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Abstract

We prove that the scaling limit of nearest-neighbour senile reinforced random walk in the summable
reinforcement regime is a version of Brownian Motion when the time T spent on the first edge has finite
expectation. We also show that under suitable conditions, when T has heavy tails the scaling limit is
the so-called fractional kinetics process, a random time-change of Brownian motion.
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1 Introduction

The senile reinforced random walk is a toy model for a much more mathematically difficult model known as
edge-reinforced random walk (for which many basic questions remain open [e.g. see [14]]). It is characterized
by a reinforcement function f : N→ [−1,∞), such that only the most recently traversed edge is reinforced.
As soon as a new edge is traversed, reinforcement begins on that new edge and the reinforcement of the
previous edge is forgotten. Such walks may get stuck on a single (random) edge if the reinforcement is
strong enough, otherwise (except for one degenerate case) they are recurrent/transient precisely when the
corresponding simple random walk is [8].

Formerly, a nearest-neighbour senile reinforced random walk is a sequence {Sn}n≥0 of Zd-valued random
variables on a probability space (Ω,F ,Pf ) (with corresponding filtration {Fn = σ(S0, . . . , Sn)}n≥0) defined
by:

• The walk begins at the origin of Zd, i.e. S0 = o, Pf -almost surely,

• Pf (S1 = x) = 1
2dI{|x|=1},

• For n ∈ N, en = (Sn−1, Sn) is an Fn-measurable undirected edge and

mn = max{k ≥ 1 : en−l+1 = en for all 1 ≤ l ≤ k} (1.1)

is an Fn-measurable, N-valued random variable.

• For n ∈ N and x ∈ Zd such that |x| = 1,

Pf (Sn+1 = Sn + x|Fn) =





1 + f(mn)
2d + f(mn)

, if (Sn, Sn + x) = en,

1
2d + f(mn)

, if (Sn, Sn + x) 6= en.

(1.2)

Note that the triple (Sn, en,mn) (equivalently (Sn, Sn−1,mn)) is a Markov chain. Hereafter we suppress
the f dependence of the probability Pf in the notation.
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The diffusion constant for a senile random walk {Sn}n≥0 with reinforcement function f is defined as

v ≡ lim
n→∞

vn, where vn ≡ 1
n
E[|Sn|2], (1.3)

whenever this limit exists. For simple random walk vn = 1 for all n. Let T denote the random number
of consecutive traversals of the first edge traversed, and p = P(T is odd). It was shown in [8] that when
E[T 1+ε] < ∞ for some ε > 0, the diffusion constant is given by

v =
dp

(d− p)E[T ]
, (1.4)

which is not monotone in the reinforcement. It is natural to expect that (1.4) holds for all f (in the case
d = 1 and f(1) = −1 this must be interpreted as “ 1/0 = ∞”), and this is verified in [10].

A different but related model, in which the current direction (rather than the current edge) is reinforced
according to the function f was studied in [11, 9]. For such a model T is the number of consecutive steps
in the same direction before turning. In [9], the authors show that in all dimensions the scaling limit is a
version of Brownian motion when σ2 =Var(T ) < ∞ and σ2 +1−1/d > 0. In the language of this paper, the
last condition corresponds to the removal of the special case d = 1 and f(1) = −1. Moreover when d = 1
and T has heavy tails (in the sense of (2.1) below) they show that the scaling limit is an α-stable process
when 1 < α < 2 and a random time change of an α-stable process when 0 < α < 1. See [9] for more details.

Davis [3] showed that the scaling limit of once-reinforced random walk in one dimension is not Brownian
motion (see [14] for further discussion).

The reinforcement regime of most interest is that of linear reinforcement f(n) = Cn for some C. In this
case, by the second order mean-value theorem applied to log(1− x), x < 1 we have

P(T ≥ n) ≡
n−1∏

j=1

1 + f(j)
2d + f(j)

= exp





n−1∑

j=1

log
(

1− 2d− 1
2d + Cj

)



=exp



−

n−1∑

j=1

2d− 1
2d + Cj

−
n−1∑

j=1

(2d− 1)2

2(2d + Cj)2(1− uj)2





=exp



−

n−1∑

j=1

2d− 1
2d + Cj

−
∞∑

j=1

(2d− 1)2

2(2d + Cj)2(1− uj)2
+ o(1)





=exp
{
−2d− 1

C
log(2d + C(n− 1)) + γ + o(1)

}
∼ κ

n
2d−1

C

,

(1.5)

where ui ∈ (0, 2d−1
2d+Cj ), and γ is a constant arising from the summable infinite series and the approximation

of the finite sum by a log. An immediate consequence of (1.5) is that for f(n) = Cn, E[T ] is finite if and
only if C < 2d− 1.

In Section 2 we state and discuss the main result of this paper, which describes the scaling limit of senile
reinforced random walk when either E[T ] < ∞ or P(T ≥ n) ∼ n−αL(n) for some α > 0 and L slowly varying
at infinity. The scaling limit is not particularly interesting when P(T < ∞) < 1 since the walk gets stuck on
some random edge and therefore has finite (but random) range. In this case the random number of times
the walk leaves an edge before reaching the edge that it will traverse forever has a geometric distribution.
To prove the main result, in Section 3 we first observe the walk at the times that it has just traversed a
new edge and describe this as a suitably nice additive functional of a particular Markov chain. In Section
4 we prove the main result assuming the joint convergence of this time-changed walk and the associated
time-change process. Finally in Section 5 we prove the convergence of this joint process.

