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Abstract

This note extends the result of
HS02

[2] in order to use the inductive approach to study models with critical
dimension other than 4. The results are applied in

Hthesis

[3] to study sufficiently spread-out lattice trees in
dimensions d > 8 and may also be applicable to percolation in dimensions d > 6.

1 Introduction

This note consists of large parts of the material in
HS02

[2], reproduced verbatim, but with the introduction of
parameters θ(d) > 2 and p∗ ≥ 1. Such an extension of

HS02

[2] was proposed in
HS02e

[1]. The case θ = d
2 , and p∗ = 1

is that dealt with in
HS02

[2]. The result of this appendix is shown in
Hthesis

[3] to apply to lattice trees with d > 8,
θ = d−4

2 and p∗ = 2. We also expect the result to be applicable to other models where the analysis uses the
lace expansion above a critical dimension dc ≥ 4. In such cases the lace expansion for d > dc suggests setting
θ = d−(dc−4)

2 . In particular the above statement for percolation in dimensions d > dc = 6 would give θ = d−2
2 .

The chapter is organised as follows. In Section
sec:assthm

2 we state the form of the recursion relation, and the
assumptions S,D,Eθ, and Gθ on the quantities appearing in the recursion equation. We also state the “θ-
theorem” to be proved. In Section

sec-ih

3, we introduce the induction hypotheses on fn that will be used to prove
the θ-theorem, and derive some consequences of the induction hypotheses. The induction is advanced in
Section

sec-adv

4. In Section
sec-pf

5, the θ-theorem stated in Section
sec:assthm

2 are proved.

2 Assumptions on the Recursion Relation
sec:assthm

When applied to self-avoiding walks, oriented percolation and lattice trees, the lace expansion gives rise to a
convolution recursion relation of the form

fn+1(k; z) =
n+1∑
m=1

gm(k; z)fn+1−m(k; z) + en+1(k; z) (n ≥ 0), (1)
fkrec

with f0(k; z) = 1. Here, k ∈ [−π, π]d is a parameter dual to a spatial lattice variable x ∈ Zd, and z is a
positive parameter. The functions gm and em are to be regarded as given, and the goal is to understand the
behaviour of the solution fn(k; z) of (

fkrec

1).

1
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2.1 Assumptions S,D,Eθ,Gθ

The first assumption, Assumption S, requires that the functions appearing in the recursion equation (
fkrec

1)
respect the lattice symmetries of reflection and rotation, and that fn remains bounded in a weak sense. We
have strengthened this assumption from that appearing in

HS02

[2], as one requires smoothness of fn and gn which
holds in all of the applications.
Assumption S. For every n ∈ N and z > 0, the mapping k 7→ fn(k; z) is symmetric under replacement of
any component ki of k by −ki, and under permutations of the components of k. The same holds for en(·; z)
and gn(·; z). In addition, for each n, |fn(k; z)| is bounded uniformly in k ∈ [−π, π]d and z in a neighbourhood
of 1 (which may depend on n). We also assume that fn and gn have continuous second derivatives in a
neighbourhood of 0 for every n. It is an immediate consequence of Assumption S that the mixed partials of
fn and gn at k = 0 are equal to zero.

The next assumption, Assumption D, incorporates a “spread-out” aspect to the recursion equation. It
introduces a function D which defines the underlying random walk model, about which Equation (

fkrec

1) is a
perturbation. The assumption involves a non-negative parameter L, which will be taken to be large, and
which serves to spread out the steps of the random walk over a large set. We write D = DL in the statement
of Assumption D to emphasise this dependence, but the subscript will not be retained elsewhere. An example
of a family of D’s obeying the assumption is taking D(·) uniform on a box side length 2L, centred at the
origin. In particular Assumption D implies that D has a finite second moment and we define

σ2 ≡ −∇2D̂(0) = −

∑
j

∂2

∂k2
j

∑
x

eik·xD(x)


k=0

= −

∑
j

∑
x

(ixj)2eik·xD(x)


k=0

=
∑
x

|x|2D(x). (2)
sigdef

The assumptions involve a parameter d, which corresponds to the spatial dimension in our applications,
and a parameter θ > 2 which will be model dependent.

Let
a(k) = 1− D̂(k). (3)

adef

Assumption D. We assume that

f1(k; z) = zD̂L(k), e1(k; z) = 0. (4)

In particular, this implies that g1(k; z) = zD̂L(k). As part of Assumption D, we also assume:
(i) DL is normalised so that D̂L(0) = 1, and has 2 + 2ε moments for some ε > 0, i.e.,∑

x∈Zd

|x|2+2εDL(x) <∞. (5)
momentD

(ii) There is a constant C such that, for all L ≥ 1,

‖DL‖∞ ≤ CL−d, σ2 = σ2
L ≤ CL2, (6)

beta, sigmadef
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(iii) There exist constants η, c1, c2 > 0 such that

c1L
2k2 ≤ aL(k) ≤ c2L

2k2 (‖k‖∞ ≤ L−1), (7)
Dbound1

aL(k) > η (‖k‖∞ ≥ L−1), (8)
Dbound2

aL(k) < 2− η (k ∈ [−π, π]d). (9)
Dbound3

Assumptions E and G of
HS02

[2] are now adapted to general θ > 2 as follows. The relevant bounds on fm,
which a priori may or may not be satisfied, are that for some p∗ ≥ 1, some nonempty B ⊂ [1, p∗] and

β = β(p∗) = L
− d

p∗ (10)

we have for every p ∈ B,

‖D̂2fm(·; z)‖p ≤
K

L
d
pm

d
2p
∧θ
, |fm(0; z)| ≤ K, |∇2fm(0; z)| ≤ Kσ2m, (11)

fbdsp

for some positive constant K. The full generality in which this has been presented is not required for our
application to lattice trees where we have p∗ = 2 and B = {2}. This is because we require only the p = 2 case
in (

fbdsp

11) to estimate the diagrams arising from the lace expansion for lattice trees and verify the assumptions
Eθ, Gθ which follow. In other applications it may be that a larger collection of ‖ • ‖p norms are required to
verify the assumptions and the set B is allowing for this possibility. The parameter p∗ serves to make this set
bounded so that β(p∗) is small for large L.

The bounds in (
fbdsp

11) are identical to the ones in
HS02

[2], except for the first bound, which only appears for p = 1
and θ = d

2 .
Assumption Eθ. There is an L0, an interval I ⊂ [1− α, 1 + α] with α ∈ (0, 1), and a function K 7→ Ce(K),
such that if (

fbdsp

11) holds for some K > 1, L ≥ L0, z ∈ I and for all 1 ≤ m ≤ n, then for that L and z, and for
all k ∈ [−π, π]d and 2 ≤ m ≤ n+ 1, the following bounds hold:

|em(k; z)| ≤ Ce(K)βm−θ, |em(k; z)− em(0; z)| ≤ Ce(K)a(k)βm−θ+1. (12)

Assumption Gθ. There is an L0, an interval I ⊂ [1− α, 1 + α] with α ∈ (0, 1), and a function K 7→ Cg(K),
such that if (

fbdsp

11) holds for some K > 1, L ≥ L0, z ∈ I and for all 1 ≤ m ≤ n, then for that L and z, and for
all k ∈ [−π, π]d and 2 ≤ m ≤ n+ 1, the following bounds hold:

|gm(k; z)| ≤ Cg(K)βm−θ, |∇2gm(0; z)| ≤ Cg(K)σ2βm−θ+1, (13)

|∂zgm(0; z)| ≤ Cg(K)βm−θ+1, (14)

|gm(k; z)− gm(0; z)− a(k)σ−2∇2gm(0; z)| ≤ Cg(K)βa(k)1+ε
′
m−θ+(1+ε′), (15)

with the last bound valid for any ε′ ∈ [0, ε ∧ 1 ∧ (θ − 2)].
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thm-1p

Theorem 2.1. Let d > dc and θ(d) > 2, and assume that Assumptions S, D, Eθ and Gθ all hold. There
exist positive L0 = L0(d, ε), zc = zc(d, L), A = A(d, L), and v = v(d, L), such that for L ≥ L0, the following
statements hold.
(a) Fix γ ∈ (0, 1 ∧ θ − 2 ∧ ε) and δ ∈ (0, (1 ∧ θ − 2 ∧ ε)− γ). Then

fn

( k√
vσ2n

; zc
)

= Ae−
k2

2d [1 +O(k2n−δ) +O(n−θ+2)], (16)

with the error estimate uniform in {k ∈ Rd : a(k/
√
vσ2n) ≤ γn−1 log n}.

