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Consider a positive recurrent discrete-time Markov chain (Xn)n≥0 with
finite or countable state space S. For x ∈ S define the positive hitting time
Tx = inf{n ≥ 1 : Xn = x} and the hitting time θx = inf{n ≥ 0 : Xn = x}.
Let Px denote the law of the process started from state x, and Ex denote the
corresponding expectation. It was observed by Kemeny and Snell [3] that
when S is finite the expected hitting time of a random stationary target, i.e.
the quantity

κx =
∑
y∈S

πyEx[Ty] (1)

does not depend on x. (Here π = (πy)y∈S is the stationary distribution for
the chain.) Thus, the quantity κ = κx in (1) is called Kemeny’s constant.
Considerable effort has been devoted to giving an “intuitive” proof of this
result. In [1] it was argued that it is more natural to consider the quantity

ωx =
∑
y∈S

πyEx[θy]. (2)

Note that Ex[θy] = 1{y 6=x}Ex[Ty], from which it follows that κx = 1 + ωx
(since πxEx[Tx] = 1). For finite S, Hunter [2] has established the sharp
bound κ ≥ (|S| + 1)/2 (the bound is achieved by the directed non-random
walk on the cycle). It is conjectured in [1, Page 1031] that κ is infinite for
any infinite state chain. In this note we verify this conjecture.

Theorem 1. For an irreducible positive recurrent, discrete-time Markov
chain with infinite state space and for any x ∈ S we have κx =

∑
y∈S πyEx[Ty] =

∞.
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This theorem is an immediate consequence of the following result:

Lemma 1. Let S be finite or infinite. Then for every x, y ∈ S, Ex[Ty] ≥
πx/(2πy).

Proof. We first prove by induction on n ≥ 0 that Px(Xn = y) ≤ πy
πx

for every
x, y. The case n = 0 is trivial (for both x = y and x 6= y). For n ≥ 1 we have

Px(Xn = y) =
∑
u∈S

Px(Xn−1 = u)pu,y ≤
∑
u∈S

πu
πx
pu,y =

πy
πx
, (3)

where (pw,z)w,z∈S are the one-step transition probabilities and we have used
the induction hypothesis and the full balance equations. Using (3) we have

Px(Ty ≤ n) = Px(∪nj=1{Xj = y}) ≤
n∑
j=1

Px(Xj = y) ≤ nπy
πx

. (4)

Therefore Px(Ty > n) ≥ 1− nπy
πx

, and

Ex[Ty] =
∞∑
n=0

Px(Ty > n) ≥
bπx/πyc∑
n=0

(
1− nπy

πx

)
≥ πx

2πy
. (5)

The last step uses the fact that for a ≥ 0,

bac∑
n=0

(
1− n

a

)
=

(2a− bac)(bac+ 1)

2a
≥ a

2
.
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