2 Main Result

The assumptions that will be necessary to state the main theorem of this paper are as follows:

(A1) P(T < ∞) = 1, and either d > 1 or P(T = 1) < 1.
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(A2a) Either E[T ] < ∞, or for some α ∈ (0, 1] and L slowly varying at infinity,

P(T ≥ n) ∼ L(n)n−α. (2.1)

(A2b) If (2.1) holds but E[T ] = ∞, then we also assume that
{

when α = 1, ∃`(n) ↗∞ such that (`(n))−1L(n`(n)) → 0, and (`(n))−1
∑bn`(n)c

j=1 j−1L(j) → 1,

when α < 1, P(T ≥ n, T odd) ∼ Lo(n)n−αo , and P(T ≥ n, T even) ∼ Le(n)n−αe ,

(2.2)

where `, Lo and Le are slowly varying at∞ and Lo and Le are such that if αo = αe then Lo(n)/Le(n) →
β ∈ [0,∞] as n →∞.

By Theorem XIII.6.2 of [5], when α < 1 there exists `(·) > 0 slowly varying such that

(`(n))−α
L

(
n

1
α `(n)

)
→ (Γ(1− α))−1. (2.3)

For α > 0 let

gα(n) =

{
E[T ]n , if (2.1) is summable
n

1
α `(n) , otherwise

(2.4)

By Theorem 1.5.12 of [2], there exists an asymptotic inverse function g−1
α (·) (unique up to asymptotic

equivalence) satisfying gα(g−1
α (n)) ∼ g−1

α (gα(n)) ∼ n, and by Theorem 1.5.6 of [2] we may assume that gα

and g−1
α are monotone nondecreasing.

A subordinator is a real-valued process V (t) with stationary, independent increments such that almost
every path is nondecreasing, right continuous and satisfies V (0) = 0. Let Bd(t) be a standard d-dimensional
Brownian motion. For α ≥ 1, let Vα(t) = t and for α ∈ (0, 1), let Vα be an α-stable subordinator
(independent of Bd(t)) satisfying

E[e−λVα(t)] = e−tλα

. (2.5)

Define the right-continuous inverse of Vα(t) and (when α < 1 the fractional-kinetics process) Zα(s) by

V −1
α (s) ≡ inf{t : Vα(t) > s}, Zα(s) = B(V −1

α (s)). (2.6)

Since Vα is strictly increasing, both V −1
α and Zα are continuous (almost-surely). The main result of this

paper is the following Theorem.

Theorem 2.1. Suppose that f is such that (2.1) holds for some α > 0, then for every K > 0,

Sbntc√
p

d−pg−1
α (n)

w=⇒ Zα(t). (2.7)

where the convergence is in D([0,K],Rd) equipped with the uniform topology.

2.1 Discussion

Our results are inspired by [1], in which the scaling limit of a class of (continuous time) trap models is
considered. In that work the scaling limit is the same as in our regime when d ≥ 2, however for d = 1 the
scaling limit is rather different. The difference can be attributed to the following facts. In our model, each
time the walk visits a new edge, the time spent on that edge is independent of all previous visits. This is
not the case for the trap model studied in [1] where a random jump rate is chosen initially at each site and
remains fixed thereafter. In one dimension this mutual dependence of the time spent at a particular site on
successive returns remains in the scaling limit, where the time change/clock process depends on the (local
time of the) Brownian motion itself.

If in the above continuous time model the jump rates at each visit to a site are instead chosen to be
independent (see [13, 12]), then it is known [12] that the scaling limit is the fractional kinetics process
described above. This is intuitive since in this case the process observed at times that it has just jumped to
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a new (nearest neighbour) site is simple random walk, and the waiting times between jumps are independent
and identically distributed random variables that are independent of the position and history of the walk.
For the senile reinforced random walk, the direction of the steps of the walk is dependent on the clock and
we need to prove that the dependence is sufficiently weak so that it disappears in the scaling limit.

While the slowly varying functions in gα and g−1
α are not given explicitly, in many cases of interest

one can use Theorem XIII.6.2 of [5] and Section 1.5.7 of [2] to explicitly construct them. For example, let
L(n) = κ(log n)β for some β ≥ −1. For α = 1 we can take

`(n) =





κ log n, if β = 0
κ(log log n), if β = −1
|β−1|κ(log n)β+1, otherwise,

and g−1
α (n) =





n(κ log n)−1, if β = 0
n(κ log log n)−1, if β = −1
n|β|(κ log n)−(β+1), otherwise.

