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Abstract. We give details of the calculations of explicit speeds for random walks in uniform
degenerate random environments.

1. Introduction

In [3] the authors study random walk in an IID random environment, where the environment
need not satisfy any ellipticity condition. In other words, where various nearest neighbour transi-
tions may have quenched probability = 0. If such a walk can get stuck on a finite set of vertices
with positive probability, then it will get stuck with probability one. There are necessary and
sufficient conditions for such a walk not to get stuck in this way, and [3] studies transience and
speed questions for such walks. There are many interesting models in which such properties are
non-trivial. There are also examples in which transience is essentially trivial, and in which speeds
can be calculated explicitly, because of a renewal structure. [3] gives a table of such speeds, for
random walks in uniform degenerate random environments. That is, environments in which the
walker chooses at random from the (random) set of allowed steps. The purpose of this note is to
supply details of the latter calculations.

For fixed d ≥ 2 let E = {±ei : i = 1, . . . , d} be the set of unit vectors in Zd. Let P = M1(E)

denote the set of probability measures on E , and let µ be a probability measure on P . Let Ω = PZd

be equipped with the product measure ν = µ⊗Z
d

(and the corresponding product σ-algebra). A
random environment ω = (ωx)x∈Zd is an element of Ω. We write ωx(e) for ωx({e}). Note that
(ωx)x∈Zd are i.i.d. with law µ under ν.

The random walk in environment ω is a time-homogeneous Markov chain with transition prob-
abilities from x to x+ e defined by

(1.1) pω(x, x+ e) = ωx(e).

Given an environment ω, we let Pω denote the law of this random walk Xn, starting at the
origin. Let P denote the law of the annealed random walk, i.e. P (·, ?) :=

∫
?
Pω(·)dν. Since

P (A) = Eν [Pω(A)] and 0 ≤ f(ω) = Pω(A) ≤ 1, P (A) = 1 if and only if Pω(A) = 1 for ν-almost
every ω. Similarly P (A) = 0 if and only if Pω(A) = 0 for ν-almost every ω. If we start the RWRE
at x ∈ Zd instead, we write Px for the corresponding probability, so P = Po.

We associate to each environment ω a directed graph G(ω) (with vertex set Zd) as follows. For
each x ∈ Zd, the directed edge (x, x + u) is in Gx if and only if ωx(u) > 0, and the edge set of
G(ω) is ∪x∈ZdGx(ω). For convenience we will also write G = (Gx)x∈Zd . Note that under ν, (Gx)x∈Zd

are i.i.d. subsets of E . The graph G(ω) is equivalent to the entire graph Zd, precisely when the
environment is elliptic, i.e. ν(ωx(u) > 0) = 1 for each u ∈ E , x ∈ Zd. Much of the current literature
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assumes either the latter condition, or the stronger property of uniform ellipticity, ie that ∃ε > 0
such that ν(ωx(u) > ε) = 1 for each u ∈ E , x ∈ Zd.

On the other hand, given a directed graph G = (Gx)x∈Zd (with vertex set Zd, and such that
Gx 6= ∅ for each x), we can define a uniform random environment ω = (ωx(Gx))x∈Zd . Let |A|
denote the cardinality of A, and set

ωx(e) =

{
|Gx|−1, if e ∈ Gx
0, otherwise

.

The corresponding RWRE then moves by choosing uniformly from available steps at its current
location. This gives us a way of constructing rather nice and natural examples of random walks
in non-elliptic random environments: first generate a random directed graph G = (Gx)x∈Zd where
Gx are i.i.d., then run a random walk on the resulting random graph (choosing uniformly from
available steps).

Definition 1.1. We say that the environment is 2-valued when µ charges exactly two points,
i.e. there exist γ1, γ2 ∈ P and p ∈ (0, 1) such that µ({γ1}) = p, µ({γ2}) = 1 − p. We say that
the graph is 2-valued when there exist E1, E2 ⊂ E and p ∈ (0, 1) such that µ(Go = E1) = p and
µ(Go = E2) = 1− p.

[3] proves that the following simple criterion is equivalent to the statement that the random
walk visits infinitely many sites almost surely.

(1.2) There exists an orthogonal set V of unit vectors such that µ(Go ∩ V 6= ∅) = 1.

