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Abstract

The half-orthant model is a partially oriented model of a random
medium involving a parameter p ∈ [0, 1], for which there is a critical
value pc(d) (depending on the dimension d) below which every point
is reachable from the origin. We prove a limit theorem for the graph-
distance (or “chemical distance”) for this model when p < pc(2), and
also when 1−p is larger than the critical parameter for site percolation
in Zd. The proof involves an application of the subadditive ergodic
theorem. Novel arguments herein include the method of proving that
the expected number of steps to reach any given point is finite, as well
as an argument that is used to show that the shape is “non-trivial” in
certain directions.
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1 Introduction and main results

The half-orthant model is an i.i.d. site-based model of a random environment
defined as follows: Independently at each site x ∈ Zd, with probability p ∈
[0, 1] insert arrows from x pointing to each of the neighbours x+ei, i ∈ [d] :=
{1, 2, . . . , d}, and otherwise (with probability 1− p) insert arrows from x to
all neighbours x± ei of x. Here (ei)

d
i=1 are the canonical basis vectors. Call

the sites that get all outward arrows full sites and the others half sites. Let
Ω+ be the set of half sites.

For fixed d ≥ 2, let ω = (ωx)x∈Zd be such an environment and let γ =
(γi)

`
i=0 be a nearest-neighbour path of length ` < ∞ in Zd. For j ∈ [`], the

j-th step of the path γj−γj−1 is consistent with ω if ωγj−1
contains the arrow

pointing in direction γj − γj−1. The path γ is consistent with ω if the j-th
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Figure 1: An example of a finite piece of the environment for the half-orthant
model, with the shortest path from the origin (centre) to (−1, 1) highlighted.

step is consistent with ω for every j ∈ [`]. Figure 1 shows an example of a
finite piece of an environment for this model, together with a path of length
8 that is consistent with this environment.

Consider the set of points Co reachable from the origin o = (0, 0, . . . , 0) by
following arrows. This is exactly the set of points x for which there exists a
finite path from o to x that is consistent with the environment. When p = 1
this set is the positive orthant, i.e. Co(1) = O+ := {x ∈ Zd : x[i] ≥ 0 for i ∈
[d]}, where x[i] denotes the i-th coordinate of x. When p = 0 this set is all
of Zd, i.e. Co(0) = Zd. There is a natural coupling of environments for all
values of p, such that the cluster Co(p) is decreasing in p. Moreover there
exists a critical value pc(d) ∈ (0.57, 1) such that almost surely Co(p) = Zd if
p < pc(d) and almost surely Co(p) 6= Zd if p > pc(d). See [18, 14, 16] etc.

Understanding these kinds of site-based i.i.d. environments lays the foun-
dation for understanding random walks in i.i.d. non-elliptic (i.e. some steps
are not available from some sites) random environments see e.g. [15, 17].
However in this paper we are concerned with a version of a shape theorem
for this model.

A shape theorem for the forward cluster Co as a set of points has been
proved for this model when p is large [19]. This result is similar to the kind of
shape theorems available for oriented percolation and the contact process (see
e.g. [8, 9]) - morally it says that the cluster looks like a cone from far away.
The fact that the half-orthant model is only partly oriented presents different
challenges compared to the oriented percolation setting. For example, the
result in [19] currently does not extend to all p > pc(d) when d ≥ 3 in part
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because of a lack of a “sharpness” result for this phase transition1.
In this paper we consider the lengths of shortest paths (or chemical dis-

tance) between vertices. The chemical distance is a fundamental notion in
the first passage percolation literature (see e.g. [2]). A substantial difference
is that in the half-orthant model edges are directed. First passage percola-
tion on directed edges has been considered recently in [12] but our model is
a site-based i.i.d. environment (in [12] the environment is i.i.d. over edges),
so edges are locally correlated in our setting.

For u, v ∈ Zd and an environment ω let Tu,v = Tu,v(ω) denote the length
of any shortest path from u to v that is consistent with the environment. If
no such path exists then set Tu,v =∞. For v ∈ Zd, let Tv = To,v. In Figure 1,
T(−1,1) = To,(−1,1) = 8. When p < pc(d) we have that Co = Zd almost surely, so
Tv is a.s. finite. By translation invariance, Tu,v is almost surely finite for every

u, v ∈ Zd. Clearly, for any v ∈ Zd we have Tv ≥ ‖v‖1 :=
∑d

i=1 |v[i]|. In order
to visualise our main result, it is useful to define An = {x ∈ Zd : Tx = n},
which is the random subset of sites x for which the shortest path from the
origin to x has length n. When p = 0 this set is the `1 ball Bn := {x ∈ Zd :
‖x‖1 = n}, and when p = 1 this set is B+

n := {x ∈ O+ : ‖x‖1 = n}. Indeed,
it is elementary that for every p, all points v ∈ Zd in the positive orthant O+

can be reached in ‖v‖1 steps. The other directions are the interesting ones
for this model. The first row in Figure 2 shows a simulation of the set A4000

when p = 0.25, 0.5, 0.75.
As in the second row of Figure 2 the “shape” of An remains consistent for

large values of n. This suggests the existence of a limiting shape. Note also
several features of these shapes. In each case there are clear “flat” regions.
For large p these flat regions are restricted to directions in a neighbourhood
of the positive orthant. For small p there is an additional flat region in
directions in a neighbourhood of (−1,−1).

The main results of this paper address both the law of large numbers for
the chemical distance (Theorem 1 below) and features of the corresponding
“shape” (Theorem 2 below). We will utilise several facts about site per-
colation and oriented site percolation on Zd. Let p∗(d) denote the critical
parameter for site percolation on Zd, and p†(d) denote the critical parameter
for oriented site percolation on Zd.

Our first main result is the following theorem.

Theorem 1. Fix d ≥ 2. For p such that 1− p > min{1− pc(2), p∗(d)} there
exists a function ζp : Zd → R+ such that for each v ∈ Zd

lim
n→∞

n−1Tnv(p) = ζp(v), almost surely and in L1.

The claim with v = o is trivial with ζp(o) = 0. For other v this result
follows from an application of the subadditive ergodic theorem. The non-
obvious condition to check is that the expected passage times are finite. For

1Beekenkamp [4], has shown that the relevant exponential decay of certain connection
probabilities holds for all p larger than some p′c(d) which is believed (but not proved) to
be equal to pc(d).
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Figure 2: Top row: Simulation of the set of points whose distance from the
origin within the random environment is exactly n = 4000, for p = 0.25, p =
0.5, p = 0.75 (left to right) respectively. Bottom row: Simulations of these
set for different values of n, for p = 0.25, p = 0.5, p = 0.75. Note the apparent
flat and curved regions in these shapes.

1−p > 1−pc(2) we verify this via a novel (to the best of our knowledge) argu-
ment based on duality with an oriented percolation model in 2 dimensions.
For 1 − p > p∗(d) we (roughly speaking) verify this condition by showing
that to reach one vertex from another one can mostly follow a path in a
supercritical percolation cluster of full sites.

For u ∈ Qd, let mu = inf{m ∈ N : mu ∈ Zd}, (so mu = 1 if u ∈ Zd). We
extend the domain of ζp to Qd by defining

ζp(u) = ζp(muu)/mu. (1.1)

It is then immediate from Theorem 1 that for all u ∈ Qd,

lim
n→∞

(nmu)
−1Tnmuu(p) = ζp(u), almost surely and in L1.

For y ∈ Rd, let [y] ∈ Zd denote the unique lattice point such that y ∈ [y]+
[0, 1)d. For v ∈ Zd \ {o} let Dn(v; p) = sup{k ∈ [0,∞) : T[kv](p) ≤ n}. Then
by examining the correspondence between events of the form {n−1Dn(v) < c}
and {T[ncv] > n} one obtains the following.

