the set B is allowing for this possibility. The parameter p* serves to make this set
bounded so that (3 (? is small for large L.

The bounds in (1 1% are identical to the ones in TQ]E except for the first bound, which only appears for p = 1
and 0 = &

Assumptlon Eg. There is an Lo, an interval I C [1 — o, 1+ o] with a € (0,1), and a function K — C¢(K),
such that if 115)p holds for some K > 1, L > Ly, z € I and for all 1 < m < n, then for that L and z, and for
all k € [-m,7]? and 2 < m < n + 1, the following bounds hold:

lem (ks 2)| < Co(K)Bm™,  |em(k; 2) — em(0; 2)| < Co(K)a(k)Bm™0F. (12)

Assumption Gy. There is an Lo, an interval I C [1 —a,1+ o] with o € (0,1), and a function K — Cy(K),
such that if 115)D holds for some K > 1, L > Lo, z € I and for all 1 < m < n, then for that L and z, and for

all k € [-7,7]? and 2 < m < n + 1, the following bounds hold:
g (ks 2)| < Cy()Bm™, [V, (0:2)] < Cy(K)o?Bm~0+, (13)
10:29m(0; 2)| < Cy(K)Bm =+, (14)
(9 (K3 2) = g (05 2) = a(k)o "> V2g, (05 2)| < Cy(K)Ba(k) <m0+, (15)

with the last bound valid for any € € [0,e A1 A (6 — 2)].
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Thel())rem 2.1. Let d > d. and 6(d) > 2, and assume that Assumptions S, D, Ey and Gy all hold. There
exist positive Ly = Lo(d,€), z. = z.(d, L), A= A(d, L), and v = v(d, L), such that for L > Ly, the following
statements hold.

(a) Fiz v € (0,1N0—2N¢€) and d € (0,(LANG—2AN€)—r). Then

i /L %) = Ae~5 {1+ O(Rn ) + O(n"+2)], (16)
vo?n
with the error estimate uniform in {k € R% : a(k/vva?n) < yn~'logn}.
(b)
V2 n(0; z¢
M vo?n[l + O(Bn~)]. (17)

(c) For allp > 1,

1D? fus 20)lp < ——— (18)
L

(d) The constants z., A and v obey

1= Z gm(OQ Zc)y
m=1
0 . eq:pthmd
A 1 +O§:m:1 em(0; zc), (19)
Zm:l Mg (0; 2c)
Eﬁ:l v29m(05 Zc)
023 1 Mgm (05 2¢)

It follows immediately from Theorem tthle) and the bounds of Assumptions E and G that

v=—

With modest additional assumptions, the critical point z. can be characterised in terms of the susceptibility

susl

=3 £al052). (21)
n=0

thm-zc

Theorem 2.2. Let d > d., 6(d) > 2, p* > 1 and assume that Assumptions S, D, Ey and Gy all hold. Let
L be sufficiently large. Suppose there is a 2., > 0 such that the susceptzbzlzty (7?1) is absolutely convergent for

€ (0, z), with lim,1,r x(z (zfx is a power series in z then z. is the radius of convergence of x(z)).
Suppose also that the bounds of f 1 for z = z. and all m > 1 imply the bounds of Assumptions Eg and Gy
for all m > 2, uniformly in z € [0, z;]. Then z. = z..
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3 Induction hypotheses

We will analyse the recursion relation (fﬁrecusing induction on n, as done in TSQOT In this section, we introduce
the induction hypotheses, verify that they hold for n = 1, discuss their motivation, and derive some of their
consequences.

3.1 Statement of induction hypotheses (H1-H4)

sec-ihstate

The induction hypotheses involve a sequence v,, which is defined as follows. We set vg = by = 1, and for
n > 1 we define

1 n n b Delta_n
bo=——3 D Voom(02), en= Y (m—1)gm(052), vn= " (1)
g m=1 m=1 1+ en

The z—dependence of by, ¢, v, will usually be left implicit in the notation. We will often simplify the notation
by dropping z also from e,, f, and g, and write, e.g., fn(k) = fn(k; 2).

rem:bl

Remark 3.1. Note that the above definition and assumption D gives

eq:bl

1 1 ~ z
by = —§V291(0;z) = —EVQzD(O) =—=.(-0%) =2 (2)
Obviously we also have ¢y =0 so that vi = z.

ThetDinduction hypotheses also involve several constants. Let d > d., 8 > 2, and recall that e was specified
in (5). We fix 7,6 > 0 and A > 2 according to

O<y<1IAO—2NE€ “
agddef
0<d<(INO—2N¢€)—7 (3)
0—y<A<@.

We also introduce constants K7, ..., K5, which are independent of 3. We define
K4’def
K = max{Ce(cKy), Cy(cKa), Ku}, (4)
lem-pibds

where c is a constant determined in Lemma 3.6 below. To advance the induction, we will need to assume that

Kcond

K3 > K, >K112K4 >1, K ZK1,3KZ/1, Ks > Ky. (5)

Here a > b denotes the statement that a/b is sufficiently large. The amount by which, for instance, K3
must exceed K7 is independent of 3 (but may depend on p*) and will be determined during the course of the
advancement of the induction in Section 4.
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Let zg = z1 = 1, and define z, recursively by

n+1 z_n
Zny1 =1 — Z gm (05 zn), n =1 (6)
m=2
For n > 1, we define intervals Indes
I, = 20 — K160~ 2, + K1 B0~ %F1). (7)

In particular this gives I1 = [1 — K13,1 + K10]. .
Recall the definition a(k) = 1 — D(k) from (3d) Our induction hypotheses are that the following four
statements hold for all z € I, and all 1 < j < n.

(H].) |Zj — Zj71| < Klﬁj_g.
(H2) [vj — vj_1| < Ko~
(H3) For k such that a(k) < ~j~!logj, f;j(k;2) can be written in the form
J
fi(ks2) = T [0 = via(k) +ri(k)],
i=1
with r;(k) = r;(k; 2) obeying
Ir;(0)] < K3Bi "™, |ri(k) — 7:(0)| < KsBa(k)i™°.
(H4) For k such that a(k) > ~vj 'logj, fj(k;z) obeys the bounds

|fi(k; )| < Kaa(k) 7570 [£5(ks 2) = fi-1(ks 2)| < Ksa(k) 577
Note that, for £ = 0, (H3) reduces to f;(0) = ‘gzl[l + r;(0)].

