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Abstract

We use the lace expansion to analyse networks of mutually-avoiding self-avoiding walks,
having the topology of a graph. The networks are defined in terms of spread-out self-avoiding
walks that are permitted to take large steps. We study the asymptotic behaviour of networks
in the limit of widely separated network branch points, and prove Gaussian behaviour for
sufficiently spread-out networks on Zd in dimensions d > 4.
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1 Introduction and results

1.1 Introduction

A single self-avoiding walk is often used as a model of a linear polymer in a good solution. Networks
of mutually-avoiding self-avoiding walks can be used to model networks of polymers containing
monomers capable of making more than two chemical bonds, leading to branching. The rich
critical behaviour of polymer networks has been studied in the physics literature [2], but is mainly
open mathematically.

Recently, the lace expansion was used to prove Gaussian behaviour for sufficiently spread-out
networks of mutually-avoiding self-avoiding walks on Zd, for networks with the topology of a tree
in dimensions d > 4 [5]. The results of [5] are in the limit as the length of the self-avoiding walks
comprising the network grow to infinity. In this paper, we consider networks with the topology of
a general graph. We study the asymptotic behaviour of networks consisting of self-avoiding walks
of arbitrary length, weighted at criticality, in the limit in which the network’s branch points are
fixed at lattice sites that are widely separated. The graph giving the topology of the network may
contain cycles or multiple edges between vertices. Edges joining a vertex to itself (self-lines) are
not permitted, as these are not relevant in the limit we study.

We prove Gaussian behaviour for sufficiently spread-out graphical networks on Zd in dimensions
d > 4. The proof is based on the lace expansion on a tree [5], but major modifications are required
to extend the expansion from a tree to a general graph. The proof is also based on the result of
[4] that the critical two-point function for sufficiently spread-out self-avoiding walks on Zd, with
d > 4, decays like a multiple of |x|2−d as |x| → ∞.
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1.2 Networks

The term graph will be reserved for graphs that arise in the lace expansion. We therefore refer to
the underlying graph that determines our network as a shape. A shape ν = (S,E) consists of a
finite set S of vertices and a finite set E of directed pairs e = (e1, e2) of vertices (edges). We allow
repeated elements in E (multiple lines) but do not allow e ∈ E with e2 = e1 (no self-lines). We
do not assume that ν is connected; our methods and results apply whether ν is connected or not.
Given a shape ν, we call one of its vertices the root and label it by 0. The remaining vertices are
labelled in a fixed but arbitrary manner as 1, . . . , |S| − 1. We also label the edges in a fixed but
arbitrary manner, as 1, . . . , |E|.

For ~n = (n1, . . . , n|E|) ∈ N|E|, we let N = N (ν, ~n) denote the subdivision of ν obtained by
inserting ne − 1 vertices on each e ∈ E. We refer to the inserted vertices as path points, and to
the remaining vertices of N , which are identical to the original vertices in S, as branch points. We
denote the degree of a branch point i by ∆i. We write S for the set of vertices of N and E for the
set of edges of N , so that N = (S, E).

A network is a mapping ω : S → Zd (although we occasionally refer also to N as a network).
The relation between the shape ν, its subdivision N , and the embedding into Zd by ω is indicated
in Figure 1. We require that ω maps the root 0 to the origin in Zd. At this point, we do not
assume that ω is one-to-one. To each embedding we associate a weight. This weight is defined in
terms of a parameter z > 0, and a function D : Zd → [0, 1] of the form given in Definition 1.1
below, by

Wz(ω) =
∏
e∈E

zD(ω(e2)− ω(e1)). (1.1)

In the degenerate case of a network consisting of a single vertex and no edges, we interpret the
empty product in (1.1) as 1. Definition 1.1 involves a positive parameter L, which serves to spread
out the embeddings, and which we take to be large, providing a small parameter L−1.

Definition 1.1. Let h be a non-negative bounded function on Rd which is piecewise continuous,
invariant under the lattice symmetries of reflection in coordinate hyperplanes and rotation by 90◦,
supported in [−1, 1]d, and normalised so that

∫
[−1,1]d

h(x)ddx = 1. Then for large L we define

D(x) =
h(x/L)∑

x∈Zd h(x/L)
. (1.2)

Since
∑

x∈Zd h(x/L) ∼ Ld (using a Riemann sum approximation to
∫

[−1,1]d
h(x)ddx), the as-

sumption that L is large ensures that the denominator of (1.2) is nonzero. We also define
σ2 =

∑
x |x|2D(x).

The sum
∑

x |x|pD(x) can be regarded as a Riemann sum, and is asymptotic to a multiple of
Lp for p > 0. In particular, σ and L are comparable. A basic example obeying the conditions
of Definition 1.1 is given by the function h(x) = 2−d for x ∈ [−1, 1]d, h(x) = 0 otherwise, for
which D(x) = (2L + 1)−d for x ∈ [−L,L]d ∩ Zd, D(x) = 0 otherwise. For this example, Wz(ω)
is either [z(2L + 1)−d]|E| or 0, depending on whether or not ‖ω(e2)− ω(e1)‖∞ ≤ L for every edge
e = (e1, e2) ∈ E .

We refer to an undirected pair {s, t} of distinct vertices in S as a bond, and write simply st for
{s, t}. Let BN denote the set of bonds of N . Given b = st ∈ BN and an embedding ω, let

Ub(ω) = Ust(ω) = −1[ω(s)=ω(t)],
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Figure 1: A shape ν and subdivision N (ν, ~n) with ~n = (8, 2, 6, 4, 4), and a nearest-neighbour
self-avoiding network in ΩN (~x) with ~x = ((2, 0), (2, 0), (1, 3), (−1, 3), (2, 2)); see (1.3)–(1.4).

where 1[·] is the indicator function. The product
∏

b∈BN [1 + Ub(ω)] is nonzero if and only if the
embedding ω is one-to-one. In other words, this product is nonzero precisely when the network of
embedded walks specified by ω is a self-avoiding network.

Given N and an embedding ω, we denote the location of the embedded branch points by

vi = ω(i) (i ∈ S). (1.3)

Given ~x = (x1, . . . , x|E|) ∈ Zd|E|, we denote by ΩN (~x) the set of embeddings such that

ve2 − ve1 = xe

(
e = (e1, e2) ∈ E

)
. (1.4)

Note that ~x uniquely determines ~v = (v0, . . . , v|S|−1). Our object of study is

Gν(~x) =
∑

~n∈N|E|

∑

ω∈ΩN (~x)

Wzc(ω)
∏

b∈BN
[1 + Ub(ω)], (1.5)

where zc is chosen to be the critical value of z. The critical value is defined as follows. Let ν1

denote the shape consisting of a single edge joining two vertices. The self-avoiding walk two-point
function is defined by

G(x) = δ0,x + Gν1(x), (1.6)

with Gν1(0) = 0. With zc replaced by z in the definition of Gν1(x) in (1.5)–(1.6), it is well-known
that there is a critical value zc such that

∑
x∈Zd G(x) converges for z < zc and diverges for z ≥ zc

(see, e.g., [4]). We use this value zc in (1.5).
The asymptotic behaviour of G(x) was determined in [4], for d > 4 and L sufficiently large.

(For a related result for nearest-neighbour self-avoiding walks in very high dimensions, see [3].) To
state the result of [4], we define

ε2 = 2(d− 4) ∧ 2. (1.7)

For d ≥ 5, ε2 is simply equal to 2. However, it is instructive to keep the d-dependence explicit in
(1.7) to reveal the critical nature of d = 4. Theorem 1.2 presumably holds with α = 0, but it has
been proved only for α > 0. We think of α as small.
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Theorem 1.2. [4] Let d > 4 and fix any α > 0. There is a finite constant A = A(d, L), and an
L0 = L0(d, α), such that for L ≥ L0,

G(x) =
A

σ2(|x| ∨ 1)d−2

[
1 + O

( 1

(|x| ∨ 1)ε2−α

)]
. (1.8)

The amplitude A obeys A = 1
2
dΓ(d

2
− 1)π−d/2 + O(L−2+α). In addition,

G(x) ≤ O
( 1

L2−α(|x| ∨ 1)d−2

)
(x 6= 0). (1.9)

The constant in the error term in (1.8) depends on α and L, while the constant in (1.9) depends
on α but not on L.

In this paper, we extend Theorem 1.2 to general networks.

1.3 Main result

Our main result is the following theorem.

Theorem 1.3. Let d > 4. Fix ν = (S, E) and ε1 < (d − 4) ∧ 1. There exist L0 = L0(d, ν) and
constants V∆ = V∆(d, L) such that for L ≥ L0,

Gν(~x) =

[ ∏
i∈S

V∆i

] ∏
e∈E

A

σ2(|xe| ∨ 1)d−2

[
1 +

∑

i,j∈S:i6=j

O
( 1

(|vi − vj| ∨ 1)ε1

)]
, (1.10)

where ~v and ~x are related by (1.4). Constants in the error term depend on L, d, ν and ε1.

The constants V∆ appearing in the theorem will be referred to as vertex factors, and are identical
to the vertex factors in [5]. By definition, V1 = 1. It is proved in [5] that V∆ = 1 + O(L−d) for
∆ ≥ 2. Theorem 1.3 states that the leading asymptotic behaviour of the network is that of a
network of independent self-avoiding walks, apart from the vertex factors. Each vertex factor
takes into account the local effect of the mutual avoidance of the walks that meet at that vertex.
The mutual avoidance diminishes the number of allowed configurations, and this is reflected by
the fact that there is a positive constant c∆ such that

V∆ ≤ 1− c∆L−d (∆ ≥ 2). (1.11)

Although not explicitly stated in [5], (1.11) follows easily from the results of [5].
Theorem 1.3 gives the leading behaviour of Gν(~x) in the limit where the embedded network

branch points are widely separated, i.e., in the limit mini,j∈S |vi − vj| → ∞. Note that each xe is
equal to some vi − vj, so this limit requires |xe| → ∞ for all e, in particular. On the other hand,
one cannot hope to exclude terms with non-adjacent i, j ∈ S from the error term. This is because
if |vi−vj| is small, the effect of the interaction between the walks incident on vi with those incident
on vj does not decouple into a product of V∆i

and V∆j
.

Our proof of the theorem is restricted to large L, although we expect the result to remain true
for all L ≥ 1 (subject to a degree restriction on the network to allow for a one-to-one embedding).
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We have made no attempt to optimise the error estimate in (1.10), neither with respect to the
power of |vi − vj| nor the L-dependence. Theorem 1.3 is a new result also for networks with the
shape of a tree, as the asymptotics in (1.10) involve a different limit than the one studied in [5].

The remainder of the paper is devoted to the proof of Theorem 1.3. We begin the proof in
Section 2, where the graphical expansion leading to the lace expansion is described and the proof
of Theorem 1.3 is reduced to several propositions.

2 The expansion and proof of Theorem 1.3

In this section, we perform an expansion of the factor
∏

b∈BN [1+Ub] in (1.5). Due to the possibility
of cycles in the network, new difficulties arise that have not been encountered in previous work using
the lace expansion. These difficulties are described and overcome in Section 2.1. The expansion is
then used in Section 2.2 to rewrite Gν(~x) as a sum of a main term plus error terms. In Section 2.3,
we state several propositions and use these propositions to prove Theorem 1.3.

2.1 Classification of bonds

We refer to a set of bonds as a graph. For a network with the shape of a tree, each bond st
determines an interval, namely the unique path in the tree joining s and t. In the lace expansion,
these intervals are used to define a notion of connectivity for graphs. However, if a shape contains
a cycle, then a bond st with both s and t on the cycle does not determine a unique interval joining
s and t. This can be seen, for example, in the “bubble” shape of Figure 2. There are some bonds
to which it will turn out to be unnecessary to associate an interval. But for many bonds we will
need to associate an interval, and the choice of interval will be made according to the embedding
ω of the network.

0 1

s

t

Figure 2: The solid lines represent the bubble shape ν consisting of vertices 0,1 joined by a pair
of edges (0, 1), (0, 1). The dotted line represents a bond st on a subdivision N of ν. The bond st
does not determine a unique interval on N .

We describe this together with a classification of bonds that depends on the embedding ω. Fix
ν = (S, E), ~x = (x1, . . . , x|E|) ∈ Zd|E|, and ω ∈ ΩN (~x). We denote by T ◦

e the set of path points of
N that were inserted on the edge e = (e1, e2) of ν, and define Te = T ◦

e ∪ {e1, e2}. For w, x ∈ Zd,
let

Bw(x) = {y ∈ Zd : |y − w| ≤ 1
3
|x|}, B(x) = B0(x). (2.1)

A vertex u of N is said to be near a branch point i if there is an edge e incident on i such that
u ∈ T ◦

e ∪ {i} and ω(u) ∈ Bvi
(xe). We classify bonds as follows:
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1. For e ∈ E, we denote by HN ,e the set of bonds st with s ∈ Te, t ∈ T ◦
e . Note that HN ,e is

independent of ω. Let HN = ∪̇e∈E HN ,e. To st ∈ HN ,e, we associate the interval consisting
of the vertices in the path from s to t in Te, excluding s and t.