Corollary 1. For 1− p > min{1− pc(2), p∗(d)}, and v ∈ Zd \ {o},

lim
n→∞

Dn(v; p)

n
= ζp(v)−1, a.s. and in L1.

For fixed dimension d ≥ 2 and any orthogonal setO ⊂ E := {±ei : i ∈ [d]}
with |O| = d (i.e. the elements of O form a basis for Zd), we can consider
oriented site percolation on Zd with orientation given by O. In other words

4



there are (directed) connections from occupied sites x to neighbouring occu-
pied sites of the form x+e for each e ∈ O. These oriented percolation models
are identical in law, except for the change of orientation. It is known (see
e.g. [8, 9, 20]) for supercritical oriented site percolation (i.e. with parameter
q > p∗(d)) with orientation O, that conditional on the percolation cluster of
the origin being infinite, the cluster viewed from far away is a deterministic
cone with axis

∑
e∈O e. We call this cone Oq. As q ↑ 1 this cone increases to

the whole orthant {
∑

e∈O λee : λe ≥ 0,∀e ∈ O}. Let

O = {O ⊂ E : O is a basis for Zd}.

Let D = Qd \ {o}, and let

Sgood
p = D ∩

{
d∑
i=1

(αi − βi)ei : a ∈ [p, 1], 0 ≤ αi, βi ∀i ∈ [d], and

d∑
i=1

αi = a = 1−
d∑
i=1

βi, and

αiβi = 0 for each i ∈ [d]

}
. (1.2)

Then Sgood
p is a subset of the boundary of the `1 ball and Sgood

p contains

the intersection of this boundary and D+ = {x ∈ D : x[i] ≥ 0 for every i} for
every p (take a = 1). See Figure 3 for an example in 3 dimensions.

Let Sp = {u ∈ D : ζp(u) = ‖u‖1}. Our second main result reveals features
of the shape including specifying other directions in Sp and its complement.

Theorem 2. Fix d ≥ 2, and 1−p > min{1−pc(2), p∗(d)}. Then the function
ζp : Qd → R in Theorem 1 and (1.1) satisfies the following:

(a) (i) for q ∈ Q+, and u ∈ Qd, ζp(qu) = qζp(u),

(ii) ζp is subadditive, i.e. ζp(u+ v) ≤ ζp(u) + ζp(v),

(iii) ζp is uniformly continuous.

(b) For each fixed v ∈ Zd, ζp(v) is non-decreasing in p.

(c) For u ∈ D we have u ∈ Sp in the following cases:

(i) u ∈ Sgood
p ,

(ii) 1− p > p†(d) and u ∈
⋃
O∈O

O1−p.

(d) For u ∈ D with ‖u‖1 = 1 we have u /∈ Sp (i.e. ζp(u) > 1) in the
following cases:

(i) for any i = 1, . . . , d, ‖u+ei‖1 < ε for ε sufficiently small depending
on d, p,

(ii) d = 2 and u = (−(1− s), s) for s ∈ [0, p) ∩Q.
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Figure 3: An illustration of the region Sgood
p in 3 dimensions. The `1 ball in

3 dimensions appears on the left, with an example of Sgood
p depicted on the

right.

To the best of our knowledge, the novel parts of this theorem (or more
precisely, its proof) are (c)(i) and (d)(ii). We expect that the other parts
are standard, or at least well understood (see e.g. [2]). However we have not
seen a result such as (c)(ii) for dimensions d > 2. To prove (c)(ii) we will
use a supercritical oriented percolation fact, Lemma 6 below, which is well
known in two dimensions, but we have not found a statement of this result
elsewhere when d > 2.

Remark 1. Part (a)(iii) of the Theorem allows one to extend the domain of
ζp to Rd by taking limits through rationals. It then follows from part (a) that
the resulting function ζp is convex.

Remark 2 (Backward connections). One can also ask about backward clus-
ters and connections to the origin. Let Bo denote the set of vertices from
which the origin can be reached. This is called the backward cluster of the
origin. This set contains the negative orthant. Let T̂v = Tv,o. The subaddi-

tive ergodic theorem also applies to T̂v, and since T̂v has the same distribution
as T−v one can immediately infer a limit theorem (a.s. and in L1) for T̂v
with “shape” given by −ζp(v).

The remainder of this paper is organised as follows. In Section 2 we
present several open problems. In Section 3 we prove Theorem 1, by invoking
the subadditive ergodic theorem. The novelty therein is the proof of finiteness
of the expectations in Sections 3.1 and 3.2, while the consequences in Section
3.3 are standard. The proof of Theorem 2 appears in Section 4.

2 Open problems

Several open problems for the half-orthant model and other similar models
are discussed e.g. in [18, 19], and we do not repeat those here. Instead we
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present some open problems regarding chemical distance and related proper-
ties. We start with the half-orthant model and then discuss other degenerate
random environments.

2.1 Half-orthant model

For dimensions d > 2, Theorem 1 is not believed to be sharp.

Open Problem 1. Prove that the conclusion of (1) holds when p < pc(d)
(or p < p′c(d)).

Theorem 2 asserts directions u in which vertices of the form nmuu can be
reached from the origin in time of order n‖muu‖1 (part (c) of the theorem),
as well as directions in which this does not hold (part (d) of the theorem).
The two sets of directions do not exhaust all directions in D. This observation
motivates the following question.

Open Problem 2. Does the subset of Sp presented in 2(c) together with the
positive orthant in fact contain all directions in Sp?

For d ≥ 2 and p > pc(d), not all vertices are reachable from the origin.
Indeed in this setting, for “most” directions only finitely many points in
that direction are reachable from the origin, so there is no interesting shape
theorem in these directions. On the other hand, as long as p is strictly
smaller than 1 there exists a neighbourhood of the positive orthant, such
that for directions u in this neighbourhood, lim supn→∞(mun)−1Tnmuu <∞.
For directions in Sgood

p one can show that lim supn→∞(mun)−1Tnmuu = 1.
However, for all u ∈ D\D+ it is the case that with positive probability nmuu
is not reachable from the origin. This means that the subadditive ergodic
theorem (as stated herein) is not applicable. Nevertheless it should be true
that a shape theorem holds in directions for which (a.s.) Tnmuu is finite for
all n sufficiently large.

Open Problem 3. Prove that n−1Tnv(p) → ζp(v) > 0 a.s. for the half-
orthant model in a non-trivial subset of directions when p > pc(2).

2.2 Orthant model

For the orthant model (where full sites are replaced with half-sites of opposite
orientation), in any direction u ∈ Q2 \ {o} there are a.s. infinitely many
points that are not reachable from the origin. Thus the limit as presented
in Theorem 1 fails in this model in every direction. Nevertheless it is clear
from e.g. Figure 4 that there is still a shape to the set An when n is large.
This setting is similar to the setting of first-passage percolation when passage
times across edges can be infinite with positive probability (see e.g. [6]).

Open Problem 4. Prove a shape theorem (e.g. of the form in Corollary 1)
for the orthant model in dimensions d ≥ 2 in all directions when p ∈ (1 −
pc(2), pc(2)).
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Figure 4: Simulation of the set of points reachable in n steps for the orthant
model with p = 1/2 (left) and p = 3/4 (right). White patches surrounded
by colour are not reachable from the origin.

The next open problem is a version of Open Problem 3 suitable for the
orthant model.

Open Problem 5. Prove a shape theorem (e.g. of the form in Corollary 1)
for a non-trivial subset of directions when p /∈ (1− pc(2), pc(2)).

2.3 Other models

Finally, there are many more examples of degenerate random environments
where shape theorems are relevant and interesting. An example that has a
similar flavour to what has been presented in this paper is the case where we
have just the arrow e1 with probability p and full sites otherwise.

Open Problem 6. Investigate shape theorems in more general degenerate
random environments.