3.2 Initialisation of the induction

We now verify that the induction hypotheses hold when n = 1. This remains unchanged from the p = 1 case.
Fix z € 1.

(H1) We simply have z; —zp=1—-1=0.
(H2) From Remark 31 we simply have |v; — vg| = |z — 1], so that (H2) is satisfied provided Ky > Kj.

Dboun

(H3) We are restricted to a(k) = 0. By (7), this means k = 0. By Assumption D, f1(0;2) = z, so that
r1(0) =z — 1=z — z;. Thus (H3) holds provided we take K3 > Kj.

(H4) We note that |fi(k; z)| < z < 2 for ( sufficiently small (i.e. so that K1 < 1), |fi(k;2) — fo(k; 2)| < 3,
and a(k) < 2. The bounds of (H4) therefore hold provided we take K4 > 2 ! and K5 >3- 2271,
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3.3 Discussion of induction hypotheses

sec-mot
fkrec

(H1) and the critical point. The critical point can be formally identified as follows. We set k = 0 in (ﬁ,
then sum over n, and solve for the susceptibility

X(2) =Y fa(0;2). (8)
n=0

The result is . ZOO (0:2)
+ - e ,Z chiz
x(z) = B
1- Zm:l gm(o’ Z)

The critical point should correspond to the smallest zero of the denominator and hence should obey the
equation

1pi

[e.e] e}
1- Z gm(0520) =1 — 2. — Z gm(0; z.) = 0. (10)
m=1 m=2

However, we do not know a priori that the series in (é)‘)lzor (1f(1)) converge. We therefore approximate (1f(1)) with
the recursion (%j, which bypasses the convergence issue by discarding the g¢,,,(0) for m > n + 1 that cannot
be handled at the n'" stage of the induction argument. The sequence z, will ultimately converge to z.

In dealing with the sequence z,, it is convenient to formulate the induction hypotheses for a small interval
I, approximating z.. As we will see in Section ?Se.cé_f,rel(Hl) guarantees that the intervals I; are decreasing:
I DIy D -+ D Iy. Because the length of these intervals is shrinking to zero, their intersection N72,1; is a
single point, namely z.. Hypothesis (H1) drives the convergence of z, to z. and gives some control on the rate.
The rate is determined from (6) and the ansatz that the difference zj — zj—1 is approximately —g;4+1(0, 2¢),

with |g;(k; z¢)| = O(8 ) as in Assumption G.

3.4 Consequences of induction hypotheses

sec-prel

In this section we derive impfgdrtant consequences of the induction hypotheses. The key result is that the
induction hypotheses imply (115)P for all 1 < m < n, from which the bounds of Assumptions E and G then
follow, for 2 < m <n + 1.

Here, and throughout the rest of this paper:

e ( denotes a strictly positive constant that may depend on d, v, d, A, but not on the K;, not on k, not on
n, and not on [ (provided [ is sufficiently small, possibly depending on the K;). The value of C' may
change from line to line.

o We frequently assume < 1 without explicit comment.
The first lemma shows that the intervals I; are nested, assuming (H1).

lem-In

Lemma 3.2. Assume (H1) for 1 <j<mn. Then Iy DIy D - D I,.
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def

Proof. Suppose z € I, with 2 < j <n. Then by (H1) and (17 ,

KlﬂJrKlﬁ < K5

: < — : 11
gt gt T (-1t (n

|2 =zl <[z =zl + 12—zl <

and hence z € I;_1. Note that here we have used the fact that

11 G
ﬂ*jbgu—l)a(:’”jb—é(j—l) (12)

which holds if ¢ > 1 and b — a > 1 since then

1+

<1+1<1qL ! <<1qL ! >a (13)
jome J J—1- i—=1)

Indef

By Lemma ?Eﬁnif z € I for 1 < j <n, then z € I; and hence, by (7),
znearl

12— 1] < K18. (14)

It also follows from (H2) that, for z € I,, and 1 < j < n,

vnearl

"Uj - 1’ S CKQﬂ (15)

Define

sdef

si(k) = [1+74(0)] 7 [via(k)ri(0) + (ri(k) — ri(0))]. (16)
We claim that the induction hypothesis (H3) has the useful alternate form

£i(k) = ;O T 11 = vialk) + si(k)]. “ar)
i=1

fs

Firstly f;(0) = ngl[l + 7i(0)]. Therefore the RHS of (17) is

(1 —via(k)) [1+ 7:(0)] + via(k)r;(0) + (r;(k) — r;(0)) (18)

J
=1

(2

which after cancelling terms gives the result. Note that (f157 ) shows that the s;(k) are symmetric with contin-
uous second derivative in a neighbourhood of 0 (since each f;(k) and a(k) have these properties). To see this
note that f1(k) and a(k) symmetric implies that s;(k) is symmetric. Next, fa(k),a(k), and s;(k) symmetric
implies that so(k) symmetric etc.
We further claim that b
|si(k)| < K3(2 + C(Ka + K3)0)Ba(k)i™®. (19)



July 10, 2006 — 18: 08 DRAFT 9

This is different to that appearing in TQ]Z 2.19) in that the constant is now 2 rather than 1. This is a correction
T ]2(2 19) but it does not affect the analysis. To verify (19) we use the fact that -1~ < 14 2z for 2 < 1 to
write for small enough £,

[si(k)| < [1+2K36] [(1 + [vi — 1])a(k)ri(0) + |ri(k) — rs(0)]]

< [1+2K30] |(1 + CK3pB)a(k )I§3€ + K3ﬂl?( ) (20)
M“() M“()

[1+2K30][24+ CKy3] < 2+ C(K2+ K3)0].
Where we have used the bounds of (H3) as well as the fact that § — 1 > §. The next lemma provides an
important upper bound on f;(k; z), for k small depending on j, as in (H3).

lem-cA

Lemma 3.3. Let z € I,, and assume (H2-H3) for 1 < j <n. Then for k with a(k) < vj~1logj,