(2.8)

If α < 1 we can take

`(n) =

(
κΓ(1− α)

(
log n

α

)β
) 1

α

, and g−1
α (n) = nα

(
κ(α log n)β

)−α
. (2.9)

Assumption (A1) is simply to avoid the trivial cases where the walk gets stuck on a single edge (i.e.
when (1 + f(n))−1 is summable [8]) or is a self-avoiding walk in one dimension. Roughly speaking, if f
grows more slowly than (2d − 1)n, then E[T ] < ∞. For linear reinforcement f(n) = Cn, (1.5) shows that
assumption (A2) holds with α = (2d− 1)/C. It would be of interest to consider the scaling limit when f(n)
grows like n`(n), where lim infn→∞ `(n) = ∞ but such that (1 + f(n))−1 is not summable. An example is
f(n) = n log n, for which P(T ≥ n) ∼ (C log n)−1 satisfies (2.1) with α = 0.

The condition (2.2) when α = 1 is so that one can apply a weak law of large numbers. The condition
holds for example when L(n) = (log n)k for any k ≥ −1. It would be surprising if the α < 1 case of
condition (2.2) is really necessary to obtain a meaningful scaling limit. The condition holds (with αo = αe

and Lo = Le) whenever there exists n0 such that for all n ≥ n0, f(n) ≥ f(n− 1)− (2d− 1) (so in particular
when f is non-decreasing). To see this, observe that for all n ≥ n0

P(T ≥ n, T even) =
∞∑

m=bn+1
2 c
P(T = 2m) =

∞∑

m=bn+1
2 c
P(T = 2m + 1)

2d + f(2m + 1)
1 + f(2m)

≥
∞∑

m=bn+1
2 c
P(T = 2m + 1) = P(T ≥ n + 1, T odd).

(2.10)

Similarly, P(T ≥ n, T odd) ≥ P(T ≥ n+1, T even) for all n ≥ n0. If αo 6= αe in (2.2), then (2.1) implies that
α = αo ∧ αe and L is the slowly varying function corresponding to α ∈ {αo, αe} in (2.2). If αo = αe then
trivially L ∼ Lo + Le (∼ Lo if Lo(n)/Le(n) →∞). One can construct examples of reinforcement functions
giving rise to different asymptotics for the even and odd cases in (2.2), for example by taking f(2m) = m2

and f(2m + 1) = Cm for some well chosen constant C > 0 depending on the dimension.
Finally, note that in the case d = 1, and f(n) = n we have from [8] that p = 2(1 − log 2) and P(T ≥

n) = 2(n + 1)−1 ∼ 2n−1. Taking `(n) = 2 log n and g−1
α (n) = n(2 log n)−1, Theorem 2.1 then implies that

(p(1− p)−1g−1
α (n))−

1
2 Sn

D−→ B(1), which is consistent with the result of [8] that (for d = 1 and f(n) = n)
log n

n E[S2
n] → 1−log 2

2 log 2−1 > 0.

3 Invariance principle for the time-changed walk

In this section we prove an invariance principle for any senile reinforced random walk (satisfying (A1))
observed at stopping times τn defined by

τ0 = 0, τk = inf{n > (τk−1 ∨ 1) : Sn 6= Sn−2}. (3.1)

It is easy to see that τn = 1 +
∑n

i=1 Ti for each n ≥ 1, where the Ti, i ≥ 1 are independent and identically
distributed random variables (with the same distribution as T ), corresponding to the number of consecutive
traversals of successive edges traversed by the walk.
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Proposition 3.1. For f satisfying (A1), and every K > 0,

Sτbntc√
p

d−pn

w=⇒ Bd(t), (3.2)

where the convergence is in D([0,K],Rd) with the uniform topology.

The process Sτn
is a simpler one than Sn and we expect that one may use many different methods to

prove Proposition 3.1 (see for example the Martingale approach of [10]). We give a proof based on describing
Sτn

as an additive functional of a Markov chain.
Let X denote the collection of pairs (u, v) such that

• v is one of the unit vectors ui ∈ Zd, for i ∈ {±1,±2, · · · ± d} (labelled so that u−i = −ui) and

• u is either 0 ∈ Zd or one of the unit vectors ui 6= −v.

The cardinality of X is then |X | = 2d + 2d(2d− 1) = (2d)2.
Given a senile reinforced random walk Sn with parameter p = P(T odd) ∈ (0, 1], we define an irreducible,

aperiodic Markov chain Xn = (X [1]
n , X

[2]
n ) with natural filtration Gn = σ(X1, . . . , Xn), and finite-state space

X , as follows.
For n ≥ 1, let Xn = (Sτn−1 − Sτ(n−1) , Sτn

− Sτn−1), and Yn = X
[1]
n + X

[2]
n . It follows immediately that

Sτn
=

∑n
m=1 Ym and

X1 =(0, Sτ1)I{T1 even} + (S1, Sτ1 − Sτ1−1)I{T1 odd}, and for n ≥ 2,

Xn =(0, Sτn − Sτ(n−1))I{Tn odd} + (−X
[2]
n−1, Sτn − Sτn−1)I{Tn even}.

