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Abstract. We consider the problem of classifying spatial data distorted by a linear trans-
formation or convolution and contaminated by additive random noise. In this setting we
show that classifier performance can be improved if we carefully invert the data before the
classifier is applied. However, the inverse transformation is not constructed so as to recover
the original signal, and in fact we show that taking the latter approach is generally inadvis-
able. We introduce a fully data-driven procedure based on crossvalidation, and use several
classifiers to illustrate numerical properties of our approach. Theoretical arguments are given
in support of our claims. Our procedure is applied to data generated by Lidar technology,
where we improve on earlier approaches to classifying aerosols.
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1 Introduction

We consider signal classification problems, where the observations are d-dimensional noisy

spatial functions Yij, for 1 ≤ i ≤ nj, coming from population Πj, where j = 1 or 2, and

which can be modeled as Yij = TXij + δij, where T is a transformation of the function of

interest Xij, and δij is a random error with zero mean and some correlation structure. Based

on training data, the goal is to classify a new noisy data function Y , whose class is unknown,

as coming from one of Π1 and Π2.

In many instances the function TXij is the result of a convolution of the function Xij with

a blurring source, that is, TXij = ωT ∗ Xij, where ∗ denotes the convolution operator (see

Section 2.3) and ωT is a point spread function. There, the function Xij can be reconstructed

in part by a (necessarily estimated) deconvolution operation. There is a large statistics

literature on deconvolution for image data, and for data of similar type, dating from the
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1980s. It includes contributions by Besag (1986), Donoho (1994), Dass and Nair (2003),

Qiu (2005, 2007, 2008), and Mukherjee and Qiu (2011). Related research problems arise in

spatial statistics, for example in the contexts of remote sensing (see e.g. Klein and Press,

1992; Cressie and Kornak, 2003; Crosilla et al., 2007) and statistical signal recovery (see

e.g. Johnstone, 1990; Huang and Cressie, 2000; Shi and Cressie, 2007).

There is also a significant literature on blind deconvolution and estimation of point spread

functions. This work includes contributions by Kundur and Hatzinakos (1998), Cannon

(1976), Carasso (2001), Galatsanos et al. (2002), Figueiredo and Nowak (2003), Joshi and

Chaudhuri (2005), Hall and Qiu (2007a,b), Qiu (2008), Huang and Qiu (2010) and Popescu

and Hellicar (2010). However, the problems of deconvolution and point spread function

estimation are very different from classification, to such an extent that, even if T were

known, the methods suggested in this paper would still be recommended. It should also

be noted that, since neither the function X nor the noise δ is observable, it is not possible

to estimate the noise and, hence, to remove it effectively from the observed data Y . In

particular, in the problem treated in this paper it is not possible to compute residuals.

In our classification context, it is at least intuitively plausible that if one could recover

the function Xij, then one would use that function as the basis for classification, rather

than using the noisy convolved function Yij. This idea has been used in the classification

of different types of aerosols using long range infrared light detection and ranging (Lidar)

methods (Warren, et al., 2008), where deconvolution was used to obtain estimates of the

true signal, and the resulting estimates were used as the basis for classification. Our work

relates to whether a signal should be deconvolved or correlated errors should be deconvolved

before classification, and we shall use Lidar data to illustrate our conclusions. We shall show

that there exists a transformation of the noisy convolved function Yij that is appropriate for

classification, but that it is not necessarily related to the transformation that would be used

to recover the true signal.

The real-data classification problems that motivate this work all involve just K = 2

populations, and for this reason, and to simplify discussion, we shall confine attention to

that case. However, out methodology and theoretical results extend readily to the general

case K ≥ 2, using the approach suggested by Friedman (1996).
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The paper is organized as follows. We introduce our model and ideas in Section 2, and in

Section 3 we establish theoretical properties of our procedure. In Section 4, using a variety of

classifiers, we apply our approach to simulated data and to the Lidar data described above.

Technical arguments are deferred to the Supplementary Material.

2 Methods

2.1 Model and classification problem

We observe spatial data functions Yij(r), r ∈ D, 1 ≤ i ≤ nj, j = 1, 2, generated by the model

Yij(r) = TXij(r) + δij(r), (2.1)

where D denotes a d-dimensional spatial grid, or lattice, Xij is the spatial function of interest,

T is a linear transformation that blurs the signal, and δij, representing noise, is a component

of a correlated stochastic process with zero mean affecting the signal. In this model the data

come from two populations, Π1 or Π2, and, for j = 1, 2, Yij denotes the ith data function

drawn from the jth population Πj, where i = 1, ..., nj. To simplify notation we define scale

in such a way that D ⊂ Zd, where Z is the set of all integers.

The model at (2.1) is appropriate when the observations Yij are, for example, digitized

images or Lidar signals. There, T typically represents the accumulated impact of issues such

as generalized lens aberrations, atmospheric effects, motion blur, etc, and D is a two or

three-dimensional grid.