Ifi(k: 2)| < CK38—(1-C(K2+K3)B)ja(k) (21)

Proof. We use H3, and conclude from the bound on 7;(0) of (H3) that | f;(0)| = g:l [14+7;(0)] < ngl }1 + ﬁi?
eCK3P using 14 x < € for each factor. Then we use (Vlnga)r,1 (f157) and (Slbf)) to obtain

J J
[T = via(k) + sk < [T |1 = (1 = CK2B)alk) + CKyBa(k)i~| (22)
i=1 i=1
The desired bound then follows, again using 1 4+ x < e” for each factor on the right 51de and by (17) O

The middle bound of 115)p follows, for 1 < m < n and z € I, directly from Lemma 373" We next prove two
lemmas which provide the other two bounds of 115)P This will supply the hypothesis ( 113) for Assumptions E
and G, and therefore plays a crucial role in advancing the induction.

lem-Lpnorm

Lemma 3.4. Let z € I, and assume (H2), (H3) and (H4). Then for all1 <j<n, andp > 1,

- C(1+ Ky)
ID?fi(52)lp < — g (23)
Li 50
where the constant C' may depend on p,d.
Proof. We show that
- C(1+ Ky)P
15275(: 9l < CEEEDT (24)
LdJQAGP

For j = 1 the result holds since |f1(k)| = |zD(k)| < z < 2 and by using (%Q)taéﬁgazﬁe fact that p > 1. We may
therefore assume that j > 2 where needed in what follows, so that in particular log j > log 2.
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Fix z € I, and 1 < j < n, and define

Ry ={k € [-m,7]" : a(k) < vj logj, [|klleo < L7},
Ry ={k € [-m,7]" : a(k) < ~vj 'logj, [|kllec > L7},
Ry ={k € [-m,7]" : a(k) > vj logj, [|klleo < L7},
Ry={k € [-m 7" a(k) >y " logj, |kl > L'},

The set Ry is empty if j is sufficiently large. Then

p 2
1525 |P—Z [, (2o 55 (25)

We will treat each of the four terms on the right 51de separately

bound1

On Ry, we use (7) in conjunction with Lemma 373"and the fact that D? < 1, to obtain for all p > 0,

d
a 2\? ) —cpj(Lk)? d k —cpj(Lk;) c C
[ (002 1500p g 5 < [ e H / Ce Pty < Lo Co < o ()

Dbound2

Here we have used the substitution k; = Lk;y/pj. On Ry, we use Lemma 373 and (8) to conclude that for all
p > 0, there is an a(p) > 1 such that

[ (PR s < [ avigh - caiml, @)

where |Rg| denotes the volume of Ry. This volume is maximal when j = 3, so that

[Ra| < [{k:a(k) < T2} < [{k : D(k) > 1 — T2} < ( 10?11 < ( 2L, (28)

1— 'ylogS) 1— 'ylog3
3

using (bﬁesalrsllgtmhe last step. Therefore a=7|Ry| < CL~%j=4/2 gince o735 5 < C for every j (using L’Hospital’s
rule for example with o/ = ¢71°89) and

- p d%% _
[ (Borism)” G < cnti (29)

On R3 and R4, we use (H4). As a result, the contribution from these two regions is bounded above by

K\ [ D)% dik
(j@) Z; r a(k)™ (2m)d (30)
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On Rs, we use D(k)? < 1 and (%ﬂ.mdiDeﬁne RY = {k : ||k|loo < L7Y, |k|> > Cj~'logj} to obtain the upper

bound
CKY} 1 CKY 1
i0 24)\ / 2) ddk < '9 24/\ / 2 ddk
.] pL P R3 |k| P pL P Rc |k’ b lar(“geke)xt
31

CKY
9pL2/\p \/Wgﬂ

Since log 1 = 0, this integral will not be finite if both j = 1 and p > 2)\, but recall that we can restrict our
attention to 5 > 2. Thus we have an upper bound of

d*l*?)\pdr

¢ d—2
[ i1 gy ,d>2\p (4w ,d > 2\p
CK? 4 1 . CKP /1% \ 1 (C’j) B
jepTip S e Ly Jd=2)\p < 9pL24Ap log | 55 ) = log (55 ) d=2 (39
! 2Ap—d
°° a d—1—2)\p C/L2 - 2
f\/CLTﬁJT dr ,d<2\p (logjj> A< 2\,

beta, sigma

On Ry, we use (6) an 2 8} to obtain the bound

CKY / s oy dk OKY / L d%  CK,
jep [ 7r7r}d ( ) (27T)d j@p [ 71-71-}61 ( ) (27T)d jepLd ( )
where we have used the fact that p > 1 and |1A)\ < 1. Since Kff < (1 + K4)P, this completes the proof. B

lem-fder

Lemma 3.5. Let z € I,, and assume (H2) and (H3). Then, for 1 < j <mn,
V2£(0;2)] < (14 C(Ka + K3) )0, (34)

Proof. Fix z € I, and 7 with 1 < j < n. Using the product rule multiple times and the symmetry of all of
the quantities in (17) to get cross terms equal to 0,

1.2b2

[—o%v; + V25,(0)]. (35)

Mu.

V2£;(0) = £;(0)
i=1

vne

By (1 a) |v; — 1| < CKsf. For the second term on the right side, we let ey, ..., eq denote the standard basis
vectors in R?. Since s;(k) has continuous second derivative in a nelghbourhood of 0, we use the extended
mean value theorem s(t) = s(0) + ts'(0) + 3¢2s”(t*) for some t* € (0,), together with (19) to see that for all
17 < n we have
2
|v SZ ‘ o 2‘ Ztﬂo

) 1.2b3

= CK3026i . (36)

< CK36i7°Y  lim
) Z



July 10, 2006 — 18: 08 DRAFT 12

Note the constant 2 here that is a correction to Tg)]z

lem-cA

Thus, by (é%g and Lemma 3.3

J 2
IV2£5(0)] < £;(0)) [02 (1+ CKypB) + CK:’fq < eCK3ﬂa2j(1 + C(Ky + Kg)ﬂ). (37)
=1

This completes the proof. ]

