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In elementary probability theory, we use the moment generating function to
compute moments, identify distributions, study convergence in distribution etc.
Over there we emphasise the application of methods and do not pursue full math-
ematical rigor. In advanced probability theory, we work with characteristic func-
tions and develop the entire theory relating the characteristic function with the
study of distributional properties. The aim of this note is to develop the bridge
connecting these two approaches in a precise mathematical way. The approach
we adopt here relies on complex analysis. We recall the necessary tools in the
appendix. We also assume familiarity with characteristic functions.

1 The moment generating function and its basic
properties

The moment generating function is mainly used to study distributions. It is
defined as follows.
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Definition 1.1. Let X be a random variable. The moment generating function
(m.g.f.) of X is defined by

MX(t) , E[etX ], t ∈ T,

where T is the domain of its definition consisting of those t’s at which E[etX ] <∞.

From definition, the m.g.f. is always positive. It is apparent that 0 ∈ T and
MX(0) = 1. Moreover, if t > 0 is in T, then [0, t] ⊆ T. Indeed, for any s ∈ [0, t],
we have

E[esX ] = E[esX1{X>0}] + E[esX1{X<0}]

6 E[etX1{X>0}] + P(X < 0)

6MX(t) + 1.

Similarly, if t < 0 is in T, then [t, 0] ⊆ T. This shows that the domain of defi-
nition for an m.g.f. is always an interval. This interval could be degenerate (i.e.
T = {0}), finite or infinite, and in general there is no implication on the open-
ness/closedness at the endpoints. A simple example where the m.g.f. is defined
only at t = 0 is the Cauchy distribution. It is a good exercise to provide one
example for each of the possible cases for T . We give one such example where
T = (−1, 1].

Example 1.1. Let X be a random variable with p.d.f.

fX(x) = Ce−|x|
(
|x|−21{x>1} + 1{x<0}

)
,

where C is a normalising constant so that
∫
R fX(x)dx = 1. The m.g.f. of X is

MX(t) = C ·
(∫ 0

−∞
e(t+1)xdx+

∫ ∞
1

x−2e(t−1)xdx

)
.

It is clear that MX(t) <∞ if and only if t ∈ (−1, 1].

The first application of m.g.f. is the computation of moments, which also
justifies its name.

Theorem 1.1. Suppose that MX(t) is well-defined defined on a neighbourhood
of the origin, say (−δ, δ). Then X has finite absolute moments of all orders.
Moreover, MX(t) admits an absolutely convergent Taylor expansion

MX(t) =
∞∑
n=0

E[Xn]

n!
tn, t ∈ (−δ, δ). (1.1)

In particular, E[Xn] = M
(n)
X (0) for all n > 0.
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Proof. Let t ∈ (0, δ). From the simple inequality

et|x| 6 etx + e−tx

and the fact that ±t ∈ T, we have

E[et|X|] 6MX(t) +MX(−t) <∞.

This shows that
∞∑
n=0

E[|X|n]

n!
tn = E[et|X|] <∞,

and in particular E[|X|n] < ∞ for all n. In addition, the series
∑∞

n=0
E[Xn]
n!

sn is
absolutely convergent on [−t, t]. If we write

Sn ,
n∑
k=0

Xk

k!
tk,

then

|MX(t)− E[Sn]| 6
∞∑

k=n+1

E[|X|k]
k!

tk → 0, as n→∞.

Therefore, MX(t) admits the expansion (1.1). The last claim follows from general
properties of power series.

Remark 1.1. Using essentially the same argument, one can show the following
property: if t is an interior point of T, then

E[|X|ketX ] <∞

for any k ∈ N. In fact, if we choose η > 0 such that (t − η, t + η) ⊆ T, then we
have

|X|ketX 6 eη|X|etX 6 e(t+η)X + e(t−η)X

when |X| is greater than some constant R depending on k and η. Note that by
the choice of η the right hand side of the above inequality is integrable.

The analyticity property at t = 0 given by Theorem 1.1 can be extended to the
more general complex setting below. This extension will allow us to complexify
the m.g.f. and hence relate our study to well-known properties of the characteristic
function.
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Lemma 1.1. Suppose thatMX(t) is well-defined on some open interval I = (a, b).
Then the complex function

ΦX(z) , E[ezX ]

is well-defined and holomorphic in the strip

SI , {z = t+ is : t ∈ I, s ∈ R}

over the complex plane.

Proof. The well-definedness of Φ(z) is obvious:

|ΦX(z)| = |E[etX+isX ]| 6 E[etX · |eisX |] = MX(t)

for z = t + is ∈ SI . Now for given z0 = t0 + is0 ∈ SI , we show that ΦX(z) is
differentiable at z0 with

Φ′X(z0) = E[Xez0X ].

To this end, note that

ΦX(z)− ΦX(z0)

z − z0

− E[Xez0X ]

= E
[
ez0X

(
e(z−z0)X − 1− (z − z0)X

z − z0

)]
.

When |z − z0| < η, we have∣∣∣∣ez0X (e(z−z0)X − 1− (z − z0)X

z − z0

)∣∣∣∣
=

∣∣∣∣∣ez0X ·
∞∑
n=2

(z − z0)n−1Xn

n!

∣∣∣∣∣
6 et0X · |X| ·

∞∑
n=2

|ηX|n−1

(n− 1)!

6 |X| · et0X · eη|X|

6 |X| ·
(
e(t0+η)X + e(t0−η)X

)
.

If we choose η so that t0±η ∈ T , from Remark 1.1 we see that the right hand side
of the above inequality is integrable. According to the dominated convergence
theorem,

lim
z→z0

ΦX(z)− ΦX(z0)

z − z0

= E[Xez0X ].

Since z0 ∈ SI is arbitrary, we conclude that ΦX(z) is holomorphic in SI .
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Remark 1.2. In the strip SI , the function ΦX(z) is infinitely differentiable and one
can differentiate inside the expectation:

Φ
(n)
X (z) =

dn

dzn
E[ezX ] = E[XnezX ].

When restricted back to I, this is also true for the m.g.f. MX(t).

Another useful property of the m.g.f. is the following so-called convolution
theorem.

Theorem 1.2. Let X1, · · · , Xn be independent random variables whose m.g.f.’s
are well-defined on some interval I. Then the m.g.f. of Sn , X1 + · · · + Xn is
well-defined on I and it is given by

MSn(t) = MX1(t) · · ·MXn(t)

for t ∈ I.

Proof. By definition and independence,

MSn(t) = E[et(X1+···+Xn)] = E[etX1 ] · · ·E[etXn ] = MX1(t) · · ·MXn(t).

Example 1.2. Let X1, · · · , Xn be i.i.d. standard normal random variables. The
m.g.f. of X2

i is given by

MX2
i
(t) =

∫ ∞
−∞

etx
2 · 1√

2π
e−

x2

2 dx

=
1√
2π

∫ ∞
−∞

e
− x2

2·(1−2t)−1 dx

= (1− 2t)−1/2,

provided t < 1/2. From the convolution theorem,

MX2
1+···+X2

n
(t) = (1− 2t)−n/2, t <

1

2
.

This is precisely the m.g.f. of the Gamma distribution with parameters (n/2, 1/2).
From the uniqueness theorem which we will prove soon (cf. Theorem 2.1 in Section
2), we conclude that

X2
1 + · · ·+X2

n
d
= γ(n/2, 1/2).
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2 The uniqueness theorem
One of the most important results about m.g.f. is the fact that it uniquely deter-
mines the distribution. This is the content of the following theorem.