Remark 1. It is important to realize that Yij, Xij and δij are functions defined on D, and

that T (and later the transforms R and Q that will be defined below) is not a function; it is

a functional that maps the function Xij to the function TXij.

Let Y be a new data value coming from Πk, where k = 1 or 2 is unknown. Our goal is

to construct a classifier C(·) ≡ C(· | {Yij}j=1,2;i=1,...,nj
) from the data Yij, which assigns Y to

Πk̂, where k̂ = C(Y | {Yij}j=1,2;i=1,...,nj
) = 1 or 2 is an estimator of k. In the applications we

have in mind, where the data are images or Lidar signals, distinguishing between Π1 and Π2

is inherently a problem involving high dimensional data analysis. In practice, the number
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of points r at which we observe data Yij(r) can be in the thousands, whereas the training

sample sizes, n1 and n2, are often only 20 or 30.

2.2 Deconvolution of the data through the noise transform

As we indicated in the introduction, when the functional T is invertible it is sometimes

argued that, instead of applying standard classifiers to the data Yij, one should apply them

to inverted data, where Y and each Yij are replaced by T−1Y and T−1Yij, or rather by

regularized versions of them, T̂−1Y and T̂−1Yij. That is, classification should be based on

C(T̂−1Y | {T̂−1Yij}j=1,2;i=1,...,nj
) instead of C(Y | {Yij}j=1,2;i=1,...,nj

). Transforming the data by

T−1 is a good idea when the goal is to recover the function Xij, since we have T−1Yij =

Xij +T−1δij, so that the transformed data are no longer distorted, and contain only additive

noise T−1δij of zero mean. This is only approximately true when using T̂−1, of course. See

for example Cannon and Hunt (1981) and Hall (1990). However, we argue that when the

goal is classification, inverting T is not necessarily a good idea, and a better strategy is to

transform the data in such a way that classification performance is improved.

To explore the classification problem further, let ϵij = TXij−Tµj+δij where the function

µj is defined by µj = Ej(Xij) and Ej denotes expectation conditional on Xij coming from

population j. Then (2.1) can be written as

Yij = Tµj + ϵij , (2.2)

where Ej(ϵij) = Ej(δij) = 0. If the processes Xij − µj and δij are also linear, in particular

if ϵij is stationary and Gaussian, as is often approximately the case in practice, then we

can write ϵij = Rξij where R is another linear transformation and the process ξij is white

noise, i.e., the random variables ξij(r), for r ∈ Zd, are uncorrelated and have zero mean and

common variance σ2. In this notation the model at (2.2) can be expressed as

Yij = Tµj +Rξij , (2.3)

so that if R is invertible, (2.3) can be written equivalently as

R−1Yij = R−1Tµj + ξij .
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The absence of correlation of ξij, and the constant variances, suggest that, for a variety

of classifiers, performance can be improved by working with the data R−1Y rather than with

Y itself. For example, this is the case when the error process ϵij in (2.2) is stationary and

Gaussian and we use the centroid classifier (see Section 3.1). Indeed, there the classifier based

on such transformed data is Fisher’s linear discriminant, albeit in a much higher dimensional

setting than is usually contemplated, and so has optimality properties. In particular, this

classifier is asymptotically equivalent to applying a likelihood-ratio test. More generally, we

shall show in Section 3 that in non-Gaussian cases, the optimal transformation, in terms of

asymptotic performance of the centroid classifier, is also R−1.

These considerations suggest that, for such classifiers, far from it being a good idea to

replace Y and Yij by their deconvolved forms T−1Y and T−1Yij, we should replace them

by R−1Y and R−1Yij and base classification on C(R−1Y | {R−1Yij}j=1,2;i=1,...,nj
). For more

general classifiers too, transforming the data prior to applying a classifier can often improve

performance, but not when this transform is taken to be T−1. In practice the optimal

transform is unknown and is not necessarily equal to R−1 for each classifier, since the best

transform may depend on the particular classifier in use. Likewise, the optimal transform is

not necessarily always exactly linear. However, by inverting the Yij’s via a carefully chosen

linear transform, which we shall denote by Q−1 in the next section, we can often improve

classification performance significantly. We suggest such a practicable inversion technique in

the next section, and we construct it from the data in such a way as to optimise classification

peformance.

2.3 Transforming the data in practice

2.3.1 Modeling the transform

Since the best transform to apply to the data Yij prior to classification is generally not

known, it needs to be estimated from the data. However, the sample size is usually too

small for estimating this transform without imposing restrictions on it. Motivated by our

discussion in the last paragraph of Section 2.2, we model the transform by the inverse Q−1

of a linear transform Q = Qθ, which depends on a low-dimensional vector of parameters
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θ = (θ1, . . . , θq), as follows.