The next lemma is the key to advancing the induction, as it provides bounds for e, and gn41.
lem-pibds

Lemma 3.6. Let z € I,,, and assume (H2), (H3) and (H4). For k € [-m, 7%, 2<j<n+1, and € € [0,¢],
the following hold:

(i) g;(k;2)| < KiBj~",

(ii) |V2g;(0:2)| < Ko 55711,

(iii) 10.9;(0; 2)| < K30+,

(i) |g5(k: 2) = 9,05 2) — a(k)o2V2g;(052)| < K Ga(k)+e =01+,

(v) lej(ksz)| < K4p35~°,

(vi) |ej(k; 2) — €j(0; 2)| < Kja(k)35 0.

em-cAlem-fder

Proof. The bounds (flbdlsf for 1 < m < n follow from Lemmas %’).3—3.5, with K = cKj (this defines ¢), assuming
that 3 is sufﬁcientll ,dsfmall. The bounds of the lemma then follow immediately from Assumptions E and G,
with K| given in (4). O

4 The induction advanced

sec-adv

In this section we advance the induction hypotheses (H1-H4) from n to n + 1. Throughout this section, in
accordance with the uniformity condition on (H2-H4), we fix z € I,,11. We frequently assume 3 < 1 without
explicit comment.

4.1 Advancement of (H1)

sec-advH}
By (65 and the mean-value theorem,

n

Zn4+1 — Zn = — Z [gm((); Zn) - gm(o; anl)] - gn+1(05 Zn)

m=2

= _(Zn - Zn—l) Z 8zgm(0; yn) - gn-i-l(O; Zn)v

m=2
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for some y,, between z, and z,_1. By (H1) and (17“§jfyn € I,,. Using Lemma 36 and (H1), it then follows that

n
2ni1 — 2ol < K1~ Y KiBm =t + KiB(n 4+ 1)

m=2

< KiB(1+CK.18)(n+1)7%

Thus (H1) holds for n + 1, for 8 small and K; > KJ.

Having advanced (H1) to n + 1, it then follows from Lemma éefnémthat LoD DIy

For n > 0, define
n+1 n+1 zetadef

Cnt1 = Cny1(2) = ng(();?:) -1= ng(0;2)+2—1. (1)
m=1 m=2

The following lemma, whose proof makes use of (H1) for n + 1, will be needed in what follows.

zetan

Lemma 4.1. For all z € I,41,

zetanbd

Gog1| < CK1B(n + 1)t (2)

Proof. By (2651 and the mean-value theorem,

n+1
(Guoal = [(2 = 2zn41) + 3 [9(0:2) = 9n(05 )
" n+1
= |z = 2ni1) + (2 = 2) 3 Do),
m=2

lem-pibds
for some ¥, between z and z,. Since z € I,,;1 C I, and z, € I, we have y,, € I,. Therefore, by Lemma 3.6,

n+1
Gria| < KiB(n+ 1) + K gn~T1 Y © Km0 < K B(1+ CKB) (n 4 1) (3)
m=2
The lemma then follows, for § sufficiently small. O

4.2 Advancement of (H2)

Delta_n

Let z € I,,11. As observed in Section Zeja,dvﬁlis implies that z € I; for all j < n+ 1. The definitions in (1)

imply that
1 b?’l vinc

= ——(bn+1 —bn) — n+1 = tn/, 4
1+cn+1( +1 ) (1+Cn)(1+cn+1)(c +1— Cn) (4)

Un4+1 — Un
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with
becdiff

1
bpy1 — b = _7v29n+1(0)7 Cnt1 — Cn = Ngn+1(0). (5)

bediff

By Lemma %ffn(_ip,ibldosoth differences in (5) are bounded by K}3(n + 1)7%+! and, in addition,

b —1| < CKLB, |¢j| < CK)3 (6)

for 1 < j <n+ 1. Therefore
[Uns1 — vn| < Kaf(n+1)70+1 (7)

provided we assume Ky > 3Kj. This advances (H2).

4.3 Advancement of (H3)

sec-advH2

4.3.1 The decomposition

The advancement of the induction hypotheses (H3-H4) is the most technical part of the proof. For (H3), we
fix k with a(k) <vy(n+1)"tlog(n+ 1), and 2 € I,,41. The induction step will be achieved as soon as we are
able to write the ratio fn,11(k)/fn(k) as

fnJrl(k)
fu(k)

with 7,41(0) and rn41(k) — rn41(0) satisfying the bounds required by (H3)
To begin, we divide the recursion relation (1 by fn(k), and use (1), to obtain

=1 —vnp1a(k) + ropa(k), (8)

n+1

fn+1 k, fn+1im(k,) en+1(k) rec hat{tau}_n(k)
Foliy =L 2 oIS )]+ G+ S ®)
By (1),
n+1 n+1
Vg1 = bpp1 = Vngicapr = =07 Y V2g(0) — vt Z — 1)gm(0). (10)
rec hat{tau}_n(k) B
Thus we can rewrite (9) as
fn+l(k) the eq
— 1 — wpra(k) + (k) 11
s = 1= vaall) + 1 8) (i)

where

Fas1(K) = X (k) + Y (k) + Z(K) + Guer (12)
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with

n+1

X(k) = 3 [(gm(k) = gu(0))

m=2

fn+1fM(k)
fu(K)

n+1 H2IIdef
=Y gm(0) {W —1—(m-— 1)vn+1a(k)} , (13)
m=2 n

— a(k)aiQVQQm(O)} ,

En+1 (k)
fa(k)

The m =1 terms in X and Y vanish and have not been included.
We will prove that

Z(k) =

C(K1 + Ki),@

CK}Ba(k)
(n+1)0-1 " '

Fasn(0)] < D) (14

[rn41(k) = mn41(0)] <

This glves (H3) for n + 1, provided we assume that K3 > K; and K3 > K. To prove the bounds on ry,41
of 143 it will be convenient to make use of some elementary convolution bounds, as well as some bounds on

sec-ratiobds

ratios involvin ng fj- These preliminary bounds are given in Section 4.3.2, before we present the proof of 14s)

sec-X

in Section 4.3.3.