(b)

−∇
2fn(0; zc)
fn(0; zc)

= vσ2n[1 +O(βn−δ)]. (17)

(c) For all p ≥ 1,

‖D̂2fn(·; zc)‖p ≤
C

L
d
pn

d
2p
∧θ
. (18)

(d) The constants zc, A and v obey

1 =
∞∑
m=1

gm(0; zc),

A =
1 +

∑∞
m=1 em(0; zc)∑∞

m=1mgm(0; zc)
,

v = −
∑∞

m=1∇2gm(0; zc)
σ2

∑∞
m=1mgm(0; zc)

.

(19)
eq:pthmd

It follows immediately from Theorem
thm-1p

2.1(d) and the bounds of Assumptions E and G that

zc = 1 +O(β), A = 1 +O(β), v = 1 +O(β). (20)

With modest additional assumptions, the critical point zc can be characterised in terms of the susceptibility

χ(z) =
∞∑
n=0

fn(0; z). (21)
sus1

thm-zc

Theorem 2.2. Let d > dc, θ(d) > 2, p∗ ≥ 1 and assume that Assumptions S, D, Eθ and Gθ all hold. Let
L be sufficiently large. Suppose there is a z′c > 0 such that the susceptibility (

sus1

21) is absolutely convergent for
z ∈ (0, z′c), with limz↑z′c χ(z) = ∞ (if χ(z) is a power series in z then z′c is the radius of convergence of χ(z)).
Suppose also that the bounds of (

fbdsp

11) for z = zc and all m ≥ 1 imply the bounds of Assumptions Eθ and Gθ
for all m ≥ 2, uniformly in z ∈ [0, zc]. Then zc = z′c.
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3 Induction hypotheses
sec-ih

We will analyse the recursion relation (
fkrec

1) using induction on n, as done in
HS02

[2]. In this section, we introduce
the induction hypotheses, verify that they hold for n = 1, discuss their motivation, and derive some of their
consequences.

3.1 Statement of induction hypotheses (H1–H4)
sec-ihstate

The induction hypotheses involve a sequence vn, which is defined as follows. We set v0 = b0 = 1, and for
n ≥ 1 we define

bn = − 1
σ2

n∑
m=1

∇2gm(0; z), cn =
n∑

m=1

(m− 1)gm(0; z), vn =
bn

1 + cn
. (1)

Delta_n

The z–dependence of bn, cn, vn will usually be left implicit in the notation. We will often simplify the notation
by dropping z also from en, fn and gn, and write, e.g., fn(k) = fn(k; z).
rem:b1

Remark 3.1. Note that the above definition and assumption D gives

b1 = − 1
σ2
∇2g1(0; z) = − 1

σ2
∇2zD̂(0) = − z

σ2
.
(
−σ2

)
= z. (2)

eq:b1

Obviously we also have c1 = 0 so that v1 = z.

The induction hypotheses also involve several constants. Let d > dc, θ > 2, and recall that ε was specified
in (

momentD

5). We fix γ, δ > 0 and λ > 2 according to

0 < γ < 1 ∧ θ − 2 ∧ ε
0 < δ < (1 ∧ θ − 2 ∧ ε)− γ

θ − γ < λ < θ.

(3)
agddef

We also introduce constants K1, . . . ,K5, which are independent of β. We define

K ′
4 = max{Ce(cK4), Cg(cK4),K4}, (4)

K4’def

where c is a constant determined in Lemma
lem-pibds

3.6 below. To advance the induction, we will need to assume that

K3 � K1 > K ′
4 ≥ K4 � 1, K2 ≥ K1, 3K ′

4, K5 � K4. (5)
Kcond

Here a � b denotes the statement that a/b is sufficiently large. The amount by which, for instance, K3

must exceed K1 is independent of β (but may depend on p∗) and will be determined during the course of the
advancement of the induction in Section

sec-adv

4.
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Let z0 = z1 = 1, and define zn recursively by

zn+1 = 1−
n+1∑
m=2

gm(0; zn), n ≥ 1. (6)
z_n

For n ≥ 1, we define intervals
In = [zn −K1βn

−θ+1, zn +K1βn
−θ+1]. (7)

Indef

In particular this gives I1 = [1−K1β, 1 +K1β].
Recall the definition a(k) = 1 − D̂(k) from (

adef

3). Our induction hypotheses are that the following four
statements hold for all z ∈ In and all 1 ≤ j ≤ n.

(H1) |zj − zj−1| ≤ K1βj
−θ.

(H2) |vj − vj−1| ≤ K2βj
−θ+1.

(H3) For k such that a(k) ≤ γj−1 log j, fj(k; z) can be written in the form

fj(k; z) =
j∏
i=1

[1− via(k) + ri(k)] ,

with ri(k) = ri(k; z) obeying

|ri(0)| ≤ K3βi
−θ+1, |ri(k)− ri(0)| ≤ K3βa(k)i−δ.

(H4) For k such that a(k) > γj−1 log j, fj(k; z) obeys the bounds

|fj(k; z)| ≤ K4a(k)−λj−θ, |fj(k; z)− fj−1(k; z)| ≤ K5a(k)−λ+1j−θ.

Note that, for k = 0, (H3) reduces to fj(0) =
∏j
i=1[1 + ri(0)].

3.2 Initialisation of the induction

We now verify that the induction hypotheses hold when n = 1. This remains unchanged from the p = 1 case.
Fix z ∈ I1.

(H1) We simply have z1 − z0 = 1− 1 = 0.

(H2) From Remark
rem:b1

3.1 we simply have |v1 − v0| = |z − 1|, so that (H2) is satisfied provided K2 ≥ K1.

(H3) We are restricted to a(k) = 0. By (
Dbound1

7), this means k = 0. By Assumption D, f1(0; z) = z, so that
r1(0) = z − 1 = z − z1. Thus (H3) holds provided we take K3 ≥ K1.

(H4) We note that |f1(k; z)| ≤ z ≤ 2 for β sufficiently small (i.e. so that βK1 ≤ 1), |f1(k; z)− f0(k; z)| ≤ 3,
and a(k) ≤ 2. The bounds of (H4) therefore hold provided we take K4 ≥ 2λ+1 and K5 ≥ 3 · 2λ−1.
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3.3 Discussion of induction hypotheses
sec-mot

(H1) and the critical point. The critical point can be formally identified as follows. We set k = 0 in (
fkrec

1),
then sum over n, and solve for the susceptibility

χ(z) =
∞∑
n=0

fn(0; z). (8)
sus

The result is

χ(z) =
1 +

∑∞
m=2 em(0; z)

1−
∑∞

m=1 gm(0; z)
. (9)

chiz

The critical point should correspond to the smallest zero of the denominator and hence should obey the
equation

1−
∞∑
m=1

gm(0; zc) = 1− zc −
∞∑
m=2

gm(0; zc) = 0. (10)
1pi

However, we do not know a priori that the series in (
chiz

9) or (
1pi

10) converge. We therefore approximate (
1pi

10) with
the recursion (

z_n

6), which bypasses the convergence issue by discarding the gm(0) for m > n + 1 that cannot
be handled at the nth stage of the induction argument. The sequence zn will ultimately converge to zc.

In dealing with the sequence zn, it is convenient to formulate the induction hypotheses for a small interval
In approximating zc. As we will see in Section

sec-prel

3.4, (H1) guarantees that the intervals Ij are decreasing:
I1 ⊃ I2 ⊃ · · · ⊃ In. Because the length of these intervals is shrinking to zero, their intersection ∩∞j=1Ij is a
single point, namely zc. Hypothesis (H1) drives the convergence of zn to zc and gives some control on the rate.
The rate is determined from (

z_n

6) and the ansatz that the difference zj − zj−1 is approximately −gj+1(0, zc),
with |gj(k; zc)| = O(βj−θ) as in Assumption G.

3.4 Consequences of induction hypotheses
sec-prel

In this section we derive important consequences of the induction hypotheses. The key result is that the
induction hypotheses imply (

fbdsp

11) for all 1 ≤ m ≤ n, from which the bounds of Assumptions E and G then
follow, for 2 ≤ m ≤ n+ 1.

Here, and throughout the rest of this paper:

• C denotes a strictly positive constant that may depend on d, γ, δ, λ, but not on the Ki, not on k, not on
n, and not on β (provided β is sufficiently small, possibly depending on the Ki). The value of C may
change from line to line.