The following is proved in [3]:

Lemma 1.2. Assume (1.2) and suppose that µ(↓∈ Go) = 0 but µ(↑∈ Go) > 0. Then the RWRE is
transient in direction e2, P -almost surely. Let T be the first time the RWRE follows direction e2.
If E[T ] < ∞ then Xn has an asymptotic speed v = (v[1], . . . , v[d]), in the sense that P (n−1Xn →
v) = 1. Moreover, v[i] = E[X

[i]
T ]/E[T ].

Proof. The random walk visits infinitely many sites, and at each visit to a new site there is positive
(non-vanishing) probability of then taking a step in direction e2. Thus the second coordinate of
the random walk converges monotonically to ∞.

Let τk be the k’th time that Xn moves in direction e2, and τ0 = 0. Let Yk = Xτk −Xτk−1
. Since

the environment seen by the random walker is refreshed at every time τk, the Yk are IID, and the
τk are sums of IID random variables with distribution that of T . Because E[T ] < ∞, it follows
that E[|Yk|] < ∞ as well. By the law of large numbers, τk/k → E[T ] and Xτk/k → E[Y1] almost
surely. Moreover k−1 max{|Xn −Xτk−1

| : τk−1 ≤ n ≤ τk} → 0. Thus

1

n
Xn →

1

E[T ]
E[Y1] = v P -almost surely.

�

Table 1 summarizes what we know about uniform RWDRE in 2-dimensional 2-valued random
environments. It reproduces and updates Table 1 of [3]. There is a related table in [2], giving
percolation properties for the directed graphs C andM. The latter includes 2-valued environments
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such as ( l←→, ·) (site percolation), in which one of the possible environments has no arrows. These
environments do not appear in the present table, because (as remarked in Section 3 of [3]), the
walk gets stuck on a finite set of vertices (in this case 1 vertex). The RWRE setup we have chosen
requires that motion be possible in at least one direction.

Notes to Table 1
1 The authors believe it follows from results of Berger & Deuschel [1] that M is recurrent ∀p.
2 Bounds on the critical probability are given in [2]. Improved bounds are in preparation.
3 Improved ranges of values giving transience and speeds are in preparation.
4 We do not have a closed form expression for this. But an approach to getting asymptotic ex-
pressions is given below.
5 An expansion in terms of q-hypergeometric functions is described below, without full details.

2. Speeds

The non-trivial 2-valued uniform models, in which one must turn to the results of [3] for existence
of a speed, and in which we can say very little about the speed, other than mononicity are as
follows:

• →↑
←↓

• ←→↓ ↑
• ←→↓ l
• ←→↓ →↑
• ←→↓ l→
• ←→↓ ←→↑
• l←→ ↑
• l←→ →↑
• l←→ ←→↓

There are two further models, which are also non-trivial, but for which, once we know that the
speed exists, it must be v = (0, 0) by symmetry, namely:

• ↔l
• l←→ ↔

The simplest models where one can explicitly calculate the speed are:

• ↑→:
Because the RWDRE sees a new environment every time, the speed is simply (p, 1− p).
• ↔→ :

Let τk be the k’th time n that GXn =→, with τ0=0. Let ηk = X
[1]
τk . At each time τk the

process starts exploring a new independent environment, so Tk = τk − τk−1 are IID (for
k ≥ 2), as are Mk = ηk − ηk−1. By the strong law, ηk/τk → E[M2]/E[T2] as k →∞. If Nn

is the last k such that τk ≤ n then

ηNn

τNn+1

≤ X
[1]
n

n
≤
ηNn+1

τNn

so that Xn/n→ E[M2]/E[T2] as well.
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γ1, γ2 Random walk Reference
↑ → v = (1− p, p). given here
↑ ↓ Stuck on two vertices. Lemma 3.1 of [3]

↔ ↑ v =
(

0, (1−p)2
p+(1−p)2

)
. given here

↔ → v =
(

1−p
1+p

, 0
)

. given here

↔ l v = (0, 0). Symmetry1

→↑ ↑ v =
(
p
2
, 1− p

2

)
. given here

→↑ ←↑ v =
(

(2p−1)(p2−p+6)
6(2−p)(1+p)

, 1
2

)
. given here

→↑ ↔ v =
(

1
p2

+ (1−p)2
2p(1−p+p log p)

)−1

· (1, 1). given here

→↑ ← v =
(

p(2−p)
2+3p−2p2−p3

)
· (3, 1) + (−1, 0). given here

→↑
←↓ v[1] = v[2] ↑ in p. Transient2 for p ≈ 0, 1. Cor. 3.8 & 5.2 of [3]