4.3.2 Convolution and ratio bounds

sec-ratiobds
The proof of (rlbfg will make use of the following elementary convolution bounds. To keep the discussion
simple, we do not obtain optimal bounds.

lem-conv

Lemma 4.2. Forn > 2,

Cn~ @+ fora b >1

n L n i < Cn—(a—2)/\b for a > 2, b>0 cor(ni—gosmd
me. . jb = Cn=@= DA fora>2b>1
me2 Jmnem —anb
Cn™¢ for a,b> 2.

Proof. Since m + j > n, either m or j is at least . Therefore

n 1 2 a n n 1 2 b n n 1 conv-bound2
Yy a=()y > 5 (3)x > & ()
j=n—m+1 m=2 j=n—m+1 m=2 j=n—m+1
If a,b > 1, then the first term is bounded by Cn'~® and the second by Cn!'~?.
If a > 2,b > 0, then the first term is bounded by Cn?~¢ and the second by Cn~°
If @ > 2,b > 1, then the first term is bounded by Cn'~? and the second by Cn~°
If a,b > 2, then the first term is bounded by Cn~® and the second by Cn~°. O
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We also will make use of several estimates 1nvolv1ng ratios. We begin with some preparation. Given a
vector © = (x;) with sup; |;| < 1, define x(z) = Zl The bound (1 —#)~! < exp[t(1 — t)~}], together

1- \a:|
with Taylor’s Theorem applied to f(t) =[], 1—7?5501’ gives

1
Iy

Taylorl

< X(@)?eX®) (17)

as follows. Firstly,

ﬁ _ f(t)zd: Ty ﬁ 1 i He1‘t\g;z]\ Z |z, (18)
dt L—te; 111ty 1—tx] 1 <1 — [tz;]’

j=1

which gives f/(0) = Z;l:l zj, and for [t| < 1, |f/(t)] < x(x)eX(®). This gives the first bound by Taylor’s
Theorem. The second bound can be obtained in the same way using the fact that

2
d 2 d

d’f 5 xj
AL Z (1- Zl’j)Q " Z 1 —Jt%' ' 1)
7j=1 7=1

We assume throughout the rest of this section that a(k) < y(n+ 1)"tlog(n + 1) and 2 < m < n + 1, and
define

& o) S walk) £ I
D D e 0 RGP DI weeryr 5 pyro o 20)

By (vln%a)ﬂand (slbé), '
Xona(k) < (m = Da(KIQUR)  with  Q(k) = [1+ C(Ko + Ka)5][1 + Ca(k) (21)

where we have used the fact that for |z| < 3, & < 1+ 2|z|. In our case z = vja(k) + |s;(k)| satisfies

2| < (1+CK2B)a(k)+CKsBa(k). Since a(k) < y(n+1)"'log(n+1), we have Q(k) < [14+ C (K2 + K3)3][1+
C~y(n+1)"tlog(n + 1)]. Therefore
xman(k) < IR HDQUR) < ylog(n+ 14O (Ko +Ky)s) , S UBH e
< e log(n+D)[1+C(K2+K3)8] 407 < C(n+ 1)1
where we have used the fact that logz < 2/x, and where ¢ = 1 + C(K3 + K3) may be taken to be as close
to 1 as desired, by taking ( to be small.
We now turn to the ratio bounds. It follows from (H3) and the first inequality of 1’?) that

fn+1fm (0)
fn(0)

_1’:

ratiol.a

(23)
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Therefore / (0)
n+1—m ratio0
Intl=mi} <1 4 OKsB. 24
fa(0) ‘ ’ 24
fs
By (17),
frr1-m(k) 1’ _ | far1-m(0) ﬁ 1 ~ far1-m(0) n frr1-m(0) 1
fn(k) fn(o) j=n+2—m [1 - Uja(k) + Sj(k)] fn(o) fn(o)
(25)
fn+1—m(0) e 1 fn-i-l—m(o) ‘
< |7 -1+ | —— —1].
OIS W EE) 7(0)
Tayloril chibdtatioO
The first inequality of (1y7l), together with (217245, then gives
fn+1_m(k) CKgﬁ ratiol
—— 1| <C(m-1)alk 1)74 . 26
D < Clm = Da(k)n+ 1"+ s (26)
Similarly,
fn(o) ’ n 1 . L ratio2
—1| = -1 < xn w(k)eXntin (k) < Cq(k)(n + 1), 27
Next, we estimate the quantity Ry, ,(k), which is defined by
Bpn(k) =[] [-via®)+s;R)]"=1= > [vjalk) —s;(k)]. (28)
j=n+2-m j=n+2—m
Tayloril chihdl chikd3
By the second inequality of (1}'75, together with (21b) and (223, this obeys
Rbd
| R (B)| < Xmon (k) 2Xmn®) < Cm2a(k)?(n + 1)72. (29)
Finally, we apply (H3) with ﬁ —1==< 1|j|x| to obtain for m < n,
f’H’L71 (k) 1 CKSB ratio3
) -1 = Hl — vma(k) + (rm(k) — rm(0)) + rmn(0)] " — 1‘ < Ca(k) + o (30)

Note that for example, 1 — (lvma(k)| + |7m (k) — 7, (0)] + |7, (0)|) > ¢ for small enough [ (depending on 7,
among other things).
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4.3.3 The induction step

sec-XYZ

By definition,

rp0

nt1(0) = Y(0) + Z(0) + Cuta (31)

and £pkO

P (k) = 41 (0) = X (k) + (Y(k) = Y (0)) + (Z(k) - 2(0)). (32)

Since |Gur1] < CK16(n + 1)~ by Lemma Zetin, to prove (ibff) it suffices to show that

rpOsuf

Y (0)] < CKiB(n+1)""*1, |Z(0)| < CKiB(n +1)"* (33)
and
| X (k)| < CK}Ba(k)(n+1)7°, |V (k)—Y(0)| < CK;Ba(k)(n+1)"°,
|Z(k) = 2(0)| < CK}Ba(k)(n+1)~°.
rpOsuf rpkQsuf
The remainder of the proof is devoted to establishing (33) and (§4(3
Bound on X. We write X as X = X| 4+ X5, with