(3.3)

P(X1 = (0, ui)) =
1− p

2d
, and P(X1 = (ui, uj)) =

p

2d(2d− 1)
, for each i, j, (j 6= −i). (3.4)

Now Tn is independent of X1, . . . , Xn−1, and conditionally on Tn being odd (resp. even), Sτn − Sτ(n−1)

(resp. Sτn − Sτn−1) is uniformly distributed over the 2d − 1 unit vectors in Zd other than −X
[2]
n−1 (resp.

other than X
[2]
n−1). Therefore for n ≥ 2,

P(Xn = (u, v)|X0, . . . , Xn−1) =P(Tn odd, Sτn − Sτ(n−1) = v|X0, . . . , Xn−1)I{u=0}
+ P(Tn even, Sτn − Sτn−1 = v|X0, . . . , Xn−1)I{u=−X

[2]
n−1}

=
p

2d− 1
I{u=0}I{v 6=−X

[2]
n−1}

+
1− p

2d− 1
I{u=−X

[2]
n−1}

I{v 6=X
[2]
n−1}

,

(3.5)

which depends only on Xn−1. This verifies that Xn is a Markov chain with initial distribution (3.4) and
transition probabilities given by

P (Xn = (u, v)|Xn−1 = (u′, v′)) =





p
2d−1 , if u = 0 and v 6= −v′,
1−p
2d−1 , if u = −v′ and v 6= v′,
0, otherwise.

. (3.6)

That Xn is irreducible and aperiodic is obvious. By symmetry, the unique stationary distribution
~π = (π(0,u−d), . . . , π(0,ud), π(u−d,u−d), . . . , π(ud,ud)) ∈ M1(X ) of the chain must be of the form

~π = (π1, . . . , π1, π2, . . . , π2), (3.7)

where the first 2d entries are π1 and the remaining 2d(2d− 1) entries are π2, and therefore

2dπ1 + 2d(2d− 1)π2 = 1. (3.8)

Solving π(0,u1) =
∑

u,v π(u,v)P ((u, v), (0, u1)) with ~π as in (3.7) we get

π1 = (2d− 1)
p

2d− 1
π1 + (2d− 1)2

p

2d− 1
π2. (3.9)

5



From (3.8) and (3.9) we obtain

π1 =
p

2d
, π2 =

1− p

2d(2d− 1)
. (3.10)

It is easy to show that in general the Markov chain {Xn}n≥1, is not stationary. However, as an irreducible,
aperiodic, finite-state Markov chain, it has exponentially fast, strong mixing. To be precise, there exists a
constant c and t < 1 such that for every k ≥ 1,

α(k) ≡ sup
n

{
|P(F ∩G)− P(F )P(G)| : F ∈ σ(Xj , j ≤ n), G ∈ σ(Xj , j ≥ n + k)

}
≤ ctk. (3.11)

It is obvious that if Zj is a strongly-mixing sequence and Z ′j is measurable with respect to Zj for each j then
Z ′j is also strongly mixing, with the same (or possibly faster) mixing rate. Therefore the sequence Yn also
has exponentially fast, strong mixing. In order to verify Proposition 3.1, we will prove a multidimensional
corollary of the following result of [7].

Theorem 3.2 (Corollary 1 of [7]). Suppose that Zn is a sequence of R-valued random variables such that
E[Zn] = 0, E[Z2

n] < ∞ and E[n−1(
∑n

i=1 Zi)2] → σ2 as n → ∞. Further suppose that Zn is α-strongly
mixing and that there exists β ∈ (2,∞] such that

∞∑

k=1

α(k)1−2/β < ∞, and lim sup
n→∞

‖Zn‖β < ∞, (3.12)

then ∑bntc
i=1 Zi√
σ2n

w=⇒ B1(t), (3.13)

where the convergence is in D([0,K],R) with the uniform topology.

Corollary 3.3. Suppose that Wn = (W (1)
n , . . . , W

(d)
n ) is a sequence of Rd-valued random variables such that

E[Wn] = 0, E[|Wn|2] < ∞ and E[n−1
∑n

i=1

∑n
i′=1 W

(j)
i W

(l)
i′ ] → σ2Ij=l, as n → ∞. Further suppose that

Wn is α-strongly mixing and that there exists β ∈ (2,∞] such that

∞∑

k=1

α(k)1−2/β < ∞, and lim sup
n→∞

‖Wn‖β < ∞, (3.14)

then

Wn(t) ≡
∑bntc

i=1 Wi√
σ2n

w=⇒ Bd(t), (3.15)

where the convergence is in D([0,K],Rd) with the uniform topology.

Proof. It is sufficient to prove convergence of the finite-dimensional distributions and tightness.
Let 0 ≤ t1 < t2 < · · · < tr ≤ K. For convergence of the f.d.d. we need to show that

(W(1)
n (t1), . . . ,W(d)

n (t1), . . . ,W(1)
n (tr), . . . ,W(d)

n (tr))
D−→ (B(1)

d (t1), . . . , B
(d)
d (t1), . . . , B

(1)
d (tr) . . . , B

(d)
d (tr)).