All of the models mentioned above are partially oriented models of ran-
dom media. In the unoriented setting (the standard model being first passage
percolation) one is also interested in features of shortest paths (or geodesics)
other than just their length. One can ask similar questions in the setting of
degenerate random environments.

Open Problem 7 (Geodesics). Investigate properties of the geodesics in
some of these models.

In this paper all edge weights (or transit times) have been set to 1. One
can generalise further to settings where the directed edges can also have
random transit times associated to them. This arises naturally from the
study of random walks in (non-elliptic) random environments. For example,
one could take the transit time of a directed edge e with weight w(e) ∈ (0, 1]
as 1/w(e), with infinite transit time when w(e) = 0.

Open Problem 8 (Edge weights). Generalise to situations where general
weights are allowed on the directed edges.
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3 Proof of Theorem 1

Fix v ∈ Zd\{o}, and let Xm,n = Tmv,nv denote the minimum number of steps
to reach nv, starting from mv. We show that Xm,n satisfies the assumptions
of the subadditive ergodic theorem.

Theorem 3 (Kingman, Liggett). Let (Xm,n)0≤m<n be a family of random
variables satisfying the following:

(i) X0,n ≤ X0,k +Xk,n for all 0 < k < n;

(ii) the distribution of the sequence (Xm,m+k)k≥1 does not depend on m;

(iii) for each n, E[|X0,n|] <∞ and E[X0,n] ≥ cn for some constant c > −∞;

(iv) for each k, (Xnk,(n+1)k)n≥1 is a stationary and ergodic sequence.

Then X = limn→∞X0,n/n exists a.s. and in L1, and X is deterministic.

We apply this theorem to the random variables Xm,n = Tmx,nx for ar-
bitrary but fixed x ∈ Zd \ {o}. Conditions (ii) and (iv) in the theorem
follow from the fact that the environment is i.i.d., while condition (i) is also
straightforward since if γ′ is a path from o to kx that is consistent with the
environment and γ′′ is a path from kx to nx that is consistent with the en-
vironment then the concatenation of the two paths yields a path γ from o
to nx that is consistent with the environment. Trivially E[Ta,b] ≥ 0 since
Ta,b ≥ 0. Therefore, in order to apply the theorem, it remains to prove that
E[|To,nx|] < ∞ for every n. Since we also want this for every x, our goal is
to show that E[To,x] < ∞ for every x. Since every x is a sum of ‖x‖1-many
vectors e ∈ E , it is in fact sufficient to show that E[To,e] <∞ for every e ∈ E .

For the half-orthant model, To,e = 1 if e ∈ E+ = {ei : i ∈ [d]} and by
symmetry E[To,−ej ] = E[To,−e1 ] so we need only show that E[To,−e1 ] <∞. We
will verify this in the following two sections (for fixed d ≥ 2), in the cases
p < pc(2) and 1− p > p∗(d) respectively.

3.1 Finite expectation for p < pc(2)

It is sufficient to prove the result in the case d = 2, since in higher dimensions
the time To,−e1 is less than or equal to the time it takes to reach −e1 from
o using only moves that stay in Z2 × {0}d−2. So for the remainder of this
section we restrict our attention to d = 2.

Define a random set C ⊂ D−,+ := {x ∈ Z2 : x[1] ≤ 0, x[2] ≥ 0} as follows.
Let C0 = {o} = {(0, 0)}.

If the origin is a full site then let C = C0 = {o}.
Otherwise the origin is a half site. In this case let C1 denote the set of

x ∈ D−,+ with ‖x‖1 = 1 such that x is a half site and {x+e1, x−e2}∩C0 6= ∅.
For n ≥ 2, we define Cn to be the set of x ∈ D−,+ with ‖x‖1 = n such that
x is a half site and either {x+ e1, x− e2} ∩ Cn−1 6= ∅ or x+ e1 − e2 ∈ Cn−2.
Let C = ∪n≥0Cn.
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It follows that C is the cluster of the origin for an oriented site percolation
model on the triangular lattice with parameter p; sites are occupied if and
only if they are half-sites, and the connections are in the three directions
−e1,+e2,−e1 + e2 of a triangular lattice. If p < pc(2) ≈ 0.59 then since pc(2)
is also the critical value for oriented site percolation on the triangular lattice
[14], the cluster C is finite. Thus K := sup{k : Ck 6= ∅} <∞ almost surely.
Moreover (see e.g. [8, Section 7 (6)]) there exists c(p) > 0 such that for all n,

P(|C(p)| > n) ≤ e−c(p)n. (3.1)

Define the set of awesome points A by

A := {x ∈ D−,+ ∩ C : x is a half site

but none of x− e1, x+ e2, x− e1 + e2 is a half site}.

Note that if K ≥ 1 then CK ⊂ A since every point in CK is a half site and
CK+1 and CK+2 are empty.

Lemma 1. There is a path from o to −e1, consistent with the environment,
of length at most 4|C|.

Proof. We prove by induction on n = |C| that there is a path of length at
most 4n from o to −e1.

If |C| = 1 then either o is a full site or o is awesome. In the former case
there is a path of length 1 consistent with the environment ω, from o to −e1,
consisting of the step −e1. In the latter case both e2 and e2−e1 are full sites,
so there is a path of length 3 consistent with the environment ω from o to
−e1 consisting of the steps e2,−e1,−e2 in that order.

Let n ≥ 1 and assume the result is true for every possible cluster of size
n. Now suppose that we are given a cluster C of size |C| = n+ 1. Since this
cluster is finite but non-empty, it necessarily contains an awesome point x
(in particular, since n+ 1 > 1 we have that K ≥ 1 and every point in CK is
awesome).

Since x is awesome, by changing the status of x from half-site to full-
site, we obtain a new environment (call it ωx), and a new cluster Cx of size
|Cx| = n. It follows from the induction hypothesis that there exists a path
γ consistent with the environment ωx from o to −e1 of length at most 4n.
By deleting loops if necessary we may assume that γ is simple, so it passes
through each point at most once. We will find a path γ′ in the original
environment ω from o to −e1, by modifying γ.

Suppose that γ does not pass through (i.e. enter and exit) x. Then the
path γ is also consistent with ω so we take γ′ = γ. Otherwise γ enters x
from some direction and exits from some other direction. If γ exits in the
direction e1 or e2 then (since these arrows are still available from x in the
environment ω) γ is still consistent with ω, so we take γ′ = γ again.

If γ exits x in direction −e1, then γk = x, and γk+1 = x − e1 for some
k < 4n. In this case we define γ′ by γ′j = γj for j ≤ k, γ′k+1 = x + e2,
γ′k+2 = x+ e2− e1, γ′k+3 = x+ e2− e1− e2, and then γ′ follows the remainder
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of the path γ from the point x − e1 = x + e2 − e1 − e2. All of the added
steps are consistent with ω since x was awesome in this environment. The
resulting path γ′ (which may or may not be simple) has two extra steps than
γ.

Similarly, if γ exits x in direction −e2, then we set γ′ = γ until the hitting
time of x, then we make γ′ take the steps e2,−e1,−e2,−e2, e1 (all these steps
are consistent with ω since x was awesome in ω) and then γ′ follows γ from
the point x + e2 − e1 − e2 − e2 + e1 = x− e2. In this case γ′ (which may or
may not be simple) contains 4 more steps than γ.

It follows that we have a path γ′ consistent with the environment ω, from
o to −e1, whose length satisfies |γ′| ≤ 4 + |γ| ≤ 4 + 4n = 4(n + 1). This
completes the proof. �

We have verified that for every x ∈ Zd, E[Tx] <∞. Applying the subad-
ditive ergodic theorem then yields the following.

Lemma 2. The claim of Theorem 1 holds for p < pc(2).

3.2 Finite expectation for 1− p > p∗(d)

Lemma 2 and the follow lemma together imply that Theorem 1 holds.