Conjecture: v 6= 0 for p 6= 1
2
, Recurrent when p = 1

2

←→↓ ↓ 1
v[2]

= 8p(1−p)
1+
√

5
− 1− 2p− 4(1−p)2(5+

√
5)

p(1+
√

5)

∞∑
n=2

pk

1+2−k(3+
√

5)k
, v[1] = 0. given here

←→↓ → − 1
v[2]

= 4− p− 5+
√

5
2

(1− p)2Θ(pγ) + (1−p)[3+
√

5−(1−p)(5+
√

5)Θ(p)]2

(3+
√

5)[2−(1−p)(5+
√

5)Θ(pγ)]
given here

where γ = 3+
√

5
2

and Θ(z) =
∑∞

n=0
zn

γ2n+1+1
. v[1] = 1− 3v[2].

←→↓ ↑ v[1] = 0, v[2] ↓ in p. Transient2 for p ≈ 0. Equation (3.4) of [3]
Conjecture: ∃!p(6= 3/4) s.t. v[p] = 0. Recurrent for this p.

←→↓ ↔ v[1] = 0, v[2] < 0 for p > 0. v[2] strictly ↓ in p. given here4

←→↓ l v[1] = 0, v[2] ↓ in p. Transient3 for p > 3
4
, v[2] < 0 for p > 6

7
. Cor. 5.2 / Prop. 5.5 of [3]

Conjecture: v[2] < 0 for p > 0.
←→↓ →↑ 3v[2] = 5v[1] − 1. v[1] ↓ in p. Lemma 4.2 / Cor. 5.2 of [3]
←→↓ ←↓ v[1] = 1 + 3v[2] given here5

←→↓ l→ v · (1,−1) = 1
3
, v · (1, 1) ↓ in p. Corollary 5.2 of [3]

←→↓ ←→↑ v[1] = 0, v[2] ↓ in p. Corollary 5.2 of [3]
Conjecture: v[2] 6= 0 for p 6= 1

2
. Recurrent when p = 1

2
.

l←→ ↑ v[1] = 0, v[2] ↓ in p. Transient3 for p < 1
2
, v[2] > 0 for p < 1

3
. Cor. 5.2 / Prop. 5.5 of [3]

Conjecture: v[2] > 0 for p < 1.
l←→ →↑ v[1] = v[2] ↓ in p. Transient3 for p < 1

2
, v[1] > 0 for p < 1

3
. Cor. 5.2 / Prop. 5.5 of [3]

Conjecture: v[1] > 0 for p < 1.
l←→ ↔ v = (0, 0) Symmetry1.
l←→ ←→↓ v[1] = 0, v[2] ↑ in p. Transient3 for p < 1

4
, v[2] < 0 for p < 1

7
. Cor. 5.2 / Prop. 5.5 of [3]

Conjecture: v[2] < 0 for p < 1.

Table 1. Table of results for RW in 2-dimensional 2-valued degenerate random
environments, where the first configuration occurs with probability p ∈ (0, 1) and
the other with probability 1− p.



RWDRE 5

If M2 = m then PG(T2) = m2, since that is the mean time to reach m of a random
walk on [0,m] with reflection at 0. Thus E[T2] = E[M2

2 ]. But M2 is geometric, E[M2] =∑∞
m=1mp

m−1(1− p) = 1/(1− p) and E[M2
2 ] = (1 + p)/(1− p)2. So v[1] = (1− p)/(1 + p).

• →↑ ↑:
In this model also, each step of Xn explores a new environment. So we essentially have
a regular random walk, whose step distribution is → with probability p/2 and ↑ with
probability 1− p/2. So v = (p/2, 1− p/2).

In the remaining examples, we use the setup of Lemma 1.2. There is a direction e for which the
first time T that Xn moves in direction e is a renewal time – what happens starting at time T

is independent of what came before. If e = ±e1, then v[1] = ±1/E[T ]. Then if Y = X
[2]
T , then

v[2] = E[Y ]/E[T ]. With corresponding formulae if e = ±e2. In the following example we calculate
E[Y ] to get the speed.

• →↑ ←↑ :
For n ≥ 0, let τn = inf{m ≥ 0 : X

[2]
m = n}. Then for i ≥ 1, Ti = τi − τi−1 are

i.i.d. Geometric(1/2) random variables (with mean 2), and Yi = X
[1]
τi−1−X

[1]
τi−1 are i.i.d. ran-

dom variables, independent of the {Ti}i≥1. So E[Ti] = 2 and v[2] = 1/2. Let Nn = sup{m ≥
0 : τm ≤ n}. Here e =↑, and the first time T that we move upwards is geometric with pa-
rameter 1/2.