Let ωQθ
be a nonnegative weight function defined on Zd and depending on θ. Moreover, let

∗ denote the discrete convolution operation, defined for any two absolutely square summable

functions f and g by f ∗ g(r) =
∑

s∈Zd f(r − s) g(s). We take Qθ to be the linear transform

which maps a function ζ to a function χθ = Qθ ζ defined, for each r ∈ Zd, by

χθ(r) = ωQθ
∗ ζ(r) . (2.4)

In image analysis terminology, ωQθ
is called the spread function of the transform Qθ. The

choice of the parameters θ will be treated in Section 2.3.3.

An example of a simple model for ωQθ
is the two-parameter family ωp0; θ, where θ = (ρ, ℓ)

and ωp0; θ is the ℓ-fold convolution of the probability mass function p0, defined by

p0(r) =
(1− ρ

1 + ρ

)d
ρ|r| , r ∈ Zd , (2.5)

where |r| =
∑d

j=1 |rj| and |ρ| < 1 (usually, 0 < ρ < 1). This is the model we used in

our numerical work in Section 4, but alternative models and more comments are given in

appendix A.2 in the Supplementary Material.

2.3.2 Inverting Q

Since Qθ is defined by a convolution, its inverse is more easily expressed in the Fourier

domain. Let ζ be a function defined on Zd such that
∑

r∈Zd |ζ(r)| < ∞. The (discrete)

Fourier transform ϕζ(t), for t ∈ (−π, π)d, is defined by

ϕζ(t) =
∑
r∈Zd

ζ(r) exp
(
i rTt

)
, (2.6)

where on this occasion i =
√
−1. Since the Fourier transform of a convolution between two

functions is equal to the product of their Fourier transforms, we deduce from (2.4) that the

Fourier transform of the function χθ is given by ϕχθ
= ϕζ ϕωQθ

.

In this notation, when ϕωQθ
(t) ̸= 0 we can write ϕζ(t) = ϕχθ

(t)/ϕωQθ
(t). If |ϕχθ

| / |ϕωQθ
|

is integrable then Qθ is invertible, and the inverse transform Q−1
θ , obtained by the Fourier

inversion theorem, maps the function χθ into the function Q−1
θ χθ defined by (2.8) below,
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taking there T = (−π, π)d. If Qθ is not invertible we can typically define a generalized

inverse, Q−1
θ , by truncating the integral used in Fourier inversion to a small enough set

T ⊂ (−π, π)d, for example

T = {t : ∥t∥ ≤ η} or T = {t : |tj| ≤ η, 1 ≤ j ≤ d} , (2.7)

with η ∈ (0, π). Thus, in either case, we can write

Q−1
θ χθ(r) = (2π)−d

∫
T
exp

(
− i rTt

) {
ϕχθ

(t)
/
ϕωQθ

(t)
}
dt . (2.8)

Remark 2. To motivate the selections of T in (2.7), observe that ϕωQθ
(0) equals the sum

of the weights ωQθ
(r) over r ∈ Zd, and the ωQθ

(r)’s would normally be chosen so that this

sum was strictly positive, in fact equal to 1. Therefore ϕωQθ
(0) ̸= 0, and by continuity,

ϕωQθ
(t) ̸= 0 for t in a sufficiently small neighborhood of the origin. Hence, choosing T as in

the formulae in (2.7), for sufficiently small η, ensures that the integral at (2.8) is well defined

if the function χθ is uniformly bounded.

For example, if we model Qθ by taking ωQθ
= ωp0; θ, defined above (2.5), then Q−1

θ χθ is

particularly easy to calculate. As a matter of fact, by standard calculations we have

ϕωQθ
(t) = ϕωp0;θ

(t) =
d∏

j=1

[
1 + 2ρ (1− ρ)−2 {1− cos(tj)}

]−ℓ
, (2.9)

for each t = (t1, . . . , td)
T ∈ (−π, π)d, so that

Q−1
θ χθ(r) = (2π)−d

∑
s∈Zd

χθ(s)

∫
T

d∏
j=1

(
ei (sj−rj)tj

[
1+2ρ (1−ρ)−2 {1− cos(tj)}

]ℓ
dtj

)
. (2.10)

The integral in (2.10) is well defined if we take T = (−π, π)d, in which case it simplifies to

Q−1
θ χθ(r) = (2π)−d

∑
s∈Zd

χθ(s)
d∏

j=1

∫ π

−π

ei (sj−rj)tj
[
1 + 2ρ (1− ρ)−2 {1− cos(tj)}

]ℓ
dtj . (2.11)

A very attractive aspect of this choice of Qθ is that we do not need smoothing parameters,

such as η at (2.7), to regularize the integral. Further, it can be proved that each integral

in (2.11) is equal to a constant depending only on |sj − rj|, ρ and ℓ, and which vanishes if

|sj − rj| > ℓ. In other words, Q−1
θ χθ(r) is a linear combination of values of χθ(s), for s in a

neighborhood of r (more precisely, for s such that maxj=1,...,d |sj − rj| ≤ ℓ).
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2.3.3 Estimation of unknown parameters

Now that we have a practicable representation Q−1
θ for the transform to apply to the data

before classification, it remains to choose θ. Just as, a priori, it may seem natural to invert

the data by T−1, it may also seem natural to choose θ to give a good fit to the data.