Theorem 2.1. Suppose that X and Y are two random variables whose m.g.f.’s
are well-defined and equal in some neighbourhood of t = 0. Then X d

= Y .

Proof. Suppose that the m.g.f.’s of X, Y are well-defined and equal in (−δ, δ) for
some δ > 0. Define the complex function

ΦX(z) , E[ezX ]

for z ∈ S , (−δ, δ)× iR over the complex plane, and similarly for Y . According
to Lemma 1.1, we know that ΦX(z) and and ΦY (z) are both holomorphic in S.
Since they coincide on the real interval (−δ, δ)×{0}, by the Identity Theorem (cf.
Theorem 6.2 in the appendix) we know that ΦX = ΦY in S. In particular, their
restrictions on the imaginary axis, which gives the corresponding characteristic
functions, are equal. It follows from the uniqueness theorem for characteristic
functions that X and Y must be equal in distribution.

From the Taylor expansion (1.1) we see that the m.g.f. of X is uniquely deter-
mined by its moments, provided the m.g.f. is well-defined in some neighbourhood
of the origin. Together with the uniqueness theorem, we know that in this case
the moments of X uniquely determines its distribution.

However, in general moments can still exist even if the m.g.f. is not well-
defined or is only defined on one side of the origin. It is interesting to remark
that, in such a situation the moments may fail to determine the distribution. In
what follows, we give two examples of a family of distinct distributions which
share the same moments of all orders. Both of them are quite enlightening. The
general principle of constructing such examples, as a necessary condition, is to
make the p.d.f. decay slower than exponential to fail the existence of its m.g.f.

Example 2.1. Let X = eZ be a standard log-normal random variable whose
p.d.f. is given by

f(x) =

{
1√
2πx

e−(lnx)2/2, x > 0,

0, otherwise.

Note that the moment E[Xn] exists for all n, while the m.g.f. of X is defined only
for t 6 0. Consider the family of p.d.f.’s {fε : ε ∈ [−1, 1]} defined by

fε(x) ,

{
f(x) (1 + ε sin(2π lnx)) , x > 0,

0, otherwise.
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Apparently fε > 0. We now show that∫ ∞
0

xnf(x) sin(2π lnx)dx = 0

for every n > 0, which then clearly implies that fε is a p.d.f. and its moments
coincide with the ones for X. Indeed,∫ ∞

0

xnf(x) sin(2π lnx)dx

=
1√
2π

∫ ∞
0

xn−1e−(lnx)2/2 sin(2π lnx)dx

=
1√
2π

∫ ∞
−∞

enu−u
2/2 sin(2πu)du (u , lnx)

=
en

2/2

√
2π

∫ ∞
−∞

e−(u−n)2/2 sin(2πu)du

=
en

2/2

√
2π

∫ ∞
−∞

e−v
2/2 sin(2πv)dv (v , u− n)

= 0,

since the integrand in the last integral is an odd function.

Example 2.2. Let X be a non-negative random variable whose p.d.f. is given by

f(x) =

{
Ce−αx

γ
, x > 0,

0, otherwise.

Here α > 0, γ ∈ (0, 1/2) and C is a normalising constant so that f has total
integral one. Again we know that X has finite moments of all orders while its
m.g.f. is only defined for t 6 0.

To motivate the construction of a family of distinct p.d.f.’s sharing the same
moments, we start by observing the following analytic identity:∫ ∞

0

up−1e−zudu =
Γ(p)

zp
(2.1)

for any p > 0 and z ∈ C with Re(z) > 0. The power function zp on the right hand
side of (2.1) is understood as

zp , exp (p (ln |z|+ iargz))
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with arg z ∈ (−π/2, π/2). When z is a positive real number, (2.1) is merely the
usual definition of the Gamma function. The complex case can be justified by
using the Identity Theorem after observing that both sides define holomorphic
functions on {z ∈ C : Re(z) > 0}.

Now for given n > 0, we choose p , (n + 1)/γ and z = α + iβ where β is to
be determined. Then the identity (2.1) becomes∫ ∞

0

u
n+1
γ
−1e−(α+iβ)udu

= γ

∫ ∞
0

xne−(α+iβ)xγdx (u , xγ)

= γ

∫ ∞
0

xne−αx
γ

cos(βxγ)dx− iγ
∫ ∞

0

xne−αx
γ

sin(βxγ)dx

=
Γ((n+ 1)/γ)

(α + iβ)(n+1)/γ
.

The idea is to choose β independent of n, such that

Γ((n+ 1)/γ)

(α + iβ)(n+1)/γ
∈ R.

If this is possible, it will imply that∫ ∞
0

xne−αx
γ

sin(βxγ)dx = 0 for all n.

In particular, if we define a family {fε : ε ∈ [−1, 1]} of distinct p.d.f.’s by

fε(x) ,

{
f(x) · (1 + ε sin(βxγ)) , x > 0,

0, otherwise,

then fε is a legal p.d.f. sharing the same moments with X of all orders.
To choose β with the desired property, note that

(α + iβ)
n+1
γ = ρ

n+1
γ ei·

n+1
γ
θ,

where we write α + iβ = ρeiθ with ρ > 0 and θ ∈ (−π/2, π/2) since α > 0. To
expect that

(α + iβ)
n+1
γ ∈ R,
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we need n+1
γ
θ ∈ Z · π for every n, i.e. θ

γπ
∈ Z. But we know that

− 1

2γ
<

θ

γπ
<

1

2γ
.

Since γ ∈ (0, 1/2) by the assumption, we can choose θ = γπ. Equivalently,
β , α tan(γπ) does the job.

It worths pointing out that, the assumption of γ ∈ (0, 1/2) is critical here.
In fact, when γ > 1/2, it is possible to show that there does not exist another
distribution whose moments coincide with the ones for X. In other words, in this
case the moments uniquely determine the distribution of X. Of course this is only
surprising when γ ∈ [1/2, 1), since the m.g.f. is still only defined for t 6 0. The
study of this problem falls into the topic of the moment problem, in which general
criteria on determinacy/indeterminacy are established. We refer the reader to
Durrett [3] for more details.

3 The convergence theorem
The m.g.f. is also an effective tool for studying convergence in distribution. The
following convergence theorem, which was originally due to Curtiss [2], shows that
pointwise convergence for the m.g.f.’s is a sufficient (but not necessary) condition
for convergence in distribution.

Theorem 3.1. Let Xn be a sequence of random variables whose m.g.f.’s Mn(t)
are well-defined in some common neighbourhood (−δ, δ) of the origin. Suppose
that Mn(t) converges to some function M(t) pointwisely for every t ∈ (−δ, δ).
Then there exists a unique random variable X, such that Xn → X in distribution,
and M(t) is the m.g.f. of X on (−δ, δ).

Proof. As before, we consider the complexified m.g.f.’s

Φn(z) , E[ezXn ]

defined on the strip S , (−δ, δ) × iR. We first claim that, the family {Φn} is
uniformly bounded over compact subsets of S. Indeed, let K be a compact subset
of S. Apparently, there exists 0 < δ′ < δ, such that K ⊆ [−δ′, δ′] × iR. For any
z = t+ is ∈ K, we have

|Φn(z)| 6 E[e|t|·|Xn|] 6 E[eδ
′|Xn|] 6Mn(δ′) +Mn(−δ′).
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Since the right hand side is convergent as n → ∞, it has to be bounded in n.
Therefore, the family {Φn} is uniformly bounded on K.