Then almost surely,

Y
[1]
n

n
=

∑Nn

i=1 Yi +
∑n

i=τNn+1(X
[1]
i −X

[1]
i−1)

n
=
Nn

n

∑Nn

i=1 Yi
Nn

+

∑n
i=τNn+1(X

[1]
i −X

[1]
i−1)

n
→ E[Y1]

E[T1]
,

as n→∞, where we have used the fact that |
∑n

i=τNn+1(X
[1]
i −X

[1]
i−1)| ≤ TNn+1 .

Now let Y = X
[1]
T , so v[1] = E[Y ]/2. For j ≥ 1, we can have Y = j three ways – reaching

no ←↑ vertex, reaching a ←↑ vertex at (j, 0), or reaching a ←↑ vertex at (j + 1, 0). Thus

P (Y = j) = pj+1
(1

2

)j+1
+ pj(1− p)

∞∑
n=0

(1

2

)j+2n+1
+ pj+1(1− p)

∞∑
n=0

(1

2

)j+2n+3

=
pj(4− p2)

3 · 2j+1
.

Likewise, we can have Y = −j, j ≥ 1 three ways, depending on where if anywhere Xn

reaches a →↑ vertex, giving P (Y = −j) =
(
(1−p)j(4− (1−p)2)

)
/
(
3 ·2j+1

)
. The case j = 0

would be similar, but is not needed. Summing over j gives that

E[Y ] =
p(4− p2)

12
· 1

(1− p/2)2
− (1− p)(4− (1− p)2)

12
· 1

(1− (1− p)/2)2

=
p(2 + p)

3(2− p)
− (1− p)(3− p)

3(1 + p)
=

(2p− 1)(p2 − p+ 6)

3(2− p)(1 + p)
.

In some cases, we can avoid calculating E[Y ] directly. Again, assume e = ±e1. There are two
generators, L1 and L2, depending on the environment. If we apply them to the functions fj(x) =
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x[j] we get that X
[j]
n −

∑
k<n(L1fj1{GXk

=γ1} + L2fj1{GXk
=γ2}) is a martingale. Therefore

v[j]E[T ] = E[X
[j]
T ] = L1fjα1 + L2fjα2

where αj = E[#{k < T : GXk
= Aj}]. When j = 1 the LHS is ±1, which usually lets us solve for

α1 in terms of E[T ]. We know that α2 = E[T ]− α1, so putting j = 2 will then give us v[2]. Thus
all that remains is to calculate E[T ]. (We could have done the previous example this was as well.)

• ↔↑ :
Here e =↑. We have v[1] = 0 by symmetry, and v[2] = 1/E[T ]. If the origin is ↑, then
T = 1. Otherwise, suppose there are ↑ at (−i, 0) and at (j, 0), with only ↔ in between.
Then PG(T − 1) = ij, since this is the mean exit time for a simple random walk on [−i, j].
Given that the origin is ↔ (which happens with probability p), i and j are independent
geometric random variables, with means 1/(1− p). Thus E[T ] = 1 + p/(1− p)2.

• →↑ ↔:
Here e =↑, and the martingale equations are that 1 = v[2]E[T ] = α2/2 and v[1]E[T ] = α2/2.
In other words, v[1] = v[2] = 1/E[T ]. So we must now find E[T ].

First consider a random walk Zj on [0, n) with the following boundary conditions: at n
there is absorption, and at 0 we reflect with probability 1/2 and die otherwise. Let S be
the time of death or absorption, and let f(k) = E[S | Z0 = k]. Then

f(k) = 1 +
f(k − 1) + f(k + 1)

2

for 1 ≤ k ≤ n − 1, f(n) = 0, and f(0) = 1 + f(1)/2. The solution to the recurrence is
f(k) = A+Bk− k2, and substituting the boundary conditions gives f(k) = (n− k)(k+ 1).
Likewise let g(k) = P (ZS = n | Z0 = k). Then g(k) = [g(k − 1) + g(k + 1)]/2 for
1 ≤ k ≤ n − 1, with boundary conditions g(0) = g(1)/2 and g(n) = 1. This has solution
g(k) = (k + 1)/(n+ 1).