However, again our goal here is to classify, and thus θ should rather be chosen to optimize

the performance of the classifier based on Cθ(Y ) ≡ C(Q−1
θ Y | {Q−1

θ Yij}j=1,2;i=1,...,nj
). We

suggest choosing θ to minimize a crossvalidation estimator of error rate.

Specifically, write π1 for the prior probability of Π1, which is typically taken to equal

1
2
if we have no a priori knowledge, or to n1/(n1 + n2) if we believe that the proportion

of observations from Π1 in the training sample is representative of that in the population.

Define

ê(θ) =
π1

n1

n1∑
i=1

I{Cθ;−i1(Yi1) = 2}+ 1− π1

n2

n2∑
i=1

I{Cθ;−i2(Yi2) = 1} , (2.12)

where Cθ;−ij denotes the version of Cθ constructed without using Yij, that is, Cθ;−ij(Yij) =

C(Q−1
θ Yij | {Q−1

θ Ykℓ}k=1,2;ℓ=1,...,nk;(k,ℓ)̸=(i,j)). Then ê(θ) estimates the error rate,

e(θ) = π1 P1{Cθ(Y ) = 2}+ (1− π1)P2{Cθ(Y ) = 1} , (2.13)

where Pj denotes probability conditional on Y ∈ Πj. We suggest choosing θ to minimize

ê(θ).

Remark 3. In cases where the set T cannot be taken equal to (−π, π)d, the classifier can

also depend on a small number of parameters defining T , which, if they are unknown, can

play the role of a smoothing parameter. See the examples at (2.7). In such cases, Cθ, ê(θ)

and e(θ) are replaced by Cθ,T , ê(θ, T ) and e(θ, T ), respectively, and θ and T are chosen to

minimize ê(θ, T ).

3 Theory

3.1 Centroid classifier

There exist a variety of standard classifiers which give good performance for high dimensional

data. Here we discuss detailed theoretical properties in the context of one of the most
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popular and effective methods, the centroid-based technique; see for example James and

Hastie (2001) and Shin (2008). If Ȳj(r) = n−1
j

∑
i Yij(r), the centroid method assigns a new

value Y , coming from Π1 or Π2, to Π1 (i.e., it puts C(Y ) = 1) if
∑

r∈D
[
{Y (r) − Ȳ2(r)}2 −

{Y (r)− Ȳ1(r)}2
]
> 0 , and to Π2 (i.e., it puts C(Y ) = 2) otherwise. Other classifiers will be

discussed in Section 4.4.

As already highlighed in section 2.2, if the errors are stationary then this classifier is

optimised when applied to the data R−1Yij. Using the representation Q−1
θ for R−1, an

approximation to optimal classification consists of assigning a new observation Y to Π1 (i.e.,

putting Cθ(Y ) = 1) if and only if Sθ(Y ) > 0, where

Sθ(Y ) =
∑
r∈D

{∣∣Zθ(r)− Z̄2;θ(r)
∣∣2 − ∣∣Zθ(r)− Z̄1;θ(r)

∣∣2}, (3.1)

with Z̄j;θ(r) = n−1
j

∑
i Zij;θ(r) and where the functions Zθ and Zij;θ are defined by Zθ = Q−1

θ Y

and Zij;θ = Q−1
θ Yij.

In this notation the crossvalidation technique for choosing θ, described at equation (2.12)

in section 2.3.3, can be written as

ê(θ) =
π1

n1

n1∑
i=1

I{Sθ;−i1(Yi1) ≤ 0}+ 1− π1

n2

n2∑
i=1

I{Sθ;−i2(Yi2) > 0} , (3.2)

where Sθ;−ij denotes the version of Sθ at (3.1) calculated with Z̄j replaced by Z̄
(−i)
j =

(nj − 1)−1
∑

k ̸=i Zkj. Likewise, the error rate e(θ) at (2.13) can be written as

e(θ) = π1 P1{Sθ(Y ) ≤ 0}+ (1− π1)P2{Sθ(Y ) > 0} . (3.3)

3.2 Main assumptions

To simplify notation, throughout Section 3 we define scale in such a way that D, in d-variate

Euclidean space, has edge width 1, for example:

D =
{
r = (r1, . . . , rd)

T : r1, . . . , rd ∈ Z, −n ≤ r1, . . . , rd ≤ n
}
, (3.4)

where n ≥ 1. In this setting, #D ≍ nd and the training sample sizes, n1 and n2, are

interpreted as functions of n. Let Y denote the pair of training samples (Y1,Y2) with
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Yj = {Yij, 1 ≤ i ≤ nj}, Yij = (Yij(r) : r ∈ D). The error rate of our classifier, computed

from the training data set Y , is denoted by e(θ) and defined at (3.3). In this section we

give asymptotic formulae for e(θ) and ê(θ), taking T to be a general subset of (−π, π)d. For

example, T might be equal to (π, π)d, or to one of the regions defined at (2.7). Theory in cases

where crossvalidation is used to determine T , as well as θ (see Remark 3 in Section 2.3.3) can

be developed at the expense of longer arguments; in the present section we use crossvalidation

to optimize over θ but not T , which corresponds to our practical implementation of the

method; see Section 4.