In addition, by the assumption we know that Φn(z) is convergent pointwisely
on the real interval (−δ, δ) × {0}, which apparently has a limit point inside the
domain S. According to Vitali’s theorem (cf. Theorem 6.6 in the appendix), we
conclude that there exists a holomorphic function Φ(z) on S, such that Φn con-
verges to Φ uniformly on compact subsets of S. By restricting on the imaginary
axis, we see that the characteristic function of Xn, which is Φn(it) (t ∈ R), con-
verges pointwisely to Φ(it). Since Φ is continuous, according to Lévy’s continuity
theorem for characteristic functions, there exists a unique random variable X such
that Xn → X in distribution, and Φ(it) (t ∈ R) is the characteristic function of
X.

Next, we show that the m.g.f. MX(t) of X is well-defined for t ∈ (−δ, δ).
Indeed, for fix t ∈ (−δ, δ) and any A > 0, let ϕ(x) ∈ C(R1) be such that

ϕ(x) = 1, x ∈ [−A,A],

ϕ(x) = 0, x ∈ [−2A, 2A]c,

0 6 ϕ 6 1.

(3.1)

It follows that∫ A

−A
etxdFX 6

∫ ∞
−∞

ϕ(x)etxdFX

6

∣∣∣∣∫ ∞
−∞

ϕ(x)etxdFX −
∫ ∞
−∞

ϕ(x)etxdFXn

∣∣∣∣
+

∫ ∞
−∞

ϕ(x)etxdFXn

6

∣∣∣∣∫ ∞
−∞

ϕ(x)etxdFX −
∫ ∞
−∞

ϕ(x)etxdFXn

∣∣∣∣+ sup
n>1

Mn(t),

for all n. Since Xn → X in distribution and ϕ(x)etx ∈ Cc(R), by letting n → ∞
we obtain that ∫ A

−A
etxdFX 6 sup

n>1
Mn(t).

Since A is arbitrary, we have

MX(t) =

∫ ∞
−∞

etxdFX 6 sup
n>1

Mn(t) <∞.
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Finally, if we consider the complexified m.g.f. Φ̃X(z) , E[ezX ] on S, we know
that as the characteristic function

Φ̃X(it) = Φ(it), t ∈ R.

By the Identity Theorem, we conclude that Φ̃X = Φ on S. In particular,

MX(t) = Φ(t) = lim
n→∞

Φn(t) = lim
n→∞

Mn(t) = M(t)

for t ∈ (−δ, δ). Therefore, M(t) is the m.g.f. of X on (−δ, δ).

It should be pointed out that, unlike the situation for the characteristic func-
tion, the converse of Theorem 3.1 is in general not true. The following example
gives a sequence of random variables which is weakly convergent, but the corre-
sponding sequence of m.g.f.’s does not converge at any t 6= 0 even though they
are all well-defined on R. This is not too surprising since etx is unbounded and
thus not a legal test function in the notion of weak convergence.

Example 3.1. Let Xn be a sequence of random variables with p.d.f.

fn(x) =

{
Cnnx

1+n2x2
, x ∈ (−n, n),

0, otherwise,

where Cn = (2 arctann2)−1 is the normalising constant. The c.d.f. of Xn is clearly
given by

Fn(x) =


0, x < −n,
1
2

+ arctannx
2 arctann2 , −n 6 x < n,

1 x > n.

It follows that

lim
n→∞

Fn(x) =

{
0, x < 0,

1, x > 0.

Therefore, Xn → X ≡ 0 in distribution. On the other hand, the m.g.f. of Xn is
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given by

Mn(t) = Cn

∫ n

−n
etx · ndx

1 + n2x2

> Cn ·
∫ n

0

e|t|x
ndx

1 + n2x2

= Cn ·
∫ n2

0

e|t|·y/n
dy

1 + y2

> Cn ·
∫ n2

0

|t|3y3

3!n3

dy

(1 + y2)
.

A moment’s thought shows that the integral∫ n2

0

y3dy

1 + y2

grows with rate n4 as n→∞. Therefore, for any t 6= 0, Mn(t)→∞. This exam-
ple shows that, convergence in distribution in general does not imply pointwise
convergence for the m.g.f.’s, even when all the m.g.f.’s are well defined on R.

We need some sort of boundedness condition to expect the converse of Theorem
3.1. The following result, which was due to Mukherjea-Rao-Suen [4] and Chareka
[1], gives such a condition and also partly generalises the convergence theorem.

Theorem 3.2. Let Xn be a sequence of random variables with m.g.f. Mn(t) and
let X be a random variable with m.g.f. M(t). Suppose that all those Mn(t)’s and
M(t) are well-defined on a common interval I = (a, b). Then Mn(t) converges
pointwisely to M(t) if and only if:

(i) Xn converges to X in distribution;
(ii) for every t ∈ I, supnMn(t) <∞.

Proof. Sufficiency. Let t ∈ I and pick η > 0 so that t± η ∈ I. For any A > 0 we
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define the bump function ϕ(x) ∈ Cc([−2A, 2A]) as in (3.1). It follows that∣∣E[etXn ]− E[etX ]
∣∣

6
∣∣E[(1− ϕ(Xn))etXn ]

∣∣+
∣∣E[(1− ϕ(X))etX ]

∣∣
+
∣∣E[ϕ(Xn)etXn ]− E[ϕ(X)etX ]

∣∣
6 E[etXn1{|Xn|>A}] + E[etX1{|X|>A}] +

∣∣E[ϕ(Xn)etXn ]− E[ϕ(X)etX ]
∣∣

6 e−ηAE[etXn+η|Xn|] + E[etX1{|X|>A}] +
∣∣E[ϕ(Xn)etXn ]− E[ϕ(X)etX ]

∣∣
6 e−ηA · sup

m>1
(Mm(t+ η) +Mm(t− η)) + E[etX1{|X|>A}]

+
∣∣E[ϕ(Xn)etXn ]− E[ϕ(X)etX ]

∣∣ .
Since ϕ(x)etx ∈ Cb(R), when n → ∞ the last term on the right hand side tends
to zero, and we obtain that

lim sup
n→∞

∣∣E[etXn ]− E[etX ]
∣∣

6 e−ηA · sup
m>1

(Mm(t+ η) +Mm(t− η)) + E[etX1{|X|>A}].

Since A is arbitrary, by letting A→∞ the right hand side of the above inequality
vanishes and we conclude that E[etXn ]→ E[etX ].

Necessity. It suffices to prove Part (i) as Part (ii) is trivial. The idea is to

apply a change of distribution so that we are led to the setting of Theorem 3.1
where the interval contains the origin. To achieve this, let c , (a+ b)/2, and for
each n we define a new distribution function

F̃n(x) ,
∫ x

−∞

ecu

Mn(c)
dFn(u), x ∈ R.

It is routine to see that the m.g.f. of F̃n is given by

M̃n(t) =

∫ ∞
−∞

etxdF̃n(x) =

∫ ∞
−∞

e(t+c)x

Mn(c)
dFn(x) =

Mn(t+ c)

Mn(c)
.