• We frequently assume β � 1 without explicit comment.

The first lemma shows that the intervals Ij are nested, assuming (H1).
lem-In

Lemma 3.2. Assume (H1) for 1 ≤ j ≤ n. Then I1 ⊃ I2 ⊃ · · · ⊃ In.
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Proof. Suppose z ∈ Ij , with 2 ≤ j ≤ n. Then by (H1) and (
Indef

7),

|z − zj−1| ≤ |z − zj |+ |zj − zj−1| ≤
K1β

jθ−1
+
K1β

jθ
≤ K1β

(j − 1)θ−1
, (11)

and hence z ∈ Ij−1. Note that here we have used the fact that

1
ja

+
1
jb
≤ 1

(j − 1)a
⇐⇒ 1 +

1
jb−a

≤
(

j

j − 1

)a

(12)

which holds if a ≥ 1 and b− a ≥ 1 since then

1 +
1

jb−a
≤ 1 +

1
j
≤ 1 +

1
j − 1

≤
(

1 +
1

j − 1

)a

. (13)

By Lemma
lem-In

3.2, if z ∈ Ij for 1 ≤ j ≤ n, then z ∈ I1 and hence, by (
Indef

7),

|z − 1| ≤ K1β. (14)
znear1

It also follows from (H2) that, for z ∈ In and 1 ≤ j ≤ n,

|vj − 1| ≤ CK2β. (15)
vnear1

Define
si(k) = [1 + ri(0)]−1[via(k)ri(0) + (ri(k)− ri(0))]. (16)

sdef

We claim that the induction hypothesis (H3) has the useful alternate form

fj(k) = fj(0)
j∏
i=1

[1− via(k) + si(k)] . (17)
fs

Firstly fj(0) =
∏j
i=1[1 + ri(0)]. Therefore the RHS of (

fs

17) is

j∏
i=1

(1− via(k)) [1 + ri(0)] + via(k)ri(0) + (ri(k)− ri(0)) (18)

which after cancelling terms gives the result. Note that (
fs

17) shows that the si(k) are symmetric with contin-
uous second derivative in a neighbourhood of 0 (since each fi(k) and a(k) have these properties). To see this
note that f1(k) and a(k) symmetric implies that s1(k) is symmetric. Next, f2(k), a(k), and s1(k) symmetric
implies that s2(k) symmetric etc.

We further claim that
|si(k)| ≤ K3(2 + C(K2 +K3)β)βa(k)i−δ. (19)

sbd
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This is different to that appearing in
HS02

[2](2.19) in that the constant is now 2 rather than 1. This is a correction
to

HS02

[2](2.19) but it does not affect the analysis. To verify (
sbd

19) we use the fact that 1
1−x ≤ 1 + 2x for x ≤ 1

2 to
write for small enough β,

|si(k)| ≤ [1 + 2K3β] [(1 + |vi − 1|)a(k)ri(0) + |ri(k)− ri(0)|]

≤ [1 + 2K3β]
[
(1 + CK2β)a(k)

K3β

iθ−1
+
K3βa(k)

iδ

]
≤ K3βa(k)

iδ
[1 + 2K3β][2 + CK2β] ≤ K3βa(k)

iδ
[2 + C(K2 +K3)β].

(20)

Where we have used the bounds of (H3) as well as the fact that θ − 1 > δ. The next lemma provides an
important upper bound on fj(k; z), for k small depending on j, as in (H3).
lem-cA

Lemma 3.3. Let z ∈ In and assume (H2–H3) for 1 ≤ j ≤ n. Then for k with a(k) ≤ γj−1 log j,

|fj(k; z)| ≤ eCK3βe−(1−C(K2+K3)β)ja(k). (21)

Proof. We use H3, and conclude from the bound on ri(0) of (H3) that |fj(0)| =
∏j
i=1 |1+ri(0)| ≤

∏j
i=1

∣∣∣1 + K3β
iθ−1

∣∣∣ ≤
eCK3β , using 1 + x ≤ ex for each factor. Then we use (

vnear1

15), (
fs

17) and (
sbd

19) to obtain

j∏
i=1

|1− via(k) + si(k)| ≤
j∏
i=1

∣∣∣1− (1− CK2β)a(k) + CK3βa(k)i−δ
∣∣∣ . (22)

The desired bound then follows, again using 1 + x ≤ ex for each factor on the right side, and by (
fs

17).
The middle bound of (

fbdsp

11) follows, for 1 ≤ m ≤ n and z ∈ Im, directly from Lemma
lem-cA

3.3. We next prove two
lemmas which provide the other two bounds of (

fbdsp

11). This will supply the hypothesis (
fbdsp

11) for Assumptions E
and G, and therefore plays a crucial role in advancing the induction.

lem-Lpnorm

Lemma 3.4. Let z ∈ In and assume (H2), (H3) and (H4). Then for all 1 ≤ j ≤ n, and p ≥ 1,

‖D̂2fj(·; z)‖p ≤
C(1 +K4)

L
d
p j

d
2p
∧θ

, (23)

where the constant C may depend on p, d.

Proof. We show that

‖D̂2fj(·; z)‖pp ≤
C(1 +K4)p

Ldj
d
2
∧θp

. (24)

For j = 1 the result holds since |f1(k)| = |zD̂(k)| ≤ z ≤ 2 and by using (
beta, sigmadef

6) and the fact that p ≥ 1. We may
therefore assume that j ≥ 2 where needed in what follows, so that in particular log j ≥ log 2.
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Fix z ∈ In and 1 ≤ j ≤ n, and define

R1 = {k ∈ [−π, π]d : a(k) ≤ γj−1 log j, ‖k‖∞ ≤ L−1},
R2 = {k ∈ [−π, π]d : a(k) ≤ γj−1 log j, ‖k‖∞ > L−1},
R3 = {k ∈ [−π, π]d : a(k) > γj−1 log j, ‖k‖∞ ≤ L−1},
R4 = {k ∈ [−π, π]d : a(k) > γj−1 log j, ‖k‖∞ > L−1}.

The set R2 is empty if j is sufficiently large. Then

‖D̂2fj‖pp =
4∑
i=1

∫
Ri

(
D̂(k)2|fj(k)|

)p ddk

(2π)d
. (25)

We will treat each of the four terms on the right side separately.
On R1, we use (

Dbound1

7) in conjunction with Lemma
lem-cA

3.3 and the fact that D̂2 ≤ 1, to obtain for all p > 0,∫
R1

(
D̂(k)2

)p
|fj(k)|p

ddk

(2π)d
≤

∫
R1

Ce−cpj(Lk)
2 ddk

(2π)d
≤

d∏
i=1

∫ 1
L

− 1
L

Ce−cpj(Lki)
2
dki ≤

C

Ld(pj)d/2
≤ C

Ldjd/2
. (26)

Here we have used the substitution k′i = Lki
√
pj. On R2, we use Lemma

lem-cA

3.3 and (
Dbound2

8) to conclude that for all
p > 0, there is an α(p) > 1 such that∫

R2

(
D̂(k)2|fj(k)|

)p ddk

(2π)d
≤ C

∫
R2

α−j
ddk

(2π)d
= Cα−j |R2|, (27)

where |R2| denotes the volume of R2. This volume is maximal when j = 3, so that

|R2| ≤ |{k : a(k) ≤ γ log 3
3 }| ≤ |{k : D̂(k) ≥ 1− γ log 3

3 }| ≤ ( 1

1− γ log 3
3

)2‖D̂2‖1 ≤ ( 1

1− γ log 3
3

)2CL−d, (28)

using (
beta, sigmadef

6) in the last step. Therefore α−j |R2| ≤ CL−dj−d/2 since α−jj
d
2 ≤ C for every j (using L’Hospital’s

rule for example with αj = ej logα), and∫
R2

(
D̂(k)2|fj(k)|

)p ddk

(2π)d
≤ CL−dj−d/2. (29)

On R3 and R4, we use (H4). As a result, the contribution from these two regions is bounded above by(
K4

jθ

)p 4∑
i=3

∫
Ri

D̂(k)2p

a(k)λp
ddk

(2π)d
. (30)
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On R3, we use D̂(k)2 ≤ 1 and (
Dbound1

7). Define RC3 = {k : ‖k‖∞ < L−1, |k|2 > Cj−1 log j} to obtain the upper
bound

CKp
4

jθpL2λp

∫
R3

1
|k|2λp

ddk ≤ CKp
4

jθpL2λp

∫
RC

3

1
|k|2λp

ddk

=
CKp

4

jθpL2λp

∫ d
L

q
C log j

L2j

rd−1−2λpdr.