We develop our theory under three main model assumptions. First, we assume that R

maps a function ζ, defined on Zd, into a function Rζ, defined by

Rζ(r) = ωR ∗ ζ(r) . (3.5)

Second, we assume that

R−1 Tµj, Q−1
θ Tµj and ξ are supported on D , for j = 1, 2. (3.6)

We impose this condition only to avoid long arguments for dealing with potential edge effects.

Our conclusions remain valid without it, but the proofs become considerably longer. Finally,

we assume that Tµ1 − Tµ2 = T (µ1 − µ2) is smoother than ωR. More precisely, we assume

that T (µ1−µ2) = αK ∗ωR, where α is a constant and K is a function supported on D. This

assumption ensures that the inverse of the mean of the differences of the observed signals,

R−1T (µ1 − µ2), remains bounded. It is imposed only to make our technical arguments

simpler and explicit. If it is not satisfied, then, generally speaking, the classification problem

becomes simpler, in that the difference between the means of the inverted signals is even

larger and therefore easier to detect.

We allow the distance between the two transformed means, Tµ1 and Tµ2, to vary with n,

by letting α above depend on n. In particular, we assume that T (µ1−µ2) = αn K∗ωR, where

αn is a sequence of positive real numbers bounded above zero. The most important case is

that where αn (and hence the distance) decreases with increasing n, since that enables our

theoretical arguments to address particularly challenging cases. We also permit the noise

variance, σ2
n = var{ξij(r)}, to depend on n. We shall see that the relative sizes of n, αn and
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σn interact together to determine the performance of our classifier. Although this interaction

is quite complex, to a large extent it can be represented in terms of the quantity

un(θ) = (αn/σn)

∫
T
|ϕK |2 |ϕωR

|2 |ϕωQθ
|−2

/{
(2π)d

∫
T
|ϕK |2 |ϕωR

|4 |ϕωQθ
|−4

}1/2

, (3.7)

where ϕωR
(t) =

∑
r∈Zd ωR(r) exp

(
i rTt

)
is the Fourier transform of ωR, and ϕK(t) =∑

r∈D K(r) exp
(
i rTt

)
is the Fourier transform of K; here we used the fact that K is sup-

ported on D.

In order to derive our theoretical results we also need regularity conditions. These are

more technical, and we shall describe them in detail in Appendix B.1 in the Supplementary

Material; see (B.2) to (B.6).

3.3 Asymptotic formula for error rate

The next theorem describes properties of e(θ) as n diverges. Let Φ denote the standard

normal distribution function and write Θ for a compact set of parameters from which θ is

chosen.

Theorem 1. Assume that the data are generated by the model at (2.3), where R is of the

form at (3.5) and T is a linear transformation, and that (B.2)–(B.6) hold. Then,

sup
θ∈Θ

∣∣e(θ)− Φ{−un(θ)}
∣∣ → 0, (3.8)

where the convergence is in probability.

To elucidate the implications of Theorem 1, observe first that the asymptotic error rate,

Φ(−un), in (3.8) is a monotone decreasing function of un. It therefore follows from formula

(3.7) for un(θ) that the error rate decreases as either the distance, represented by αn, be-

tween population means increases, or the error variance, σ2
n, decreases. Moreover, Hölder’s

inequality implies that Φ{−un(θ)}, interpreted as a functional of ϕωQθ
, is minimized when

ϕωQθ
= ϕωR

, i.e. when the transformation Qθ is identical to the actual transformation R.

3.4 Consistency of crossvalidation estimator of error rate

Recall the definition of ê(θ), the crossvalidation estimator of error rate, at (3.2). Theorem

2 below shows that ê(θ) shares the same asymptotic property, (3.8), as the actual error rate
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e(θ), and therefore is consistent for e(θ), uniformly in θ.

Theorem 2. Assume the conditions of Theorem 1. Then,

sup
θ∈Θ

∣∣ê(θ)− Φ{−un(θ)}
∣∣ → 0 , (3.9)

where the convergence is in probability.

Similarly it can be proved that if θ = θ̂ is chosen to minimize ê(θ), and used when

constructing the classifier, then, under mild additional assumptions, the classifier’s actual

error rate will equal minθ∈Θ Φ{−un(θ)}+ o(1) as n → ∞.