X1 = % [gm(k) - gm(O) - a(k)072v2gm(0)}7 X1def
w i m(B) (34)
o _ Jntl-m\h)
Xy = mZ::Q [Qm(k) gm(O)} [ Fo(k) 1]

The term X; is bounded using Lemma éemGP(f{i/s) with € € (d,¢), and using the fact that a(k) < ~y(n +
1)~ 'log (n + 1), so that a(k)¢ < (71055:11“)) < (nfl)5 by

n+1
/ 1 »_ CK}pa(k) !
X1| < K; N 54— < CK; e < — A
‘ 1‘ = 46@(1/&) — mg_l_el = C 4ﬁa(k) = (7’L+ 1)5 (35)

For X, we first apply Lemma éemGP(lff,slv), with ¢ = 0, to obtain

|9m (k) = gm(0)] < 2K} Ba(k)m ™", (36)
Applying (ﬁéﬁﬂthen gives
N K33
| X2| < CKBa(k) mz_:z — <(m = Da(k)n+ 17+ m)“) : (37)



July 10, 2006 — 18: 08 DRAFT 19

By the elementary estimate

n+1

1 1 C
D 75 S (38)
L=, mP (n+2—m)f- (n+1)7-

which is proved easily by breaking the sum up according to m < L”THJ, the contribution from the second
term on the right side is bounded above by CK3K}3%a(k)(n + 1)~92. The first term is bounded above by

(n+ 1O (0 #3)

log(n + 1) (0 =3). (39)

CK}Ba(k)(n+ 1)1 log(n + 1) x {

Since we may choose ¢ to be as close to 1 as desired, and since § +v7 < 1 A @ —2) by ( f) this is bounded
above by CK/Ba(k)(n 4+ 1)°. With ( 5), this proves the bound on X in (3*’40)

Bound on Y. By (17),

: "}i‘(;;‘)(k) = ”};;$(0> [T 11— wyalk) + (k)" "(40)”

Recalling the definition of Ry, ,,(k) in (3@37 we can therefore decompose Y as Y =Y, + Y5 + Y3 + Y, with

j=n4+2—m

n+1
Yl _ E gm fn+1 m)(o) Rm,n(k)a

n+1 n
=3 om0 Pt 5y = vwra)al®) - 50,

j=n+2—-m (41)
S ft1-m(0)
Ys= Y gm(0) [* - 1} (m — V)vpyra(k),
m=2 fn(o)
n+1
fn+1 m(o) :|
= 5 i [t )
2 F.00)
Then
Y0)=Y; and Y(k)-Y(0)=Y1+Ys+Ys5. (42)
For Y7, we use Lemma E’finép,ibfsffﬁoand (15)53) to obtain
ntl 1 112z
/ 2
il < CKipaln+ 107 3 gy (43)

As in the analysis of the first term of ()2(32?), we therefore have

CK&,BCL(]C) III2a

i< S (44)
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lem-conv

For Y5, we use # —2 > § > 0 with Lemma %’;méi?:?azﬁof (H2) (now established up to n+ 1), (slbé) and Lemma 4.2
to obtain

n+1 n
K,p KyBa(k) | Kspa(k)| _ CK4(K2 + K3)3a(k) e
< < .
iy T S |RpR BER) < R (s
m= j=n+2—m
The term Y3 obeys
n+1
K3 CKsp CK}K33%a(k) 113ed
Y3| < 4 — AP A 4
R e EGEE = i

where we used Lemma %’:méilb&aé?,l a(vlnga)r,l and an elementary convolution bound. This proves the bound on

Qsu:

Y (k) —Y(0)| of (?Z),fif B is sufficiently small. " "
We bound Y in a similar fashion, using Lemma 4.2 and the intermediate bound of (23} to obtain

n+1 n
K3 CK3B _ CK|K3(3?
Y| < 4 < 4 : 47
’ 4‘ - mzz:Q m? j'r;—m j9*1 ; (n+ 1)971 ( )

Taking ( small then gives the bound on Y (0) of (gg’:)uf
Bound on Z. We decompose Z as

en+1(0) 1 ent1(k) [ fn(0) e
23 g n k: — €Ep - 1 = 23 23 2? . 4
fn(o) + fn(o) [6 +1( ) € "1‘1(0)] + fn(o) fn(k) 1+ 42+ 243 ( 8)
Then
Z(0)=21 and Z(k)— Z(0) = Zy+ Zs. (49)
Using Lemma ngnéy(i:fd,svi), and (TQBZLS)Owith m = n+ 1, we obtain
|Z1| < CKiB(n+1)"% and |Zy| < CK}Ba(k)(n+1)79TL, (50)
Also, by Lemma %:Eibgzﬁoand (r2a%°,2 we have
23] < CK4B(n + 1) %a(k)(n + 1) < CK)Ba(k)(n+ 1)~ (51)

for small enough ¢, where we agagl use y+6 <0 —2.
This completes the proof of (145), and hence completes the advancement of (H3) to n + 1.

4.4 Advancement of (H4)

seecaddHS
In this section, we fix a(k) > y(n+ L)f_l log(n+1). To advance (H4) to j = n+1, we first recall the definitions
of bpy1, Cuyr and Xy from (1), (1) and (34). After some algebra, (1k) can be rewritten as

the eq (H3-H4)

Far () = falk) (1 = al(k)buss + X1 + Guir ) + W + enga (), (52)
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with
n+1 H3IIdef

W= ng [frs1-m(k) = fu(R)]. (53)

We already have estimates for most of the relevant terms. By Lemma i 1 we have |(pt1] < C’Klﬁ(
1)~-0+L. By (35), |X1| < CK}Ba(k)'*, for any ¢ € (5,¢). By Lemma 3.6(v), |ens1(k)| < K48(n +1)70. Tt
remains to estimate W. We will show below that W obeys the bound

CKZLB Wbd

’W’ S a(k)“_l(n + 1)9 (1 + K?)ﬁ + KS) (54)

Before proving (%i), we will first show that it is sufficient for the advancement of (H4).