(31)
largekext

Since log 1 = 0, this integral will not be finite if both j = 1 and p ≥ d
2λ , but recall that we can restrict our

attention to j ≥ 2. Thus we have an upper bound of

CKp
4

jθpL2λp
·



∫ d
L

0 rd−1−2λpdr , d > 2λp∫ d
Lq

C log j

L2j

1
rdr , d = 2λp∫∞q

C log j

L2j

rd−1−2λpdr , d < 2λp

≤ CKp
4

jθpL2λp
·



(
d
L

)d−2λp
, d > 2λp

log
(

d
√
L2j

CL
√

log j

)
= 1

2 log
(
C′j
log j

)
, d = 2λp(

C′L2j
log j

) 2λp−d
2

, d < 2λp.

(32)

Now use the fact that λ < θ to see that each term on the right is bounded by CKp
4

j
d
2 Ld

.

On R4, we use (
beta, sigmadef

6) and (
Dbound2

8) to obtain the bound

CKp
4

jθp

∫
[−π,π]d

D̂(k)2p
ddk

(2π)d
≤ CKp

4

jθp

∫
[−π,π]d

D̂(k)2
ddk

(2π)d
≤ CK4

jθpLd
, (33)

where we have used the fact that p ≥ 1 and |D̂| ≤ 1. Since Kp
4 ≤ (1 +K4)p, this completes the proof.

lem-fder

Lemma 3.5. Let z ∈ In and assume (H2) and (H3). Then, for 1 ≤ j ≤ n,

|∇2fj(0; z)| ≤ (1 + C(K2 +K3)β)σ2j. (34)

Proof. Fix z ∈ In and j with 1 ≤ j ≤ n. Using the product rule multiple times and the symmetry of all of
the quantities in (

fs

17) to get cross terms equal to 0,

∇2fj(0) = fj(0)
j∑
i=1

[
−σ2vi +∇2si(0)

]
. (35)

1.2b2

By (
vnear1

15), |vi − 1| ≤ CK2β. For the second term on the right side, we let e1, . . . , ed denote the standard basis
vectors in Rd. Since si(k) has continuous second derivative in a neighbourhood of 0, we use the extended
mean value theorem s(t) = s(0) + ts′(0) + 1

2 t
2s′′(t∗) for some t∗ ∈ (0, t), together with (

sbd

19) to see that for all
i ≤ n we have

|∇2si(0)| = 2
∣∣∣ d∑
l=1

lim
t→0

si(tel)
t2

∣∣∣ ≤ CK3βi
−δ

d∑
l=1

lim
t→0

a(tel)
t2

= CK3σ
2βi−δ. (36)

1.2b3
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Note the constant 2 here that is a correction to
HS02

[2].
Thus, by (

1.2b2

35) and Lemma
lem-cA

3.3

|∇2fj(0)| ≤ fj(0)
j∑
i=1

[
σ2 (1 + CK2β) +

CK3σ
2β

iδ

]
≤ eCK3βσ2j

(
1 + C(K2 +K3)β

)
. (37)

This completes the proof.
The next lemma is the key to advancing the induction, as it provides bounds for en+1 and gn+1.

lem-pibds

Lemma 3.6. Let z ∈ In, and assume (H2), (H3) and (H4). For k ∈ [−π, π]d, 2 ≤ j ≤ n+ 1, and ε′ ∈ [0, ε],
the following hold:
(i) |gj(k; z)| ≤ K ′

4βj
−θ,

(ii) |∇2gj(0; z)| ≤ K ′
4σ

2βj−θ+1,
(iii) |∂zgj(0; z)| ≤ K ′

4βj
−θ+1,

(iv) |gj(k; z)− gj(0; z)− a(k)σ−2∇2gj(0; z)| ≤ K ′
4βa(k)

1+ε′j−θ+1+ε′ ,
(v) |ej(k; z)| ≤ K ′

4βj
−θ,

(vi) |ej(k; z)− ej(0; z)| ≤ K ′
4a(k)βj

−θ+1.

Proof. The bounds (
fbdsp

11) for 1 ≤ m ≤ n follow from Lemmas
lem-cA

3.3–
lem-fder

3.5, with K = cK4 (this defines c), assuming
that β is sufficiently small. The bounds of the lemma then follow immediately from Assumptions E and G,
with K ′

4 given in (
K4’def

4).

4 The induction advanced
sec-adv

In this section we advance the induction hypotheses (H1–H4) from n to n + 1. Throughout this section, in
accordance with the uniformity condition on (H2–H4), we fix z ∈ In+1. We frequently assume β � 1 without
explicit comment.

4.1 Advancement of (H1)
sec-advH1

By (
z_n

6) and the mean-value theorem,

zn+1 − zn = −
n∑

m=2

[gm(0; zn)− gm(0; zn−1)]− gn+1(0; zn)

= −(zn − zn−1)
n∑

m=2

∂zgm(0; yn)− gn+1(0; zn),



July 10, 2006 – 18 : 08 DRAFT 13

for some yn between zn and zn−1. By (H1) and (
Indef

7), yn ∈ In. Using Lemma
lem-pibds

3.6 and (H1), it then follows that

|zn+1 − zn| ≤ K1βn
−θ

n∑
m=2

K ′
4βm

−θ+1 +K ′
4β(n+ 1)−θ

≤ K ′
4β(1 + CK1β)(n+ 1)−θ.

Thus (H1) holds for n+ 1, for β small and K1 > K ′
4.

Having advanced (H1) to n+ 1, it then follows from Lemma
lem-In

3.2 that I1 ⊃ I2 ⊃ · · · ⊃ In+1.
For n ≥ 0, define

ζn+1 = ζn+1(z) =
n+1∑
m=1

gm(0; z)− 1 =
n+1∑
m=2

gm(0; z) + z − 1. (1)
zetadef

The following lemma, whose proof makes use of (H1) for n+ 1, will be needed in what follows.
zetan

Lemma 4.1. For all z ∈ In+1,

|ζn+1| ≤ CK1β(n+ 1)−θ+1. (2)
zetanbd

Proof. By (
z_n

6) and the mean-value theorem,

|ζn+1| =
∣∣∣(z − zn+1) +

n+1∑
m=2

[gm(0; z)− gm(0; zn)]
∣∣∣

=
∣∣∣(z − zn+1) + (z − zn)

n+1∑
m=2

∂zgm(0; yn)
∣∣∣,

for some yn between z and zn. Since z ∈ In+1 ⊂ In and zn ∈ In, we have yn ∈ In. Therefore, by Lemma
lem-pibds

3.6,

|ζn+1| ≤ K1β(n+ 1)−θ+1 +K1βn
−θ+1

n+1∑
m=2

K ′
4βm

−θ+1 ≤ K1β(1 + CK ′
4β)(n+ 1)−θ+1. (3)

The lemma then follows, for β sufficiently small.

4.2 Advancement of (H2)
sec-advH1prime

Let z ∈ In+1. As observed in Section
sec-advH1

4.1, this implies that z ∈ Ij for all j ≤ n + 1. The definitions in (
Delta_n

1)
imply that

vn+1 − vn =
1

1 + cn+1
(bn+1 − bn)−

bn
(1 + cn)(1 + cn+1)

(cn+1 − cn), (4)
vinc
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with
bn+1 − bn = − 1

σ2
∇2gn+1(0), cn+1 − cn = ngn+1(0). (5)

bcdiff

By Lemma
lem-pibds

3.6, both differences in (
bcdiff

5) are bounded by K ′
4β(n+ 1)−θ+1, and, in addition,

|bj − 1| ≤ CK ′
4β, |cj | ≤ CK ′

4β (6)
bnear1

for 1 ≤ j ≤ n+ 1. Therefore
|vn+1 − vn| ≤ K2β(n+ 1)−θ+1, (7)

provided we assume K2 ≥ 3K ′
4. This advances (H2).