Now think of how Xj evolves. Let the first →↑ to the left of o be at x0 = (i0, 0), where
i0 ≤ 0. Let successive →↑ to the right of o be at x1 = (i1, 0), x2 = (i2, 0), etc., where
0 < i1 < i2 < . . . . On the horizontal interval [x0, x1), Xj performs a simple random walk
till it hits x0 or x1. When it hits x0 it either moves upward (making this time T ), or it
reflects back into the interval. If it reaches x1 it leaves this interval forever, and starts the
same process over again on the interval [x1, x2). Let the interval being visited at time T
be [xN , xN+1), where N ≥ 0, and let Sj be the total time spent in [xj, xj+1). Therefore

T =
∑N

j=0 Sj, and

E[T ] =
∞∑
j=0

E[Sj1{N≥j}].

Let Aj be the event that Xn exits [xj, xj+1) on the right, ie. at xj+1. Then for j ≥ 1,

{N ≥ j} = ∩j−1
k=0Ak. Moreover, there is a renewal every time Xn enters a new interval,

because a new environment starts getting explored. The interval [x0, x1) is different from
the rest, because we start at o. But for all other [xj, xj+1) the process starts walking at xj.
Therefore the cases j ≥ 1 are actually independent replications of the same procedure. In
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other words,

E[T ] = E[S0] +
∞∑
j=1

E[Sj

j−1∏
k=0

1Ak
] = E[S0] +

∞∑
j=1

E[S1 | A0]P (A0)P (A1 | A0)j−1.

We use the expressions for f and g to work out these factors. By the expression for f , we
have PG(S0) = i1(1− i0). Take i = −i0 and k = i1. Then

E[S0] =
∞∑
i=0

∞∑
k=1

p2(1− p)i+k−1k(1 + i) =
( ∞∑
k=1

p(1− p)k−1k
)2

=
1

p2
.

Likewise PG(S1 | A0) = i2 − i1. Write k for this quantity, so

E[S1 | A0] =
∞∑
k=1

(1− p)k−1pk =
p

p2
=

1

p
.

Similarly, PG(A0) = (1− i0)/(1 + i1 − i0), so (letting n = i+ k)

P (A0) =
∞∑
i=0

∞∑
k=1

p2(1− p)i+k−1 1 + i

1 + i+ k
=
∞∑
n=1

p2(1− p)n−1

k∑
j=1

n+ 1− j
1 + n

=
∞∑
n=1

p2(1− p)n−1

n+ 1
· n(n+ 1)

2
=
p2

2
· 1

p2
=

1

2
.

And PG(A1 | A0) = 1/(1 + i2 − i1), so

P (A1 | A0) =
∞∑
k=1

p(1− p)k−1 1

1 + k
=

p

(1− p)2

( ∞∑
k=0

(1− p)n+1

n+ 1
− (1− p)

)
=

p

(1− p)2
(− log p− (1− p)) = 1− 1− p+ p log p

(1− p)2
.

Putting this together,

E[T ] =
1

p2
+

(1− p)2

2p(1− p+ p log p)
.

• →↑ ← :
Here e =↑, and the martingale equations are that 1 = v[2]E[T ] = α1/2 and v[1]E[T ] =
α1/2− α2 = −E[T ] + 3α1/2. In other words, v[2] = 1/E[T ] and v[1] = −1 + 3/E[T ]. So we
must now find E[T ].

Suppose that there is a →↑ at (−i, 0) for i ≥ 1, and ←’s at o and all points in between
(a scenario with probability p(1− p)i. Then Xn takes i steps to the left, and then oscillates
between (−i, 0) and (−i+ 1, 0) a random number of times, before T occurs.

The other possibility is that there is a ← at (j, 0) for j ≥ 1, and →↑ ’s at o and all points
in between. This scenario has probability (1− p)pj. Now Xn steps right, and T may occur
before it reaches (j), j, or it may reach (j, 0) and then oscillate until time T . The various
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scenarios lead to the following expression:

E[T ] =
∞∑
i=1

p(1− p)i
∞∑
k=0

(1/2)k+1[i+ 2k + 1]

+
∞∑
j=1

(1− p)pj
( j−2∑
k=0

(1/2)k+1[k + 1] +
∞∑
k=0

(1/2)j+k[j + 2k]
)

=
∞∑
i=1

p(1− p)i(i+ 3) +
∞∑
j=1

(1− p)pj
(1

2

d

dt

∣∣∣
t=1/2

1− tj

1− t
+
j + 2

2j−1

)
= 3(1− p) +

1− p
p

+ 2
∞∑
j=1

(1− p)pj
(

1 +
1

2j

)
= 2− 3p+

1

p
+ 2p+

p(1− p)
1− p/2

=
2 + 3p− 2p2 − p3

p(2− p)
.