Lemma 3. The claim of Theorem 1 holds for 1− p > p∗(d).

Let P∗q denote the law of site percolation on Zd, with parameter q. For
supercritical site percolation (i.e. with q > p∗(d)) let P denote the (unique)
infinite cluster, and let N+ = inf{n ≥ 0 : ne1 ∈ P}. We will use the following
result, which is well-understood (but we have not seen an explicit statement
in the literature).

Lemma 4. Fix d ≥ 2. For q > p∗(d) there exist c, C > 0 such that for all
n > 0,

P∗q(N+ > n) ≤ Ce−cn.

Proof. (Supplied by G. Grimmett) First assume d ≥ 3, and let q > p∗(d). Let
Sk = [1, k]×Zd−1 be the slab of thickness k. By [10] there exists k0 such that
q > p∗(Sk0) (the critical probability for percolation in the slab). Let P0

q denote
the law of site percolation in this slab. Then there exists a > 0 such that
P0
q(re1 ↔∞) > a (for every r ∈ [1, k0]). The interval Jn = [1, nk0e1] traverses
n disjoint copies of Sk0 . The contents of these slabs are independent (since
they are vertex disjoint), so that P∗q(N+ > mk0) ≤ P∗q(Jm =∞) ≤ (1− a)m.
For n ∈ ((m− 1)k0,mk0] we then have

P∗q(N+ > n) ≤ ((1− a)1/k0)n(1− a)−1,

which proves the result.
Now take d = 2 and q > p∗(2). If In = [0, ne1] is not joined to∞, then all

points in In are in finite open clusters. Let J be the union of these clusters,
and let K be the exterior site boundary of J in Z2. Let L be the matching
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lattice of Z2 (i.e. Z2 with all diagonals added). It is “standard” that K is
connected in L. Since q > p∗(2), and p∗(2) + pc(L) = 1 (see e.g. [13]),
the closed sites are subcritical for site percolation on L, and therefore the
diameter of the closed cluster containing (−m, 0) has exponential tail. Thus
there exist C, c > 0 such that for all n, the probability that the diameter of
the (closed) cluster of (−m, 0) in L exceeds n is at most Ce−cn. Now note
that K is (part of) a closed cluster in this subcritical site model. Let (−b, 0)
be the leftmost vertex of K on the axis. Then the closed cluster of (−b, 0) in
L has diameter at least b+ n. It follows that P∗(In =∞) ≤

∑
b≥0Ce

−c(n+b)

as required. �

Proof of Lemma 3. Fix d ≥ 2, and 1−p > p∗(d). Then the full sites percolate
in the sense of site percolation on Zd. Let P denote the infinite cluster (in
the sense of site percolation) of the set of full sites. Let N+ = inf{n ≥ 0 :
ne1 ∈ P}, and let N− = inf{n > 0 : −ne1 ∈ P}. Let ΓN denote any shortest
path from N+e1 to −N−e1, and let M = |ΓN |. Such a path exists because
there is a path from one to the other that consists only of full sites.

Now consider the path Γ from the origin to −e1 as follows. Starting from
o, the path takes N+ steps in the direction e1 to the point N+e1. It then
follows the path ΓN from N+e1 to −N−e1. It then takes N− − 1 steps in
direction e1 to reach the point −e1. This entire path is consistent with the
environment and the total length is at most N+ +M +N−. Thus, To,−e1 ≤
N+ + N− + M and it suffices to show that the three random variables on
the right all have finite expectation. Finiteness of the first two expectations
follows from Lemma 4 (or indeed from the ergodic theorem as E[N+] and
E[N−] are both at most 1/P(o ∈ P)). It remains to show that E[M ] <∞.

For n ∈ N,

P(M > n) ≤ P
(
M > n,N+ +N− ≤

√
n
)

(3.2)

+ P
(
N+ >

√
n

2

)
+ P

(
N− >

√
n

2

)
. (3.3)

The last two terms are summable in n by Lemma 4. It remains to show that
the first term on the right of (3.2) is summable in n. This term is at most

√
n∑

n+=0

√
n∑

n−=1

P∗1−p
(
n+e1 ↔ −n−e1, T

∗
n+e1,−n−e1 > n

)

=

√
n∑

n+=0

√
n∑

n−=1

P∗1−p
(
o↔ (n+ + n−)e1, T

∗
o,(n++n−)e1

> n
)

(3.4)

where now we are only considering connections using full sites. We now
use the argument of [1, Theorems 1.1 and 1.2].2 Specifically we use the
inequality [1, (4.49)] with the box radius N therein chosen so that [1, (4.47)]
holds, and setting y in [1, (4.49)] equal to me1. Note that in [1, (4.49)] their

2This paper proves the result for bond percolation, but also points out that the same
arguments also prove the result for site percolation.
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l is our n, while their n is equal to |a(y)| ≤ |y| = m. So [1, (4.49)] together
with Markov’s inequality applied to eh(|C0

∗|+1) therein gives the existence of
constants C∗, c∗ > 0 such that for all m,n ∈ N,

P∗1−p(o↔ me1, T
∗
o,me1

> n) ≤ C∗me−c
∗n/m.

Setting m = n+ + n− ≤ 2
√
n it follows that there exist a, b > 0 such that for

all n ∈ N, (3.4) is at most

an
√
ne−b

√
n.

This proves that P(M > n) is summable in n, so E[M ] < ∞, which
completes the proof. �

3.3 Consequences

Before turning to the proof of Corollary 1, we first establish the following
extension of Theorem 1. Recall that for y ∈ Rd, [y] ∈ Zd denotes the unique
lattice point such that y ∈ [y] + [0, 1)d.

Lemma 5. Fix d ≥ 2 and 1 − p > min{1 − pc(2), p∗(d)}. Then for every
u ∈ Qd,

lim
x→∞

T[xu]

x
= ζp(u), almost surely, and in L1, (3.5)

where we are taking x through R rather than just Z.

Proof. The claim is trivial at u = o. Otherwise we first we first restrict to
Zd and then at the end generalise to Qd. Suppose that v ∈ Zd \ {o}. By
subadditivity,

T[xv] ≤ Tbxcv + Tbxcv,[xv] (3.6)

Tbxcv ≤ T[xv] + T[xv],bxcv. (3.7)

Thus
Tbxcv − T[xv],bxcv ≤ T[xv] ≤ Tbxcv + Tbxcv,[xv]. (3.8)

Now note that by Theorem 1

Tbxcv
x

=
bxc
x
·
Tbxcv
bxc

→ ζp(v) as x→∞, a.s. and in L1. (3.9)

Thus, to prove the claim on Zd it remains to show that almost surely

lim
x→∞

T[xv],bxcv

x
= lim

x→∞

Tbxcv,[xv]

x
= 0, (3.10)

and that the limits of the corresponding expected values are also 0.
We will explain the argument in detail for d = 2 and then explain how to

generalise to d > 2. Let si = sgn(v[i]). Define the set of vertices

Bx(v) :=
{
bxcv + is1e1 + js2e2 : i, j ∈ Z and 0 ≤ i ≤ |v[1]|, 0 ≤ j ≤ |v[2]|

}
.

(3.11)
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That is, Bx(v) is a box of width |v[1]| and height |v[2]|, positioned so that
bxcv is its corner closest to the origin.