4.3 Advancement of (H3)
sec-advH2

4.3.1 The decomposition

The advancement of the induction hypotheses (H3–H4) is the most technical part of the proof. For (H3), we
fix k with a(k) ≤ γ(n+ 1)−1 log (n+ 1), and z ∈ In+1. The induction step will be achieved as soon as we are
able to write the ratio fn+1(k)/fn(k) as

fn+1(k)
fn(k)

= 1− vn+1a(k) + rn+1(k), (8)

with rn+1(0) and rn+1(k)− rn+1(0) satisfying the bounds required by (H3).
To begin, we divide the recursion relation (

fkrec

1) by fn(k), and use (
zetadef

1), to obtain

fn+1(k)
fn(k)

= 1 +
n+1∑
m=1

[
gm(k)

fn+1−m(k)
fn(k)

− gm(0)
]

+ ζn+1 +
en+1(k)
fn(k)

. (9)
rec hat{tau}_n(k)

By (
Delta_n

1),

vn+1 = bn+1 − vn+1cn+1 = −σ−2
n+1∑
m=1

∇2gm(0)− vn+1

n+1∑
m=1

(m− 1)gm(0). (10)

Thus we can rewrite (
rec hat{tau}_n(k)

9) as
fn+1(k)
fn(k)

= 1− vn+1a(k) + rn+1(k), (11)
the eq

where
rn+1(k) = X(k) + Y (k) + Z(k) + ζn+1 (12)
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with

X(k) =
n+1∑
m=2

[(
gm(k)− gm(0)

)fn+1−m(k)
fn(k)

− a(k)σ−2∇2gm(0)
]
,

Y (k) =
n+1∑
m=2

gm(0)
[
fn+1−m(k)
fn(k)

− 1− (m− 1)vn+1a(k)
]
,

Z(k) =
en+1(k)
fn(k)

.

(13)
H2IIdef

The m = 1 terms in X and Y vanish and have not been included.
We will prove that

|rn+1(0)| ≤ C(K1 +K ′
4)β

(n+ 1)θ−1
, |rn+1(k)− rn+1(0)| ≤ CK ′

4βa(k)
(n+ 1)δ

. (14)
rbds

This gives (H3) for n + 1, provided we assume that K3 � K1 and K3 � K ′
4. To prove the bounds on rn+1

of (
rbds

14), it will be convenient to make use of some elementary convolution bounds, as well as some bounds on
ratios involving fj . These preliminary bounds are given in Section

sec-ratiobds

4.3.2, before we present the proof of (
rbds

14)
in Section

sec-XYZ

4.3.3.

4.3.2 Convolution and ratio bounds
sec-ratiobds

The proof of (
rbds

14) will make use of the following elementary convolution bounds. To keep the discussion
simple, we do not obtain optimal bounds.
lem-conv

Lemma 4.2. For n ≥ 2,

n∑
m=2

1
ma

n∑
j=n−m+1

1
jb
≤


Cn−(a∧b)+1 for a, b > 1
Cn−(a−2)∧b for a > 2, b > 0
Cn−(a−1)∧b for a > 2, b > 1
Cn−a∧b for a, b > 2.

(15)
conv-bound

Proof. Since m+ j ≥ n, either m or j is at least n
2 . Therefore

n∑
m=2

1
ma

n∑
j=n−m+1

1
jb
≤

(
2
n

)a n∑
m=2

n∑
j=n−m+1

1
jb

+
(

2
n

)b n∑
m=2

n∑
j=n−m+1

1
ma

. (16)
conv-bound2

If a, b > 1, then the first term is bounded by Cn1−a and the second by Cn1−b.
If a > 2, b > 0, then the first term is bounded by Cn2−a and the second by Cn−b.
If a > 2, b > 1, then the first term is bounded by Cn1−a and the second by Cn−b.
If a, b > 2, then the first term is bounded by Cn−a and the second by Cn−b.
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We also will make use of several estimates involving ratios. We begin with some preparation. Given a
vector x = (xl) with supl |xl| < 1, define χ(x) =

∑
l

|xl|
1−|xl| . The bound (1 − t)−1 ≤ exp[t(1 − t)−1], together

with Taylor’s Theorem applied to f(t) =
∏
l

1
1−txl

, gives∣∣∣∣∣∏
l

1
1− xl

− 1

∣∣∣∣∣ ≤ χ(x)eχ(x),

∣∣∣∣∣∏
l

1
1− xl

− 1−
∑
l

xl

∣∣∣∣∣ ≤ χ(x)2eχ(x) (17)
Taylor1

as follows. Firstly,

df

dt
= f(t)

d∑
j=1

xj
1− txj

=

[
d∏
l=1

1
1− txl

]
d∑
j=1

xj
1− txj

≤

[
d∏
l=1

e
|txj |

1−|txj |

]
d∑
j=1

|xj |
1− |txj |

, (18)

which gives f ′(0) =
∑d

j=1 xj , and for |t| ≤ 1, |f ′(t)| ≤ χ(x)eχ(x). This gives the first bound by Taylor’s
Theorem. The second bound can be obtained in the same way using the fact that

d2f

dt2
= f(t)

 d∑
j=1

x2
j

(1− txj)2
+

 d∑
j=1

xj
1− txj

2 . (19)

We assume throughout the rest of this section that a(k) ≤ γ(n + 1)−1 log(n + 1) and 2 ≤ m ≤ n + 1, and
define

ψm,n =
n∑

j=n+2−m

|rj(0)|
1− |rj(0)|

, χm,n(k) =
n∑

j=n+2−m

vja(k) + |sj(k)|
1− vja(k)− |sj(k)|

. (20)
chidef

By (
vnear1

15) and (
sbd

19),

χm,n(k) ≤ (m− 1)a(k)Q(k) with Q(k) = [1 + C(K2 +K3)β][1 + Ca(k)], (21)
chibd1

where we have used the fact that for |x| ≤ 1
2 , 1

1−x ≤ 1 + 2|x|. In our case x = vja(k) + |sj(k)| satisfies
|x| ≤ (1+CK2β)a(k)+CK3βa(k). Since a(k) ≤ γ(n+1)−1 log(n+1), we have Q(k) ≤ [1+C(K2 +K3)β][1+
Cγ(n+ 1)−1 log(n+ 1)]. Therefore

eχm,n(k) ≤ eγ log(n+1)Q(k) ≤ eγ log(n+1)[1+C(K2+K3)β]e
Cγ2(log(n+1))2

n+1

≤ eγ log(n+1)[1+C(K2+K3)β]e4Cγ
2 ≤ C(n+ 1)γq,

(22)
chibd3

where we have used the fact that log x ≤ 2
√
x, and where q = 1 + C(K2 +K3)β may be taken to be as close

to 1 as desired, by taking β to be small.
We now turn to the ratio bounds. It follows from (H3) and the first inequality of (

Taylor1

17) that∣∣∣∣fn+1−m(0)
fn(0)

− 1
∣∣∣∣ =

∣∣∣∣∣
n∏

i=n+2−m

1
1− (−ri(0))

− 1

∣∣∣∣∣
≤ ψm,ne

ψm,n ≤
n∑

j=n+2−m

CK3β

jθ−1
≤ CK3β

(n+ 2−m)θ−2

(23)
ratio1.a
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Therefore ∣∣∣∣fn+1−m(0)
fn(0)

∣∣∣∣ ≤ 1 + CK3β. (24)
ratio0

By (
fs

17),

∣∣∣∣fn+1−m(k)
fn(k)

− 1
∣∣∣∣ =

∣∣∣∣∣∣fn+1−m(0)
fn(0)

n∏
j=n+2−m

1
[1− vja(k) + sj(k)]

− fn+1−m(0)
fn(0)

+
fn+1−m(0)
fn(0)

− 1

∣∣∣∣∣∣
≤

∣∣∣∣fn+1−m(0)
fn(0)

∣∣∣∣
∣∣∣∣∣∣

n∏
j=n+2−m

1
[1− vja(k) + sj(k)]

− 1

∣∣∣∣∣∣ +
∣∣∣∣fn+1−m(0)

fn(0)
− 1

∣∣∣∣ .
(25)

The first inequality of (
Taylor1

17), together with (
chibd1

21–
ratio0

24), then gives∣∣∣∣fn+1−m(k)
fn(k)

− 1
∣∣∣∣ ≤ C(m− 1)a(k)(n+ 1)γq +

CK3β

(n+ 2−m)θ−2
. (26)

ratio1

Similarly, ∣∣∣∣fn(0)
fn(k)

− 1
∣∣∣∣ =

∣∣∣∣∣
n∏
i=1

1
1− vja(k) + sj(k)