(3.16)
Using the Cramér-Wold device (e.g. see Theorem 4.3.3. of [15]), it is enough to show that

d∑
m=1

r∑

l=1

am,lW(m)
n (tl)

D−→
d∑

m=1

r∑

l=1

am,lB
(m)
d (tl) ∈ R, (3.17)

for every (a1,1, . . . , ad,1, . . . , a1,r, . . . , ad,r) ∈ Rdr. Note that since {B(m)
d (t)}m=1,...,d are independent and

identically distributed 1-dimensional Brownian motions, we have that
(

d∑
m=1

am,1B
(m)
d (t1), . . . ,

d∑
m=1

am,rB
(m)
d (tr)

)
and

(
d∑

m=1

am,1B1(t1), . . . ,
d∑

m=1

am,rB1(tr)

)
(3.18)

have the same distribution.
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Since any sequence W ′
n such that W ′

n is measurable with respect to Wn for each n, is also α-strongly
mixing, we have that Zn ≡

∑d
m=1 am,lW

(m)
n ∈ R is α-strongly mixing. Finiteness of E[Z2

n] and the second
condition of (3.14) for Zn follow immediately from the corresponding properties of Wn. Next,

E[n−1(
n∑

i=1

Zi)2] =
d∑

m=1

d∑

m′=1

am,lam′,lE[n−1
n∑

i=1

n∑

i′=1

W
(m)
i W

(m′)
i′ )] → σ2(

d∑
m=1

am,l)2 ≡ σ2A2
l , (3.19)

so by Theorem 3.2 ∑bntc
i=1 Zi√
σ2A2

l n

w=⇒ B(t). (3.20)

Written in terms of Wn, (3.20) is

d∑
m=1

am,lW(m)
n (t) w=⇒

d∑
m=1

am,lB(t). (3.21)

In particular, the finite-dimensional distributions in (3.21) converge from which we get that

r∑

l=1

d∑
m=1

am,lW(m)
n (tl)

w=⇒
r∑

l=1

d∑
m=1

am,lB(tl). (3.22)

By (3.18), this is sufficient to prove (3.17).
To prove tightness, observe that {W (j)

n }n≥0 is also α-strongly mixing for each j = 1, . . . , d. Applying
Theorem 3.2 to this sequence we get that

∑bntc
i=1 W

(j)
i√

σ2n

w=⇒ B1(t), (3.23)

from which tightness of {W (j)
n }n≥0 for each j follows immediately. Tightness of the joint distributions

{(W (1)
n , . . . , W

(d)
n )}n≥0 is a trivial consequence of tightness of the marginals.

3.1 Proof of Proposition 3.1

Since Sτn =
∑n

m=1 Ym where |Ym| ≤ 2, and the sequence {Yn}n≥0 has exponentially fast strong mixing, to
prove Proposition 3.1 it is enough to show that

E

[
1
n

n∑

i=1

n∑

i′=1

Y
(j)
i Y

(l)
i

]
→ p

d− p
Ij=l. (3.24)

By symmetry, for all j 6= l, and any n,m, E[(X [1]
n + X

[2]
n )(j)(X [1]

m + X
[2]
m )(l)] = 0. This verifies (3.24) in the

case j 6= l. By symmetry, it therefore remains to show that

E

[
1
n

n∑

i=1

n∑

i′=1

Y
(1)
i Y

(1)
i′

]
→ p

d− p
. (3.25)

It is easy to show that E[X [2],(1)
n |Xn−1] = 2p−1

2d−1X
[2],(1)
n−1 and so by induction and the Markov property, for

every n ≥ m ≥ 1,

E[X [2],(1)
n |Xm] =

(
2p− 1
2d− 1

)n−m

X [2],(1)
m . (3.26)

Next, observe that for n ≥ 2,

E[Y (1)
n |Xn−1] =

p− 2d(1− p)
2d− 1

X
[2],(1)
n−1 , (3.27)
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and therefore using the fact that Yn is Xn measurable, and the Markov property for Xn, we have that for
n > m ≥ 1,

E[Y (1)
n |Xm] =

p− 2d(1− p)
2d− 1

(
2p− 1
2d− 1

)n−1−m

X [2],(1)
m . (3.28)

For n > m ≥ 1 we have

E[Y (1)
n Y (1)

m ] =E[Y (1)
m E[Y (1)

n |Xm]] =
p− 2d(1− p)

2d− 1

(
2p− 1
2d− 1

)n−1−m

E[Y (1)
m X [2],(1)

m ]

=
p− 2d(1− p)

2d− 1

(
2p− 1
2d− 1

)n−1−m (
E[X [1],(1)

m X [2],(1)
m ] + E[(X [2],(1)

m )2]
)

=
p− 2d(1− p)

2d− 1

(
2p− 1
2d− 1

)n−1−m

×
{

1−p
d(2d−1) + 1

d , m ≥ 2
p

d(2d−1) + 1
d , m = 1

.

(3.29)

Lastly

E[|Y1|2] = (1− p) +
4dp

2d− 1
, and E[|Ym|2] = p +

4d(1− p)
2d− 1

,m ≥ 2. (3.30)

Combining all of these results, we get that

E

[
n∑

l=1

n∑
m=1

Y
(1)
l Y (1)

m

]
=2

n∑

l=2

l−1∑
m=2

E[Y (1)
l Y (1)

m ] + 2
n∑

l=2

E[Y (1)
l Y

(1)
1 ] +

n∑

l=1

E[|Y (1)
l |2]

=
2
d

p− 2d(1− p)
2d− 1

(
1− p

2d− 1
+ 1

) n∑

l=2

l−1∑
m=1

(
2p− 1
2d− 1

)l−1−m

+ o(n) + (n− 1)
(

p

d
+

4(1− p)
2d− 1

)