2. For i ∈ S, we denote by VN ,i = VN ,i(ω) the set of bonds st such that s and t are both
near i, with s ∈ T ◦

e , t ∈ T ◦
e′ for two different edges e, e′ incident on i. Let VN = ∪̇i∈S VN ,i.

To st ∈ VN ,i, we associate the interval consisting of the vertices in the path from s to t
(excluding s and t) which includes no branch point except i.

3. Let RN = RN (ω) = BN\(HN ∪̇ VN ).

Note that a bond in HN ∪ VN either has both endpoints on the same branch Te, or on adjacent
branches. The classification is depicted in Figure 3.

0 1 2 3

b1 b2

b3

b4

Figure 3: The solid lines represent a shape with branch points 0, 1, 2, 3. The dotted lines represent
bonds on a subdivisionN of the shape. The bonds depicted are classified as: b1, b2 ∈ HN ; b3 ∈ RN ;
b4 ∈ VN if its endpoints are both near 1 or both near 2, otherwise b4 ∈ RN .

Given ω and ~x, the above classification partitions BN into the disjoint union

BN = VN ∪̇ HN ∪̇ RN . (2.2)

Therefore,

∏

b∈BN
[1 + Ub] =

∏

b∈VN∪HN
[1 + Ub]−

[ ∏

b∈VN∪HN
[1 + Ub]

][
1−

∏

b∈RN
[1 + Ub]

]
. (2.3)

We define ψν(~x) by replacing
∏

b∈BN [1+Ub] in (1.5) with the second term of the right side of (2.3),
i.e.,

ψν(~x) = −
∑

~n∈N|E|

∑

ω∈ΩN (~x)

Wzc(ω)

[ ∏

b∈VN∪HN
[1 + Ub(ω)]

][
1−

∏

b∈RN
[1 + Ub(ω)]

]
. (2.4)

This will turn out to be an error term.
To gain some insight into the classification of bonds, consider ψν(~x) when ν has the bubble

shape of Figure 2 and ~x = (x, x), so that one branch point is embedded at the origin of Zd and the
other is embedded at x. The final factor of (2.4) is nonzero only if there is a bond b = st ∈ RN
such that ω(s) = ω(t). This implies an intersection as indicated in Figure 4. When the intersection
takes place outside the balls B(x) and Bx(x), as required by RN , decay of the form |x|−(3d−8) can
be proved (see Proposition 2.4 below). This is smaller than the leading behaviour |x|−(2d−4) given
in Theorem 1.3, by a factor |x|−(d−4). On the other hand, when an intersection takes place close
to 0 or x, we have a contribution to the vertex factor at that vertex and the same behaviour as
the leading term.
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Figure 4: The middle configuration contributes to an error term, whereas the other two contribute
to the leading term.

2.2 Expansion and extraction of the main term

In this section, we extract the main contribution to Gν(~x) and obtain a representation for it. This
requires the notion of a connected graph, which we will define for graphs consisting of bonds in
VN ∪HN .

Definition 2.1. Let ω ∈ ΩN (~x) be fixed.

1. Let GN = GN (ω) denote the set of graphs on N consisting of bonds in VN ∪HN .

2. A bond b ∈ VN ∪ HN is said to cover all vertices in the interval associated to b as in
Section 2.1. In addition, if a vertex of b is identical to a leaf of ν, we say that b covers that
leaf. Given a graph Γ ∈ GN , a path point u is said to be fully covered by Γ if there is a
bond b ∈ Γ covering u. A branch point i is said to be fully covered by Γ if there are bonds
s1t1, . . . , sktk in Γ such that each one covers i and such that each Te incident on i has at least
one vertex among s1, t1, . . . , sk, tk. This requires k ≥ d∆i

2
e. We say that Γ is a connected

graph on N if every vertex of N is fully covered by Γ.

3. Let A be a connected subnetwork of N . Given Γ ∈ GN , we denote by Γ|A the restriction
of Γ to A, i.e., Γ|A consists of bonds b ∈ Γ such that the endvertices of b and all vertices
covered by b are in the set of vertices of A.

Let S0 ⊂ S denote the set of branch points that are not leaves. If S0 = ∅, then ν is a single
edge or a union of disjoint edges, and Theorem 1.3 is implied by Theorem 1.2. We therefore restrict
attention to shapes with S0 nonempty.

Expanding the first term of (2.3) gives

∏

b∈VN∪HN
[1 + Ub] =

∑
Γ∈GN

∏

b∈Γ

Ub, (2.5)

where the empty product is 1. Given a graph Γ ∈ GN and a branch point i ∈ S0, we denote by
Ai = Ai(Γ) the largest connected subnetwork of N that includes i (not as a leaf of Ai), such that
Γ|Ai

is a connected graph on Ai. If Γ does not contain a bond that covers i, then we set Ai = {i}.
We define Gmain

N = Gmain
N (ω) to be the set of graphs in GN such that no Ai contains more than one

element of S0, except possibly as a leaf. Let Gerr
N = GN \ Gmain

N . See Figure 5. Then

∏

b∈VN∪HN
[1 + Ub] =

∑

Γ∈Gmain
N

∏

b∈Γ

Ub +
∑

Γ∈Gerr
N

∏

b∈Γ

Ub. (2.6)
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We define Mν(~x) and ϕν(~x) by

Mν(~x) =
∑

~n∈N|E|

∑

ω∈ΩN (~x)

Wzc(ω)
∑

Γ∈Gmain
N

∏

b∈Γ

Ub(ω), (2.7)

ϕν(~x) =
∑

~n∈N|E|

∑

ω∈ΩN (~x)

Wzc(ω)
∑

Γ∈Gerr
N

∏

b∈Γ

Ub(ω). (2.8)

Therefore, recalling (2.3)–(2.4) and (1.5),

Gν(~x) = Mν(~x) + ϕν(~x) + ψν(~x). (2.9)

The main term in (2.9) is Mν(~x), and we now analyse this term further.

"
"

"
"

b
b

b
b
0

1

2

3

A0 6= A1

"
"

"
"

b
b

b
b
0

1

2

3

A0 = A1

Figure 5: Contributions to Gmain
N and Gerr

N , using the convention that a bond is drawn to cover the
interval on its concave side. The subnetworks A0 and A1 are indicated in bold.

Let τ∆ denote the star shape consisting of a single vertex of degree ∆ (the root) joined to ∆
leaves by ∆ edges. In particular, τ0 consists of a single vertex and no edges. Given Γ ∈ Gmain

N ,
to each branch point i ∈ S0 there corresponds a star-shaped subnetwork Ai, as described above.
We denote the leaves of Ai by a(i)

1 , . . . , a(i)

∆i
, whose ordering obeys the original ordering of edges in

E. Each a(i)

k may coincide with i. However, Ai cannot have degree 1 at i, by definition. Thus Ai

is star shaped of degree ∆′
i for some ∆′

i ∈ {0, 2, 3, . . . , ∆i}. For e = (e1, e2) ∈ E, let Ie = Ie(Γ)
denote the interval on Te between Ae1 and Ae2 , including the leaves of Ae1 and Ae2 on Te. See
Figure 6. Then

∑

Γ∈Gmain
N

∏

b∈Γ

Ub =
∑

Γ∈Gmain
N

[ ∏
i∈S0

[ ∏

b∈Γ|Ai

Ub

]] ∏
e∈E

[ ∏

b∈Γ|Ie

Ub

]
. (2.10)

In (2.10), we isolate the connected component of Γ around each vertex in S0. This is different than
the approach of [5], where a connected component of Γ is isolated at only one branch point.

Next, we introduce concepts and notation that will be used to analyse a single connected
component Γ|Ai

. Let A be a network with star shape τ of degree at most ∆, and let 0 denote
the root. We regard A as a star-shaped network of degree ∆ with some branches possibly having
length zero. Since A is a tree, there is no possible ambiguity in associating an interval to a bond,
and hence in defining the notion of a connected graph on A. This natural notion of connectivity is
the same as in Definition 2.1, but it applies to a larger class of bonds (all bonds) without reference
to the notion of nearness. With this natural notion of connectivity, we define Gconn

A to be the set
of connected graphs on A consisting of bonds in BA.

Given ȳ ∈ Zd∆, fix ω ∈ ΩA(ȳ) (with yi = 0 if branch i has zero length), so that the leaves of A
are embedded at the components yj ∈ Zd of ȳ. In our application, these yj represent the locations
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1

a(0)

2

a(1)

1

a(1)

2

A0

I1

I2

A1

Figure 6: For i ∈ {0, 1}, the subnetwork Ai associated to i has leaves a(i)

1 and a(i)

2 . The interval
Ie connects a(0)

e to a(1)
e . We use the convention that a bond is drawn to cover the interval on its

concave side.

to which the vertices a(l)

j defined above are embedded, for some specific l ∈ S0. We must also
keep track of the vector ~x of displacements of the embedding of our original network N . These
determine the notion of nearness that was used in defining the set GN of graphs on the network
N , and therefore the notion of nearness is implicitly present in defining a connected component
Ai. With this in mind, given x̄ ∈ Zd∆, we let ṼA,x̄ = ṼA,x̄(ω) denote the set of bonds st, s, t 6= 0,
such that s ∈ Tj, t ∈ Tj′ for distinct edges j, j′ of τ and such that both s, t are near 0 in terms
of x̄, i.e., ω(s) ∈ B(xj) and ω(t) ∈ B(xj′). Note that ṼA,x̄ depends on x̄ only via the absolute
value of the components of x̄, as these absolute values define the notion of nearness. We define
G̃conn
A,x̄ = G̃conn

A,x̄ (ω) ⊂ Gconn
A to be the set of connected graphs on A consisting of bonds in ṼA,x̄ ∪̇ HA.

We also define

JA =
∑

Γ∈Gconn
A

∏

b∈Γ

Ub, J̃A,x̄ =
∑

Γ∈G̃conn
A,x̄

∏

b∈Γ

Ub, (2.11)

π(∆)(ȳ) =
∑

m̄∈Z∆
+

∑

ω∈ΩA(ȳ)

Wzc(ω) JA(ω), π̃(∆)

x̄ (ȳ) =
∑

m̄∈Z∆
+

∑

ω∈ΩA(ȳ)

Wzc(ω) J̃A,x̄(ω), (2.12)

where the jth component of m̄ is the length of the jth branch of A, and Z+ = N ∪ {0}. The term
in (2.12) due to m̄ = 0̄ is δ0̄,ȳ, and other terms are zero unless two or more components of m̄ are
strictly positive.

Given ν = (S, E), i ∈ S0 and ~x = (x1, . . . , x|E|) ∈ Zd|E|, let x̄(i) = (x(i)

1 , . . . , x(i)

∆i
) be the

projection of ~x on Zd∆i defined by x(i)

j = xe, where e ∈ E is the jth edge of ν incident on i. Let
|∆| = ∑

i∈S0
∆i.

Proposition 2.2. Using the above notation, and assuming that (2.13) and the sum defining π̃(∆)

x̄ (ȳ)
in (2.12) both converge absolutely,

Mν(~x) =
∑

~y∈Zd|∆|

[ ∏
i∈S0

π̃
(∆i)

x̄(i) (ȳ(i))

] ∏
e∈E

G(xe + δye), (2.13)

where ~y = (ȳ(1), . . . , ȳ(|S0|)) and δye = y(e2)

l − y(e1)

k , with e the kth edge of ν incident on e1 and the
lth edge of ν incident on e2.