− 1

∣∣∣∣∣ ≤ χn+1,n(k)eχn+1,n(k) ≤ Ca(k)(n+ 1)1+γq. (27)
ratio2

Next, we estimate the quantity Rm,n(k), which is defined by

Rm,n(k) =
n∏

j=n+2−m
[1− vja(k) + sj(k)]−1 − 1−

n∑
j=n+2−m

[vja(k)− sj(k)]. (28)
Rdef

By the second inequality of (
Taylor1

17), together with (
chibd1

21) and (
chibd3

22), this obeys

|Rm,n(k)| ≤ χm,n(k)2eχm,n(k) ≤ Cm2a(k)2(n+ 1)γq. (29)
Rbd

Finally, we apply (H3) with 1
1−x − 1 = x

1−x ≤
|x|

1−|x| to obtain for m ≤ n,∣∣∣∣fm−1(k)
fm(k)

− 1
∣∣∣∣ =

∣∣[1− vma(k) + (rm(k)− rm(0)) + rm(0)]−1 − 1
∣∣ ≤ Ca(k) +

CK3β

mθ−1
. (30)

ratio3

Note that for example, 1 − (|vma(k)| + |rm(k) − rm(0)| + |rm(0)|) > c for small enough β (depending on γ,
among other things).
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4.3.3 The induction step
sec-XYZ

By definition,
rn+1(0) = Y (0) + Z(0) + ζn+1 (31)

rp0

and
rn+1(k)− rn+1(0) = X(k) +

(
Y (k)− Y (0)

)
+

(
Z(k)− Z(0)

)
. (32)

rpk0

Since |ζn+1| ≤ CK1β(n+ 1)−θ+1 by Lemma
zetan

4.1, to prove (
rbds

14) it suffices to show that

|Y (0)| ≤ CK ′
4β(n+ 1)−θ+1, |Z(0)| ≤ CK ′

4β(n+ 1)−θ+1 (33)
rp0suf

and

|X(k)| ≤ CK ′
4βa(k)(n+ 1)−δ, |Y (k)− Y (0)| ≤ CK ′

4βa(k)(n+ 1)−δ,

|Z(k)− Z(0)| ≤ CK ′
4βa(k)(n+ 1)−δ.

The remainder of the proof is devoted to establishing (
rp0suf

33) and (
rpk0suf

34).

Bound on X. We write X as X = X1 +X2, with

X1 =
n+1∑
m=2

[
gm(k)− gm(0)− a(k)σ−2∇2gm(0)

]
,

X2 =
n+1∑
m=2

[
gm(k)− gm(0)

][fn+1−m(k)
fn(k)

− 1
]
.

(34)
X1def

The term X1 is bounded using Lemma
lem-pibds

3.6(iv) with ε′ ∈ (δ, ε), and using the fact that a(k) ≤ γ(n +

1)−1 log (n+ 1), so that a(k)ε
′ ≤

(
γ log(n+1)

n+1

)ε′
≤ C

(n+1)δ by

|X1| ≤ K ′
4βa(k)

1+ε′
n+1∑
m=2

1
mθ−1−ε′ ≤ CK ′

4βa(k)
1+ε′ ≤ CK ′

4βa(k)
(n+ 1)δ

. (35)
I

For X2, we first apply Lemma
lem-pibds

3.6(ii,iv), with ε′ = 0, to obtain

|gm(k)− gm(0)| ≤ 2K ′
4βa(k)m

−θ+1. (36)

Applying (
ratio1

26) then gives

|X2| ≤ CK ′
4βa(k)

n+1∑
m=2

1
mθ−1

(
(m− 1)a(k)(n+ 1)γq +

K3β

(n+ 2−m)θ−2

)
. (37)

X2bd
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By the elementary estimate
n+1∑
m=2

1
mθ−1

1
(n+ 2−m)θ−2

≤ C

(n+ 1)θ−2
, (38)

which is proved easily by breaking the sum up according to m ≤ bn+1
2 c, the contribution from the second

term on the right side is bounded above by CK3K
′
4β

2a(k)(n+ 1)−θ+2. The first term is bounded above by

CK ′
4βa(k)(n+ 1)γq−1 log(n+ 1)×

{
(n+ 1)0∨(3−θ) (θ 6= 3)
log(n+ 1) (θ = 3).

(39)

Since we may choose q to be as close to 1 as desired, and since δ + γ < 1 ∧ (θ − 2) by (
agddef

3), this is bounded
above by CK ′

4βa(k)(n+ 1)−δ. With (
I

35), this proves the bound on X in (
rpk0suf

34).

Bound on Y . By (
fs

17),

fn+1−m(k)
fn(k)

=
fn+1−m(0)
fn(0)

n∏
j=n+2−m

[1− vja(k) + sj(k)]−1. (40)
AkA0ratio

Recalling the definition of Rm,n(k) in (
Rdef

28), we can therefore decompose Y as Y = Y1 + Y2 + Y3 + Y4 with

Y1 =
n+1∑
m=2

gm(0)
fn+1−m(0)
fn(0)

Rm,n(k),

Y2 =
n+1∑
m=2

gm(0)
fn+1−m(0)
fn(0)

n∑
j=n+2−m

[(vj − vn+1)a(k)− sj(k)] ,

Y3 =
n+1∑
m=2

gm(0)
[
fn+1−m(0)
fn(0)

− 1
]

(m− 1)vn+1a(k),

Y4 =
n+1∑
m=2

gm(0)
[
fn+1−m(0)
fn(0)

− 1
]
.

(41)

Then
Y (0) = Y4 and Y (k)− Y (0) = Y1 + Y2 + Y3. (42)

For Y1, we use Lemma
lem-pibds

3.6, (
ratio0

24) and (
Rbd

29) to obtain

|Y1| ≤ CK ′
4βa(k)

2(n+ 1)γq
n+1∑
m=2

1
mθ−2

. (43)
III2z

As in the analysis of the first term of (
X2bd

37), we therefore have

|Y1| ≤
CK ′

4βa(k)
(n+ 1)δ

. (44)
III2a
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For Y2, we use θ− 2 > δ > 0 with Lemma
lem-pibds

3.6, (
ratio0

24), (H2) (now established up to n+ 1), (
sbd

19) and Lemma
lem-conv

4.2
to obtain

|Y2| ≤
n+1∑
m=2

K ′
4β

mθ
C

n∑
j=n+2−m

[
K2βa(k)
jθ−2

+
K3βa(k)

jδ

]
≤ CK ′

4(K2 +K3)β2a(k)
(n+ 1)δ

. (45)
II2bd

The term Y3 obeys

|Y3| ≤
n+1∑
m=2

K ′
4β

mθ−1

CK3β

(n+ 2−m)θ−2
a(k) ≤ CK ′

4K3β
2a(k)

(n+ 1)θ−2
, (46)

II3bd

where we used Lemma
lem-pibds

3.6, (
ratio1.a

23), (
vnear1

15), and an elementary convolution bound. This proves the bound on
|Y (k)− Y (0)| of (

rpk0suf

34), if β is sufficiently small.
We bound Y4 in a similar fashion, using Lemma

lem-conv

4.2 and the intermediate bound of (
ratio1.a

23) to obtain

|Y4| ≤
n+1∑
m=2

K ′
4β

mθ

n∑
j=n+2−m

CK3β

jθ−1
≤ CK ′

4K3β
2

(n+ 1)θ−1
. (47)

Vest

Taking β small then gives the bound on Y (0) of (
rp0suf

33).

Bound on Z. We decompose Z as

Z =
en+1(0)
fn(0)

+
1

fn(0)
[en+1(k)− en+1(0)] +

en+1(k)
fn(0)

[
fn(0)
fn(k)

− 1
]

= Z1 + Z2 + Z3. (48)
IIIsplit

Then
Z(0) = Z1 and Z(k)− Z(0) = Z2 + Z3. (49)

Using Lemma
lem-pibds

3.6(v,vi), and (
ratio0

24) with m = n+ 1, we obtain

|Z1| ≤ CK ′
4β(n+ 1)−θ and |Z2| ≤ CK ′

4βa(k)(n+ 1)−θ+1. (50)

Also, by Lemma
lem-pibds

3.6, (
ratio0

24) and (
ratio2

27), we have

|Z3| ≤ CK ′
4β(n+ 1)−θa(k)(n+ 1)1+γq ≤ CK ′

4βa(k)(n+ 1)−(1+δ), (51)

for small enough q, where we again use γ + δ < θ − 2.
This completes the proof of (

rbds

14), and hence completes the advancement of (H3) to n+ 1.