• ←→↓ ↓:
The speed is (0,−1/E[T ]), where T is the time of the first step in the ↓ direction.

To find E[T ], first consider random walk on [0, n], with the probability of death in 1 step
starting from 1 ≤ k ≤ n−1 being 1/3, and the probability of death in 1 step being 1 starting
from 0 or n. Let f(k) be the mean time of death, starting from k. Then f(0) = f(n) = 1,
and otherwise

f(k) = 1 +
f(k − 1) + f(k + 1)

3
.

The solution is f(k) = 3 + c̄γ̄k + cγk where γ̄ < γ are solutions of z + z−1 = 3. In other
words, γ = (3 +

√
5)/2 and γ̄ = (3−

√
5)/2 . From the boundary conditions, we get

f(k) = 3 +
2(1− γn)γ̄k

γn − γ̄n
+

2(1− γ̄n)γk

γn − γ̄n
.

But γ̄γ = 1, so this simplifies to

f(k) = 3− 2
γk + γn−k

γn + 1
.



RWDRE 9

If there is a ↓ at o then T = 1. Otherwise, suppose there are ↓’s at (−i, 0) and (j, 0), with
←→↓ ’s in between, where i, j ≥ 1. Then PG(T ) = 3− 2(γi + γj)/(γi+j + 1). Therefore

E[T ] = (1− p) · 1 + p
∞∑

i,j=1

pi+j−2(1− p)2
(

3− 2
γi + γj

γi+j + 1

)

= 1− p+ 3p(1− p)2
( ∞∑
i=1

pi−1
)2

− 2(1− p)2

p

∞∑
k=2

pk

γk + 1

k−1∑
j=1

(γj + γk−j)

= 1 + 2p− 4(1− p)2

p

∞∑
k=2

pk

γk + 1

(γk − 1

γ − 1
− 1
)

= 1 + 2p− 4(1− p)2

p

∞∑
k=2

( 1

γ − 1
pk − γ + 1

γ − 1

pk

γk + 1

)
= 1 + 2p− 4p(1− p)

γ − 1
+

4(1− p)2(γ + 1)

p(γ − 1)

∞∑
k=2

pk

γk + 1
.

Note that the expression Q(q; p) = 1+2
∑∞

k=1
pk

qk+1
is known as a unilateral q-hypergeometric

series, and in the theory of special functions would be written

Q(q; p) = 2φ1

[
q −1
−q ; q, p

]
.

See [4]. We are indebted to Martin Muldoon for pointing this out. We could therefore also
write

E[T ] =
2(1− p)2(γ + 1)

p(γ − 1)
Q(γ; p) + 1 + 2p

− 4p(1− p)
γ − 1

− 4(1− p)2

γ − 1
− 2(1− p)2(γ + 1)

p(γ − 1)

=
2(1− p)2(γ + 1)

p(γ − 1)
Q(γ; p) + 5− 2

p
− 4(1− p)
p(γ − 1)

• ←→↓ →:
Here e =↓, and the martingale equations are that −1 = v[2]E[T ] = −α1/3 and v[1]E[T ] =
α2 = E[T ]−α1 = E[T ]−3. In other words, v[2] = −1/E[T ] and v[1] = 1−3/E[T ] = 1+3v[2].
So we must now find E[T ].

First consider a random walk Zj on [0, n] with the following boundary conditions: it
reflects at 0, and it is absorbed at n. At points in between there is killing with probability
1/3, and otherwise Zj performs a simple symmetric random walk. Let S be the time of
death or absorption, and let f(k) = fn(k) = E[S | Z0 = k]. Then

f(k) = 1 +
f(k − 1) + f(k + 1)

3

for 1 ≤ k ≤ n − 1, f(n) = 0, and f(0) = 1 + f(1). The solution to the recurrence is
f(k) = 3 + c̄γ̄k + cγk where as above, γ̄ < γ are (3±

√
5)/2. From the boundary conditions,
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we get

f(k) = 3 + γ̄k
3γ − 3− γn

γn(γ̄ − 1)− γ̄n(γ − 1)
+ γk

γ̄n − 3γ̄ + 3

γn(γ̄ − 1)− γ̄n(γ − 1)
.