4 Numerical work

4.1 Goals of simulations

We performed simulation studies to illustrate the following properties:

(1) Transforming the data by T−1 prior to applying a classifier generally does not improve

classification performance;

(2) Transforming the data using a crossvalidation-based transform Q̂−1
θ generally improves

classification performance, even if Q−1
θ is only a rough approximation to the best trans-

form to apply;

(3) The more the errors ϵij are correlated, the larger is the improvement at (2), especially

if the error variance σ2 is large compared to Tµj;

(4) The performance of classifiers, applied to data transformed by Q̂−1
θ , improves as the

training sample size and/or the fineness of the grid D increases.

4.2 Simulation setup

4.2.1 Generation of training samples

We generated training samples {Y11, . . . , Y1n1} and {Y21, . . . , Y2n2}, of sizes n1 = n2 = 10 or

n1 = n2 = 25, according to the model

Yij(r) = Tµj(r) +Rξij(r), (4.1)
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for different curves µj, j = 1, 2, and transformations R and T , and with r ∈ D ⊂ R or

r = (r1, r2) ∈ D ⊂ R2.

We considered four pairs of mean curves µj, for j = 1, 2 (two univariate and two bivariate),

each with several features such as asymmetric peaks and valleys, or sinusoidal components:

(a) µj(r) = |2r − aj|4/5 exp{−5 · 10−4(4r2 − bj)}, where a1 = 5, b1 = 100, a2 = 4, b2 = 80;

(b) µj(r) = 9/16 · c−2
j (2r − 50)2

/
{1.2 + cos(r)}2, where c1 = 200, c2 = 190;

(c) µj(r1, r2) = |3r2 − aj|2/5 exp{−45 · 10−4(r21 + 2r1r2 + r22 − bj/9)}, with aj and bj as in (a);

(d) µj(r1, r2) = 0.1 |4 + 3r2/50|1/5 · exp{−(3r1 + 20)/dj}/{1.2 + cos(1.5r1)} · 1[−20/3,∞)(r1),

where d1 = 40, d2 = 50 and 1[−20/3,∞)(r1) = 1 if r1 ∈ [−20/3,∞) and 0 otherwise.

In the previous sections, the method was discussed for a grid that had edge width 1. More

generally, in our simulations we also considered examples where the grid has edge width kI .

In that case, the various transformations have to be rescaled by a factor kI . More precisely, if

a transform F has the form F ξ(r) =
∑

s∈Zd ωF (s) ξ(r−s) on a grid of edge width 1, on a grid

of edge width kI it becomes F ξ(r) = kd
I
∑

s∈Zd
kI

ωF (s) ξ(r − s), where ZkI = {s/kI , s ∈ Z}.

Reflecting this discussion, we took Tµj(r) = kd
I
∑

s∈Zd
kI

ωp0; θT (s)µj(r − s) and

Rξ(r) = kd
I

∑
s∈Zd

kI

ωp0; θR(s) ξ(r − s), (4.2)

where ωp0; θ is the function defined above (2.5), with θ = θT = (ℓT , ρT ) or θ = θR = (ℓR, ρR).

In our bivariate models (c) and (d), we also considered

Rξ(r1, r2) = k2
I

∑
s∈Z2

kI
, |sj+rj |≤θM/kI

ωM(|s1 + r1|)ωM(|s2 + r2|) ξ(r1 − s1, r2 − s2), (4.3)

where, for u ∈ Z+, ωM(u) = (θM + 1− u)/
∑

u≤θM
(θM + 1− u), with θM a positive integer.

In each case we considered several different values of θR in (4.2), or θM in (4.3), and we

took the ξij(r) to be independent normal N(0, σ2). Each combination of σ and θR or θM

was chosen such that good classification was possible for at least one of the versions of the

centroid classifier described below; see Tables 1 to 3 in Section A.3.1, in the Supplementary

Material, for all the combinations we considered in practice, and for a measure of signal to
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Figure 1: Plotted are Y11 (left) and Y12 (right), in Models (c) (row 1) and (d) (row 2) with
θR = (0.5, 3).

noise ratio in each case. Finally, we took the parameter θT of the transform T , and the grid

D where the data are observed, as follows:

• Model (a): θT = (0.5, 3) and D = {−80,−80 + kI , . . . , 80− kI , 80};

• Model (b), θT = (0.5, 2) and D = {−80,−80 + kI , . . . , 80− kI , 80};

• Models (c) and (d): θT = (0.25, 2) and D = {−60,−60 + kI , . . . , 60 − kI , 60} ×

{−40,−40 + kI , . . . , 40− kI , 40}.

In each case, kI = 2 when n1 = n2 = 10 and kI = 1 or 2 when n1 = n2 = 25. In particular,

when n1 and n2 were increased we let the grid D become finer by decreasing kI from 2 to

1, so as to illustrate point (4) in Section 4.1. We also ran simulations in the unbalanced

case, where n1 = 10 and n2 = 25, and obtained results similar to those that we shall discuss

below. See Figures 4 and 5 of Section A.3.4 in the Supplementary Material.

For illustration, Figure 1 shows Y11 and Y12 in Models (c) and (d), with θR = (0.5, 3).