In preparation for this, we first note that it suffices to consider only large n. In fact, since |f,(k; z)| is
bounded uniformly in k£ and in z in a compact set by Assumption S, and since a(k) < 2, it is clear that both
inequalities of (H4) hold for all n < N, if we choose K, and K3 large enough (depending on N). We therefore
assume in the following that n > N with N large. e e G5

Also, care is required to invoke (H3) or (H4), as applicable, in estimating the factor f, (k) o ( ) iven
k, (H3) should be used for the value n for which vy(n + 1)"!log(n + 1) < a(k) < yn~'logn ((H4) should be
used for larger n). We will now show that the bound of (H3) actually implies the first bound of (H4) in this

lem-cA

case. To see this, we use Lemma 3.3 to see that there are ¢, ¢ arbitrarily close to 1 such that

A H3toH4
fulk)] < Cemaatbn < ¢ € & n ¢ (55)

= (n 4 o/ = ot gl

where we used the fact that v+ A —60 > 0 by (?)i‘?ef Thus, taking K4 > 1, we may use the first bound of
(H4) also for the value of n to which (H3) nominally applies. We will do so in what follows, without further
comment. Advancement of the second bound of (H4) assuming (54). To advance the second estimate in (H4),

we use (gi)eq E and the bounds found above, to obtain

Fat1 (k) = falB)| < | fa(R)] | = (k)b + X1 + Gura] + W] + lensa (k)
K. , o CK\B
< W(Z),\ (a(k)anrl + C’K4ﬁa(k)1+ + (n—|—11)9_1>
CKiB(+ KsB+ K5) Ky
(n+ DPa(T " ()7

Since bp+1 = 14+ O(B) by (%n)e?nand since (n + 1)~ < [a(k)/ylog(n + 1)]?~! < Ca(k), the second estimate
in (H4) follows for n + 1 provided K5 > K4 and [ is sufficiently small.

Advancement of the first bound of (H4) assuming / 5bd4) To advance the first estimate of (H4), we argue as in
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(i{’)sée)c to obtain

[Frer ()] < [ Ja®B)] U = @b + X+ Gua| + W]+ fensa (B)]

K , . CKif
< m <|1 — a(k)byy1| + CK4Ba(k) T + (n—|—11)9—1>

CK,B(1+ K36 + Ks) K,
(n+1)0a(k)*1 (n+1)¢°

We need to argue that the right-hand side is no larger than K4(n + 1)~%a(k)~*. To achieve this, we will use

separate arguments for a(k) < % and a(k) > % These arguments will be valid only when n is large enough.

Suppose that a(k) < 1. Since b,41 = 1+ O(B) by (%n)ejrlfor 3 sufficiently small we have
1 —byyra(k) > 0. (56)

Hence, the absolute value signs on the right side of (lgéd)l may be removed. Therefore, to obtain the first
estimate of (H4) for n + 1, it now suffices to show that

CK 1 ﬂ n@ H3bd2

1 —ca(k)+ )T S (57)

H3bd1

for ¢ within ordellr B of 1. The term ca(k) has been introduced to absorb bp+1a(k), the order 8 term in (56
involving a(k):;‘z, and the last two terms of (56d). However, a(k) > vy(n + 1)"!log(n + 1). From this, it can
be seen that (57d) holds for n sufficiently large and s[%f&lgsiently small.

Suppose, on the other hand, that a(k) > % By (9), there is a positive 7, which we may assume lies in

(0,3), such that —1 + 1 < 1 — a(k) < 3. Therefore |1 — a(k)| <1 —n and
1 = bayra(k)] <[1—a(k)| + [bnpa = U a(k)] <1 =0+ 2/bnta — 1], (58)

Hence

CK1p3

1 _ K/ 1<‘r€/ e
’ a(k>bn+1‘ +C 4/8a(k) + (’Il + 1)9_1

<1-n+C(K;+ K})B, (59)

H3bd1l
and the right side of (56d) is at most

K,y / CK}(1+ K368+ K5)3
Palk [1—n+C(K1+ Ky)B] + (n 1 1)a(i)
K !
< W(Z)A [1—n+ C(KsK) + K1)B] -

This is less than Ky(n + 1)"%a(k)~ if n is large and f3 is sufficiently small.
This advances the first bound in (H4), assuming (54).



July 10, 2006 — 18: 08 DRAFT 23

Bound on W. We now obtain the bound (%bi) on W. As a first step, we rewrite W as

Wdef

W= ng -5 Z i1 (k) = fi(R)). (60)
l=j+1
Let
(k) = {1 ) (a(k) > ’y3illog 3) (61)
max{l € {3,...,n} :a(k) <yl 'logl} (a(k) <~37'log3).

For [ < m(k), f; is in the domain of (H3), while for [ > m(k), f; is in the domain of (H4). By hypothesis,
a(k) > v(n+1)"tlog(n+1). We divide the sum over [ info two parts, corresponding respectively to [ < m(k)
and | > m(k), yielding W = W; + Ws. By Lemma 3 6?1

m(k

=

m(k)

KB
Wil <> ot S (sl — A(h)
7=0 l=j5+1 (62)
n—1 Kiﬁ n
Wal <> —2— N fisa(k) — filk)]-
— (n+1—j) '
j=0 I=(m(k)Vvj)+1
The term Ws is easy, since by (H4) and Lemma 49 We have
n—1
K3 CK5K)f suni
Ws| < 4 . 63
| 2|_Z(n+1 Z ’\1l9_ a(k)*1(n+1)? (63)
7=0 l— +1
For W1, we have the estimate
m(k)
K! ﬁ Wipbd
Wil < Z 4 CESEIl Z | fi-1( (k). (64)
= ( I=+1
For 1 <1 < m(k), it follows from Lemma 373 and (?(33 that
o K fldiff
i) = 709 < € (afh) + 727 (65)

with ¢ =1 — O(B). We fix a small > 0, and bound the summation over j in (vgflb)d by summing separately
over j in the ranges 0 < j < (1 —r)n and (1 —r)n < j < m(k) (the latter range may be empty). We denote
the contributions from these two sums by W7 1 and Wi 2 respectively.