In particular, M̃n(t) is well-defined on (− b−a
2
, b−a

2
). Moreover, by the assumption,

M̃n(t) converges pointwisely on this interval to M(t+c)
M(c)

which is the m.g.f. of F̃
defined in a similar way as F̃n but using M(c). According to Theorem 3.1 and the
uniqueness theorem, we know that F̃n converges weakly to F̃ .
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Let us now show that Fn converges weakly to F. For this purpose, let ϕ be a
continuous function on R which satisfies 0 6 ϕ 6 1 (to prove weak convergence it
is enough to test against this class of functions). For any ε > 0, we have∫ ∞

−∞
ϕ(x)dFn(x) =

∫ ∞
−∞

ϕ(x) · Mn(c)

ecx
dF̃n(x)

>Mn(c) ·
∫ ∞
−∞

ϕ(x)

max{ecx, ε}
dF̃n(x).

Note that 0 6 ϕ(x)
max{ecx,ε} 6

1
ε
. Since F̃n → F̃ weakly andMn(c)→M(c), by taking

n→∞ we see that

lim inf
n→∞

∫ ∞
−∞

ϕ(x)dFn(x) >M(c) ·
∫ ∞
−∞

ϕ(x)

max{ecx, ε}
dF̃ (x)

=

∫ ∞
−∞

ϕ(x)ecx

max{ecx, ε}
dF (x).

This is true for arbitrary ε > 0. If we send ε→ 0+, by the dominated convergence
theorem we obtain that

lim inf
n→∞

∫ ∞
−∞

ϕ(x)dFn(x) >
∫ ∞
−∞

ϕ(x)dF (x). (3.2)

Replacing ϕ with 1− ϕ yields

lim sup
n→∞

∫ ∞
−∞

ϕ(x)dFn(x) 6
∫ ∞
−∞

ϕ(x)dF (x). (3.3)

The relations (3.2) and (3.3) together imply

lim
n→∞

∫ ∞
−∞

ϕ(x)dFn(x) =

∫ ∞
−∞

ϕ(x)dF (x)

which concludes the desired convergence property.

The main benefit of Theorem 3.2 is that the interval of convergence for the
m.g.f.’s needs not contain the origin. This is particularly useful when one deals
with non-negative random variables and their Laplace transforms (cf. Section 4).
However, it should be pointed out that part of the assumptions is stronger than
Theorem 3.1 as the a priori existence of the random variable X with m.g.f. M(t)
is presumed. Without this assumption the theorem may fail to hold, as seen from
the simple example below.
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Example 3.2. Let Xn be a random variable whose p.m.f. is given by

P(Xn = −n) =
1

2
, P(Xn = 0) =

1

2
.

Then the m.g.f. of Xn is given by

Mn(t) =
1

2
e−nt +

1

2
.

ApparentlyMn(t) converges to 1/2 for all t > 0. However, the family {Xn} of ran-
dom variables is not tight and does not contain weakly convergent subsequences.

Using the generalised convergence theorem, we can obtain a generalised unique-
ness theorem easily.

Corollary 3.1. Let X, Y be random variables whose m.g.f.’s are well-defined and
equal on some interval I = (a, b). Then X d

= Y .

Proof. Applying Theorem 3.2 to the situation when Xn = Y (for all n), we know
that Xn converges to X weakly. This plainly implies X d

= Y .

4 The Laplace transform and an inversion formula
There are at least two shortcomings for the m.g.f. The first one is that it always
comes with its intrinsic domain of definition which is inconvenient to work with in a
universal way. Another one is that, although we have the nice uniqueness theorem,
an explicit formula recovering the distribution from the m.g.f. is in general not
available. There is a special situation where these two disadvantages are overcome:
non-negative random variables. For a non-negative random variable, it is obvious
that the m.g.f. is well-defined for t 6 0. In addition, as we will see, there is
an explicit inversion formula recovering the distribution using values of the m.g.f.
and its derivatives “at −∞”. For convenience, in this context the m.g.f. is usually
flipped to the positive axis and we are led to the notion of Laplace transform.

Definition 4.1. Let X be a non-negative random variable. The Laplace trans-
form of X, is the function defined by

LX(t) , E[e−tX ], t > 0.
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The Laplace transform is related with the m.g.f. by LX(t) = MX(−t). It
is clear that LX(t) is non-increasing in t, and 0 < LX 6 1. By the dominated
convergence theorem, LX(0+) = 1 and LX(∞) = P(X = 0). It could be possible
that the definition of LX is extended beyond the origin to the negative axis but
we do not need this information.

From our previous study on the m.g.f., the analyticity property (cf. Lemma
1.1), the generalised convergence theorem (cf. Theorem 3.2) and uniqueness the-
orem (cf. Corollary 3.1) carry through directly. To summarise:

Theorem 4.1. Let Xn, X, Y be non-negative random variables with Laplace trans-
forms LXn , LX , LY respectively.

(i) LX is analytic on (0,∞). In particular, it is infinitely differentiable on (0,∞)
and

L
(n)
X (t) = (−1)nE[Xne−tX ], t ∈ (0,∞). (4.1)

(ii) If LXn converges pointwisely to LX on some given interval I ⊆ [0,∞), then
Xn converges to X weakly.
(iii) If LX = LY on some given interval I ⊆ [0,∞), then X d

= Y .

The usefulness of the Laplace transform is due to the availability of inversion
formulae. We finish our discussion by establishing one inversion formula in full
generality (which may be less useful than other inversion formulae in the context
of continuous random variables when the p.d.f. exists).

Theorem 4.2. Let X be a non-negative random variable with Laplace transform
LX . Then at every continuity point x > 0 of its c.d.f. FX , we have

FX(x) = lim
n→∞

[nx]∑
j=0

nj

j!
(−1)jL

(j)
X (n), (4.2)

where [nx] denotes the largest integer not exceeding nx.

Remark 4.1. The formula (4.2) holds at x = 0 regardless of whether FX is con-
tinuous at 0 or not, since LX(n)→ P(X = 0) = FX(0) when n→∞. For x > 0,
the assumption that x is a continuity point of FX is necessary. Indeed, consider
X ≡ 1 and thus LX(t) = e−t. The summation on the right hand side of (4.2) at
x = 1 becomes

∑n
j=0

nj

j!
e−n, which converges to 1/2 6= FX(1)!

Proof of Theorem 4.2. The theorem can be proved using an analytic approach.
Namely, one can first show that the Laplace transform of Fn converges pointwisely

16



to LX , and then a density argument (or using the Stone-Weierstrass theorem)
shows that ∫ ∞

0

ϕ(x)dFn(x)→
∫ ∞

0

ϕ(x)dFX(x) (4.3)

for any continuous function ϕ with compact support. By approximating the in-
dicator function 1[0,x] with compactly supported functions on both sides, when x
is a continuity point of FX it is standard to conclude that Fn(x)→ F (x).

Instead of following the usual analytic approach, we use a probabilistic ar-
gument inspired by (??) in Remark 4.1, which appears to be more enlightening.
With aid of (4.1), we start by observing that

Fn(x) =

[nx]∑
j=0

nj

j!
(−1)jL

(j)
X (n) = E

 [nx]∑
j=0

(nX)j

j!
e−nX

 .
Now fix x > 0 to be a continuity point of FX . Let ω ∈ Ω (the underlying sample
space) be such that X(ω) 6= 0. Consider an i.i.d. sequence {Xn} of Poisson
random variables with parameter λ = X(ω). Then

[nx]∑
j=0

(nX(ω))j

j!
e−nX(ω)

= Q (X1 + · · ·+Xn 6 [nx])

= Q

(
X1 + · · ·+Xn − nX(ω)√

nX(ω)
6

[nx]− nX(ω)√
nX(ω)

)
.