Comparing with Figure 9 in Section 4.5, we can see that example (d) looks similar to our

empirical example discussed in Section 4.5.
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Figure 2: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (a) when θR = (ρR, ℓR), with ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and 3, respectively, and ℓR = 3,
2 and 1 in columns 1, 2 and 3, respectively. In each group of 12 boxes, the first four are for n1 = n2 = 10
and kI = 2, the next four are for n1 = n2 = 25 and kI = 2, and the last four are for n1 = n2 = 25 and
kI = 1. In each group of four boxes, the data are transformed by Q̂−1 (first box), R−1 (second box), T−1

(third box), or untransformed (fourth box).

4.2.2 Model for Qθ, generation of test samples and estimation of error rate

No matter what model we used for R, we systematically modeled Qθ by

Qθ ξ(r) = kd
I

∑
s∈Zd

kI

ωp0; θ(s) ξ(r − s), (4.4)

with θ = (ℓQ, ρQ). This model is flexible, and, as discussed in details in Section 2.3, it has

attractive practical properties such as the fact that we do not need any smoothing parameters

to define T in (2.8), which can be taken equal to T = (−π, π)d.

To test our classifier constructed from the training observations Yij, we generated test

samples of N = 100 new data curves Y New
1 , . . . , Y New

100 , of which half came from Π1 and the

other half from Π2, using each time the same model as the one used to generate the Yij’s.

We applied several classifiers to three versions of the Y New
i ’s: the untransformed noisy data

Y New
i , the data T−1Y New

i , and the data Q̂−1Y New
i , where Q̂ denotes Qθ̂CV

, with Qθ as at (4.4),

and with θ = θ̂CV chosen to minimize the crossvalidation estimator of the classification error

rate as in Section 2.3.3, where we took π1 = n1/(n1 + n2). When R was of the form at (4.2)

we also applied the classifiers to the data R−1Y New
i .

As indicated above, we chose θ = (ρ, ℓ) to minimize the crossvalidation estimator of classi-

fication error rate, where we performed the minimization over a bivariate grid of values in the
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range 0 ≤ ρ ≤ 0.95 and 1 ≤ ℓ ≤ 5. Here, ρ = 0 denotes the identity transform, and when ρ =

0 we do not transform the data. Observe that, in our simulations and examples, the sizes of

the training data sets are small, and there is little computational cost. In larger data sets one

would use k-fold crossvalidation, i.e., the training data would consist of a randomly selected

(1−k−1)×100% of the data, and the test data the remaining (100/k)%, with this procedure

repeated many times to calculate an overall error rate. Wikipedia has a good description of

this approach (http://en.wikipedia.org/wiki/Cross-validation_(statistics)), and

references McLachlan et al. (2004).

In practice, the transform T is often unknown and is not necessarily invertible. In such

cases, instead of using T−1 one has to use a regularized estimator T̂−1 constructed from the

data (see our real data illustration). Here, for simplification we take T both known and

invertible. While this may seem to be unfavorable to our approach, it actually does not

matter since our point is to show that T−1 has essentially no role to play in our classification

problem, and whether T−1 is known or estimated does not change our conclusions.

In each model we generated B = 100 training samples, and for each training sample

we generated a test sample of N = 100 new data curves as described above, which we

classified in one of the two populations using each of the methods described in the previous

paragraph. For each training sample we calculated the percentage of the new curves that

were misclassified by each method. We obtained B = 100 misclassification percentages for

each method, and the boxplots shown below were computed from these 100 percentages.

4.3 Simulation results for centroid classifier

4.3.1 Data coming from the model in (4.1)

We start by reporting results obtained when applying the centroid classifier described in

section 3.1 to data generated from the model in (4.1). In cases where ê achieved its minimum

at several values θ, we broke the ties according to the rule described in Section A.1 in

the Supplementary Material. The boxplots corresponding to each of the four methods

described above, for R of the form at (4.2), are shown in Figures 2, 3 and 4. We present the

results for various values of θR = (ρR, ℓR), for n1 = n2 = 10 and kI = 2, n1 = n2 = 25 and
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Figure 3: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (b) when θR = (ρR, ℓR), with ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and 3, respectively, and ℓR = 3,
2 and 1 in columns 1, 2 and 3, respectively. In each group of 12 boxes, the first four are for n1 = n2 = 10
and kI = 2, the next four are for n1 = n2 = 25 and kI = 2, and the last four are for n1 = n2 = 25 and
kI = 1. In each group of four boxes, the data are transformed by Q̂−1 (first box), R−1 (second box), T−1

(third box), or untransformed (fourth box).

kI = 2, and for n1 = n2 = 25 and kI = 1, where kI is the distance between two adjacent

univariate components of the grid D. Our finite sample results support our asymptotic

theory, which implies that as n1 and n2 increase (i.e. as training sample size increases)

and kI decreases (i.e. as the grid D becomes finer), the best results should be obtained by

the centroid classifier applied to the data inverted by R−1, of which Q−1

θ̂CV
is a consistent

estimator.