=
2
d

p− 2d(1− p)
2d− 1

(
1− p

2d− 1
+ 1

) n∑

l=2

l−2∑

k=0

(
2p− 1
2d− 1

)k

+ o(n) + (n− 1)
(

p

d
+

4(1− p)
2d− 1

)

=
2
d

p− 2d(1− p)
2d− 1

(
1− p

2d− 1
+ 1

) n∑

l=2

1− ( 2p−1
2d−1 )l−1

1− 2p−1
2d−1

+ o(n) + (n− 1)
(

p

d
+

4(1− p)
2d− 1

)

=
2
d

p− 2d(1− p)
2d− 1

(
1− p

2d− 1
+ 1

)
2d− 1

2(d− p)
(n− 1) + o(n) + (n− 1)

(
p

d
+

4(1− p)
2d− 1

)

=n

(
p− 2d(1− p)

d(d− p)

(
1− p

2d− 1
+ 1

)
+

p

d
+

4(1− p)
2d− 1

)
+ o(n) = n

p

d− p
+ o(n).

(3.31)

Taking the limit as n →∞ verifies (3.25) and thus completes the proof of Proposition 3.1.

4 Proof of Theorem 2.1

Theorem 2.1 is a consequence of convergence of the joint distribution of the stopping time process and the
random walk at those stopping times as in the following proposition.

Proposition 4.1. Suppose that f is such that assumptions (A1) and (A2) hold for some α > 0, then for
every K > 0, 

 Sτbntc√
p

d−pn
,

τbntc
gα(n)


 w=⇒ (Bd(t), Vα(t)) , (4.1)

where the convergence is in
(
D([0,K],Rd),U)× (D([0, K],R), J1) and U , J1 denote the uniform and Skorok-

hod J1 topologies respectively.
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Proof of Theorem 2.1 assuming Proposition 4.1. Since bg−1
α (n)c is a sequence of positive integers such that

bg−1
α (n)c → ∞ as n →∞, it follows from (4.1) that as n →∞,


 Sτbbg

−1
α (n)ctc√

p
d−pbg−1

α (n)c
,

τbbg−1
α (n)ctc

gα(bg−1
α (n)c)


 w=⇒ (Bd(t), Vα(t)) . (4.2)

Now use the following facts,

• For all t ≤ K, |Sτbbg
−1
α (n)ctc

− Sτbg
−1
α (n)tc

| ≤ 2(K + 1),

• Since g−1
α is regularly varying (and w.l.o.g. monotone), bg−1

α (n)c ∼ g−1
α (n) as n →∞,

• Letting D= denote equality in distribution,

sup
t∈[0,K]

τbg−1
α (n)tc − τbbg−1

α (n)ctc
bg−1

α (n)c ≤ sup
t∈[0,K]

∑bg−1
α (n)tc

i=1+bbg−1
α (n)ctc Ti

bg−1
α (n)c

D= sup
t∈[0,K]

τbg−1
α (n)tc−bbg−1

α (n)ctc
bg−1

α (n)c
P−→ 0,

to conclude that 
 Sτbg

−1
α (n)tc√

p
d−pg−1

α (n)
,
τbg−1

α (n)tc
n


 w=⇒ (Bd(t), Vα(t)) . (4.3)

Let

Yn(t) =
Sτbg

−1
α (n)tc√

p
d−pg−1

α (n)
, and Tn(t) =

τbg−1
α (n)tc
n

, (4.4)

and let T −1
n (t) ≡ inf{s ≥ 0 : Tn(s) > t} = inf{s ≥ 0 : τbg−1

α (n)sc > nt}. As in (the proof of Theorem 1.3 in)
[1], it follows that Yn(T −1

n (t)) w=⇒ Bd(V −1
α (t)) in

(
D([0,K],Rd),U)

. Thus,

Sτbg
−1
α (n)T−1

n (t)c√
p

d−pg−1
α (n)

w=⇒ Bd(V −1
α (t)). (4.5)

Since by definition of T −1
n , we have τbg−1

α (n)T −1
n (t)c−1 ≤ nt ≤ τbg−1

α (n)T −1
n (t)c and hence |Sbntc−Sτbg

−1
α (n)T−1

n (t)c
| ≤

3. This fact together with (4.5) proves Theorem 2.1.

5 Proof of Proposition 4.1

The proof of Proposition 4.1 is broken into two parts. Roughly speaking, the first part is the observation
that the marginal processes converge, i.e. that the time-changed walk and the time-change converge to Bd(t)
and Vα(t) respectively, while the second is to show that these two processes are asymptotically independent.

5.1 Convergence of the time-changed walk and the time-change.

Lemma 5.1. Suppose that f is such that assumptions (A1) and (A2) hold for some α > 0, then for every
K > 0,

Sτbntc√
p

d−pn

w=⇒ Bd(t) in (D([0,K],Rd),U), and
τbntc
gα(n)

w=⇒ Vα(t) in (D([0,K],R), J1). (5.1)

Proof. The first claim is the conclusion of Proposition 3.1, so we need only prove the second claim. Recall
that τn = 1 +

∑n
i=1 Ti where the Ti are i.i.d. with distribution T . Since gα(n) → ∞, it is enough to show

convergence of τ∗bntc = (τbntc − 1)/gα(n).
For processes with independent and identically distributed increments, a standard result of Skorokhod

essentially extends the convergence of the one-dimensional distributions to functional limit theorem. In
particular when α < 1, the result is well known (see [5] XIII.6 and [15] 4.5.3 for example).