Proof. By (2.7) and (2.10),

Mν(~x) =
∑

~n∈N|E|

∑

ω∈ΩN (~x)

Wzc(ω)
∑

Γ∈Gmain
N

[ ∏
i∈S0

[ ∏

b∈Γ|Ai

Ub(ω)

]] ∏
e∈E

[ ∏

b∈Γ|Ie

Ub(ω)

]
. (2.14)
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We reorganise the summations by fixing the displacements y(i)

k = ω(a(i)

k ) − ω(i) for each Ai, and
then summing over ~y = (ȳ(1), . . . , ȳ(|S0|)) ∈ Zd|∆|. This is allowed by our absolute convergence
assumption. Thus (2.14) is equal to

∑

~y∈Zd|∆|

∑

~n∈N|E|

∑

ω∈ΩN (~x)

Wzc(ω)
∑

Γ∈Gmain
N :

ω(a
(i)
k )=ω(i)+y

(i)
k (all i,k)

[ ∏
i∈S0

[ ∏

b∈Γ|Ai

Ub(ω)

]] ∏
e∈E

[ ∏

b∈Γ|Ie

Ub(ω)

]
. (2.15)

We may now perform the summations over Γ|Ai
and Γ|Ie independently to see that (2.15) is equal

to

∑

~y∈Zd|∆|

[ ∏
i∈S0

[ ∑

m̄∈Z∆i
+

∑

ω∈ΩAi
(ȳ(i))

Wzc(ω)
∑

Γ∈G̃conn

Ai,x̄(i)

∏

b∈Γ

Ub(ω)

]]

×
∏
e∈E

[ ∑

l∈Z+

∑

ω∈ΩI(xe+δye)

Wzc(ω)
∑
Γ∈GI

∏

b∈Γ

Ub(ω)

]
, (2.16)

where Ai and I respectively denote a star-shaped network and an interval, with |I| = l. By (2.11)
and (2.12), the quantity in the product over i is π̃

(∆i)

x̄(i) (ȳ(i)). Since
∑

Γ∈GI
∏

b∈Γ Ub =
∏

b∈BI [1 + Ub],
the quantity in the product over e is G(xe + δye).

2.3 Proof of Theorem 1.3 assuming several propositions

In this section, we state several propositions and show that they imply Theorem 1.3. The propo-
sitions are proved in Sections 4–9. Each of the propositions requires as hypotheses that d > 4 and
L ≥ L0(d, ν) for some large L0, and we do not repeat these hypotheses below.

For x̄ = (x1, . . . , x∆) ∈ Zd∆, we define a multidimensional version of the ball defined in (2.1)
by

B(x̄) =
{

ȳ ∈ Zd∆ : |yk| ≤ 1

3
|xk| (k ∈ {1, . . . , ∆})

}
. (2.17)

We denote summation over ȳ(i) ∈ B(x̄(i)) for all i ∈ S0 by
∑

~y∈B(~x). For x ∈ Zd, we will use the
notation

|||x||| = |x| ∨ 1. (2.18)

Although (2.18) does not define a norm on Rd, it does obey the triangle inequality. The following
proposition gives bounds on π̃(∆)

x̄ (ȳ).

Proposition 2.3. There exists C = C(d, ∆) < ∞ such that

∑

ȳ∈Zd∆:ye=y

|π̃(∆)

x̄ (ȳ)| ≤ C

|||y|||2d−4
(e ∈ {1, . . . , ∆}, x̄ ∈ Zd∆). (2.19)
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The bound (2.19) also holds when π̃(∆)

x̄ (ȳ) is replaced by π(∆)(ȳ), and when JA and J̃A,x̄ are replaced
by their absolute values in (2.12). In addition,

∑

ȳ∈Zd∆

|π̃(∆)

x̄ (ȳ)|
∆∏

e=1

1

|||ye − we|||d−2
≤ C

∆∏
e=1

1

|||we|||d−2
(w̄, x̄ ∈ Zd∆), (2.20)

∑

ȳ /∈B(x̄)

|π̃(∆)

x̄ (ȳ)|
∆∏

e=1

1

|||ye − xe|||d−2
≤ C

[ ∆∏
e=1

1

|||xe|||d−2

] ∑
e∈E

1

|||xe|||d−4
(x̄ ∈ Zd∆). (2.21)

For ∆ ≥ 2, we define

V∆ =
∑

ȳ∈Zd∆

π(∆)(ȳ), Ṽ in
∆,x̄ =

∑

ȳ∈B(x̄)

π̃(∆)

x̄ (ȳ), (2.22)

and V1 = Ṽ in
1,x̄ = 1. By (2.19) and the remark following (2.19), the series defining Ṽ in

∆,x̄ and
V∆ converge absolutely. Also, the absolute convergence in (2.12) required as a hypothesis in
Proposition 2.2 follows. It was shown in [5] that V∆ = 1 + O(L−d) for every ∆ ≥ 2, and we will
give an alternate proof of this fact in Section 6.

The following five propositions will be used to prove Theorem 1.3.

Proposition 2.4. There exists C = C(d, ν) < ∞ such that

|ψν(~x)| ≤ C

[ ∏
e∈E

1

|||xe|||d−2

] ∑

i,j∈S:i6=j

1

|||vi − vj|||d−4
(~x ∈ Zd|E|). (2.23)

Proposition 2.5. Fix ε1 < (d− 4) ∧ 1. There exists C = C(d, ν, ε1) < ∞ such that

∑

~y∈B(~x)

[ ∏
i∈S0

|π̃(∆i)

x̄(i) (ȳ(i))|
] ∑

Ē⊂E:Ē 6=∅

[ ∏

e∈E\Ē
G(xe)

] ∏

e∈Ē

|G(xe + δye)−G(xe)|

≤ C

[ ∏
e∈E

1

|||xe|||d−2

] ∑
e∈E

1

|||xe|||ε1 (~x ∈ Zd|E|). (2.24)

Proposition 2.6. There exists C = C(d, ν) < ∞ such that

∑

~y/∈B(~x)

[ ∏
i∈S0

|π̃(∆i)

x̄(i) (ȳ(i))|
] ∏

e∈E

G(xe + δye) ≤ C

[ ∏
e∈E

1

|||xe|||d−2

] ∑
e∈E

1

|||xe|||d−4
(~x ∈ Zd|E|). (2.25)

Proposition 2.7. Let x̄ = (x1, . . . , x∆). There exists C = C(d, ∆) < ∞ such that

|V∆ − Ṽ in
∆,x̄| ≤ C

∆∑
e=1

1

|||xe|||d−4
. (2.26)

Proposition 2.8. There exists C = C(d, ν) < ∞ such that

|ϕν(~x)| ≤ C

[ ∏
e∈E

1

|||xe|||d−2

] ∑
e∈E

1

|||xe|||2(d−4)
(~x ∈ Zd|E|). (2.27)
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Propositions 2.4–2.6 are proved in Section 4, using Proposition 2.3 in the proofs of Proposi-
tions 2.5–2.6. Proposition 2.3 is proved in Sections 6–7, using the notion of lace introduced in
Section 5. Finally, Propositions 2.7 and 2.8 are proved in Sections 8 and 9, respectively.

Proof of Theorem 1.3 assuming Propositions 2.3–2.8. Recall the decomposition of Gν(~x) given in
(2.9). By Propositions 2.4 and 2.8, ψν(~x) and ϕν(~x) contribute to the error term in (1.10). By
Proposition 2.6, the contribution to Mν(~x) in (2.13) due to the summation over ~y /∈ B(~x) is also
an error term. The remaining term can be written as

∑

~y∈B(~x)

[ ∏
i∈S0

π̃
(∆i)

x̄(i) (ȳ(i))

] ∏
e∈E

[
G(xe) + [G(xe + δye)−G(xe)]

]
. (2.28)

We expand the product over e in (2.28). By Proposition 2.5, the contribution from terms in which
one or more factors [G(xe + δye)−G(xe)] occur is an error term. The remaining term is equal to

∏
i∈S0

Ṽ in
∆i,x̄(i)

∏
e∈E

G(xe) =

[ ∏
i∈S0

V∆i

] ∏
e∈E

G(xe)−
[ ∏

i∈S0

V∆i
−

∏
i∈S0

Ṽ in
∆i,x̄(i)

] ∏
e∈E

G(xe). (2.29)

By Theorem 1.2, the first term in the right side of (2.29) gives the desired leading asymptotics of
Gν(~x). Using a telescoping representation,

∏
i∈S0

V∆i
−

∏
i∈S0

Ṽ in
∆i,x̄(i) =

|S0|∑
j=1

[ j−1∏
i=1

Ṽ in
∆i,x̄(i)

][
V∆j

− Ṽ in
∆j ,x̄(j)

][ |S0|∏
i=j+1

V∆i

]
(2.30)

(with empty products equal to 1). By Proposition 2.7, and using the bounds on Ṽ in
∆j ,x̄(j) and V∆j

that follow from Proposition 2.3, the second term on the right side of (2.29) is therefore also an
error term. The above estimates also show that (2.13) converges absolutely.

3 Convolution bounds

We will make frequent use of the following elementary convolution lemma, whose bounds are
depicted diagrammatically in Figure 7.

Lemma 3.1. The following bounds hold for all z, z1, z2, z3, z4 ∈ Zd. For a ≥ b > 0, there exists
C = C(a, b, d) < ∞ such that

∑

w∈Zd

1

|||z − w|||a
1

|||w|||b ≤
{

C|||z|||−b (a > d)

C|||z|||d−a−b (a < d < a + b).
(3.1)
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For d > 4, there exists C = C(d) < ∞ such that

∑

w∈Zd

1

|||z1 − w|||2(d−2)

1

|||z2 − w|||d−2

1

|||z3 − w|||d−2
≤ C

1

|||z2 − z1|||d−2

1

|||z3 − z1|||d−2
, (3.2)

∑

w∈Zd

1

|||z1 − w|||d−2

1

|||z2 − w|||d−2

1

|||z3 − w|||d−2
≤ C

1

|||z1 − z2|||d−2

∑

i6=j

1

|||zi − zj|||d−4
, (3.3)

∑

w∈Zd

1

|||z1 − w|||d−2

1

|||z2 − w|||d−2

1

|||z3 − w|||d−2

1

|||z4 − w|||d−2

≤ C
1

|||z1 − z2|||d−2

1

|||z3 − z4|||d−2

∑

i6=j

1

|||zi − zj|||d−4
. (3.4)

(a) 0 z ≤ 0 z

(b) z
z

z
1

2

3

≤ z
z

z
1

2

3

(c) z
z

z
1

2

3

≤ z
z

z
1

2

3

(d)
z

z

2

4

z

z3

1 ≤
z

z

2

4

z

z3

1

Figure 7: Diagrammatic depiction of (3.1)–(3.4) in (a)–(d) respectively. A diagram line from w
to z represents |||w − z|||2−d, and the unlabelled vertex w is summed over Zd. For (3.1), we take
a = 2d− 4 > d and b = d− 2. Factors decaying like |||zi − zj|||4−d in (3.3)–(3.4) are not shown.

Proof. The bound (3.1) is proved in [4, Proposition 1.7 (i)]. The bound (3.2) follows from [4,
(4.17)], and is also a consequence of the special case z1 = z3 of (3.4). For (3.3), note that for any
w either |||z1−w||| ≥ 1

2
|||z1− z2||| or |||z2−w||| ≥ 1

2
|||z1− z2|||. Thus the left side of (3.3) is bounded by

2d−2

|||z1 − z2|||d−2

∑

w∈Zd

(
1

|||z1 − w|||d−2
+

1

|||z2 − w|||d−2

)
1

|||z3 − w|||d−2
, (3.5)

and (3.3) follows from (3.1) with a = b = d− 2. For (3.4), assume first that

|||z1 − w||| ≥ 1
2
|||z1 − z2|||, |||z3 − w||| ≥ 1

2
|||z3 − z4|||. (3.6)

The contribution to the left side of (3.4) from this case is bounded by

22(d−2)

|||z1 − z2|||d−2|||z3 − z4|||d−2

∑
w

1

|||z2 − w|||d−2

1

|||z4 − w|||d−2
. (3.7)

Applying (3.1), this gives a bound of the desired form. There are three similar cases, where one
or both of the inequalities in (3.6) is changed to |||z2 −w||| ≥ 1

2
|||z1 − z2||| or |||z4 −w||| ≥ 1

2
|||z3 − z4|||,

respectively.

14



4 Proof of Propositions 2.4–2.6

We prove Propositions 2.4–2.6 in Sections 4.1–4.3 respectively. In the remainder of the paper,
we use c to denote a finite positive constant which may depend on d, ε1 and the shape ν of the
network, but whose exact value is unimportant and may change from line to line.