To estimate W1 1, we will make use of the bound

Z o—qa(k)l]—b < Ce—99(k)j (b>1). (66)
l=j+1
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With (Eflb)d and (f61%]>f,f this gives

(1-r)n

o 2 ¢ )

C’K4ﬂ | +K3B _ CKif 1+ Kyp
“(n+1)? a(k) — (n+1)? a(k)1"

C’K4ﬁ

Wil <

For Wy o, we have

CK K
> (Hliiezeqa (ath) + 3527 ). (7

j=Q1-r)n I=j+1

Since [ and m(k) are comparable (1 —7)(n+1) < (1 —r)n+1 <1 <m(k) < n+ 1) and large, it follows as

n (55) that
» K3 c K38\ _ C(1+ K33
e~ Mt (a(k) + 1931> = (kN0 (a(k) + l031) < a((k:)Al?Ee)’ (©8)

%)(Jr)lﬂ) a(k) < w as well as the facts that

A > 6 — v and that ¢(1 — r) can be chosen as close to 1 as we like to obtain the intermediate inequality, and

lem-conv

the same bound on a(k) together with the fact that § > 2 to obtain the last inequality. Hence, by Lemma 4.2,

where we have used the definition of m(k) in the form

m(k)

. 69
a(k) = 12) 1—]92l9_ Al(n+1) (69)
Summarising, by ( 61 p) and 633 we have
CK)p
W< |W 4% Wa| < 4 14 K38 + K. 70
(W < [Wia|+ [Wig|+| 2|*a(k)’\—1(n+1)9( + K38 + Ks), (70)
which proves (%bi)
5 Proof of the main results
sec-pf I

As a consequence of the completed induction, it follows from Lemma 39 that I 1D DI3 D, 50Ny 1,

consists of a single point z = z.. Since zp = 1, it follows from (H1) that z. = 1+ O(5). We fix z = 2.
throughout this section. The constant A is defined by A = [[;2,[1+7;(0)] = 1+ O(8). By (H2), the sequence
vn(zc) is a Cauchy sequence. The constant v is defined to be the limit of this Cauchy sequence. By (H2),
v=1+0O(F) and

Delta_nlimit

[on(ze) — v| < O(Bn~"F2). (71)



July 10, 2006 — 18: 08 DRAFT 25

thm-1p

5.1 Proof of Theorem 2.1

Proof of Theorem téu.n_ll?a). By (H3),

| fn(0520) — Al = H[l + Ti(o)Hl — H 1+ Ti(O)H < O(Bn=012). hag%u)}-nhmit
i=1 i=n+1

Suppose k is such that a(k/vo2?vn) < yn~!logn, so that (H3) applies. Here, we use the 7 of ﬁ By ( gsenw
a(k) = o%k?/2d + O£k2+26 ) with € > ¢, where we now allow constants in error terms to depend on L. Using

Delta_nlimit

this, together with (17-19), 71, and § < 1 A (0 — 2) A €, we obtain

fn(k/v vo’n; Zc) _ —via k a k i—9 11cpt
fn(0; 20) N ll;[l [1 ‘ (\/ va2n) +0o(s (\/ UUQTL) )] (})73)

:e—k2/2d[ +O(k2+26 —e)+o(k2 —6)]

at tau}_nlimit

With (72), this gives the desired result.
Proof of Theorem Q.Z(b). Since § < 1 A (0 —2), it follows from (35&%%% and (?itj%mh%}ﬁg‘icm

V2 £.(0; 2¢)
fn(0; 2¢)
lem-Lpnorm

Proof of Theorem 21 ( ¢). The claim is immediate from Lemma 3.4, which is now known to hold for all n.

Proof of Theorem 2 1( d). Throughout this prO(t)f we fix z = 2z, tamd drop z. from the notation. The first

identity of 195 follows after we let n — oo in (1), using Lemma 4.1.
To determine A, we use a summation argument. Let x, = Y ,_, fx(0). By (1 ]3

Xn =1+ Zf](()) =1+ Z Z gm(o)fj—m(o) + Zej(o)
j=1 j=1

j=1m=1

= —UU2TL[1 + O(ﬁn_(s)]. (74)

n n
=14+ ZXn—1t+ Z gm(O)Xn—m + Z em(o)

m=2 m=1
zetadef

Using (1) to rewrite z, this gives
n n
Jn(0) = xXn — Xn—1 =14 CGaXn—1 — Z Im(0)(Xn—1 — Xn—m) + Z em(0). (75)
m=1

By Theorem tQhTHiTa), Xn ~ nA as n — oo. Therefore, using Lemma 4.1 to bound the (n term, taking the limit
n — oo in the above equation gives

—1—AZ — 1)gm(0) + > em(0). (76)
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With the first identity of &193 this gives the second.
Finally, we use (7 1) t 3 and Lemma 3.6 to obtain

2 2
v= lim v, = g OoszZV 9m(0) .
n—00 L+ —o(m —1)gm(0)

The result then follows, once we rewrite the denominator using the first identity of (1 9p)hmd

(77)

thm-zc

5.2 Proof of Theorem 2.2

By Theorem 5 1(a f%) = o0. Therefore z. > z.. We need to rule out the possibility that z. > z..
Theorem 2.1 also gives (117 at z = z.. By assumption, the series

= Z gm(0;2), E(z) =
m=2

therefore both converge absolutely and are O(f3) unifogmly in z < z.. For z < 2., since the series defining
X(z) converges absolutely, the basic recursion relation (1) gives

Nk

em(0; 2) (78)

3
[|
o

X(2) = 1+ 2x(2) + GIx() + B), (79)
and hence 1 E chiEG
X = ol (<, (50)

It is implicit in the bound on 0, gy, (k; z) of Assumption G that g,,(k;-) is continuous on [0, z.]. By dominated
convergence, G is also continuous on [0, z;]. Since E(z) = O(f) and lim.yz; x(z) = oo, it then follows from
(80 that o

1-2. —G(Z)=0. (81)
By the first identity of 19}3thm }éc holds also when z/. is replaced by z.. If 2. # z., then it follows from the
mean-value theorem that

2e =20 = G(2) = Glze) = —(2c = 2) Y Dogm(051) (82)

for some t € (2., 2.). However, by a bound of Assumption G, the sum on the right side is O(8) uniformly in
t < z.. This is a contradiction, so we conclude that z. = z.. ]
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