Note that here P is an auxiliary probability measure on some other probability
space on which the sequence {Xn} are defined. According to the central limit
theorem, we know that

X1 + · · ·+Xn − nX(ω)√
nX(ω)

→ N(0, 1)

in distribution. This has two consequences:

(i) If X(ω) > x, then

cn ,
[nx]− nX(ω)√

nX(ω)
→ −∞,
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which implies that
[nx]∑
j=0

(nX(ω))j

j!
e−nX(ω) → 0. (4.4)

Indeed, for any c < 0, we have

lim sup
n→∞

Q

(
X1 + · · ·+Xn − nX(ω)√

nX(ω)
6 cn

)

6 lim
n→∞

Q

(
X1 + · · ·+Xn − nX(ω)√

nX(ω)
6 c

)
= Φ(c),

where Φ is the c.d.f. of the standard normal distribution. Letting c→ −∞ gives
(4.4).
(ii) If X(ω) < x, we have

[nx]− nX(ω)√
nX(ω)

→∞,

and a similar argument to Part (i) shows that

[nx]∑
j=0

(nX(ω))j

j!
e−nX(ω) → 1 (4.5)

in this case. Note that (4.5) holds trivially when X(ω) = 0.

To summarise, we have

lim
n→∞

[nx]∑
j=0

(nX)j

j!
e−nX =

{
1, X < x,

0, X > x.

Since x is a continuity point of FX (i.e. P(X = x) = 0), we conclude that

[nx]∑
j=0

(nX)j

j!
e−nX → 1[0,x](X) a.s.

It is also clear that

0 6
[nx]∑
j=0

(nX)j

j!
e−nX 6 1.
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By the dominated convergence theorem,

Fn(x) = E

 [nx]∑
j=0

(nX)j

j!
e−nX

→ E[1[0,x](X)] = P(X 6 x) = FX(x),

and the proof of Theorem 4.2 is thus complete.

Remark 4.2. Although it reaches full generality, the inversion formula (4.2) is
not as useful as one may expect due to the complication of summation in the
asymptotics as n → ∞. If X has a continuous p.d.f. fX(x), there is a so-called
Bromwich’s inversion formula:

fX(x) = lim
R→+∞

1

2πi

∫ t+iR

t−iR
ezxLX(z)dz

which is more commonly used in practice. Here LX(z) , E[ezX ] is the unique
holomorphic extension of LX(t) to the complex half plane {z : Re(z) > 0}, and
the complex integral is performed along the line segment from t − iR to t + iR
with any given t > 0.

5 An application: large deviations
We discuss an important application of the m.g.f. on large deviations, which is
an area having significant impact on modern probability theory.

One way to motivate the study of large deviations is the following. The law of
large numbers tells us that, the sample average Sn/n of an i.i.d. sequence {Xn}
of random variables converges to the mean µ , E[X1] almost surely. The central
limit theorem tells us that, Sn deviates from its mean nµ roughly in the order of√
n. Large deviations is concerned with events where Sn deviates from its mean

nµ with a larger order, say n. For instance, we know for sure that the probability
P(|Sn − nµ| > nθ) (θ > 0) is small when n is large. Large deviations studies
its precise decay rate as n → ∞. It is typical that such probabilities will decay
exponentially:

P(|Sn − nµ| > nθ) ∼ e−nI(θ)

with certain rate I(θ) depending on θ. One important aspect in large deviations
is to identify the underlying rate function along with the study of convergence.
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In this section, we do not pursue full generality and restrict ourselves in the
simplest one dimensional setting where a few key ideas in the theory are already
involved. To be precise, throughout the rest of this section, we assume that:
{Xn : n > 1} is an i.i.d. sequence of random variables whose m.g.f. M(t) is
well-defined in a neighbourhood of the origin. In particular, the m.g.f. is analytic
in this neighbourhood and Xn has finite moments of all orders.

Let Sn , X1 + · · · + Xn be the corresponding partial sum sequence. Given
a > µ , E[X1], we are interested in the behaviour of the probability P(Sn > na)
as n → ∞. The event {Sn > na} captures the positive deviation of Sn with
respect to its mean nµ in the order of n. Symmetrically, we can also consider the
probability P(Sn < nb) (b < µ) of having a negative deviation correspondingly.
But a simple reflection Yn , −Xn allows us to only focus on the first case.

We start by deriving an upper estimate which also motivates what we will do
later on. Given t > 0, according to Chebyshev’s inequality, we have

P(Sn > na) = P(etSn > etna) 6 e−tnaE[etSn ] = e−tnaM(t)n. (5.1)

Note that the above estimate holds trivially if M(t) = ∞. If we introduce the
so-called cumulant generating function

Λ(t) , logM(t) = logE[etX1 ],

then (5.1) can be written as

P(Sn > na) 6 e−n(at−Λ(t)), for all t > 0.

In particular,

1

n
logP(Sn > na) 6 −(at− Λ(t)), for all t > 0. (5.2)

The right hand side of (5.2) motivates the following definition which plays a central
role in the theory of large deviations.

Definition 5.1. The Fenchel-Legendre transform of Λ is the function Λ∗ defined
by

Λ∗(a) , sup
t∈R

(at− Λ(t)), a ∈ R. (5.3)

Remark 5.1. It is obvious that Λ∗(a) > 0, but it is also typical that Λ∗(a) can be
∞ (cf. Example 5.1 below). Note that the generating functions M(t) and Λ(t)
can be defined on the whole real line as long as one allows +∞ to be their values.
Thus there is no need to restrict the supremum in (5.3) to the domain of definition
for M(t).
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As we will see later on (cf. Lemma 5.1 below), when a > µ, under the cur-
rent assumptions the supremum in (5.3) can equivalently be taken over t > 0.
Therefore, the upper estimate (5.2) becomes

1

n
logP(Sn > na) 6 −Λ∗(a).

What is non-trivial and surprising is that, under some mild condition the above
estimate becomes asymptotically sharp as n→∞. That is to say, there is also a
matching lower estimate in the limit as n→∞, leading us to the following large
deviation theorem in the current context.

Theorem 5.1. Let a > µ and assume that P(X1 > a) > 0. Then we have
Λ∗(a) ∈ (0,∞) and

lim
n→∞

1

n
logP(Sn > na) = −Λ∗(a). (5.4)

Remark 5.2. Theorem 5.1 tells us that the large deviation probability P(Sn > na)
decays exponentially like e−nΛ∗(a). Note that P(X1 > a) > 0 is necessary for the
assertion to hold. Indeed, if X1 6 a almost surely, then the left hand side of (5.4)
is −∞ while Λ∗(a) can still be finite (cf. Example 5.1 below with a = 1).

Before proving Theorem 5.1, we give a simple example to support our intuition
about the rate function Λ∗(a).

Example 5.1. Let X be the symmetric two-point random variable with distri-
bution

P(X = 1) = P(X = −1) =
1

2
.

We have E[X] = 0 and the m.g.f. of X is

MX(t) =
et + e−t

2
.

For each a, define

ϕa(t) , at− Λ(t) = at− log

(
et + e−t

2

)
.

Simple calculus shows that when a ∈ (−1, 1), ϕa(t) attains its maximum at τ =
1
2

log
(

1+a
1−a

)
with value

Λ∗(a) =
1 + a

2
log(1 + a) +

1− a
2

log(1− a).
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If a = ±1, the supremum Λ∗(a) = log 2 is attained at τ = ±∞. If a /∈ (−1, 1), we
have Λ∗(a) =∞. Therefore,

Λ∗(a) =

{
1+a

2
log(1 + a) + 1−a

2
log(1− a), −1 6 a 6 1,

∞, otherwise.