9



It remains to prove convergence of the one-dimensional marginals. When E[T ] exists, the claim is that
τ∗bntc/nE[T ] w=⇒ t, which is immediate from the strong law of large numbers. When α = 1 but (2.1) is not
summable, the result is immediate from the following lemma.

Lemma 5.2. Let Tk be independent and identically distributed random variables satisfying (2.1) and (2.2)
with α = 1. Then for each t ≥ 0,

τ∗bntc
n`(n)

P−→ t. (5.2)

Lemma 5.2 is a corollary of the following weak law of large numbers due to Gut [6].

Theorem 5.3 ([6] Theorem 1.3). Let Xk be i.i.d. random variables and Sn =
∑n

k=1 Xk. Let gn = n1/α`(n)
for n ≥ 1, where α ∈ (0, 1] and `(n) is slowly varying at infinity. Then

Sn − nE
[
XI{|X|≤gn}

]

gn

P−→ 0, as n →∞, (5.3)

if and only if nP(|X| > gn) → 0.

Proof of Lemma 5.2. Let Y = TI{|T |≤n`(n)}. Then Y ∈ {0, 1, . . . bn`(n)c} and

E
[
TI{|T |≤n`(n)}

]
=

∞∑

j=1

P(Y ≥ j) =
bn`(n)c∑

j=1

P(n`(n) ≥ T ≥ j) =
bn`(n)c∑

j=1

P(T ≥ j)− bn`(n)cP(T ≥ n`(n)).

(5.4)

Now by assumption (A2b),

n

n`(n)
E

[
TI{|T |≤n`(n)}

]
=

∑bn`(n)c
j=1 P(T ≥ j)

`(n)
− bn`(n)c

`(n)
P(T ≥ n`(n))

∼
∑bn`(n)c

j=1 j−1L(j)
`(n)

− bn`(n)c
`(n)

(n`(n))−1L(n`(n)) → 1.

(5.5)

Theorem 5.3 then implies that (n`(n))−1τn
P−→ 1, from which it follows immediately that

(n`(n))−1τbntc = (n`(n))−1bntc`(bntc)(bntc`(bntc))−1τbntc
P−→ t. (5.6)

This completes the proof of Lemma 5.2, and hence Lemma 5.1.

5.2 Asymptotic Independence

Tightness of the joint process in Proposition 4.1 is an easy consequence of the (already established) tightness
of the marginal processes, so we need only prove convergence of the finite-dimensional distributions. For
α ≥ 1 this is simple and is left as an exercise. To complete the proof of Proposition 4.1, it remains to prove
convergence of the finite-dimensional distributions in the case α < 1, for which p = P(T odd) < 1.

Let G1 and G2 be convergence determining classes of bounded, C-valued functions on Rd and R+ re-
spectively, each closed under conjugation and containing a non-zero constant function, then

{g(x) ≡ g1(x1)g2(x2) : gi ∈ Gi}

is a convergence determining class for Rd × R+. This follows as in Proposition 3.4.6 of [4] where the
closure under conjugation allows us to extend the proof to complex-valued functions. Therefore, to prove
convergence of the finite-dimensional distributions in (4.1) it is enough to show that for every 0 ≤ t1 < t2 <
· · · < tr ≤ K, kj ∈ Rd and ηj ≥ 0,

E


exp



i

r∑

j=1

kj ·
Sτbntjc√

p
d−pn



 exp



−

r∑

j=1

ηj

τbntjc
gα(n)






 → E


exp



i

r∑

j=1

~kj ·B(tj)






E


exp



−

r∑

j=1

ηjVα(tj)






 .

(5.7)
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Let An = {k ∈ {1, . . . , n} : Ti is odd}, Abn~tc = (Abn~t1c \ Abn~t0c, . . . ,Abn~trc \ Abn~tr−1c) and t0 = 0.
For fixed n and ~t, we write A = (A1, . . . , Ar) to denote an element of the sample space of the random
variable Abn~tc, where Ai ⊆ {bnti−1c + 1, . . . bntic} for each i ∈ 1, . . . , r. Let ε ∈ (0, 1

2 ), Bn(~t) = {A :

||Al|−(bntlpc−bntl−1pc)| ≤ n1−ε for each l} and Qn
~k
(~t) = exp

{
i
∑r

j=1 kj ·
Sτbntjc√

p
d−p n

}
. Note that |Qn

~k
(~t)| ≤ 1.