Since
bxc|v[i]| ≤ x|v[i]| ≤ (bxc+ 1)|v[i]| (3.12)

we can conclude that [xv] ∈ Bx(v). We thus have the bound

Tbxcv,[xv]

x
≤

max{Tbxcv,u : u ∈ Bx(v)}
x

(3.13)

≤
∑

0≤i≤|v[1]|
0≤j≤|v[2]|

Tbxcv,bxcv+is1e1+js2e2

x
. (3.14)

Similarly
T[xv],bxcv

x
≤

∑
0≤i≤|v[1]|
0≤j≤|v[2]|

Tbxcv+is1e1+js2e2,bxcv

x
. (3.15)

By translation invariance we have Tu,u+v
d
= Tv for u, v ∈ Zd. Thus for

any n ∈ Z+ and ε > 0 with fixed 0 ≤ i ≤ |v[1]|, 0 ≤ j ≤ |v[2]| (excluding
i = j = 0, which is trivial)

P
(Tnv,nv+is1e1+js2e2

n
> ε
)

= P(Tis1e1+js2e2 > nε) (3.16)

≤ P(Tis1e1 > nε · i
i+j

) + P(Tis1e1,is1e1+js2e2 > nε · j
i+j

)

(3.17)

= P(Tis1e1 > nε · i
i+j

) + P(Tjs2e2 > nε · j
i+j

)

(3.18)

≤ iP(Ts1e1 >
nε
i+j

) + jP(Ts2e2 >
nε
i+j

). (3.19)

If si = 0 then of course Tsiei = 0, while if si = 1 then Tsiei = 1. Otherwise
we have si = −1. Note that

∑
n≥1 P(T−e1 > n) ≤ E[T−e1 ] <∞ by Lemmas 2

and 3. Then because X = T−e1(i+ j)/ε ≥ 0 we have∑
n≥1

P
(
T−e1 >

nε

i+ j

)
=
∑
n≥1

P(X > n) ≤ E[X] =
i+ j

ε
· E[T−e1 ] <∞.

With En denoting the event {Tnv,nv+is1e1+js2e2

n
> ε}, it follows that

∞∑
n=1

P(En) <∞, (3.20)

and then by the Borel-Cantelli lemma P(En occurs infinitely often) = 0.
Since this is true for any ε > 0, we must have

lim
n→∞

Tnv,nv+is1e1+js2e2

n
= 0, a.s. (3.21)

14



Switching back to real x, we have that almost surely

lim
x→∞

Tbxcv,bxcv+is1e1+js2e2

x
= lim

x→∞

Tbxcv,bxcv+is1e1+js2e2

bxc
· bxc
x

= 0. (3.22)

Applying this to (3.15) shows that

lim
x→∞

Tbxcv,[xv]

x
= 0, a.s. (3.23)

Similar arguments show the corresponding result for T[xv],bxcv. Expecta-
tions are handled similarly. Take the expectation of both sides of (3.14)
(resp. (3.15)) and note that the expectations of the numerator terms on the
right hand side of (3.14) are equal to E[Tis1e1+js2e2 ] < ∞. Since the sums

are finite and x → ∞ we see that E[
Tbxcv,[xv]

x
] → 0 as x → ∞ and similarly

E[
T[xv],bxcv

x
]→ 0. This completes the proof for d = 2.

The generalisation to d > 2 is straightforward: the box Bx(v) is just the
higher-dimensional analogue, with the point bxcv the corner closest to the
origin. Then again [xv] ∈ Bx(v), and to get from bxcv to [xv] we again get
an upper bound by considering each dimension separately.

To upgrade the result to u ∈ Qd simply note that v = muu ∈ Zd \ {o},
and

T[xu]

x
=

1

mu

T[x/mu·v]

x/mu

.

As x→∞ also x/mu →∞, and the limit of the above is therefore ζp(v)/mu =
ζp(u) as required. �

Proof of Corollary 1. Fix v ∈ Zd, and let ε > 0. We show that almost surely

lim inf
n→∞

n−1Dn(v) ≥ 1

(1 + ε)ζp(v)
, and (3.24)

lim sup
n→∞

n−1Dn(v) ≤ 1

(1− ε)ζp(v)
. (3.25)

This proves that n−1Dn(v) → ζp(v)−1 almost surely and the Lq conver-
gence (for any q > 0) follows from dominated convergence since Dn(v)/n ∈
[0, 1/‖v‖] for v ∈ Zd.

To prove (3.24), let c1 :=
1

(1 + ε)ζp(v)
. Then, a.s., for all but finitely

many n we have (by Lemma 5)

T[nc1v]

nc1

≤ 1

c1

.

So, a.s., for all but finitely many n we have T[nc1v] ≤ n and therefore also
Dn(v) ≥ nc1 as required.

To prove (3.25) let c2 =
1

(1− ε)ζp(v)
, and suppose that

lim sup
n→∞

n−1Dn(v) > c2.
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Then there exists a random subsequence (Nk)k∈N with Nk ≥ Nk−1 + 1 such
that

DNk
(v)

Nk

> c2, for every k.

Setting Mk = DNk
(v) it follows that for every k,

sup{m : T[mv] ≤ Nk} = Mk > c2Nk. (3.26)

In particular, for every k there exists M ′
k ∈ (c2Nk,Mk] such that T[M ′kv] ≤ Nk.

Since by Lemma 5, x−1T[xv] → ζp(v) a.s. as x → ∞ we have that
T[xv] ≥ (1 − ε/2)ζ(v)x for all x sufficiently large (a.s.). In particular, for
all k sufficiently large we have

T[M ′kv] > (1− ε/2)ζ(v)M ′
k > (1− ε/2)ζ(v)c2Nk > Nk,

which contradicts T[M ′kv] ≤ Nk above. Thus the event that lim supn→∞ n
−1Dn(v) >

c2 has probability 0, which completes the proof. �

4 Features of the shape for p < pc(2)

In this section we prove Theorem 2, except for (b) which is omitted as the
proof is via an elementary (and standard) coupling argument.

4.1 Proof of Theorem 2(a)

Proof of Theorem 2(a)(i). This follows from Lemma 5 since

ζp(qu) = lim
x→∞

T[xqu]

x
= q lim

x→∞

T[xqu]

xq
= qζp(u).

�

Proof of Theorem 2(a)(ii). By Theorem 1 and subadditivity for T , for x, y ∈
Zd we have

ζp(x+ y) = lim
n→∞

E[Tn(x+y)]

n

≤ lim
n→∞

E[Tnx + Tnx,n(x+y)]

n

= lim
n→∞

E[Tnx] + E[Tny]

n
= ζp(x) + ζp(y).

For x, y ∈ Qd there exists an m = m(x, y) ∈ N such that mx,my ∈ Zd \ {o}
and then from (i)

ζp(x+ y) = ζp(m
−1(mx+my)) = m−1ζp(mx+my)

≤ m−1(ζp(mx) + ζp(my)) = ζp(x) + ζp(y).

�
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Proof of Theorem 2(a)(iii). Let x, h ∈ Qd. From (ii) we have

ζp(x+ h) ≤ ζp(x) + ζp(h), ζp(x) ≤ ζp(x+ h) + ζp(−h), (4.1)

from which it follows that

|ζp(x+ h)− ζp(x)| ≤ max{ζp(h), ζp(−h)}. (4.2)

Now we always have ζp(ei) = 1 and ζp(−ei) ≥ 1. Thus, using (i) and (ii),

ζp(h) = ζp

( d∑
i=1

h[i]ei

)
≤

d∑
i=1

ζp(h
[i]ei) ≤

d∑
i=1

|h[i]|ζp(−ei) = ‖h‖1ζp(−e1).

The same upper bound applies to ζp(−h). Hence

|ζp(x+ h)− ζp(x)| ≤ ‖h‖1ζp(−e1). (4.3)

This verifies the claim. �

4.2 Proof of Theorem 2(c)

Proof of Theorem 2(c)(i). Fix d ≥ 2 and p as in the theorem. Note first
that by continuity of ζ it is sufficient to prove the result for v with rational
coordinates, and with a ∈ (p, 1).