But γ̄γ = 1, so this simplifies to

f(k) = 3− γn−k(3γ − 3− γn) + γk(1− 3γn−1 + 3γn)

(γ − 1)(γ2n−1 + 1)

= 3− 1

γ2n−1 + 1

[
3(γn−k + γn+k−1) +

γk − γ2n−k

γ − 1

]
.

Likewise let g(k) = gn(k) = P (ZS = n | Z0 = k). Then g(k) = [g(k − 1) + g(k + 1)]/3 for
1 ≤ k ≤ n − 1, with boundary conditions g(0) = g(1) and g(n) = 1. As above, this has
solution

g(k) =
γn−k + γn+k−1

γ2n−1 + 1
.

Now consider how Xj evolves. Let the first → to the left of o be at x0 = (i0, 0), where
i0 ≤ 0. Let successive → to the right of o be at x1 = (i1, 0), x2 = (i2, 0), etc., where
0 < i1 < i2 < . . . . At interior points of the horizontal interval [x0, x1), Xj leaves the
interval with probability 1/3 at every step, by moving downwards (ie at time T ). Otherwise
it evolves as a simple random walk till it hits x0 or x1. If it hits x0 it reflects back with
probability 1. If it reaches x1 it leaves this interval forever, and starts the same process
over again on the interval [x1, x2). Let the interval being visited at time T be [xN , xN+1),

where N ≥ 0, and let Sj be the total time spent in [xj, xj+1). Then T =
∑N

j=0 Sj, and

E[T ] =
∞∑
j=0

E[Sj1{N≥j}].

If Aj is the event that Xn exits [xj, xj+1) at xj+1 (ie before T ), then for j ≥ 1 we have

{N ≥ j} = ∩j−1
k=0Ak. Moreover, there is a renewal every time Xn enters a new interval,

because we start exploring a new environment. The interval [x0, x1) is different from the
rest, because we start at o. But for all other [xj, xj+1) the process starts walking at xj. In
other words, the cases j ≥ 1 are independent replications of the same procedure. Therefore

E[T ] = E[S0] +
∞∑
j=1

E[Sj

j−1∏
k=0

1Ak
] = E[S0] +

∞∑
j=1

E[S1 | A0]P (A0)P (A1 | A0)j−1

= E[S0] + E[S1 | A0]P (A0)/(1− P (A1 | A0)).

We can work out all these factors using the expressions for f and g. First define

Θ(z) = Θγ(z) =
∞∑
n=0

zn

γ2n+1 + 1
=

1

2
√
z

[
Q(γ;

√
z)−Q(γ2; z)

]
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where Q is the q-hypergeometric series defined earlier. Then using that γ2 − 3γ + 1 = 0,

E[S0] =
∞∑
i0=0

∞∑
i1=1

pi0+i1−1(1− p)2fi0+i1(i0)

= 3− (1− p)2

∞∑
n=1

pn−1

n−1∑
k=0

[3(γn−k + γn+k−1)

γ2n−1 + 1
+

γk − γ2n−k

(γ − 1)(γ2n−1 + 1)

]
= 3− (1− p)2

∞∑
n=1

pn−1(γn − 1)

(γ − 1)2(γ2n−1 + 1)

[
3(γ − 1)(γ + γn−1) + 1− γn+1

]
= 3− (1− p)2

(γ − 1)2

∞∑
n=1

pn−1

γ2n−1 + 1

[
(γ2n−1 + 1)(3γ − 3− γ2) + γn−1(3γ3 − 2γ2 − 2γ + 3)− 2(γ2 − 1)

]
= 3− (1− p)(3γ − 3− γ2)

(γ − 1)2
+

(
1− p
γ − 1

)2 [
2(γ2 − 1)Θ(p)− (3γ3 − 2γ2 − 2γ + 3)Θ(pγ)

]
,

= 3 +
2(1− p)

γ
+

2(1− p)2

γ

[
(3γ − 2)Θ(p)− (8γ − 2)Θ(pγ)

]
,

E[S1 | A0] =
∞∑
n=1

pn−1(1− p)fn(0) = 3−
∞∑
n=1

pn−1(1− p)
γ2n−1 + 1

[
3γn−1(1 + γ)− γ2n − 1

γ − 1

]
= 3− 3(1− p)(1 + γ)Θ(pγ) +

γ

γ − 1
− (1− p)(1 + γ)