The rest of the section is devoted to the proof of Theorem 5.1. Since we have
already obtained the upper estimate (in the stronger sense for every n), it remains
to establish the lower asymptotic estimate

lim inf
n→∞

1

n
logP(Sn > na) > −Λ∗(a). (5.5)

We start by proving the following properties for Λ∗(a).

Lemma 5.1. Suppose that a > µ and P(X1 > a) > 0. Then Λ∗(a) ∈ (0,∞) and
we have

Λ∗(a) = sup
t>0

(at− Λ(t)). (5.6)

Proof. Let ϕa(t) , at− Λ(t). By assumption, we have

ϕ′a(0) = a− Λ′(0) = a− M ′(0)

M(0)
= a− µ > 0 (5.7)

Since ϕa(0) = 0, it follows that ϕa(t) achieves positive values when t > 0 is small.
By the definition of Λ∗(a), it must be positive in this case.

Next, we prove (5.6). For this purpose, we first show that Λ(t) is a convex
function. Indeed, given s 6 t and α ∈ [0, 1], by Hölder’s inequality we have

M(αs+ (1− α)t) = E[eα(sX1)+(1−α)(tX1)]

6 E[esX1 ]α · E[etX1 ]1−α

= M(s)α ·M(t)1−α.

Therefore,
Λ(αs+ (1− α)t) 6 αΛ(s) + (1− α)Λ(t).

It follows that ϕa(t) is a concave function. As a consequence, we have ϕa(t) 6 0
for all t 6 0. Indeed, from (5.7) we know that ϕa(t) < 0 at least for t ∈ [−η, 0]
with some small η > 0. If t < −η, with α , η/|t| and by the concavity of ϕa(t)
we have

αϕa(t) = αϕa(t) + (1− α)ϕa(0) 6 ϕa(−η) < 0,
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showing that ϕa(t) < 0. Therefore, ϕa 6 0 on (−∞, 0], which then trivially implies
(5.6).

Finally, for the finiteness of Λ∗(a), one simply observes that:

Λ∗(a) = sup
t>0

(
at− logE[etX1 ]

)
6 sup

t>0

(
at− logE

[
eat1{X1>a}

])
= − logP(X1 > a),

which is finite by assumption.

The key idea for proving (5.5) is to apply an exponential change of measure,
so that under the new measure the mean of Xn is shifted from µ to a. Such an
idea of change of measure is far reaching and it is robust enough to prove large
deviation (lower) estimates for much more general situations. One who has some
exposure to stochastic calculus will recognise that, what we are going to do is the
analogue of applying the Cameron-Martin-Girsanov transformation.

Before developing the analysis, we first make one extra simplifying assumption.
Let t1 , sup{t > 0 : M(t) <∞}. We assume for now that the supremum in (5.6)
is attained at some interior point τ ∈ (0, t1). In other words,

Λ∗(a) = aτ − Λ(τ) (5.8)

for some τ ∈ (0, t1). In the end, we will get rid of this assumption through a
truncation argument.

Suppose that the sequence {Xn : n > 0} is realised (defined) on the canonical
product space (R∞,B(R∞),P) (which is always possible). More precisely, Xn is
assumed to be the n-th coordinate function on R∞ defined by

Xn(ω) , ωn, ω = (ω1, ω2, · · · ) ∈ R∞,

and P is the unique probability measure on B(R∞) induced by the (identical) laws
of those Xn’s. Let Fn = σ(X1, · · · , Xn) (n > 0) be the filtration generated by the
sequence {Xn} (we define F0 , {∅,R∞}). Over (R∞,B(R∞)), Fn is merely the
cylindrical σ-algebra given by

Fn = {{ω ∈ R∞ : (ω1, · · · , ωn) ∈ Γ} : Γ ∈ B(Rn)}.

We define the exponential martingale

Z0 , 1, Zn ,
eτSn

M(τ)n
, n > 1,
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where τ satisfies (5.8) under the previous extra assumption. It is easily checked
that Zn is a positive Fn-martingale with mean one. Using this exponential mar-
tingale, we can construct a probability measure (exponential change of measure)
on B(R∞) through the following two steps:

(i) For A ∈ Fn, we define
P̃(A) , E[Zn1A].

The martingale property shows that P̃ is well-defined on ∪n>0Fn (the class of
cylindrical measurable sets).
(ii) A standard measure-theoretic argument allows one to extend P̃ to a unique
probability measure on B(R∞).

We leave the details to the reader as a good exercise.
In what follows, we summarise a few essential properties of Sn under the new

measure P̃ that are needed for our purpose.

Lemma 5.2. Under the new probability measure P̃, {Xn} is again an i.i.d. se-
quence whose m.g.f. is well-defined in a neighbourhood of the origin. Moreover,
we have Ẽ[Xn] = a.

Proof. We first show that {Xn} are identically distributed under P̃. For A ∈ B(R),
we have

P̃(Xn ∈ A) = E
[
eτSn

M(τ)n
1{Xn∈A}

]
= E

[
eτSn−1

M(τ)n−1

]
· E
[
eτXn

M(τ)
1{Xn∈A}

]
= E

[
eτXn

M(τ)
1{Xn∈A}

]
.

This implies that the distribution of Xn under P̃ is independent of n. A similar
argument shows that {Xn} are independent. The m.g.f. of Xn under P̃ is given
by

M̃(t) = Ẽ[etXn ] = E
[
e(τ+t)Xn

M(τ)

]
=
M(t+ τ)

M(τ)
.

Since τ is an interior point of the domain ofM(t), we see that M̃(t) is well-defined
in a neighbourhood of the origin. In addition,

Ẽ[Xn] = M̃ ′(0) =
M ′(τ)

M(τ)
= Λ′(τ) = a,
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where the last equality holds as τ is an interior extremal point of ϕa by assumption.

With the above preparations, we can now establish the lower estimate (5.5) in
the current setting.

First of all, for any b > a we have

P(Sn > na) = Ẽ
[
M(τ)n

eτSn
1{Sn>na}

]
> Ẽ

[
M(τ)n

eτSn
1{nb>Sn>na}

]
> e−n(bτ−Λ(τ)) · P̃(na < Sn 6 nb).

Consequently,

1

n
logP(Sn > na) > −(bτ − Λτ) +

1

n
log P̃(na < Sn 6 nb). (5.9)

Next, we claim that

lim
n→∞

P̃(na < Sn 6 nb) =
1

2
. (5.10)

Indeed, we have

P̃(na < Sn 6 nb) = P̃(Sn > na)− P̃(Sn > nb).

Since Xn has mean a under P̃, the central limit theorem tells us that

P̃(Sn > na) = P̃

(
Sn − na√

Var[Sn]
> 0

)
→ 1

2
,

and the law of large numbers tells us that Sn
n
→ a a.s. which then implies that

P̃(Sn > nb)→ 0.

Therefore, (5.10) holds.
It follows that the second term on the right hand side of (5.9) vanishes as

n→∞, which leads us to

lim inf
n→∞

1

n
logP(Sn > na) > −(bτ − Λ(τ)).
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Since b is arbitrary, by letting b ↓ a we conclude that

lim inf
n→∞

1

n
logP(Sn > na) > −(aτ − Λ(τ)) = −Λ∗(a),

finishing the proof of the desired lower estimate in the current setting.
As the last piece of the puzzle, we now treat the case when the extra assump-

tion (5.8) is not met. The argument is mainly technical but important.