Fix v ∈ Sgood
p (with rational coordinates). Then we can write v as

v =
d∑
i=1

(aα′i − (1− a)β′i)ei,

where α′i = αi/a and β′i = βi/(1 − a). Since v has rational coordinates it
follows that mv := inf{k ∈ N : kv ∈ Zd} < ∞, and the points nmvv are in
Zd for n ∈ Z+. It therefore suffices to show that there is a constant C > 0
such that almost surely for each ε > 0, Tmvnv ≤ nmv + Cεn infinitely often.
We will prove this by constructing a path Γ consistent with the environment
along which every site x is reachable in time ‖x‖1, and such that the points
mvnv are reachable by following Γ for a long time and then taking +ei steps
for a relatively short time.

We start by enlarging the probability space to include the random envi-
ronment, as well as some i.i.d. standard uniform random variables (Un)n≥0

that are also independent of the environment. Proving the result in this en-
larged space establishes the desired result (since the desired result is simply
an a.s. statement about the environment).

Let ε < a − p and b ∈ (a − ε, a). Set Γ0 = o and define Γn for n ≥ 1
recursively as follows:

• if Γn−1 ∈ Ω+ then we choose our next step to be ei with probability α′i
independent of the past (here we use the random variable Un),
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• if Γn−1 /∈ Ω+ then we choose our next step to be ei with probability
(b−p)α′i/(1−p), and −ei with probability (1−b)β′i/(1−p), independent
of the past, (using Un).

By (1.2) if this path ever takes a step e then it a.s. never takes a step −e. It
follows that ‖Γn‖1 = n for every n, and that Γ is a self-avoiding path, so the
environment seen at every time is a half site with probability p (independent
of the past). It follows that Γ is a random walk (i.e. it has i.i.d. increments)
with

P(Γn − Γn−1 = ei) = pα′i + (1− p)(b− p)α′i/(1− p) = bα′i, and (4.4)

P(Γn − Γn−1 = −ei) = (1− p)(1− b)β′i/(1− p) = (1− b)β′i. (4.5)

The expected increment is then

µb :=
d∑
i=1

(bα′i − (1− b)β′i)ei.

Note that

µb − v =
d∑
i=1

(b− a)(α′i + β′i)ei.

If for some j, α′j = β′j = 0 then for every n, Γn · ej = 0 = v · ej. For
all other coordinate directions, the law of large numbers for Γ and the fact
that (µb− v) · ei = (b− a)(α′i + β′i) < 0 imply that for all n sufficiently large,
n−1Γn ·ei < v ·ei. Moreover, since a−b < ε we have that n−1Γn ·ei > v ·ei−2ε
for all n sufficiently large. Thus for all n sufficiently large, we can reach mvnv
by following the path Γ to Γmvn and then taking at most 2dεmvn steps in
positive coordinate directions (recall that such steps are possible from every
site) to mvnv. Thus for all n sufficiently large we have that

Tmvnv ≤ TΓmvn
+ 2dεmvn = mvn+ 2dεmvn,

which completes the proof. �

Let P†q denote the law of oriented site percolation on Zd with parameter
q. Theorem 2(c)(ii) is a consequence of the following “well-known” result.

Lemma 6. Fix d ≥ 2 and let q > p†(d). For v ∈ Zd in the interior of the
deterministic cone Oq,

P†q(o→ nv i.o.) ≥ inf
n∈Z+

P†q(o→ nv) = η(q) > 0. (4.6)

Proof. The inequality is a standard consequence of continuity of probabil-
ity measures. To show that the infimum is positive we will make use of
the “shape theorem” and “complete convergence theorem” for oriented site
percolation in general dimensions. For this purpose it is convenient to ex-
press each point z in the positive orthant as z = (zd−1, ‖z‖1), where the
last coordinate represents the time associated to the point and zd−1 ∈ Rd−1.
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Here zd−1 should be interpreted as the projection of z onto the hyperplane
x1 + · · · + xd = 0, i.e. the hyperplane orthogonal to the vector e1 + · · · + ed
which contains the origin.

Let v be in the interior of Oq. Let U ⊂ Rd−1 denote the asymptotic shape
(see e.g. [5, Theorem 5] or [20, Theorem 1]) conditional on the cluster of the
origin being infinite. Note that Oq = ∪t≥0(tU). Then v = (vd−1, k) where
k = ‖v‖1 > 0 and there exists ε > 0 such that vd−1 ∈ (1− ε)kU . Fix this ε,
and let n ∈ N. Then nvd−1 ∈ (1 − ε)nkU . Let tn = inf{j : o → (nvd−1, j)}.
Now observe that

P†q(o→ nv) ≥
∑
`≤nk

P
(
tn = `, (nvd−1, `)→ (nvd−1, nk)

)
(4.7)

=
∑
`≤nk

P(tn = `)P
(
(nvd−1, `)→ (nvd−1, nk)

)
(4.8)

=
∑
`≤nk

P(tn = `)P
(
o→ (o, nk − `)

)
, (4.9)

where the sum is over ` such that nk− ` is divisible by d, and the first equal-
ity holds by independence. By the complete convergence theorem (e.g. [5,
Theorem 4]) we have that limn→∞ P†q

(
o→ (o, dn)

)
→ c > 0. Since each point

in the positive orthant can be reached with positive probability this implies
that δ := infn≥0 P†q

(
o→ (o, dn)

)
> 0. Thus

P†q(o→ nv) ≥ δP(tn ≤ nk). (4.10)

By the shape theorem, a.s. on the event {o→∞} we have that tn ≤ nk
for all n sufficiently large. So for every η > 0 there exists some n0 such that
for all n ≥ n0,

P†q(o→ nv) ≥ δP†q(tn ≤ nk) ≥ δ(1− η)P†q(o→∞). (4.11)

Since infn≤n0 P†q(o→ nv) > 0 this completes the proof. �

Proof of Theorem 2(c)(ii). Fix p as in the theorem and such that 1 − p >
pospc (d). Let v ∈ Zd be in the interior of the deterministic cone O1−p. By
Lemma 6, with probability at least η(1 − p) > 0, for infinitely many n, one
can reach nv from o by following a path of full sites using only steps in O.
On this event we therefore have that Tnv = ‖nv‖1 infinitely often. Since
Tnv/n → ζp(v) this proves that v ∈ Sp. For u ∈ Qd in the interior of O1−p
the result follows since v = muu ∈ Zd. �

4.3 Proof of Theorem 2(d)

The proof of (d)(i) is standard, but we include it for completeness, and to
help the reader understand why the more unusual argument that we present
to prove (d)(ii) is used.
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Proof of Theorem 2(d)(i). Fix p as in the theorem. Without loss of general-
ity we may assume that i = 1. Let ε > 0 be sufficiently small so that

η(ε, δ) :=
((2d− 1)(1 + ε)e

ε+ δ

)ε+δ
(1− p)1−δ < 1 (4.12)

and (1− 2δ− ε) > 0 for any δ with |δ| < ε. This can be done since 1− p < 1
and (b/x)x → 1 as x→ 0 for any b > 0.

Let u ∈ D with ‖u‖1 = 1 and u[1] = −(1 − δ), where |δ| < ε. Suppose
that we can reach un = umun

′ in at most (1 + ε)n steps. Then there must
be a self-avoiding path γ starting at the origin and ending at un, of length
`(γ) ∈ [n, (1 + ε)n], that is consistent with the environment. Let Dn be the
event that such a path exists. We will show that P(Dn) is summable in n
and hence by Borel-Cantelli P(Dn i.o.) = 0. This shows that ζp(v) ≥ (1 + ε)
and therefore completes the proof.

Let us verify the claim that P(Dn) is summable. Let An,k denote the set of

self-avoiding paths γ from o to nu, with `(γ) = k, and let Bn = ∪b(1+ε)nc
k=n An,k.