4.1 Proof of Proposition 2.4

Recall the definition of ψν(~x) in (2.4). For e, e′ ∈ E, we denote by Re,e′
N the set of bonds st ∈ RN

such that s ∈ Te and t ∈ Te′ . If the indicator function 1 − ∏
b∈RN [1 + Ub] equals 1, then there

exists at least one Re,e′
N such that 1−∏

b∈Re,e′
N

[1 + Ub] = 1. Therefore

1−
∏

b∈RN
[1 + Ub] ≤

∑

e,e′∈E

[
1−

∏

b∈Re,e′
N

[1 + Ub]

]
. (4.1)

Using 1 + Ub ≤ 1 to estimate the product over VN in (2.4), we obtain

|ψν(~x)| ≤
∑

e,e′∈E

∑

~n∈N|E|

∑

ω∈ΩN (~x)

Wzc(ω)

[ ∏

b∈HN
[1 + Ub(ω)]

][
1−

∏

b∈Re,e′
N

[1 + Ub(ω)]

]
. (4.2)

The factor
∏

b∈HN [1 + Ub] equals 1 if and only if the embedded path corresponding to each
edge of ν is a self-avoiding walk. When e = e′ = (e1, e2), the only bond in Re,e

N is the bond
e1e2, and hence 1 −∏

b∈Re,e
N

[1 + Ub] is equal to −Ue1e2 = 1[ω(e1)=ω(e2)] = 1[ve1=ve2 ]. This does not

contribute to the behavior of ψν(~x) in the limit we are concerned with, in which |ve1 − ve2| → ∞.
We may therefore restrict the summation over e, e′ in (4.2) to e 6= e′. When e 6= e′, the factor
1−∏

b∈Re,e′
N

[1+Ub] equals 1 only when the embedded path from ve1 to ve2 intersects the embedded

path from ve′1 to ve′2 at some w ∈ Zd. Moreover, by definition of RN , this w must lie in the set
Re,e′ , defined below, and hence the right side of (4.2) is bounded above by

∑

e,e′∈E:e6=e′

[ ∏

f 6=e,e′
G(xf )

] ∑
w∈Re,e′

G(ve1 − w) G(w − ve2) G(ve′1 − w) G(w − ve′2). (4.3)

Recall the definition of Bv(x) from (2.1). (i) If e and e′ are not adjacent, then Re,e′ = Zd; (ii)
if e and e′ are adjacent at a unique vertex i ∈ S0, then Re,e′ = Bvi

(xe)
c ∪Bvi

(xe′)
c; (iii) if e and e′

both have the same endvertices i, j ∈ S0, then |xe| = |xe′| and Re,e′ = Bvi
(xe)

c ∩Bvj
(xe)

c.
Recall from (1.9) that G(y) ≤ c|||y|||2−d. The contribution to (4.3) due to case (i) gives a bound

of the desired form, by (3.4). In case (ii), if w ∈ Bve1
(xe)

c we use the bound G(ve1−w) ≤ c|||xe|||2−d

and apply (3.3), and similarly for the other contribution to this case. In case (iii), we extract two
factors |||xe|||2−d as in case (ii), and then apply (3.1) to bound the remaining convolution. (Case (iii)
corresponds to the middle picture in Figure 4.)

4.2 Proof of Proposition 2.5

We first consider the product [
∏

e∈E\Ē G(xe)]
∏

e∈Ē |G(xe + δye) − G(xe)|, for a fixed nonempty

subset Ē ⊂ E. Fix f ∈ Ē. The first product can be estimated using the upper bound of
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Theorem 1.2. For the second product, since ~y ∈ B(~x) we have |xe + δye| ≥ 1
3
|xe| > 0 and thus

|G(xe + δye)−G(xe)| ≤ |G(xe + δye)|+ |G(xe)| ≤ c|xe|2−d. Applying this bound for all e 6= f gives

[ ∏

e∈E\Ē
G(xe)

] ∏

e∈Ē

|G(xe + δye)−G(xe)| ≤ c|G(xf + δyf )−G(xf )|
∏

e∈E:e 6=f

|xe|2−d. (4.4)

Recall from (1.7) that ε2 = 2(d− 4) ∧ 2. We will show below that

|G(xf + δyf )−G(xf )| ≤ c|xf |1−d(|δyf |+ |xf |1−ε2+α), (4.5)

with α > 0 arbitrarily small. It therefore suffices to show that

|xf |−1
∑

~y∈B(~x)

[ ∏
i∈S0

|π̃(∆i)

x̄(i) (ȳ(i))|
]
(|δyf |+ |xf |1−ε2+α) ≤ c|xf |−ε1 . (4.6)

But by (2.19), the left side of (4.6) is bounded above by

c|xf |−1
∑

y,y′∈B(xf )

|y′ − y|+ |xf |1−ε2+α

|||y|||2d−4|||y′|||2d−4
≤ c′|xf |−1

∑

y∈B(xf )

|y|+ |xf |1−ε2+α

|||y|||2d−4
, (4.7)

which gives (4.6).
It remains to prove (4.5). By (1.8) and the inequality |x + δy| ≥ 1

3
|x| > 0,

G(x + δy)−G(x) = Aσ−2 [|x + δy|2−d − |x|2−d] + O(|x|2−d−ε2+α). (4.8)

By Taylor’s theorem, the quantity in brackets equals

d

ds

[
1

(s |x + δy|+ (1− s)|x|)d−2

]

s=s0

=
−(d− 2) (|x + δy| − |x|)

(s0 |x + δy|+ (1− s0)|x|)d−1
, (4.9)

for some s0 ∈ (0, 1). Since |x + δy| ≥ 1
3
|x|, the denominator is bounded below by c−1|x|d−1, and

since
∣∣|x + δy| − |x|

∣∣ ≤ |δy|, the absolute value of (4.9) is bounded above by c|x|1−d|δy|. This
proves (4.5).

4.3 Proof of Proposition 2.6

The left side of (2.25) is bounded by the sum over j ∈ S0 of

∑

~y∈Zd|∆|:
ȳ(j) /∈B(x̄(j))

[ ∏
i∈S0

|π̃(∆i)

x̄(i) (ȳ(i))|
] ∏

e∈E

c

|||xe + δye|||d−2
. (4.10)

Given j ∈ S0, we order the set S0\{j} in an arbitrary but fixed manner. We perform the sums
over ȳ(i) for i ∈ S0\{j} in this order, using (2.20). For a given i, we sum the factor |π̃(∆i)

x̄(i) (ȳ(i))|
together with any factors |||x(i)

e + δy(i)
e |||2−d or |||x(i)

e − y(i)
e |||2−d, with e incident on i, depending on

whether or not the other endpoint of e has already been taken into account. Letting E(j) denote
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the edges of ν that are incident on j, and applying (2.21), it follows that (4.10) is bounded above
by

∏

e′∈E\E(j)

c

|||xe′|||d−2

∑

ȳ(j) /∈B(x̄(j))

|π̃(∆j)

x̄(j) (ȳ(j))|
∏

e∈E(j)

1

|||x(j)
e − y(j)

e |||d−2
≤ c

[ ∏
e∈E

1

|||xe|||d−2

] ∑

e∈E(j)

1

|||xe|||d−4
.

(4.11)

5 The lace expansion

The lace expansion was introduced by Brydges and Spencer [1] to analyse weakly self-avoiding
walks indexed by a “time” interval, for d > 4. In [5], the expansion was extended from an expansion
on an interval to an expansion on a tree. In this section, we recall from [5] the definitions and
properties that we will require. Throughout this section, we restrict attention to a star-shaped
network A = A(τ∆, m̄), rooted at the branch point 0 of degree ∆ ≥ 2 and with leaves a1, . . . , a∆.
The path in A from 0 to ae has length me, and will be referred to as branch Te. We assume in this
section that me > 0 for all e. We will use the content of this section to prove Propositions 2.3, 2.7
and 2.8.

5.1 Laces and resummation

Definition 5.1. Given a connected graph Γ on A (see Definition 2.1) and a branch Te, let Γe =
Γe(Γ) denote the set of bonds st covering the branch point 0 such that either s or t is in Te, say
Γe = {s1t1, . . . , sltl} with each sk /∈ Te, tk ∈ Te. From Γe, we select the element or elements for
which the distance from tk to 0 is maximal. If there is a unique such bond, then we say it is the
bond of Γ that is associated to branch Te. If there is more than one such bond in Γe, then we select
from those with tk maximally distant from 0 the one with sk furthest from 0. If this still does not
specify a unique bond, then we choose the sk that lies on the branch with the highest label, and
refer to sktk as the bond associated to branch Te. We denote the bond associated to Te by b(e).

Definition 5.2. A lace on A is a connected graph L such that:

1. if b ∈ L covers the branch point, then it is associated to branch Te for some e;

2. if b ∈ L does not cover the branch point, then L \ {b} is not connected.

We denote by LA the laces consisting of bonds in BA, and by L̃A,x̄ = L̃A,x̄(ω) ⊂ LA the set of
laces on A consisting of bonds in ṼA,x̄ ∪HA.

Definitions 5.1–5.2 correspond to [5, Definitions 2.3–2.4]. The following prescription, which
associates to a connected graph Γ on A a lace L ⊂ Γ, was introduced in [5, Section 2.3]. Given a
connected graph Γ and a branch Te, we first construct a lace LΓ(e) = {s1t1, . . . , sltl} on an interval
in A that contains Te, according to the Te-lace construction defined as follows. First we choose
s1t1 as b(e) with s1 /∈ Te, t1 ∈ Te. If t1 6= ae, then we determine t2, s2, . . . by

tk = max{t : ∃s < tk−1 such that st ∈ Γ}, sk = min{s : stk ∈ Γ},
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where the order implied by the max and min is the order on Te obtained by identifying Te with the
interval [0,me] (0 is the branch point of degree ∆). The procedure terminates as soon as tl = ae.
The prescription that associates to a connected graph Γ a lace LΓ is then given by

LΓ =
∆⋃

e=1

LΓ(e). (5.1)

By [5, Proposition 2.5], LΓ is a lace.
Given a lace L ∈ LA, we define CA(L) to be the set of bonds b ∈ BA \ L such that LL∪b = L.

Similarly, given L ∈ L̃A,x̄ (or L ∈ LA), we define C̃A,x̄(L) to be the set of bonds b ∈ ṼA,x̄ ∪HA \ L
such that LL∪b = L. Bonds in CA(L) or C̃A,x̄(L) are said to be compatible with L. It follows from [5,
Proposition 2.6] that for Γ ∈ Gconn

A , LΓ = L if and only if L ⊂ Γ is a lace in LA and Γ \L ⊂ CA(L).
Similarly, given Γ ∈ G̃conn

A,x̄ , LΓ = L if and only if L ⊂ Γ is a lace in L̃A,x̄ and Γ \ L ⊂ C̃A,x̄(L).
Recalling (2.11), this leads, as in [5, Section 2.4], to the resummation identities

JA =
∑

L∈LA

[ ∏

b∈L

Ub

] ∏

b∈CA(L)

[1 + Ub], J̃A,x̄ =
∑

L∈L̃A,x̄

[ ∏

b∈L

Ub

] ∏

b∈C̃A,x̄(L)

[1 + Ub]. (5.2)

For N ≥ 1, let L̃(N)

A,x̄ ⊂ L̃A,x̄ and L(N)

A ⊂ LA denote the sets of laces on A consisting of exactly
N bonds. We define

J (N)

A =
∑

L∈L(N)
A

[ ∏

b∈L

[−Ub]

] ∏

b∈CA(L)

[1 + Ub], J̃ (N)

A,x̄ =
∑

L∈L̃(N)
A,x̄

[ ∏

b∈L

[−Ub]

] ∏

b∈C̃A,x̄(L)

[1 + Ub]. (5.3)

Both quantities in (5.3) are non-negative, by definition.

5.2 Classification and properties of laces

We recall the classification of laces, and some related lemmas, from [5]. Further details can be
found in [5, Section 3].

Definition 5.3. Let A = A(τ∆, m̄) with ∆ ≥ 2.
(a) A lace L ∈ LA is reducible if there is a proper subset F ⊂ {1, . . . , ∆} such that L can be
written as a disjoint union of laces on each of ∪e∈F Te and ∪e∈F cTe. An irreducible lace is a lace
that is not reducible.
(b) A lace is cyclic if it is irreducible and its bonds covering the branch point can be ordered
as {ikjk : k = 1, . . . , ∆}, with jk and ik+1 on the same branch for 1 ≤ k ≤ ∆. By convention,
i∆+1 = i1.
(c) An irreducible lace that is not cyclic is called acyclic.

A lace L uniquely determines a partition I1, . . . , Ik of {1, . . . , ∆} into subsets of cardinality
at least 2, such that L is the disjoint union of the irreducible laces obtained by restricting L to
∪e∈Ij

Te. We refer to these irreducible laces as the irreducible components of L.

Definition 5.4. A connected graph (in particular, a lace) is called minimal if removal of any of its
bonds results in a graph that is not connected. A lace that is not minimal is called non-minimal.
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Although it is possible for a lace to be non-minimal, any minimal connected graph is a lace.

Lemma 5.5. [5, Lemma 3.7] Let A = A(τ∆, m̄) with ∆ ≥ 3 and suppose L ∈ LA is acyclic. Then
there is a branch Ta such that there is only one bond covering the branch point 0 with an endpoint
in Ta, and such that the restriction of L to ∪e:e6=aTe is a lace on ∪e:e 6=aTe.

Lemma 5.6. [5, Lemma 3.12] Let A = A(τ∆, m̄) with ∆ ≥ 2. Let L be a non-minimal cyclic lace
on A, and let i, j ∈ A be such that L\{ij} ∈ LA. Then L\{ij} is an acyclic lace on A.