Completing the proof of Theorem 5.1. Let us fix c > a and consider the truncated
sequence Xc

n , Xn ∧ c. The functions M c(t),Λc(t), ϕca(t) and Λc∗(a) are defined
accordingly for Xc

1.We claim that Xc
1 satisfies the extra assumption (5.8) we made

previously. This is the consequence of the following three properties. First of all,
since etXc

1 6 ect for t > 0, the m.g.f. of Xc
1 is well-defined for all t > 0. Secondly,

pick b ∈ (a, c) so that P(X1 > b) > 0 (which exists in the current case). Then

ϕca(t) 6 at− logE[etX1∧c1{X1>b}]

6 at− log
(
etbP(X1 > b)

)
= t(a− b)− logP(X1 > b).

By taking t→∞, we obtain that

lim
t→∞

ϕca(t) = −∞. (5.11)

Thirdly, we also have

(ϕca)
′(0) = a− E[Xc

1] > a− µ > 0,

showing that at− Λc(t) > 0 when t > 0 is small. These three properties together
imply that the function ϕca (t ∈ [0,∞)) attains its maximum at some τc ∈ (0,∞).

It follows from what we have proven that

lim inf
n→∞

1

n
logP(Sn > na) > lim inf

n→∞

1

n
logP(Scn > na) > −Λc∗(a).

Since this is true for all c > a, and the function

c 7→ Λc∗(a) = sup
t>0

(
at− logE[etX1∧c]

)
is decreasing, we know that

lim inf
n→∞

1

n
logP(Sn > na) > −λ , − lim

c→∞
Λc∗(a).
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To finish the proof, it remains to show that Λ∗(a) > λ. For this purpose, we
define

Ic , {t > 0 : ϕca(t) > λ}.
We have seen that Ic 6= ∅ as ϕca(τc) = Λc∗(a) > λ. In addition, the property (5.11)
clearly implies that Ic is bounded. Therefore, as c increases, Ic forms a decreasing
family of non-empty compact sets. As a consequence they must have at least one
common element, say τ , which satisfies

ϕca(τ) = aτ − logE[eτX1∧c] > λ for all c > a.

By the monotone convergence theorem, letting c→∞ we conclude that

Λ∗(a) > aτ − logE[eτX1 ] > λ.

Now the proof of Theorem 5.1 is complete.

There is a more modern perspective to motivate the study of large devia-
tions. Let Pn denote the law of Sn

n
. Since Sn/n → µ almost surely, we know

that Pn(F ) → 0 if µ /∈ F , at least when F is closed. The so-called large de-
viation principle quantifies this kind of convergence with certain rate function.
Mathematically, we have the following abstract definition.

Definition 5.2. Let {Pn : n > 1} be a sequence of probability measures defined
over a topological space E equipped with its Borel σ-algebra. We say that {Pn}
satisfies the large deviation principle with a rate function I : E → [0,∞], if:

(i) for any closed subset F ⊆ E, we have

lim sup
n→∞

1

n
logPn(F ) 6 − inf

x∈F
I(x);

(ii) for any open subset G ⊆ E, we have

lim inf
n→∞

1

n
logPn(G) > − inf

x∈G
I(x).

With not much extra amount of technical efforts, Theorem 5.1 leads to the
classical Cramér’s theorem which is stated as follows.

Theorem 5.2. Let {Xn : n > 1} be an i.i.d. sequence of random variables on R.
Define Pn to be the law of Sn

n
. Then {Pn} satisfies the large deviation principle with

rate function given by the Fenchel-Legendre transform of the cumulant generating
function of X1.
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Cramér’s theorem has a classical multivariate version. The study of large de-
viation principle in infinite dimensions (e.g. for families of stochastic processes)
is a significant area of active research. We refer the reader to the beautiful pre-
sentation of Varadhan [5] for an introduction to this area.

6 Appendix: Some important theorems on holo-
morphic functions

In this part, we recall some properties of holomorphic functions over C that are
used in the present note. If one has not yet taken a course on complex analy-
sis, with probability one he/she will find these properties quite surprising (and
hopefully also quite elegant) when compared to properties of functions over R.

Basic properties of holomorphic functions

Let f : Ω → C be a complex-valued function defined on a given domain Ω (i.e.
an open subset) in C. Let z0 ∈ Ω. The function f is said to be differentiable at z0

if there is a complex number w0 such that

lim
z→z0

f(z)− f(z0)

z − z0

= w0.

In this case, w0 is called the derivative of f at z0 and it is denoted as f ′(z0).

Definition 6.1. A function f : Ω → C is said to be holomorphic on Ω if it is
differentiable at every point in Ω.

At first glance on the definition, holomorphicity does not seem to be a new
concept compared to usual differentiability except for switching from the real field
to the complex one. However, the magic of complex structure will make properties
for holomorphic functions drastically different from the ones for real differentiable
functions. If it has to be one, the analogue over R of holomorphic functions is
harmonic functions.

The first theorem of this kind asserts that holomorphicity is equivalent to ana-
lyticity, and in particular implies infinite differentiability. Recall that f is analytic
at z0 ∈ Ω if f admits a convergent power series expansion in a neighbourhood
of z0. We say that f is analytic on Ω if it is analytic at every point in Ω. The
analysis of power series over C is almost identical to the real case. For instance, if
f is analytic at z0, it is infinitely differentiable in a neighbourhood of z0, and one
can differentiate the power series term by term within its radius of convergence.
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Theorem 6.1. A function f : Ω → C is holomorphic on Ω if and only if it is
analytic on Ω. In particular, it is infinitely differentiable on Ω.

Another important theorem is known as the Identity Theorem which is stated
as follows.

Theorem 6.2. Let f and g be holomorphic functions on a connected open subset
Ω of C. Suppose that there exists an infinite subset D ⊆ Ω such that:

(i) f = g on D;
(ii) D has a limit point in Ω.

Then f = g on Ω.

The Identity Theorem tells us that holomorphic functions are global and rigid
objects. It is not quite possible to cook up a holomorphic function by locally
tuning its values at one’s wish. For instance, in contrast to a common technique
in real analysis, constructing a "holomorphic bump function" is usually of no hope
in the complex world. The rigidity of holomorphic functions is also reflected by
the following theorem. Note that a complex-valued function f(z) in the complex
variable z can be equivalently viewed as a pair of real-valued functions u(x, y) and
v(x, y) in two real variables (x, y) through the relations

f(z) = u(x, y) + iv(x, y), z = x+ iy.

In this way, the real functions u, v are called the real and imaginary parts of f
respectively.

Theorem 6.3. Let f be a complex-valued function defined on a given domain Ω.
Then f is holomorphic on Ω if and only if its real and imaginary parts u(x, y), v(x, y)
are continuously differentiable on Ω and satisfy the following so-called Cauchy-
Riemann equations:

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x
on Ω.