For a path γ ∈ An,k, let w(γ) denote the number of steps in direction −e1

taken by the path. The number of paths of length k with exactly w steps in
direction−e1 is at most

(
k

k−w

)
(2d−1)k−w since there are at most 2d−1 choices

for each of the k−w other steps. For any path γ ∈ An,k, w(γ) ∈ [n(1−δ), k].
Now observe that for any k ∈ [n, n(1 + ε)] and w ∈ [n(1 − δ), k] we have
0 ≤ k − w ≤ n(ε+ δ).

It follows that

|Bn| ≤
b(1+ε)nc∑
k=n

k∑
w=dn(1−δ)e

(
k

k − w

)
(2d− 1)k−w

≤
b(1+ε)nc∑
k=n

k∑
w=dn(1−δ)e

(
k

dn(ε+ δ)e

)
(2d− 1)n(ε+δ),

where we have used the fact that for w, k contributing to the sums, k−w <
k/2 since (1− 2δ − ε) > 0. This is at most

b(1+ε)nc∑
k=n

k∑
w=dn(1−δ)e

(
b(1 + ε)nc
dn(ε+ δ)e

)
(2d− 1)n(ε+δ).

Now use the fact that for k ∈ 1, . . . , n,
(
n
k

)
≤ (ne/k)k (e.g. proof by induction

on k) to see that

|Bn| ≤
b(1+ε)nc∑
k=n

k∑
w=dn(1−δ)e

((1 + ε)e

ε+ δ

)1+n(ε+δ)

(2d− 1)n(ε+δ)

≤ (1 + ε)e

ε+ δ

(((2d− 1)(1 + ε)e

ε+ δ

)(ε+δ)
)n

· (1 + nε) · (1 + n(δ + ε)).

(4.13)
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Finally, note that any γ ∈ Bn is consistent with the environment with prob-
ability at most (1− p)w(γ) ≤ (1− p)n(1−δ). Therefore

P(Dn) ≤ (1− p)n(1−δ)|Bn| ≤ (η(ε, δ))n
(1 + ε)e

ε+ δ
(1 + nε)(1 + n(ε+ δ))

≤ 2n2(η(ε, δ))n

for n sufficiently large (depending on ε and δ). By (4.12), this is exponentially
small in n, hence summable, and the claim is proved. �

In the proof of Theorem 2(d)(i) above, the number of paths grows expo-
nentially in n, but the exponential growth can be made as close to 1 as we
like by taking ε small and u very close to −e1 (i.e. δ small). In part (d)(ii)
of the theorem we cannot take u close to −e1, so the number of paths grows
at an exponential rate that cannot be made close to 1. For example, the
number of self-avoiding paths of length exactly n from o to (−(1 − s)n, sn)
(where s ∈ Q ∈ (0, 1) and sn ∈ Z) is

(
n
sn

)
which grows exponentially fast with

growth rate depending on s. Thus, in order to prove (d)(ii) of the theorem we
need a more sophisticated argument than simple enumeration of paths. This
is the content of the remainder of the paper. The proof as written works
for two dimensions. It would be of interest to see whether modifications
of these arguments can be used to obtain improvements to (d)(i) in higher
dimensions.

Henceforth we fix d = 2. Let b(γ) denote the number of →, ↓ steps of a
path γ. Given an environment ω, a path γ in Z2 starting from o is said to
be ω-good if all ← steps of the path are consistent with the environment ω.
Let G(ω) be the set of (finite) ω-good paths.

Given ω and γ ∈ G(ω) define the westernisation of γ to be the path
γ̃ ∈ G(ω) of the same length as γ such that the times and types of step in
{→, ↓} are identical for the two paths and such that outside of these times,
γ̃ always takes the ← step when the environment allows (and ↑ when it
does not). Recall that the coordinates of a point x ∈ Z2 are denoted by
x = (x[1], x[2]).

Lemma 7. Let ω be an environment and γ ∈ G(ω). Then γ and its west-
ernisation γ̃ satisfy

γ [1]

m − γ̃ [1]

m = γ [2]

m − γ̃ [2]

m ≥ 0, for all m ≥ 0.

Proof. Proof by induction. The claim is trivially true at time 0. Suppose the
claim is true up to and including time m− 1. If at time m one of the paths
takes a step in {→, ↓} then the other takes the same step, so the result is
also trivially true at time m.

Otherwise, if γ [1]

m−1 − γ̃ [1]

m−1 = γ [2]

m−1 − γ̃ [2]

m−1 = 0 then both paths are at
the same location xm−1. If the local environment ω(xm−1) does not have
← then both paths take ↑, and the claim continues to hold (since neither
coordinatewise difference changes). Otherwise if the local environment does
have← it may be that both paths take this arrow (so the claim continues to
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hold) or γ takes ↑ and γ̃ takes← in which case each coordinatewise difference
increases by 1, so the claim still holds.

Otherwise if γ [1]

m−1−γ̃
[1]

m−1 = γ [2]

m−1−γ̃
[2]

m−1 > 0, then the only way that either
of these increments can change is if one path takes ← and the other takes
↑. But in this case either both differences increase by 1, or both differences
decrease by 1, so the claim still holds. �

Let G̃(ω) ⊂ G(ω) denote the set of paths in G(ω) that never take a ↑
step from a location where ← is available.

Proof of Theorem 2(d)(ii). Let p be as in the statement of the theorem, and
s ∈ [0, p) ∩ Q. Let ε ∈ (0, (p − s)/10). Let n ∈ N be such that ns in an
integer.

Any path γ starting from the origin with length `(γ) ≤ n(1 + ε) and
taking more than εn ↓,→ steps (i.e. b(γ) ≥ εn) cannot reach a point on the
boundary of the `1 ball B1(o, n) with first coordinate non-positive and second
coordinate non-negative (i.e. in the northwest quadrant). Let

Jn =
{
∃γ consistent with ω with ` = `(γ) ≤ n(1 + ε) and b(γ) ≤ εn such that

(4.14)

0 ≤ γ [2]

` ≤ n(s+ ε/4), γ [1]

` ≤ −n(1− s− ε/4), ‖γ`‖1 ≥ n
}
. (4.15)

We will show that there exist C, c > 0 such that

P(Jn) ≤ Ce−cn, for all n ∈ N. (4.16)

To see why this is sufficient to prove the result, note that if ζp(u) = 1 then
there must exist infinitely many n such that nu is reached within time n(1+ε).
But 0 ≤ nu[2] ≤ n(s + ε/4), nu[1] ≤ −n(1− s− ε/4) and ‖nu‖1 = n, so this
means that Jn occurs. By (4.16) and Borel-Cantelli this can only occur for
finitely many n. Thus the subsequence of n−1T[nu] for which nu ∈ Z2 a.s.
does not converge to 1. Thus we must have ζp(u) > 1.

The left hand side of (4.16) is at most

P
(
∃γ ∈ G(ω) with `(γ) ≤ n(1 + ε) and b(γ) ≤ εn such that

0 ≤ γ [2]

` ≤ n(s+ ε/4), γ [1]

` ≤ −n(1− s− ε/4), ‖γ`‖1 ≥ n
)
. (4.17)

By Lemma 7 if there exists a γ as in this event then its westernisation γ̃
also satisfies the constraints in (4.17) except that we may have γ̃ [2]

` < 0. In
particular we have that for such a γ,

‖γ̃`‖1 = −γ̃ [1]

` + |γ̃ [2]

` |
= −γ [1]

` + (γ [1]

` − γ̃
[1]

` ) + |γ̃ [2]

` |
= −γ [1]

` + (γ [2]

` − γ̃
[2]

` ) + |γ̃ [2]

` |
≥ −γ [1]

` + γ [2]

` = ‖γ`‖1 ≥ n.
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Thus, (4.17) is at most

P
(
∃γ ∈ G̃(ω) with `(γ) ≤ n(1 + ε) and b(γ) ≤ εn such that

γ [2]

` ≤ n(s+ ε/4), γ [1]

` ≤ −n(1− s− ε/4), ‖γ`‖1 ≥ n
)
. (4.18)

A path γ such as that in (4.18) need not be self-avoiding. If it is not self-
avoiding then by removing loops, it contains a shorter path γ′ with `(γ′) ≤
`(γ) and b(γ′) ≤ b(γ) that ends at the same point as γ. Let S̃(ω) ⊂ G̃(ω)
denote the set of paths in G̃(ω) that are self-avoiding.