6 Proof of Proposition 2.3

In this section, we state a bound on π̃ in Proposition 6.1 and use this bound to prove Proposi-
tion 2.3. The proof of Proposition 6.1 will be given in Section 7.

The statement of the bound requires several definitions. We recall (5.3), and for N ≥ 1 we
define

π(∆)

N (ȳ) =
∑

m̄∈Z∆
+

∑

ω∈ΩA(ȳ)

Wzc(ω) J (N)

A , π̃(∆)

x̄,N(ȳ) =
∑

m̄∈Z∆
+

∑

ω∈ΩA(ȳ)

Wzc(ω) J̃ (N)

A,x̄(ω). (6.1)

We also define π(∆)

0 (ȳ) = π̃(∆)

x̄,0(ȳ) = δ0̄,ȳ, so that

π(∆)(ȳ) =
∞∑

N=0

(−1)Nπ(∆)

N (ȳ), π̃(∆)

x̄ (ȳ) =
∞∑

N=0

(−1)N π̃(∆)

x̄,N(ȳ). (6.2)

In the sum over laces implicit in J (N)

A or J̃ (N)

A,x̄, branches of A with zero length (for which me = 0)
are ignored. Thus laces on star shapes of degree 2, . . . , ∆ contribute to (6.1), depending on the
number of non-zero components of m̄ (which must be at least two for N ≥ 1). Let

Π(∆)

N (ȳ) =
∑

m̄∈N∆

∑

ω∈ΩA(ȳ)

Wzc(ω) J (N)

A , Π̃(∆)

x̄,N(ȳ) =
∑

m̄∈N∆

∑

ω∈ΩA(ȳ)

Wzc(ω) J̃ (N)

A,x̄(ω) (6.3)

denote the restriction of (6.1) to the case where all ∆ branches have positive length. For I ⊂
{1, . . . , ∆}, let ȳI denote the vector whose components are yj with j ∈ I. For N ≥ 1, π̃(∆)

x̄,N(ȳ) is

a sum of terms of the form δ0̄,ȳIc Π̃
(|I|)
x̄,N(ȳI) over subsets I ⊂ {1, . . . , ∆} of cardinality 2 ≤ |I| ≤ ∆,

and similarly for π(∆)

N (ȳ).
For ∆ ≥ 2, we write z∆+1 = z1 and define

C(∆)(ȳ, z̄) =
∆∏

j=1

1

|||zj|||d−2

1

|||zj+1 − yj|||d−2

1

|||yj − zj|||2(d−2)
, (6.4)

C̃(2)(y1, y2, z1, z2) = δz1,z2

2∏
j=1

1

|||yj|||d−2

1

|||yj − z1|||2(d−2)
, (6.5)

P (∆)(ȳ, z̄) =

{
C(∆)(ȳ, z̄) (∆ ≥ 3)

C(2)(ȳ, z̄) + C̃(2)(ȳ, z̄) (∆ = 2).
(6.6)
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Given 2 ≤ ∆′ < ∆, and given a mapping u with domain {∆′ + 1, . . . , ∆} and with u(j) ∈
{0, y1, . . . , yj−1, z1, . . . , zj−1}, let

Qu,j(ȳ, z̄) =
1

|||yj|||d−2

1

|||yj − zj|||2(d−2)

1

|||zj − u(j)|||d−2
. (6.7)

Finally, for ∆ ≥ 2, we define

B(∆)(ȳ) =
∆∑

∆′=2

∑

z̄∈B(x̄)

∑
u

P (∆′)(ȳ, z̄)
∆∏

j=∆′+1

Qu,j(ȳ, z̄), (6.8)

where the third sum is over all mappings u of the type indicated above, and where P (∆′)(ȳ, z̄)
depends only on the first ∆′ components of ȳ and z̄. Diagrammatic representations of B(2)(ȳ) and
B(3)(ȳ) are given in Figure 8. For B(3)(ȳ), the first diagram is the ∆′ = 3 term of (6.8), and the
remaining nine terms arise from the ∆′ = 2 term, with five choices for u(3) for C(2) and four choices
for C̃(2).

B(2)(ȳ) =
∑

z̄∈B(x̄)


 z

y

z

y1

1

2

2
0

+ y y

0

= zz

1

1

2

2




B(3)(ȳ) =
∑

z̄∈B(x̄)




z

z

z

y

y

y

1

1

2

3

2

3

0
+ z

z

z

y

y

y

0
1

1

2

2

3

3

+
0

z

z

z

y

y

y

1

1

2

2

3
3

+ 7 terms




Figure 8: Diagrammatic representations of B(2)(ȳ) and B(3)(ȳ).

For I ⊂ {1, . . . , ∆}, we write ΣI for the set of permutations of I. Given p ∈ ΣI , we let p(ȳI)
denote the vector with components yp(j), j ∈ I. We write β = Lα−2 for the small factor appearing
on the right side of (1.9).

Proposition 6.1. Let d > 4 and ∆ ≥ 2. Fix ȳ ∈ Zd∆. There are constants C and L0 (depending
on d and ∆) such that for L ≥ L0,

∞∑
N=1

Π̃(∆)

x̄,N(ȳ) ≤ Cβ∆
∑

I1,...,Ik

k∏
j=1

∑
pj∈ΣIj

B(|Ij |)(pj(ȳIj
)), (6.9)

where the first sum on the right side is over all partitions of {1, . . . , ∆} into subsets I1, . . . , Ik of
cardinality at least 2. The same bound holds for Π(∆)

N (ȳ), with the sum over z̄ in (6.8) extended
from B(x̄) to Zd∆.
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Under the hypotheses of Proposition 6.1, and in view of the relationship between π̃(∆)

x̄,N and

Π̃(∆)

x̄,N described below (6.3), the sum π̃(∆)

x̄ (ȳ) =
∑∞

N=0(−1)N π̃(∆)

x̄,N(ȳ) obeys the bound

|π̃(∆)

x̄ (ȳ)| ≤ δ0̄,ȳ + Cβ2
∑

I1,...,Ik

δ0̄,ȳÎc

k∏
j=1

∑
pj∈ΣIj

B(|Ij |)(pj(ȳIj
)). (6.10)

In (6.10), the sum over I1, . . . , Ik is a sum over disjoint subsets of {1, . . . , ∆}, each of cardinality
at least 2, whose union Î may be smaller than {1, . . . , ∆}. The same bound holds for π(∆)(ȳ), with
the sum over z̄ in (6.8) extended from B(x̄) to Zd∆.

Proof of Proposition 2.3 assuming Proposition 6.1.

Proof of (2.19). We deduce (2.19) from (6.10), and the corresponding statement for π(∆)(ȳ) will
follow from the comment below (6.10). This will automatically prove the absolute convergence
statement given under (2.19). In fact, using J (N)

A and J̃ (N)

A,x̄ in (6.3) and summing over N in (6.9)

gives an upper bound on the sums in (2.12) when JA and J̃A,x̄ are replaced by their absolute values.
We analyse the factor

∑
p∈ΣI

B(|I|)(p(ȳI)). For this we relabel ȳI as y1, . . . , y|I| for convenience.
We will prove

∑

ȳ∈Zd|I|:ye=y

∑
p∈ΣI

B(|I|)(p(ȳ)) ≤ c

|||y|||2d−4
,

∑

ȳ∈Zd|I|

∑
p∈ΣI

B(|I|)(p(ȳ)) ≤ c, (6.11)

for any e ∈ I. This suffices by the following argument. Given the index e and y in (2.19) first
assume that y 6= 0. Then only terms with e ∈ Î = I1 ∪ · · · ∪ Ik contribute to (6.10). We apply the
first inequality of (6.11) to the unique Ij such that e ∈ Ij, and apply the second one otherwise,

to get (2.19). If y = 0, we also have terms with e 6∈ Î, and for these we only need the second
inequality in (6.11).

The second inequality in (6.11) follows from the first one, since the bound is summable. In
proving the first inequality it is enough to consider terms where p is the identity. Indeed, if we can
prove the bound in (6.11) without summation over permutations and for any e ∈ I, (6.11) follows
as well. To analyse B(|I|)(ȳ) recall (6.8). Let 2 ≤ ∆′ ≤ |I|, and let K(ȳ, z̄) denote a general term
from (6.8) with ∆ = |I|, that is

K(ȳ, z̄) = P (∆′)(ȳ, z̄)

|I|∏

j=∆′+1

Qu,j(ȳ, z̄). (6.12)

We will prove that

∑

ȳ,z̄∈Zd|I|:ye=y

K(ȳ, z̄) ≤ c

|||y|||2d−4
,

∑

ȳ,z̄∈Zd|I|:ze=z

K(ȳ, z̄) ≤ c

|||z|||2d−4
, (6.13)

for any e ∈ I and for any mapping u. This is sufficient for our claim on the sum of B(|I|)(ȳ). In
fact, the first inequality of (6.13) is sufficient, but it will be convenient for the proof to have the
second one as well.

To prove (6.13), we consider first the case ∆′ = |I|, so that K(ȳ, z̄) = P (|I|)(ȳ, z̄). The proof for
this case is by induction on |I|. We begin the induction with |I| = 2, and consider P (2) = C(2)+C̃(2).
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Recall the diagrams in the first line of Figure 8. We will make frequent use of (3.1)–(3.4), and
the reader is encouraged to draw the diagrams involved and make use of the pictures in (a)–(d)
of Figure 7. The cases when y1 or y2 is kept fixed are symmetric, and similarly for z1 and z2. To
bound the sum over y2, z1, z2 of C(2), we proceed as follows. First, we use (3.2) to perform the
sums over z1 and z2. This gives a bound of the form

c

|||y1|||d−2

∑

y2∈Zd

1

|||y2|||d−2

1

|||y2 − y1|||2d−4
≤ c

|||y1|||2d−4
, (6.14)

where (3.1) was applied with a = 2d − 4 > d and b = d − 2 in (6.14). To bound the sum over
y1, y2, z2 of C(2) we use (3.1) to perform the sums over y1 and y2. This leaves an expression similar
to the left side of (6.14) with y1 and y2 replaced by z1 and z2. This can be easily seen from the
diagrams as well. From here we proceed as before. For C̃(2) first consider the case when y1 is fixed.
We bound the sum over y2 using (3.1), and then bound the resulting sum over z1 using (3.1) again.
This gives an upper bound of the form |||y1|||4−2d, as required. When z1 is fixed, we apply (3.1)
twice to bound the sums over y1 and y2, which yields an upper bound |||z1|||4−2d, as desired.

To advance the induction, for the case ∆′ = |I|, we may assume by symmetry that e 6= |I|. We
use (3.2) to perform the sum over z|I|. The part involving y|I| becomes

∑

y|I|∈Zd

1

|||y|I| − y|I|−1|||d−2

1

|||y|I||||d−2

1

|||y|I| − z1|||d−2
≤ c

|||y|I|−1 − z1|||d−2
, (6.15)

by (3.3). This gives rise to P (|I|−1), and the desired estimate then follows from the induction
hypothesis. This completes the inductive proof of the case ∆′ = |I|.

Consider now the general case ∆′ ≤ |I|. The proof for this case is by induction on the value of
|I| −∆′. The base case |I| = ∆′ has just been proved. Assume |I| > ∆′. Then separating the last
Qu,j factor appearing in K(ȳ, z̄) we can write

K(ȳ, z̄) = K0(ȳ, z̄)Qu,|I|(ȳ, z̄), (6.16)

where

K0(ȳ, z̄) = P (∆′)(ȳ, z̄)

|I|−1∏

j=∆′+1

Qu,j(ȳ, z̄). (6.17)

Note that K0(ȳ, z̄) depends only on the first |I| − 1 components of ȳ and z̄, and by the induction
hypothesis K0(ȳ, z̄) satisfies (6.13). We distinguish between the cases e < |I| and e = |I|. In the
first case we bound

∑
y|I|,z|I|

Qu,|I|(ȳ, z̄) by a constant using (3.1) first with a = 2d−4, b = d−2 and

then with a = b = d−2. Then we use (6.13) for K0. In the case e = |I| we distinguish between the
subcases u(|I|) = 0 and u(|I|) 6= 0. In the first subcase we bound the sum of K0(ȳ, z̄) over all of its
variables (which factors from the remaining sum) by a constant, using that the bounds in (6.13)
are summable. We bound the remaining sum over y|I| or z|I| using (3.1). In the subcase u(|I|) 6= 0
we bound the sum of K0(ȳ, z̄) with the variable u(|I|) fixed by c|||u(|I|)|||4−2d using the induction
hypothesis. The product of this bound with Qu,|I|(ȳ, z̄) can be estimated using two applications
of (3.1).