Then the left hand side of (5.7) is equal to

e−
1

gα(n)

Pr
j=1 ηj

∑

A

E


Qn

~k
(~t) exp



−

r∑

j=1

ηj

τ∗bntjc
gα(n)





∣∣∣∣∣{Abn~tc = A}

P(Abn~tc = A)

=
∑

A∈Bn(~t)

E


Qn

~k
(~t) exp



−

r∑

j=1

ηj

τ∗bntjc
gα(n)





∣∣∣∣∣{Abn~tc = A}

P(Abn~tc = A) + o(1)

=
∑

A∈Bn(~t)

E
[
Qn

~k
(~t)

∣∣∣{Abn~tc = A}
]
E


exp



−

r∑

j=1

ηj

∑bntjc
i=1 Ti

gα(n)





∣∣∣∣∣{Abn~tc = A}

P(Abn~tc = A) + o(1),

(5.8)

since given I{Ti even}, i = 1, . . . , n, Sτn
is independent of the collection {Ti}i≥1.

Let η∗l =
∑r

j=l ηi. Then the last line of (5.8) is equal to

∑

A∈Bn(~t)

E
[
Qn

~k
(~t)

∣∣∣{Abn~tc = A}
]
P(Abn~tc = A)

r∏

l=1

E


exp



−η∗l

∑bntlc
i=bntl−1c+1 Ti

gα(n)





∣∣∣∣∣{[Abn~tc]l = Al}

 + o(1).

(5.9)

Let T o
i , i ∈ N be independent, identically distributed random variables with P(T o

i = k) = P(T = k|T odd),
and similarly define T e

i to be i.i.d. with P(T e
i = k) = P(T = k|T even).

Now the lth term in the product in (5.9) is equal to

E

[
exp

{
−η∗l

∑|Al|
i=1 T o

i

gα(n)

}]
E

[
exp

{
−η∗l

∑bntlc−bntl−1c−|Al|
i=1 T e

i }
gα(n)

}]
. (5.10)

Let go
αo

(n) and ge
αe

(n) be defined as in (2.4) with the random variable T replaced with To and Te respectively.
For example, for To we have

P(To ≥ n) = P (T ≥ n|T odd) =
P (T ≥ n, T odd)

p
∼ Lo(n)

pnαo
, (5.11)

and there exists `o such that (`o(n))−αop−1Lo(n
1

αo `o(n)) → (Γ(1− α))−1, and define go
αo

(n) = n
1

αo `o(n).
Observe that

∑|Al|
i=1 T o

i

gα(n)
=

∑nl

i=1 T o
i

go
αo

(nl)
go

αo
(nl)

gα(nl)
gα(nl)
gα(n)

+O
(∑|Al|

i=1 T o
i −

∑nl

i=1 T o
i

go
αo

(n∗l )
go

αo
(n∗l )

gα(n∗l )
gα(n∗l )
gα(n)

)
, (5.12)

where nl ≡ bntlpc− bntl−1pc and n∗l ≡ ||Al|−nl| ≤ n1−ε since A ∈ Bn(~t). By definition of gα and standard
results on regular variation we have that gα(nl)/gα(n) → (p(tl − tl−1))

1
α and gα(n∗l )/gα(n) → 0. Since

α = αo ∧ αe ≤ αo, the O term on the right of (5.12) converges in probability to 0. Thus, as in the second
claim of Lemma 5.1, we get that

∑|Al|
i=1 T o

i

gα(n)
w=⇒ Vα(1)(p(tl − tl−1))

1
α lim

n→∞
go

αo
(nl)

gα(nl)
, (5.13)

where for α < 1 the limit ρo ≡ limn→∞
go

αo
(nl)

gα(nl)
exists in [0,∞] since α ≤ αo and in the case of equality, the

limit Lo/Le exists in [0,∞]. Note that we were able to replace αo with α in various places in (5.13) due to
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the presence of the factor
go

αo
(nl)

gα(nl)
which is zero when αo > α. Therefore

E

[
exp

{
−η∗l

∑|Al|
i=1 T o

i

gα(n)

}]
→E

[
exp{−η∗l Vα(1)(p(tl − tl−1))

1
α ρo}

]
, and similarly,

E

[
exp

{
−η∗l

∑bntlc−bntl−1c−|Al|
i=1 T e

i

gα(n)

}]
→E

[
exp{−η∗l Vα(1)((1− p)(tl − tl−1))

1
α ρe}

]
.

(5.14)

Since E[e−ηVα(1)] = exp{−ηα}, it remains to show that
(
η(pt)

1
α ρo

)α

+
(
η((1− p)t)

1
α ρe

)α

= t, i.e. that pρα
o + (1− p)ρα

e = 1 (5.15)

If αo < αe (or αo = αe and Lo/Le → ∞), then α = αo, and L ∼ Lo. It is then an easy exercise in
manipulating slowly varying functions to show that `o ∼ p−1/α` and therefore ρo = p−1/α and ρe = 0,
giving the desired result. Similarly if αo > αe (or αo = αe and Lo/Le → 0) we get the desired result. When
αo = αe < 1 and Lo/Le → β ∈ (0,∞) we have that L ∼ Lo + Le ∼ (1 + β)Le ∼ (1 + β−1)Lo. It follows
that `e ∼ ((1− p)(1 + β))−1/α`. Similarly `o ∼ (p(1 + β−1))−1/α`, and therefore ρo = (p(1 + β−1))−1/α and
ρe = ((1− p)(1 + β))−1/α. The result follows since (1 + β)−1 + (1 + β−1)−1 = 1.
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