4.4 Advancement of (H4)
sec-advH3sec-advH35

In this section, we fix a(k) > γ(n+1)−1 log(n+1). To advance (H4) to j = n+1, we first recall the definitions
of bn+1, ζn+1 and X1 from (

Delta_n

1), (
zetadef

1) and (
X1def

34). After some algebra, (
fkrec

1) can be rewritten as

fn+1(k) = fn(k)
(
1 − a(k)bn+1 +X1 + ζn+1

)
+W + en+1(k), (52)

the eq (H3-H4)
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with

W =
n+1∑
m=2

gm(k) [fn+1−m(k)− fn(k)] . (53)
H3IIdef

We already have estimates for most of the relevant terms. By Lemma
zetan

4.1, we have |ζn+1| ≤ CK1β(n +
1)−θ+1. By (

I

35), |X1| ≤ CK ′
4βa(k)

1+ε′ , for any ε′ ∈ (δ, ε). By Lemma
lem-pibds

3.6(v), |en+1(k)| ≤ K ′
4β(n + 1)−θ. It

remains to estimate W . We will show below that W obeys the bound

|W | ≤ CK ′
4β

a(k)a−1(n+ 1)θ
(1 +K3β +K5). (54)

Wbd

Before proving (
Wbd

54), we will first show that it is sufficient for the advancement of (H4).
In preparation for this, we first note that it suffices to consider only large n. In fact, since |fn(k; z)| is

bounded uniformly in k and in z in a compact set by Assumption S, and since a(k) ≤ 2, it is clear that both
inequalities of (H4) hold for all n ≤ N , if we choose K4 and K5 large enough (depending on N). We therefore
assume in the following that n ≥ N with N large.

Also, care is required to invoke (H3) or (H4), as applicable, in estimating the factor fn(k) of (
the eq (H3-H4)

52). Given
k, (H3) should be used for the value n for which γ(n + 1)−1 log(n + 1) < a(k) ≤ γn−1 log n ((H4) should be
used for larger n). We will now show that the bound of (H3) actually implies the first bound of (H4) in this
case. To see this, we use Lemma

lem-cA

3.3 to see that there are q, q′ arbitrarily close to 1 such that

|fn(k)| ≤ Ce−qa(k)n ≤ C

(n+ 1)qγn/(n+1)
≤ C

nq′γ
≤ C

nθ
nλ

nq′γ+λ−θ
≤ C

n
d
2pa(k)λ

, (55)
H3toH4

where we used the fact that γ + λ − θ > 0 by (
agddef

3). Thus, taking K4 � 1, we may use the first bound of
(H4) also for the value of n to which (H3) nominally applies. We will do so in what follows, without further
comment. Advancement of the second bound of (H4) assuming (

Wbd

54). To advance the second estimate in (H4),

we use (
the eq (H3-H4)

52), (H4), and the bounds found above, to obtain∣∣∣fn+1(k)− fn(k)
∣∣∣ ≤ ∣∣fn(k)∣∣ ∣∣− a(k)bn+1 +X1 + ζn+1

∣∣ + |W |+ |en+1(k)|

≤ K4

nθa(k)λ

(
a(k)bn+1 + CK ′

4βa(k)
1+ε′ +

CK1β

(n+ 1)θ−1

)
+
CK ′

4β(1 +K3β +K5)
(n+ 1)θa(k)λ−1

+
K ′

4β

(n+ 1)θ
.

Since bn+1 = 1 +O(β) by (
bnear1

6), and since (n + 1)−θ+1 < [a(k)/γ log(n + 1)]θ−1 ≤ Ca(k), the second estimate
in (H4) follows for n+ 1 provided K5 � K4 and β is sufficiently small.

Advancement of the first bound of (H4) assuming (
Wbd

54). To advance the first estimate of (H4), we argue as in
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(
H3sec

56) to obtain ∣∣fn+1(k)
∣∣ ≤ ∣∣fn(k)∣∣ ∣∣∣1 − a(k)bn+1 +X1 + ζn+1

∣∣∣ + |W |+ |en+1(k)|

≤ K4

nθa(k)λ

(
|1 − a(k)bn+1|+ CK ′

4βa(k)
1+ε′ +

CK1β

(n+ 1)θ−1

)
+
CK ′

4β(1 +K3β +K5)
(n+ 1)θa(k)λ−1

+
K ′

4β

(n+ 1)θ
.

We need to argue that the right-hand side is no larger than K4(n+ 1)−θa(k)−λ. To achieve this, we will use
separate arguments for a(k) ≤ 1

2 and a(k) > 1
2 . These arguments will be valid only when n is large enough.

Suppose that a(k) ≤ 1
2 . Since bn+1 = 1 +O(β) by (

bnear1

6), for β sufficiently small we have

1 − bn+1a(k) ≥ 0. (56)

Hence, the absolute value signs on the right side of (
H3bd1

56) may be removed. Therefore, to obtain the first
estimate of (H4) for n+ 1, it now suffices to show that

1 − ca(k) +
CK1β

(n+ 1)θ−1
≤ nθ

(n+ 1)θ
, (57)

H3bd2

for c within order β of 1. The term ca(k) has been introduced to absorb bn+1a(k), the order β term in (
H3bd1

56)
involving a(k)1+ε′ , and the last two terms of (

H3bd1

56). However, a(k) > γ(n + 1)−1 log(n + 1). From this, it can
be seen that (

H3bd2

57) holds for n sufficiently large and β sufficiently small.
Suppose, on the other hand, that a(k) > 1

2 . By (
Dbound3

9), there is a positive η, which we may assume lies in
(0, 1

2), such that −1 + η < 1− a(k) < 1
2 . Therefore |1− a(k)| ≤ 1− η and

|1 − bn+1a(k)| ≤ |1− a(k)|+ |bn+1 − 1| |a(k)| ≤ 1− η + 2|bn+1 − 1|. (58)

Hence
|1− a(k)bn+1|+ CK ′

4βa(k)
1+ε′ +

CK1β

(n+ 1)θ−1
≤ 1− η + C(K1 +K ′

4)β, (59)

and the right side of (
H3bd1

56) is at most

K4

nθa(k)λ
[
1− η + C(K1 +K ′

4)β
]
+
CK ′

4(1 +K3β +K5)β
(n+ 1)θa(k)λ

≤ K4

nθa(k)λ
[
1− η + C(K5K

′
4 +K1)β

]
.

This is less than K4(n+ 1)−θa(k)−λ if n is large and β is sufficiently small.
This advances the first bound in (H4), assuming (

Wbd

54).
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Bound on W . We now obtain the bound (
Wbd

54) on W . As a first step, we rewrite W as

W =
n−1∑
j=0

gn+1−j(k)
n∑

l=j+1

[fl−1(k)− fl(k)]. (60)
Wdef

Let

m(k) =

{
1 (a(k) > γ3−1 log 3)
max{l ∈ {3, . . . , n} : a(k) ≤ γl−1 log l} (a(k) ≤ γ3−1 log 3).

(61)

For l ≤ m(k), fl is in the domain of (H3), while for l > m(k), fl is in the domain of (H4). By hypothesis,
a(k) > γ(n+1)−1 log(n+1). We divide the sum over l into two parts, corresponding respectively to l ≤ m(k)
and l > m(k), yielding W = W1 +W2. By Lemma

lem-pibds

3.6(i),

|W1| ≤
m(k)∑
j=0

K ′
4β

(n+ 1− j)θ

m(k)∑
l=j+1

|fl−1(k)− fl(k)|

|W2| ≤
n−1∑
j=0

K ′
4β

(n+ 1− j)θ

n∑
l=(m(k)∨j)+1

|fl−1(k)− fl(k)|.

(62)

The term W2 is easy, since by (H4) and Lemma
lem-conv

4.2 we have

|W2| ≤
n−1∑
j=0

K ′
4β

(n+ 1− j)θ

n∑
l=j+1

K5

a(k)λ−1 lθ
≤ CK5K

′
4β

a(k)λ−1(n+ 1)θ
. (63)

sum1

For W1, we have the estimate

|W1| ≤
m(k)∑
j=0

K ′
4β

(n+ 1− j)θ

m(k)∑
l=j+1

|fl−1(k)− fl(k)|. (64)
W1pbd

For 1 ≤ l ≤ m(k), it follows from Lemma
lem-cA

3.3 and (
ratio3

30) that

|fl−1(k)− fl(k)| ≤ Ce−qa(k)l
(
a(k) +

K3β

lθ−1

)
, (65)

fldiff

with q = 1 − O(β). We fix a small r > 0, and bound the summation over j in (
W1pbd

64) by summing separately
over j in the ranges 0 ≤ j ≤ (1− r)n and (1− r)n ≤ j ≤ m(k) (the latter range may be empty). We denote
the contributions from these two sums by W1,1 and W1,2 respectively.