In the above analysis, the sum over z̄ in (6.8) has been extended from B(x̄) to all of Zd|I|.
Since (6.10) holds also for π(∆)

N (ȳ) with this extension of the sum over z̄, this proves (2.19) also for
π(∆)(ȳ).
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Proof of (2.20). The proof is a modification of the proof of (2.19), and we indicate the necessary
changes. Again it is sufficient to prove that for any expression K(ȳ, z̄) in (6.12) we have

∑

ȳ,z̄∈Zd|I|

K(ȳ, z̄)

|I|∏
e=1

1

|||ye − we|||d−2
≤ c

|I|∏
e=1

1

|||we|||d−2
. (6.18)

In the language of diagrams, there is an extra “arm” reaching out from each ye to a fixed vertex
we. Consider the sum over y1, y2, z1, z2 of C(2) with the extra factors |||y1 − w1|||2−d|||y2 − w2|||2−d.
Application of (3.2) to the sums over z1 and z2 gives an upper bound

∑

y1,y2∈Zd

1

|||y1 − y2|||2d−4

1

|||y1|||d−2

1

|||y2|||d−2

1

|||y1 − w1|||d−2

1

|||y2 − w2|||d−2
. (6.19)

This gives the desired estimate c|||w1|||2−d|||w2|||2−d, after two other applications of (3.2). In the
case of C̃(2) we also arrive at (6.19) after summing over z1 and using (3.4). When 3 ≤ ∆′ = |I|
we perform the sum over z|I| as before. In (6.15), an extra factor |||y|I| − w|I||||2−d is now present,
and an application of (3.4) gives an upper bound |||y|I|−1 − z1|||2−d|||w|I||||2−d. This allows us to use
induction on |I| as before. For the case ∆′ < |I| we again use (6.16) and induction. Application
of (3.2) and (3.3) gives the bound

∑
y|I|,z|I|

Qu,|I|(ȳ, z̄)
1

|||y|I| − w|I||||d−2
≤ c

|||w|I||||d−2
, (6.20)

and we get the desired bound by applying (6.18) to K0(ȳ, z̄).

Proof of (2.21). For the first time in the proof, we make use of the fact that the summation
over z̄ is restricted to B(x̄) in (6.8), rather than a full sum over all of Zd∆. The proof is again a
modification of the proof of (2.19). It is enough to prove

∑

ȳ∈Zd|I|,z̄∈B(x̄)
ye 6∈B(xe)

K(ȳ, z̄)

|I|∏
j=1

1

|||yj − xj|||d−2
≤ c

[ |I|∏
j=1

1

|||xj|||d−2

]
1

|||xe|||d−4
(6.21)

for any e ∈ I. For the case of C(2) we bound

∑

y1 6∈B(x1)

∑

y2∈Zd

∑

z1∈B(x1)

∑

z2∈B(x2)

C(2)(y1, y2, z1, z2)
1

|||x1 − y1|||d−2

1

|||x2 − y2|||d−2
(6.22)

as follows. We perform the sum over y2 using (3.2), and bound the resulting factor |||x2 − z2|||2−d

by c|||x2|||2−d using z2 ∈ B(x2). We then bound the sums over z1 and z2 using (3.2) and (3.1),
respectively. The result is an upper bound of the form

c

|||x2|||d−2

∑

y1 6∈B(x1)

1

|||y1|||2d−4

1

|||x1 − y1|||d−2
≤ c

|||x2|||d−2

1

|||x1|||d−2

∑
y1

1

|||y1|||d−2

1

|||x1 − y1|||d−2
. (6.23)

By (3.1), the sum on the right side is bounded by c|||x1|||4−d. Similarly, for C̃(2) we first perform
the sum over y2, and bound |||x2 − z1|||2−d by c|||x2|||2−d using z1 = z2 ∈ B(x2). Then applying (3.1)
to the sum over z1 we arrive at (6.23) again.
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The case 3 ≤ ∆′ = |I| is handled by induction on |I|. By symmetry we may assume e 6= |I|.
We handle the extra factor |||y|I| − x|I||||2−d arising in (6.15) as we did in the proof of (2.20), and
extract the extra decay |||xe|||4−d using the induction hypothesis.

In the case ∆′ < |I| we again use induction on |I| − ∆′ and (6.16). We distinguish between
the cases e < |I| and e = |I|. If e < |I|, we apply (6.20) with w|I| replaced by x|I|, giving a factor
|||x|I||||2−d. The remaining sums are estimated using (6.21) for K0(ȳ, z̄), giving the extra decay
|||xe|||4−d. If e = |I|, we extract the extra decay |||x|I||||4−d from

∑

y|I| 6∈B(x|I|),z|I|∈B(x|I|)

Qu,|I|(ȳ, z̄)
1

|||y|I| − x|I||||d−2

as follows. We bound |||y|I||||2−d appearing in Qu,|I|(ȳ, z̄) from above by c|||x|I||||2−d, using y|I| 6∈
B(x|I|). Using (3.1) to bound the sum over y|I|, for the rest of the expression we get the upper
bound

∑

z|I|∈B(x|I|)

1

|||z|I| − x|I||||d−2

1

|||z|I| − u(|I|)|||d−2
≤ c

|||x|I||||d−2

∑

z|I|∈B(x|I|)

1

|||z|I| − u(|I|)|||d−2
, (6.24)

where z|I| ∈ B(x|I|) was used in (6.24). The sum on the right side of (6.24) is bounded by a multiple
of |||x|I||||2, uniformly in u(|I|), leading to an upper bound of the desired form c|||x|I||||2−d|||x|I||||4−d.
Application of (6.18) to K0(ȳ, z̄) with x̄ replacing w̄ completes the proof.

7 Proof of Proposition 6.1

In this section, we prove Proposition 6.1. Our starting point is the expression

Π̃(∆)

x̄,N(ȳ) =
∑

m̄∈N∆

∑

ω∈ΩA(ȳ)

Wzc(ω)
∑

L∈L̃(N)
A,x̄

[ ∏

b∈L

[−Ub]

] ∏

b∈C̃A,x̄(L)

[1 + Ub], (7.1)

which follows from (5.3) and (6.3). Here A is the star-shaped tree with branches of length
m1, . . . , m∆, all of which are strictly positive.

7.1 Bound on Π̃ in terms of diagrams

The set L̃(N)

A,x̄ depends on the embedding ω, whereas the set L(N)

A does not. For L ∈ L(N)

A , let 1[L](ω)

equal 1 if L ∈ L̃(N)

A,x̄(ω) and equal 0 otherwise. Then (7.1) can be rewritten as

Π̃(∆)

x̄,N(ȳ) =
∑

m̄∈N∆

∑

L∈L(N)
A

∑

ω∈ΩA(ȳ)

Wzc(ω)1[L](ω)

[ ∏

b∈L

[−Ub]

] ∏

b∈C̃A,x̄(L)

[1 + Ub]. (7.2)

Given L, the factor
∏

b∈L[−Ub] is nonzero only if ω(s) = ω(t) for every st ∈ L. If st ∈ L covers the
branch point 0 with s on branch e and t on branch f , then 1[L](ω) is nonzero only if the additional
restriction ω(s) = ω(t) ∈ B(xe) ∩B(xf ) applies.
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Let L = {s1t1, . . . sN tN} be a lace on A consisting of N bonds. The vertices si and ti, together
with the branch point 0, determine 2N intervals I1, . . . , I2N on the tree A, some of which may have
length 0. We group laces according to their “shape.” We say that laces L and L′ have the same
shape if they only differ in the length of the intervals Ij, and the order of the vertices si and ti on
each branch is the same in L and L′. Having the same shape does not quite define an equivalence
relation on laces (transitivity may fail in some cases). However this will only lead later to some
harmless overcounting.

We regard ω as consisting of a collection of embeddings ω(j) of the intervals Ij. Note that Wzc(ω)
factors into the product of Wzc(ω

(j)) over the intervals. For each interval Ij, all bonds b ∈ BIj
are

compatible with L. This implies that each ω(j) must be self-avoiding in order to contribute to the
right hand side of (7.2). We obtain an upper bound for (7.2) by replacing [1 + Ub] by 1 for all
other bonds compatible with L.

It is then standard to obtain an upper bound on Π̃(∆)

x̄,N(ȳ) in terms of Feynman diagrams, where
laces having different shapes give rise to different diagrams. An example is depicted in Figure 9.
Diagram vertices have degree 4, except 0 has degree ∆ and each ye has degree 3. The value A(F)
of a diagram F is determined as follows. Given a shape, we let εj = 1 when the length |Ij| of
the jth interval is strictly positive for all laces with this shape, and εj = 0 otherwise. Thus εj

depends on a shape. A diagram line arising from interval Ij and joining vertices u, v corresponds
to Hj(u− v), where

Hj(x) = G(x)− εjδx,0. (7.3)

The resulting product of factors Hj is then summed over all unlabelled vertices of F . Vertices
corresponding to bond endpoints for a bond that does not cover the origin are summed over Zd,
whereas a vertex corresponding to bond endpoints for a bond with endpoints on T ◦

e and T ◦
f , with

e 6= f , is summed over B(xe) ∩B(xf ). The sum is the value A(F) of F . Since

Hj(x) ≤ Cβεj

|||x|||d−2
(7.4)

by (1.9), for an upper bound we will regard the diagram line arising from an interval Ij and joining
vertices u, v as Cβεj |||u−v|||2−d. Let D̃N(ȳ) denote the set of possible diagrams arising from N -bond
laces, where the tilde denotes the restriction on vertex locations for vertices that correspond to
lace bonds that cover 0. Then

Π̃(∆)

x̄,N(ȳ) ≤
∑

F∈D̃N (ȳ)

A(F). (7.5)

The number of distinct diagrams in D̃N(ȳ) is bounded above by CN for some C = C(∆). Also,
it is not difficult to see that each lace bond that does not cover the branch point gives rise to
at least one nonzero interval, so that

∑2N
j=1 εj is bounded below by N − const. Thus we obtain

an exponentially small factor in each term in (7.5), due to the factors β in (7.4). This factor
compensates for growing factors CN due to the number of diagrams and due to constants that
occur in bounding each line by c|||u− v|||2−d, and permits the summation over N to be performed.
Since

∑2N
j=1 εj ≥ ∆, it leads to the correct power β∆ in (6.9). We therefore take β = 1 in what

follows, since we are guaranteed by the above to obtain the necessary factors of β.
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Figure 9: A lace shape and corresponding Feynman diagram F . Slashed diagram lines may have
zero length.

7.2 Reduction of diagrams

In this section, we show how it is possible to estimate diagrams in terms of a smaller number of
basic diagrams.

Given a lace L and a branch e, let N (e) denote the number of bonds of L that have both
endpoints on branch e. Suppose that N (e) ≥ 2. Then the bonds ij and kl on branch e that are
closest to the leaf of branch e are ordered as i < k < j < l, with l the leaf. Let L′ denote the
connected graph obtained by replacing ij and kl by the single bond il. It is not difficult to verify
that L′ is a lace. Let F ∈ D̃N(ȳ) denote the diagram corresponding to L, and let F ′ ∈ D̃N−1(ȳ)
denote the diagram corresponding to L′. We claim that there is a constant C, depending only on
d, such that

A(F) ≤ CA(F ′). (7.6)

To prove (7.6), we note that ω(k) = ω(l) = ye. Since L is a lace, j is the only endpoint of a
bond in L that is covered by kl. Let w1 = ω(j) denote the vertex in F corresponding to j. Let
w2 and w3 denote the diagram vertices, other than ye, that are adjacent to w1 in F . Using (3.2)
to perform the summation over w1 in A(F), we obtain

∑
w1

1

|||w2 − w1|||d−2

1

|||w3 − w1|||d−2

1

|||w1 − ye|||2(d−2)
≤ c

|||w2 − ye|||d−2

1

|||w3 − ye|||d−2
. (7.7)

See Figure 10. This replaces part of the diagram for F by the corresponding part for F ′, which
proves (7.6).

If we begin with a diagram in D̃N(ȳ) that has N (e) ≥ 1 for each e, we can use (7.6) repeatedly
to reduce the diagram to CN times a diagram having N (e) = 1 for each e. For convenience, we will
also show that a diagram with N (e) = 0 for some e can be bounded by a diagram with N (e) = 1
for all e. Given a lace with N (e) = 0 and with leaf j on branch e, assume that j is not an endpoint
of any other lace bond. The case in which j is an endpoint of another lace bond or bonds is a
degenerate case that arises from taking an interval or intervals to have zero length in the case we
are assuming. We add a new bond kl to the lace in such a way that kl covers j, and covers no
other endpoint of a lace bond, so that l becomes the new leaf. Since we may now allow all intervals
Ij to have zero length (because we have already extracted the necessary factors β), the diagram
with N (e) = 0 is just a term in the diagram with N (e) = 1 in which w1 = ye, in the notation of
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Figure 10: Illustration of the bound (7.7). Vertex labels on the upper figure represent the lattice
sites in Zd to which the vertices are embedded.

the previous paragraph. Thus the diagram with N (e) = 0 is bounded above by the diagram with
N (e) = 1.