Then (4.18) is at most

P
(
∃γ ∈ S̃(ω) with `(γ) ≤ n(1 + ε) and b(γ) ≤ εn such that

γ [2]

` ≤ n(s+ ε/4), γ [1]

` ≤ −n(1− s− ε/4), ‖γ`‖1 ≥ n
)

≤
n(1+ε)∑
l=n

εn∑
b=0

P
(
∃γ ∈ S̃(ω) with `(γ) = l and b(γ) = b such that (4.19)

γ [2]

l ≤ n(s+ ε/4), γ [1]

l ≤ −n(1− s− ε/4), ‖γl‖1 ≥ n
)
.

The upper limits of these sums are bn(1+ε)c and bnεc respectively since l and
b are integer-valued. Now we sum over the times ~t(γ) = {t1(γ), . . . , tb(γ)}
at which the path γ takes a →, ↓ step and a sum over the exact sequence
~x(γ) ∈ {→, ↓}b of such steps to see that (4.19) is at most

n(1+ε)∑
l=n

εn∑
b=0

∑
~t

∑
~x

P
(
∃γ ∈ S̃(ω) with `(γ) = l,~t(γ) = ~t and ~x(γ) = ~x such that

γ [2]

l ≤ n(s+ ε/4), γ [1]

l ≤ −n(1− s− ε/4), ‖γl‖1 ≥ n
)
.

(4.20)

Now consider how to determine whether the above event occurs. Construct a
random path Γ := Γ(ω,~t, ~x) of length l as follows. Starting from the origin at
time 0 (set Γ0 = o), if j = ti ∈ ~t then let Γ take step xi (i.e. Γj+1 = Γj + xi).
If not, look at the environment ωΓj

: if this contains ← then Γj+1 = Γj − e1,
and otherwise Γj+1 = Γj + e2. If this path meets itself at some time then
it is not self-avoiding, so the event has not occurred. As long as this path
never meets itself then (each new environment that is looked at has the usual
law, is independent of the past and) we can ask whether Γ[2]

l ≤ n(s + ε/4)
and Γ[1]

l ≤ −n(1− s− ε/4), and ‖Γl‖1 ≥ n. If all of these are true then the
event has occurred. Otherwise the event has not occurred. It follows that
the event in (4.20) is equal to{

Γ is self-avoiding, with Γ[2]

l ≤ n(s+ ε/4),Γ[1]

l ≤ −n(1− s− ε/4), ‖Γl‖1 ≥ n
}
.

(4.21)
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Now, let X := (Xi)i≥0 be an i.i.d. sequence with P(Xi =←) = 1 − p =
1− P(Xi =↑), and fix b and ~t and ~x. Let Γ̄ = Γ̄(X,~t, ~x) be a path of length
l in Z2 defined as follows:

• Γ̄0 = o

• if j = ti ∈ ~t then Γ̄j+1 − Γ̄j is equal to xi

• otherwise Γ̄j+1 − Γ̄j is equal to Xj.

The probability in (4.20) is equal to

P
(

Γ̄ is self-avoiding, Γ̄[2]

l ≤ n(s+ ε/4), Γ̄[1]

l ≤ −n(1− s− ε/4), ‖Γ̄l‖1 ≥ n
)

≤ P
(

Γ̄[2]

l ≤ n(s+ ε/4), Γ̄[1]

l ≤ −n(1− s− ε/4), ‖Γ̄l‖1 ≥ n
)

≤ P
(

Γ̄[2]

l ≤ n(s+ ε/4)
)
. (4.22)

Now note that Γ̄ is a (biased) simple random walk of length l − b, with b
deterministic ↓,→ steps inserted at specific times in the path. Next note
that b is very small compared to l, and we are asking for this walk to deviate
far from its mean at time l of order n. We now show that this probability
is exponentially small with exponent that can be taken uniform in small ε.
To be precise, we will show that there exist c, C > 0 depending on p, s (but
not ε) such that for all l ∈ [n, n(1 + ε)] ∩ Z+, b ≤ nε, ~t, and ~x, and all ε > 0
sufficiently small,

P
(

Γ̄[2]

l ≤ n(s+ ε/4)
)
≤ Ce−cn. (4.23)

Let us assume that (4.23) holds and explain how to proceed.
Using (4.23) we have that (4.20) is at most

n(1+ε)∑
l=n

εn∑
b=0

∑
~t

∑
~x

Ce−cn. (4.24)

The sum over ~x gives a contribution at most 2b ≤ 2εn. The sum over ~t
contributes at most

(bn(1+ε)c
dnεe

)
when n is large and ε < 1/3. This combinatorial

factor is at most

C(n+ nε)n+nε+1/2

(nε)nε+1/2(n− 1)n−1+1/2
≤ C(n+ nε)n+nε

(nε)nε(n− 1)n−1
, (4.25)

for all n sufficiently large depending on ε. This is at most

C ′nn+nε(1 + ε)n+nε

nnεεnεnn−1
=
C ′n(1 + ε)n+nε

εnε
= C ′n

(
(1 + ε)1+ε

εε

)n

. (4.26)

The exponential growth rate of this quantity is

(1 + ε)(1 + 1/ε)ε = (1 + ε)eε log(1+1/ε), (4.27)
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which approaches 1 × e0 = 1 as ε ↓ 0. Thus for small ε > 0, for all n
sufficiently large (4.24) is at most

n(1+ε)∑
l=n

εn∑
b=0

Cn(1 + aε)
n2nεCe−cn ≤ C ′′n3e−c

′n ≤ C ′′′e−c
′′n, (4.28)

We have shown that (4.16) holds (and hence the theorem is proved), assuming
(4.23). It therefore remains to prove that for some c, C > 0 (not depending
on ε) (4.23) holds for all l, b,~t, ~x. Fix l, b,~t, ~x and let Nr =

∑r
i=1 1{Xi=↑} be

the number of ↑ steps among the first r of the X’s. Then (4.22) is at most

P
(
Nl−b ≤ n(s+ ε/4) + nε

)
= P

(
Nl−b ≤ p(l − b)− (p(l − b)− n(s+ 5ε/4))

)
.

(4.29)

Here, Nl−b is a sum of l − b i.i.d. (0-1-valued) random variables each with
expectation p, so E[Nl−b] = p(l − b). Since b ≤ εn and l ≥ n we have

p(l − b)− n(s+ 5ε/4) ≥ pn(1− ε)− n(s+ 5ε/4) (4.30)

= n(p(1− ε)− s− 5ε/4). (4.31)

Since ε < (p− s)/10 we have

p(1− ε)− s− 5ε/4 > p(1− (p− s)/10)− s− 5(p− s)/10 (4.32)

= (p− s)[1− (p+ 5)/10] (4.33)

> 4(p− s)/10. (4.34)

This means that

p(l − b)− n(s+ 5ε/4) ≥ 4n(p− s)/10 ≥ 2(l − b)(p− s)/10,

where we have used the fact that l − b ≤ l ≤ n(1 + ε) ≤ 2n.
Thus (4.29) is at most

P
(
Nl−b ≤ (l − b)[p− 2(p− s)/10]

)
≤ Ce−c(l−b), (4.35)

for some C, c depending only on p, s (e.g. by Hoeffding’s inequality). Since
l − b ≥ n(1 − ε) > n/2 (for all ε sufficiently small), this verifies (4.23) as
claimed. �
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