To estimate W1,1, we will make use of the bound

∞∑
l=j+1

e−qa(k)ll−b ≤ Ce−qa(k)j (b > 1). (66)
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With (
W1pbd

64) and (
fldiff

65), this gives

|W1,1| ≤
CK ′

4β

(n+ 1)θ

(1−r)n∑
j=0

e−qa(k)j (1 +K3β)

≤ CK ′
4β

(n+ 1)θ
1 +K3β

a(k)
≤ CK ′

4β

(n+ 1)θ
1 +K3β

a(k)λ−1
.

For W1,2, we have

|W1,2| ≤
m(k)∑

j=(1−r)n

CK ′
4β

(n+ 1− j)θ

m(k)∑
l=j+1

e−qa(k)l
(
a(k) +

K3β

lθ−1

)
. (67)

Since l and m(k) are comparable ((1− r)(n+ 1) < (1− r)n+ 1 ≤ l ≤ m(k) < n+ 1) and large, it follows as
in (

H3toH4

55) that

e−qa(k)l
(
a(k) +

K3β

lθ−1

)
≤ C

a(k)λlθ

(
a(k) +

K3β

lθ−1

)
≤ C(1 +K3β)

a(k)λ−1lθ
, (68)

where we have used the definition of m(k) in the form γ log(m(k)+1)
m(k)+1 < a(k) ≤ γ log(m(k))

m(k) as well as the facts that
λ > θ − γ and that q(1− r) can be chosen as close to 1 as we like to obtain the intermediate inequality, and
the same bound on a(k) together with the fact that θ > 2 to obtain the last inequality. Hence, by Lemma

lem-conv

4.2,

|W1,2| ≤
C(1 +K3β)K ′

4β

a(k)λ−1

m(k)∑
j=(1−r)n

1
(n+ 1− j)θ

m(k)∑
l=j+1

1
lθ
≤ C(1 +K3β)K ′

4β

a(k)λ−1(n+ 1)θ
. (69)

W12p

Summarising, by (
W11p

67), (
W12p

69), and (
sum1

63), we have

|W | ≤ |W1,1|+ |W1,2|+ |W2| ≤
CK ′

4β

a(k)λ−1(n+ 1)θ
(1 +K3β +K5), (70)

which proves (
Wbd

54).

5 Proof of the main results
sec-pf

As a consequence of the completed induction, it follows from Lemma
lem-In

3.2 that I1 ⊃ I2 ⊃ I3 ⊃ · · · , so ∩∞n=1In
consists of a single point z = zc. Since z0 = 1, it follows from (H1) that zc = 1 + O(β). We fix z = zc
throughout this section. The constant A is defined by A =

∏∞
i=1[1+ ri(0)] = 1+O(β). By (H2), the sequence

vn(zc) is a Cauchy sequence. The constant v is defined to be the limit of this Cauchy sequence. By (H2),
v = 1 +O(β) and

|vn(zc)− v| ≤ O(βn−θ+2). (71)
Delta_nlimit
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5.1 Proof of Theorem
thm-1p

2.1

Proof of Theorem
thm-1p

2.1(a). By (H3),

|fn(0; zc)−A| =
n∏
i=1

[1 + ri(0)]
∣∣1− ∞∏

i=n+1

[1 + ri(0)]
∣∣ ≤ O(βn−θ+2). (72)

hat{tau}_nlimit

Suppose k is such that a(k/
√
σ2vn) ≤ γn−1 log n, so that (H3) applies. Here, we use the γ of (

agddef

3). By (
momentD

5),
a(k) = σ2k2/2d+O(k2+2ε) with ε > δ, where we now allow constants in error terms to depend on L. Using
this, together with (

fs

17–
sbd

19),
Delta_nlimit

71, and δ < 1 ∧ (θ − 2) ∧ ε, we obtain

fn(k/
√
vσ2n; zc)

fn(0; zc)
=

n∏
i=1

[
1− via

( k√
vσ2n

)
+O(βa

( k√
vσ2n

)
i−δ)

]
= e−k

2/2d[1 +O(k2+2εn−ε) +O(k2n−δ)].

(73)
11cpf

With (
hat{tau}_nlimit

72), this gives the desired result.

Proof of Theorem
thm-1p

2.1(b). Since δ < 1 ∧ (θ − 2), it follows from (
1.2b2

35–
1.2b3

36) and (
Delta_nlimit

71–
hat{tau}_nlimit

72) that

∇2fn(0; zc)
fn(0; zc)

= −vσ2n[1 +O(βn−δ)]. (74)

Proof of Theorem
thm-1p

2.1(c). The claim is immediate from Lemma
lem-Lpnorm

3.4, which is now known to hold for all n.

Proof of Theorem
thm-1p

2.1(d). Throughout this proof, we fix z = zc and drop zc from the notation. The first
identity of (

eq:pthmd

19) follows after we let n→∞ in (
zetadef

1), using Lemma
zetan

4.1.
To determine A, we use a summation argument. Let χn =

∑n
k=0 fk(0). By (

fkrec

1),

χn = 1 +
n∑
j=1

fj(0) = 1 +
n∑
j=1

j∑
m=1

gm(0)fj−m(0) +
n∑
j=1

ej(0)

= 1 + zχn−1 +
n∑

m=2

gm(0)χn−m +
n∑

m=1

em(0).

Using (
zetadef

1) to rewrite z, this gives

fn(0) = χn − χn−1 = 1 + ζnχn−1 −
n∑

m=2

gm(0)(χn−1 − χn−m) +
n∑

m=1

em(0). (75)

By Theorem
thm-1p

2.1(a), χn ∼ nA as n→∞. Therefore, using Lemma
zetan

4.1 to bound the ζn term, taking the limit
n→∞ in the above equation gives

A = 1−A

∞∑
m=2

(m− 1)gm(0) +
∞∑
m=1

em(0). (76)
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With the first identity of (
eq:pthmd

19), this gives the second.
Finally, we use (

Delta_nlimit

71), (
Delta_n

1) and Lemma
lem-pibds

3.6 to obtain

v = lim
n→∞

vn =
−σ−2

∑∞
m=2∇2gm(0)

1 +
∑∞

m=2(m− 1)gm(0)
. (77)

The result then follows, once we rewrite the denominator using the first identity of (
eq:pthmd

19).

5.2 Proof of Theorem
thm-zc

2.2

By Theorem
thm-1p

2.1(a), χ(zc) = ∞. Therefore zc ≥ z′c. We need to rule out the possibility that zc > z′c.
Theorem

thm-1p

2.1 also gives (
fbdsp

11) at z = zc. By assumption, the series

G(z) =
∞∑
m=2

gm(0; z), E(z) =
∞∑
m=2

em(0; z) (78)

therefore both converge absolutely and are O(β) uniformly in z ≤ zc. For z < z′c, since the series defining
χ(z) converges absolutely, the basic recursion relation (

fkrec

1) gives

χ(z) = 1 + zχ(z) +G(z)χ(z) + E(z), (79)

and hence
χ(z) =

1 + E(z)
1− z −G(z)

, (z < z′c). (80)
chiEG

It is implicit in the bound on ∂zgm(k; z) of Assumption G that gm(k; ·) is continuous on [0, zc]. By dominated
convergence, G is also continuous on [0, zc]. Since E(z) = O(β) and limz↑z′c χ(z) = ∞, it then follows from
(
chiEG

80) that
1− z′c −G(z′c) = 0. (81)

pc0

By the first identity of (
eq:pthmd

19), (
pc0

81) holds also when z′c is replaced by zc. If z′c 6= zc, then it follows from the
mean-value theorem that

zc − z′c = G(z′c)−G(zc) = −(zc − z′c)
∞∑
m=2

∂zgm(0; t) (82)

for some t ∈ (z′c, zc). However, by a bound of Assumption G, the sum on the right side is O(β) uniformly in
t ≤ zc. This is a contradiction, so we conclude that zc = z′c.
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