This reduces the estimation of all diagrams to estimation of diagrams having N (e) = 1 for all e.
We call such diagrams basic diagrams. The number of diagrams in D̃N(ȳ) that reduce to a given
basic diagram is bounded by CN .

7.3 Bounds on basic diagrams

Let D̃basic(ȳ) denote the set of basic diagrams, arising from laces with N (e) = 1 for each e. In view
of the above analysis, to prove Proposition 6.1 it suffices to prove the following proposition.

Proposition 7.1. The sum of basic diagrams, with 0 of degree ∆ ≥ 2, is bounded by

∑

F∈D̃basic(ȳ)

A(F) ≤ c
∑

I1,...,Ik

k∏
j=1

∑
pj∈ΣIj

B(|Ij |)(pj(ȳIj
)), (7.8)

where I1, . . . , Ik denotes a partition of {1, . . . , ∆} into subsets of cardinality at least 2.

Proof. Recall the classification of laces in Section 5.2. We only consider laces for which N (e) = 1
for each e. Also, it suffices to consider only irreducible laces, since the diagram corresponding
to a reducible lace factors into subdiagrams corresponding to the irreducible components of the
reducible lace. The sum over I1, . . . Ik in (7.8) represents a sum over irreducible components. Thus
we are concerned in what follows only with k = 1 and I = I1 = {1, . . . , ∆}.

Fix ∆ ≥ 2. We give separate arguments according to whether a basic diagram corresponds to
an irreducible lace that is minimal cyclic, acyclic, or non-minimal cyclic.

Case 1: Acyclic laces with ∆ = 2. The basic diagram corresponding to this case has value∑
z∈B(x1)∩B(x2) C̃ (2)(y1, y2, z, z).

Case 2: Minimal cyclic laces. Suppose that L is a minimal cyclic lace. Then, up to a relabelling
of the variables, the basic diagram corresponding to L has value C(∆)(ȳ, z̄), with z̄ summed over
zj ∈ B(xj) ∩ B(xj−1). For an upper bound, we relax this to z̄ ∈ B(x̄). Taking into account the
possible relabellings using permutations, and also taking into account Case 1 if ∆ = 2, this gives
the ∆′ = ∆ term of the expression (6.8) for B(∆)(ȳ).
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Case 3: Non-minimal cyclic laces with ∆ = 2. Fix ∆ = 2. Suppose that L is a non-minimal basic
cyclic lace, and that the bond b associated to branch 2 can be removed to yield a lace L̃. We claim
that the value of the diagram corresponding to L is bounded by a constant multiple of the value
of the diagram corresponding to L̃. To prove this claim, let w be the diagram variable associated
to the endpoints of b, and let w1, w2 and w3, w4 be the diagram variables corresponding to the lace
bond endpoints adjacent to the two endpoints of b. By (3.4),

∑
w

4∏
i=1

1

|||w − wi|||d−2
≤ c

|||w1 − w2|||d−2

1

|||w3 − w4|||d−2
, (7.9)

which proves the claim. By Lemma 5.6, the lace L̃ is acyclic. Therefore, the value of its diagram
is bounded by C̃(2)(y1, y2, z1, z2), by Case 1.

By Cases 1–3, it follows that (7.8) holds when ∆ = 2. We assume henceforth that ∆ ≥ 3.

Case 4: Acyclic laces. Let L be an acyclic lace. By Lemma 5.5, there is a branch e such that there
is a unique bond in L that covers 0 and has an endpoint on branch e, with the restriction L̃ of L
to the other branches being a lace. Assume that e = ∆. We show that it is possible to bound the
value of the diagram corresponding to L in terms of the diagram corresponding to L̃, leading to a
recursive estimate.

The diagram variable corresponding to the unique bond with both endpoints on branch ∆ is
y∆. Let z∆ denote the diagram variable of the bond b(∆) ∈ L associated to branch ∆. Let w1

and w2 be the variables adjacent to z∆ on the branch which is different from ∆. Then w1 and w2

are chosen from among 0 and yj, zj with 1 ≤ j < ∆. Since either 1
2
|||w1 − w2||| ≤ |||w2 − z∆||| or

1
2
|||w1 − w2||| ≤ |||w1 − z∆|||, it follows that

1

|||w1 − z∆|||d−2

1

|||w2 − z∆|||d−2
≤ c

|||w1 − w2|||d−2

[
1

|||w1 − z∆|||d−2
+

1

|||w2 − z∆|||d−2

]
. (7.10)

The factor |||w1−w2|||2−d contributes to the diagram corresponding to L̃, leaving additional factors

1

|||y∆|||d−2

1

|||y∆ − z∆|||2(d−2)

[
1

|||w1 − z∆|||d−2
+

1

|||w2 − z∆|||d−2

]
(7.11)

that contribute terms Q appearing in the definition of B(∆) of (6.8). The restrictions on the domain
of summation of the zi, due to L ∈ L̃A,x̄, can be relaxed to summation over z̄ ∈ B(x̄) in an upper
bound, as in Case 2.

Case 5: Non-minimal cyclic laces. Let L be a non-minimal cyclic lace. By Lemma 5.6, there is
a bond b whose removal leaves an acyclic lace L̃. It then follows, as in Case 3, that the value
of the diagram corresponding to L is bounded above by a multiple of the value of the diagram
corresponding to L̃.

Recursive bound. Given a diagram corresponding to an acyclic or non-minimal cyclic lace, we
apply Cases 4–5 repeatedly until we produce a minimal cyclic lace or we reduce the degree to 2.
Assume that the branches are ordered in such a way that whenever a branch is removed in applying
Case 4, it has the largest label. Then if j is the branch removed, we have that each of the vertices
wi (i = 1, 2) discussed in Case 4 is in {0, y1, . . . , yj−1, z1, . . . , zj−1}. This gives the desired result,
where the sum over permutations allows for arbitrary orderings of the branches when applying
Case 4.
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8 Proof of Proposition 2.7

From the definitions in (2.22), it follows that

∣∣V∆ − Ṽ in
∆,x̄

∣∣ ≤
∑

ȳ∈Zd∆

∣∣π(∆)(ȳ)− π̃(∆)

x̄ (ȳ)
∣∣ +

∑

ȳ 6∈B(x̄)

∣∣π̃(∆)

x̄ (ȳ)
∣∣. (8.1)

Given ȳ 6∈ B(x̄), there is a component ye 6∈ B(xe). We perform an unrestricted sum over the other
components of ȳ and apply (2.19), to see that the second term on the right side of (8.1) is bounded
by c

∑∆
e=1 |||xe|||4−d, as required.

To bound the first term in (8.1) we use (2.12) to write

π(∆)(ȳ)− π̃(∆)

x̄ (ȳ) =
∑

m̄∈Z∆
+

∑

ω∈ΩA(ȳ)

Wzc(ω)
[
JA(ω)− J̃A,x̄(ω)

]
. (8.2)

To analyse (8.2), we rewrite JA − J̃A,x̄ as follows. Since L̃A,x̄ ⊂ LA, it follows from (5.2) that

JA =
∑

L∈L̃A,x̄

[ ∏

b∈L

Ub

] ∏

b∈CA(L)

[1 + Ub] +
∑

L∈LA\L̃A,x̄

[ ∏

b∈L

Ub

] ∏

b∈CA(L)

[1 + Ub]. (8.3)

Since C̃A,x̄(L) ⊂ CA(L), in the first term of the right side of (8.3) we can rewrite

∏

b∈CA(L)

[1 + Ub] =
∏

b∈C̃A,x̄(L)

[1 + Ub]−
[ ∏

b∈C̃A,x̄(L)

[1 + Ub]

][
1−

∏

b∈CA(L)\C̃A,x̄(L)

[1 + Ub]

]
. (8.4)

The contribution to the first term on the right side of (8.3) due to the first term of the right side
of (8.4) is J̃A,x̄. Therefore

JA − J̃A,x̄ =
∑

L∈LA\L̃A,x̄

[ ∏

b∈L

Ub

] ∏

b∈CA(L)

[1 + Ub]

−
∑

L∈L̃A,x̄

[ ∏

b∈L

Ub

][ ∏

b∈C̃A,x̄(L)

[1 + Ub]

][
1−

∏

b∈CA(L)\C̃A,x̄(L)

[1 + Ub]

]
. (8.5)

We insert (8.5) into (8.2), producing two terms. The first of these two terms can be written as∑∞
N=1(−1)Nρ(∆)

x̄,N(ȳ), where

ρ(∆)

x̄,N(ȳ) =
∑

m̄∈Z∆
+

∑

ω∈ΩA(ȳ)

Wzc(ω)
∑

L∈L(N)
A \L̃(N)

A,x̄

[ ∏

b∈L

[−Ub]

] ∏

b∈CA(L)

[1 + Ub]. (8.6)

Similarly, for the second term of (8.5), we define

µ(∆)

x̄,N(ȳ) =
∑

m̄∈Z∆
+

∑

ω∈ΩA(ȳ)

Wzc(ω)
∑

L∈L̃(N)
A,x̄

[ ∏

b∈L

[−Ub]

][ ∏

b∈C̃A,x̄(L)

[1+Ub]

][
1−

∏

b∈CA(L)\C̃A,x̄(L)

[1+Ub]

]
. (8.7)
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Then (8.6) and (8.7) are both nonnegative, and

∣∣π(∆)(ȳ)− π̃(∆)

x̄ (ȳ)
∣∣ ≤

∞∑
N=1

ρ(∆)

x̄,N(ȳ) +
∞∑

N=1

µ(∆)

x̄,N(ȳ). (8.8)

We analyse ρ(∆)

x̄,N using diagrams as in the bounds on π̃. Every L ∈ LA \ L̃A,x̄ includes at

least one bond b in R̃A,x̄ = BA\[ṼA,x̄ ∪ HA]. This means that in the diagram corresponding to
L, the variable z associated to b is summed over the set B(xe)

c ∪ B(xf )
c, where e and f denote

the branches containing the endpoints of b. We obtain a bound analogous to (6.9), except now
the sum over z̄ in (6.8) is replaced by a multiple of

∑∆
e=1

∑
z̄∈Zd∆:ze 6∈B(xe)

. Using a modification of

(6.11) for ρ, we obtain the desired estimate

∞∑
N=1

∑

ȳ∈Zd∆

ρ(∆)

x̄,N(ȳ) ≤ c

∆∑
e=1

∑

ze 6∈B(xe)

1

|||ze|||2d−4
≤ c

∆∑
e=1

1

|||xe|||d−4
. (8.9)

It remains to estimate µ(∆)

x̄,N . The difference between µ(∆)

x̄,N and π̃(∆)

x̄,N resides in the indicator
function 1 − ∏

b∈CA(L)\C̃A,x̄(L)[1 + Ub]. The indicator function is nonzero only if there is a bond

b ∈ CA(L) \ C̃A,x̄(L) ⊂ R̃A,x̄ such that the endpoints of b correspond to an intersection in the
embedding. Thus µ(∆)

x̄,N can be bounded by diagrams in the same manner as π̃(∆)

x̄,N , but with an

additional new intersection not present in the diagrams for π̃(∆)

x̄,N . In more detail, the modification

to a diagram for π̃(∆)

x̄,N is as follows. We select a pair of lines in a diagram bounding π̃(∆)

x̄,N , that lie
between the branch point and the endpoint of the bond associated to the branch containing the
line (since a bond b ∈ R̃A,x̄ must cover the branch point), and replace those lines by four lines that
meet at a common vertex. This common vertex w is summed over B(xe)

c ∪ B(xf )
c, where e and

f are the indices of the branches occurring in the bond b. It suffices to show that any new such
diagram is bounded above by a small factor times a diagram that we have already bounded when
estimating π̃(∆)

x̄,N . We can restrict our attention to basic diagrams, since by the above remarks the
extra bond does not interfere with the reduction process of Section 7.2.

Let

K(ȳ, z̄) = K0(ȳ, z̄)
1

|||w1 − w2|||d−2

1

|||w3 − w4|||d−2
(8.10)

denote a term in B(∆)(ȳ) with a specific pair of lines, from w1 to w2 and from w3 to w4, singled
out. We assume that this pair of lines is a possible pair for the additional intersection described
above. In bounding µ(∆)

x̄,N , the term K(ȳ, z̄) is replaced by

Kµ(ȳ, z̄) = K0(ȳ, z̄)
∑

w∈B(xe)c∪B(xf )c

4∏
j=1

1

|||wj − w|||d−2
. (8.11)

The sum on the right side of (8.11) can be replaced by
∑

w∈B(xe)c +
∑

w∈B(xf )c , in an upper bound.
The two terms are similar and we consider only the first, in what follows. We divide the sums over
ȳ, z̄ into two cases, and show that each case satisfies the required bound.