Before proceeding further, we recall the notion of complex integration. Let
f : Ω → C be a continuous function on a given domain Ω. Let γ be a piecewise
smooth path in Ω, which is given by a piecewise smooth function z : [a, b] → Ω
parametrised on some finite interval [a, b]. The integral of f along γ, denoted as∫
γ
f(z)dz, is defined by the definite integral∫

γ

f(z)dz ,
∫ b

a

f(z(t)) · z′(t)dt,
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where the product is the complex multiplication.
It is not hard to show that the integral is independent of the parametrisation

of γ. It is however dependent on the orientation of γ, for if γ is run backward, the
integral changes by a sign. If γ is a loop (i.e. z(a) = z(b)), the integral

∫
γ
f(z)dz

depends only on the orientation of γ but not on its starting point. When we
consider a loop integral for a non-self-intersecting loop γ, we always assume that
the orientation of γ is taken in the way that the region enclosed by γ always
lies on the left of the underlying orientation. Complex integration is a natural
generalisation of real integrals

∫ x2
x1
g(x)dx if we think of the latter as integrating

along the line segment joining x1 to x2.
It is important to note that the integral of f is path-dependent. The following

so-called Morera’s theorem shows that holomorphicity is equivalent to the com-
plex integral being path-independent. This is a rather useful tool for proving
holomorphicity in general.

Theorem 6.4. Let f be a continuous function defined on a given domain Ω. Then
f is holomorphic on Ω if and only if for any piecewise smooth loop γ in Ω (i.e. a
piecewise smooth function z : [a, b]→ Ω such that z(a) = z(b)),∫

γ

f(z)dz = 0. (6.1)

Perhaps one of the most elegant and powerful results in complex analysis is
the following so-called Cauchy’s integral formula. It is used to prove most of the
aforementioned properties for holomorphic functions.

Theorem 6.5. Let f be a holomorphic function on a given domain Ω. Let

U , {z ∈ C : |z − z0| < r}

be a disk whose closure is contained in Ω. Then

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

for all z ∈ U , where γ is the boundary of U and the orientation of γ is taken to
be counter-clockwise.

Vitali’s convergence theorem for holomorphic functions

Here we discuss compactness and convergence properties for families of holomor-
phic functions. The core result is Vitali’s convergence theorem. We provide full
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proofs as this part is sometimes not contained in a standard complex analysis
course.

Let F be a family of complex-valued continuous functions defined on a given
domain Ω.
Definition 6.2. We say that the family F is uniformly bounded on compact
subsets if for any compact subset K of Ω,

sup
f∈F

sup
z∈K
|f(z)| <∞.

In real analysis, a uniformly bounded family of continuous functions defined
on a compact set need not contain any convergent subsequences. According to
the renowned Arzelà-Ascoli theorem, the missing piece is precisely the property
of equicontinuity. However, for holomorphic functions equicontinuity will be a
consequence of uniform boundedness!
Lemma 6.1. Let F be a family of holomorphic functions defined on a given
domain Ω. Suppose that F is uniformly bounded on compact subsets. Then it is
equicontinuous on compact subsets. That is to say, for any compact subset K ⊆ Ω
and any ε > 0, there exists δ > 0 such that

|f(z1)− f(z2)| < ε

for all f ∈ F and al z1, z2 ∈ K satisfying |z1 − z2| < δ.
Proof. Let K be a fixed compact subset of Ω. Choose r > 0 so that

Kr , {z ∈ C : dist(z,K) 6 r} ⊆ Ω.

By assumption,
Mr , sup

f∈F
sup
z∈Kr
|f(z)| <∞.

Given z1, z2 ∈ K with |z2 − z1| < r/2, we apply Cauchy’s integral formula on the
disk {z : |z − z1| 6 r} to each f ∈ F :

f(zi) =
1

2πi

∫
{z:|z−z1|=r}

f(ζ)dζ

ζ − zi
, i = 1, 2.

By taking difference we have

f(z1)− f(z2)

=
1

2πi

∫
{z:|z−z1|=r}

f(ζ) ·
(

1

ζ − z1

− 1

ζ − z2

)
dζ

=
z1 − z2

2πi

∫
{z:|z−z1|=r}

f(ζ)dζ

(ζ − z1)(ζ − z2)
.
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Since
|ζ − z1| = r, |ζ − z2| > r − |z1 − z2| >

r

2

for any ζ ∈ {z : |z − z1| = r}, it follows that

|f(z1)− f(z2)| 6 |z1 − z2|
2π

· 2πr ·Mr ·
1

r · r/2

=
2Mr|z1 − z2|

r
.

This inequality is true for all f ∈ F and all z1, z2 ∈ K with |z1 − z2| < r/2. The
desired equicontinuity property for F on K is now straight forward.

Proposition 6.1. Let F be a family of holomorphic functions defined on a given
domain Ω, which is uniformly bounded on compact subsets. Then there exists a
subsequence {fn} ⊆ F which converges to some holomorphic function f on Ω
uniformly on compact subsets.

Proof. With the aid of Lemma 6.1, this is a simple consequence of the Arzelà-
Ascoli theorem together with a standard diagonal selection argument. For each
m > 1, define

Km ,

{
z ∈ Ω : |z| 6 m and dist(z,Ωc) >

1

m

}
.

It is easy to see that Km is a compact subset of Ω for each m, and Km ↑ Ω. For
m = 1, since the family F is uniformly bounded and is also equicontinuous (by
Lemma 6.1) on K1, there exists a subsequence {fn1(k)} converging uniformly to
some function f (1) defined on K1. By applying the same argument to the family
{fn1(k)} on K2, we obtain a subsequence {fn2(k)} of {fn1(k)} converging uniformly
to some function f (2) defined on K2, and we can continue this argument to extract
further subsequences {fnm(k)} ⊆ {fnm−1(k)} so that fnm(k) converges uniformly
to some function f (m) defined on Km. As the uniform limit each f (m) must be
continuous, and it is obvious that they all patch to a continuous function f on
Ω such that f = f (m) on Km. Now if we consider the diagonal subsequence
{fnk(k)}, then fnk(k) converges to f uniformly on compact subsets. Indeed, given
any compact subset K, there exists m such that K ⊆ Km ⊆ Ω, and we have
fnk(k) → f (m) = f |Km uniformly on Km. The holomorphicity of f is a consequence
of Morera’s theorem (cf. Theorem 6.4), since the integral property (6.1) is true
for all fnk(k) and is easily seen to be preserved after taking limit.
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We conclude by establishing the so-called Vitali’s convergence theorem.

Theorem 6.6. Let {fn} be a sequence of holomorphic functions on a given domain
Ω, such that:

(i) {fn} is uniformly bounded on compact subsets;
(ii) {fn} converges pointwisely on an infinite subset S of Ω, which has a limit
point in Ω.

Then there exists a holomorphic function f on Ω such that fn converges to f
uniformly on compact subsets.

Proof. It is enough to show that {fn} is uniformly convergent on every compact
subset of Ω. Assume on the contrary that there exists a compact subset K, such
that {fn|K} is not a Cauchy sequence (under the uniform metric). Then there
exists ε > 0, and two sequences mk, nk satisfying

m1 < n1 < m2 < n2 < · · · < mk < nk < · · · ↑ ∞,

such that
sup
z∈K
|fmk(z)− fnk(z)| > ε for all k. (6.2)

On the other hand, according to Proposition 6.1, both fmk and fnk will have
convergent subsequences. For the sake of simplicity, we may assume that for
some holomorphic functions g, h on Ω, fmk converges to g and fnk converges to h
uniformly on compact subsets. The relation (6.2) tells us that

sup
z∈K
|g(z)− h(z)| > ε. (6.3)

However, Assumption (ii) ensures that g = h on S, which by the Identity Theorem
implies that g = h on Ω, as S contains a limit point in Ω. This is a contradiction
to (6.3).
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