γ − 1
Θ(p),

P (A0) =
∞∑
i0=0

∞∑
i1=1

pi0+i1−1(1− p)2gi0+i1(i0) = (1− p)2

∞∑
n=1

pn−1

n−1∑
k=0

γn−k + γn+k−1

γ2n−1 + 1

=
(1− p)2

γ − 1

∞∑
n=1

pn−1(γ2n−1 + γn+1 − γn−1 − γ)

γ2n−1 + 1
=

(1− p)
γ − 1

+ (1− p)2(γ + 1)
[
Θ(pγ)− Θ(p)

γ − 1

]
,

P (A1 | A0) =
∞∑
n=1

pn−1(1− p)gn(0) = (1− p)(γ + 1)Θ(pγ).

Therefore

E[T ] = 3 +
2(1− p)

γ
+

2(1− p)2

γ

[
(3γ − 2)Θ(p)− (8γ − 2)Θ(pγ)

]
+

[
3− 3(1− p)(1 + γ)Θ(pγ) + γ

γ−1
− (1−p)(γ+1)

γ−1
Θ(p)

][
(1−p)
γ−1

+ (1− p)2(γ + 1)
{

Θ(pγ)− Θ(p)
γ−1

}]
1− (1− p)(γ + 1)Θ(pγ)

.

Simplifying this, we have

E[T ] = 4− p− (1− p)2 4γ − 1

γ
Θ(pγ) +

1− p
γ

[
γ − (1− p)(γ + 1)Θ(p)

]2

1− (1− p)(γ + 1)Θ(pγ)
.
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Substituting for γ gives

E[T ] = 4− p− 5 +
√

5

2
(1− p)2Θ(pγ) +

(1− p)
[
3 +
√

5− (1− p)(5 +
√

5)Θ(p)
]2

(3 +
√

5)
[
2− (1− p)(5 +

√
5)Θ(pγ)

] .

• ←→↓ ←↓ :
Here e =↓, and the martingale equations are that −1 = v[2]E[T ] = −α1/3 − α2/2 =
−E[T ]/3 − α2/6 and v[1]E[T ] = −α2/2 = E[T ] − 3. In other words, v[2] = −1/E[T ] and
v[1] = 1− 3/E[T ] = 1 + 3v[2]. So we must now find E[T ]. We leave working out the details
for a future time.

The argument now proceeds exactly as in the previous case (←→↓ ,→). What changes are
the boundary conditions for the functions f(k) = fn(k) and g(k) = gn(k), which become
that f(0) = 0, f(n) = 1 + 1

2
f(n− 1), g(0) = 1, g(n) = 1

2
g(n− 1).

Finally, we give an asymptotic argument, in the one case in which there is an elementary renewal
structure for which we don’t know how to find the speed analytically.

• ←→↓ ↔:
Here e =↓, and v = (0,−1/E[T ]). Though we don’t know how to find v analytically, here
is an approach that should give an asymptotic expansion in powers of q = 1− p.

Embed Z ⊂ Z2 as Z× {0}, and let Yn = X
[1]
n for n < T . We can fill in new independent

increments after time T − 1 to make Yn into a simple symmetric random walk started from
0, and then recover an independent copy of T by killing Y at a rate that depends on the
environment. Write P̃ for this extension of P . Let Vi be 1 (resp. 2/3) if G(i,0) =↔ (resp.
←→↓ ). Then by Feynman-Kac,

E[T ] =
∞∑
k=1

P (T ≥ k) =
∞∑
k=1

P̃ (
k−1∏
i=1

VYi).

This equals
∑∞

k=1 P̃ (
∏

j∈Z V
Nj(k)
j ), where Nj(k) counts the number of visits of Yn to j, for

n < k. Integrating out the environment, and setting γ = 2/3, we get
∞∑
k=1

P̃ (
∏
j∈Z

[1− p+ pγNj(k)]) =
∞∑
k=1

P̃ (
∏
j∈Z

γNj(k)[qγ−Nj(k) + 1− q])

=
∞∑
k=1

λk−1P̃ (
∏
j∈Z

[1 + q(γ−Nj(k) − 1)])

(since
∑

j Nj(k) = k − 1). This expression could in principle be expanded as a series in q.

What complicates this is that the qi term involves knowing the joint distributions of the
Nj(k) for i choices of j. Still, it should be possible to work out at least the constant and
linear terms.
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