Case 1. Assume that w1, w2, w3, w4 are inside B(xe/2), so their norms are at most |xe|/6. Then
we use |||w − w1||| ≥ 1

6
|||xe||| ≥ 1

2
|||w1 − w2|||, |||w − w3||| ≥ |||w||| − |||w3||| ≥ 1

2
|||w|||, and similarly
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|||w − w2||| ≥ 1
2
|||w3 − w4|||, |||w − w4||| ≥ 1

2
|||w|||, to obtain

∑

w∈B(xe)c

4∏
j=1

1

|||wj − w|||d−2
≤ c

|||w1 − w2|||d−2

1

|||w3 − w4|||d−2

∑

w∈B(xe)c

1

|||w|||2d−4

≤ c

|||w1 − w2|||d−2

1

|||w3 − w4|||d−2

1

|||xe|||d−4
.

(8.12)

Arguing similarly when w ∈ B(xf )
c, we obtain, as required,

Kµ(ȳ, z̄) ≤ cK(ȳ, z̄)

(
1

|||xe|||d−4
+

1

|||xf |||d−4

)
. (8.13)

Case 2. Assume that one of w1, w2, w3, w4 is outside B(xe/2). In this case we extend the sum over
w in (8.11) to a sum over all w ∈ Zd, and use (3.4) to bound it by c|||w1 − w2|||2−d|||w3 − w4|||2−d.
This gives the corresponding diagram for π̃(∆)

x̄,N , but with one vertex constrained to be large. This
can then be bounded by summing (6.13) over y or z outside B(xe/2), giving the desired result.

9 Proof of Proposition 2.8

Recall the definition of ϕν(~x) from (2.8). Recall from Section 2.2 that Gerr
N is the set of graphs

Γ ⊂ VN ∪ HN such that Ai(Γ) = Aj(Γ) for some i 6= j, i, j ∈ S0. Let E0 be the set of edges
e = (e1, e2) with e1, e2 ∈ S0. Note that Gerr

N is empty if E0 is empty, so we assume that E0 6= ∅.
For F ⊂ E0, we define Gerr

N (F ) to be the set of graphs Γ ∈ Gerr
N such that for each f = (f1, f2) ∈ F ,

Af1(Γ) = Af2(Γ). Note that branches in E0 \ F may or may not have this property. By the
inclusion-exclusion relation,

∣∣∣∣
∑

Γ∈Gerr
N

∏

b∈Γ

Ub

∣∣∣∣ ≤
∑

F⊂E0:F 6=∅

∣∣∣∣
∑

Γ∈Gerr
N (F )

∏

b∈Γ

Ub

∣∣∣∣. (9.1)

It suffices to show that the contribution to (2.8) due to each term
∑

Γ∈Gerr
N (F )

∏
b∈Γ Ub obeys the

bound of Proposition 2.8.
For Γ ∈ Gerr

N (F ), e = (e1, e2) ∈ F and i = 1, 2, we define Γe,i = Γe,i(Γ) to be the set of bonds
st ∈ Γ that have an endpoint on branch Te and that cover ei. By definition of Gerr

N (F ), Γe,i 6= ∅.
We select a unique bond jiki ∈ Γe,i according to the procedure of Definition 5.1, with ji /∈ Te,
ki ∈ Te. We refer to jiki as the bond associated to Te near ei. Given Γ ∈ Gerr

N (F ) and e ∈ F ,
we construct a graph PΓ(e) = {s1t1, . . . , sltl} ⊂ Γ on a subnetwork containing Te as follows. We
set s1t1 = j1k1, and then perform the Te-lace construction of Section 5.1 along Te in the direction
from e1 to e2 until k2 is covered, obtaining s1t1, . . . , sl−1tl−1. Then we set sltl = k2j2. Let

PΓ =
⋃
e∈F

PΓ(e). (9.2)

Each PΓ(e) induces a subnetwork Je(Γ), which is either a path or a bubble, consisting of the
path from s1 to tl via Te, i.e., the path s1 → e1

e→ e2 → tl that contains no branch points except
e1 and e2. This path may close up on itself, as depicted in Figure 11.
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Te

Tf

Je(Γ)

Jf (Γ)

Figure 11: An example of Γ ∈ Gerr
N (F ), with its corresponding Je(Γ) and Jf (Γ), for F = {e, f}. A

graph bond covers the interval on its concave side.

Now we resum
∑

Γ∈Gerr
N (F )

∏
b∈Γ Ub as in (5.2). Let e ∈ F , and let ai be a path point on one of

the branches adjacent to Te at ei (i = 1, 2). Let Je(a1, a2) denote the path or bubble determined
by travelling from a1 to a2 via Te, as above. We write PF,~x = PF,~x(ω) for the set of all graphs
L =

⋃
e∈F Le for which the collection (Le : e ∈ F ) satisfies the following two properties:

1. Le is a lace on Je(a1, a2) for some a1, a2, where we regard Je(a1, a2) as a “path” even in the
case where it is a bubble. See Figure 11. In addition, the only bond in Le that covers ei is
the bond in Le that is associated to Te near ei (i = 1, 2).

2. If b ∈ Le is associated to Te near ei among bonds in Le, then, among all bonds in L, it is
associated to Te near ei.

The decomposition of L ∈ PF,~x into constituents Le is then unique. Given L ∈ PF,~x, we define
QF,~x(L) to be the set of bonds b ∈ VN∪HN that are compatible with L in the sense that PL∪{b} = L.
We will not need a precise description of the set QF,~x(L), only some of its simple properties. First,
we need that similarly to the lace LΓ defined in Section 5.1, given Γ ∈ Gerr

N (F ), we have PΓ = L if
and only if L ⊂ Γ is a graph in PF,~x and Γ \ L ⊂ QF,~x(L). This follows as in [5, Proposition 2.6],
because the bonds in PΓ are selected from Γ according to some optimality conditions, andQF,~x(L) is
precisely the set of bonds whose presence does not destroy these optimality conditions. Therefore,
by resumming as in (5.2), we obtain

∑

Γ∈Gerr
N (F )

∏

b∈Γ

Ub =
∑

L∈PF,~x

[ ∏

b∈L

Ub

] ∏

b∈QF,~x(L)

[1 + Ub]. (9.3)

Now that the resummation has been performed and the interaction has been partially restored via
the compatible bonds, we may take absolute values inside sums.

The contribution to ϕν(~x) due to the term
∣∣ ∑

Γ∈Gerr
N (F )

∏
b∈Γ Ub

∣∣ in (9.1) is thus bounded by

∞∑
N=2

∑

~n∈N|E|

∑

ω∈ΩN (~x)

Wzc(ω)
∑

L∈P(N)
F,~x

[ ∏

b∈L

[−Ub(ω)]

] ∏

b∈QF,~x(L)

[1 + Ub(ω)], (9.4)

where P (N)

F,~x is the set of graphs in PF,~x consisting of exactly N bonds. To proceed we need a second
property of QF,~x(L), which we now describe. The branch points of the network together with
the endpoints of bonds in L subdivide N into intervals, as in the discussion following (7.2). Any
bond that has both endpoints in one of these intervals lies in QF,~x, again because of the way PΓ

was defined. For example, for each e ∈ E such that T ◦
e is disjoint from Jf (L) for all f ∈ F , the
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path Te comprises an interval as mentioned above, and we have HN ,e ⊂ QF,~x(L). All other Te are
broken up into smaller intervals. It follows that in (9.4) we can restrict the sum over ω so that
each interval is embedded as a self-avoiding walk. We bound the contribution of all other b ∈ QF,~x

using 1 + Ub ≤ 1.
As in Section 7.1, (9.4) is bounded by

∑
F∈D(N)

F (~x)
A(F), where D(N)

F (~x) is a set of diagrams.

An example of a diagram is given in Figure 12. Diagrams can be quite complicated when ν is
large and F is large. Fortunately, it will not be necessary in the proof to understand the detailed
structure of these diagrams. Instead, we will apply a reduction process that allows us to analyse
in detail just two special cases.

"
"

"
"

"
"

"
"

"
"b

b
b

b
b

b
b

b
b

b

0

1

2

3

4

s

s s

s s
0 v1v2

v3 v4

Figure 12: An example of an L ∈ P (2)

F,~x with F = (2, 3), together with the diagram in D(2)

F (~x) that
bounds its contribution to ϕν(~x).

A power of β will control the sum over N of the diagrams, as before. To see this, given L ∈ PF,~x,
let N (e) denote the number of bonds in Le that have both endpoints on Te. Using the fact that Le

is a lace, it is not hard to show that at least N (e) − 1 of the subintervals of Te induced by Le have
positive length (for a lower bound, we count only the subintervals on Te that are not covered by
the bonds in Le that cover e1 and e2). Thus the exponent of β is at least

∑
e∈F

max{0, N (e) − 1} ≥ max{0, N − const.}, (9.5)

where the constant only depends on ν. We will estimate the diagrams by reducing them to one of
two simple diagrams. The number of diagrams in D(N)

F (~x) can be shown to be bounded by cN , so
this is still controlled by the power of β.

Fix an arbitrary f ∈ F . Given L ∈ PF,~x, let Lf = PL(f) ⊂ L be the corresponding lace on
Jf (L). We obtain an upper bound by eliminating all bonds st ∈ L\Lf . Indeed, it follows from
an application of (3.4) that the elimination of a bond from a lace gives rise to a diagram that
is an upper bound on the diagram corresponding to the original lace, up to a constant multiple
(compare the application of (3.4) in Case 3 of Section 7.3). This is natural, since a diagram with
an additional intersection should not be larger than a diagram in which the intersection is not
required. We may therefore restrict attention to the case L = Lf . There are two possibilities,
depending on whether Jf (L) is a path or a bubble, as in Figure 11.

Suppose that L = Lf , and consider first the case where Jf (L) is a path. In this case, L =
{s1t1, . . . , sltl}, with s1t1 and sltl associated to Tf near the endpoints f1, f2 of f . We claim that,
up to a constant cl (which is compensated by a power of β), the diagram corresponding to L is
bounded above by the diagram corresponding to the lace with just two bonds. To see this, suppose
l ≥ 3, let wi = ω(si) = ω(ti) for i = 1, 2, 3, w = ω(f1), and let u be the variable adjacent to t2 in
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Figure 13: (a) Diagrammatic representation of the reduction step (9.6). Vertex labels on the upper
figure represent the lattice sites in Zd to which the vertices are embedded. (b) The two-bond laces
corresponding to the sums over z1, z2 in (9.7) and (9.8), respectively.

the direction of tl (so u = w4 if l ≥ 4 and u = ω(f2) if l = 3). See Figure 13. By (3.4),
∑

w2∈Zd

1

|||w2 − w|||d−2

1

|||w2 − w1|||d−2

1

|||w2 − w3|||d−2

1

|||w2 − u|||d−2
≤ c

|||w − w3|||d−2

1

|||w1 − u|||d−2
, (9.6)

and this estimate can be applied recursively to prove the claim. It remains to bound the diagram
corresponding to the lace with two bonds. In this diagram there is a factor |||xe|||2−d for each e ∈ E
such that Jf (L) ∩ T ◦

e = ∅. There are either one or two edges e 6= f , such that Jf (L) ∩ T ◦
e 6= ∅.

For any such edge the portion disjoint from Jf (L) contributes a factor bounded by c|||xe|||2−d, since
both bonds in L are in VN .

Thus the diagram corresponding to the lace with two bonds makes a contribution[ ∏

e∈E\{f}

1

|||xe|||d−2

] ∑

z1,z2∈B(xf )

1

|||z1|||d−2

1

|||z2|||d−2

1

|||xf − z1|||d−2

1

|||xf + z2|||d−2

1

|||xf + z2 − z1|||d−2
, (9.7)

and the summation is bounded, as required, by a multiple of |||xf |||4−3(d−2) = |||xf |||−(d−2)|||xf |||−2(d−4).
A similar analysis can be applied in the case where Jf (L) is a bubble, rather than a path. Let

f ′ denote the edge which, together with f , comprises the bubble. This time the reduced lace gives
rise to the diagram with value[ ∏

e∈E\{f,f ′}

1

|||xe|||d−2

] ∑

z1,z2∈B(xf )

1

|||xf − z1|||2(d−2)

1

|||xf + z2|||2(d−2)

1

|||xf + z2 − z1|||2(d−2)
, (9.8)

and the summation is bounded by a multiple of |||xf |||2d−6(d−2) = |||xf |||−2(d−2)|||xf |||−2(d−4), as required.
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