Overall, our results indicate that, in finite samples, it is the latter crossvalidation ap-

proach that is the most competitive. This is because this method has the ability to optimize

performance based on the particular sample at hand. Unsurprisingly, transforming the data

through R−1 and Q−1

θ̂CV
brings the most significant improvements when ρR and ℓR are the

largest, since it is in those cases that the correlation among the ϵij’s is the largest. For

smaller values of ρR and ℓR (e.g. ρR = 0.25 or ℓR = 1), the correlation among the ϵij’s

is relatively small, and as a result, in finite samples the centroid method applied to the

untransformed data Y New
ij is often the most competitive approach, although even in those

cases, the crossvalidation approach remains highly competitive. Of course in practice we do

not know the transformation R, and our results indicate that crossvalidation-based inversion

is the method of choice.
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Figure 4: Boxplots of percentage of misclassified observations calculated from 100 simulated sam-
ples from models (c) (rows 1 and 2) and (d) (rows 3 and 4) when θR = (ρR, ℓR), with ρR = 0.85
and 0.5 in rows 1,3 and 2,4 respectively, and ℓR = 3, 2 and 1 in columns 1, 2 and 3, respectively.
In each group of 12 boxes, the first four are for n1 = n2 = 10 and kI = 2, the next four are for
n1 = n2 = 25 and kI = 2, and the last four are for n1 = n2 = 25 and kI = 1. In each group of

four boxes, the data are transformed by Q̂−1 (first box), R−1 (second box), T−1 (third box), or
untransformed (fourth box).

4.3.2 Robustness against misspecification of R

Next we illustrate the robustness of the inversion procedure by reporting the results obtained

when applying the centroid classifier to the data Q−1

θ̂CV
Y New
i , with Q as at (4.4), when the

true transform R was of another form, specifically the one at (4.3), where we took θM = 10,

20 or 30. We compare this approach with the centroid-based classifier based on the data

T−1Y New
i and with the one based on the data Y New

i . We show boxplots of the percentage of

misclassified data curves in Figure 5, for each of the three methods and for n1 = n2 = 10

and kI = 2, n1 = n2 = 25 and kI = 2, and for n1 = n2 = 25 and kI = 1. Our results indicate

that even if Qθ at (4.4) is not the exact noise transformation, inverting the data through

Q−1

θ̂CV
can considerably improve on the centroid classifier based on either T−1Y New

i or on the

untransformed data Y New
i .
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Figure 5: Boxplots of percentage of misclassified observations calculated from 100 simulated sam-
ples from models (c) (row 1) and (d) (rows 2) when R is of the form at (4.3), with θM = 30, 20 and
10 in columns 1, 2 and 3, respectively. In each group of 9 boxes, the first three are for n1 = n2 = 10
and kI = 2, the next three are for n1 = n2 = 25 and kI = 2, and the last three are for n1 = n2 = 25

and kI = 1. In each group of three boxes, the data are transformed by Q̂−1 (first box), T−1 (second
box), or untransformed (third box).

4.3.3 Robustness against the stationarity assumption

In practice, the model at (4.1) is often an approximation to the model that generated the

data. In this section, to investigate the effect of non stationarity of the errors on our proce-

dure, we report results of simulations where the data Yij were generated from the model

Yij(r) = Tµj(r) +Rr ξij(r), (4.5)

with the fixed transform R replaced by a transform Rr depending on r.

In the univariate case, instead of R in (4.2), we used

Rr ξ(r) = kd
I

∑
s∈Zd

kI

ωp0; θr(s) ξ(r − s), (4.6)

with θr = (ρr, ℓ), where ρr = ρ + 0.1 cos(r/α) (we considered two cases: α = 2 and α = 10)

and ρ and ℓ as in the previous section. In the bivariate case, instead of using the transform

R at (4.3) with constant θM , we used the transform

Rr ξ(r1, r2) = k2
I

∑
s∈Z2

kI
, |sj+rj |≤θM,rj

/kI

ωM,r1(|s1 + r1|)ωM,r2(|s2 + r2|) ξ(r1 − s1, r2 − s2), (4.7)

where, for u ∈ Z+ and j = 1, 2, ωM,rj(u) = (θM,rj + 1 − u)/
∑

u≤θM,rj
(θM,rj + 1 − u), with

θM,rj = θM + 2 · [α cos(rj/2)] (we considered two cases: α = 2 and α = 4), θM as in the

previsous section, and, for any real number x, we use [x] to denote the integer closest to x.

Although here the errors Rr ξij(r) were non stationary, we inverted the data in the same

way as before, using the transform Q−1

θ̂CV
. Figures 6 and 7 show boxplots of the percentage
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Figure 6: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (a) when θR = (ρR,r, ℓR), with ρR,r = ρR + 0.1 cos(r/2), ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and
3, respectively, and ℓR = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 9 boxes, the first
three are for n1 = n2 = 10 and kI = 2, the next three are for n1 = n2 = 25 and kI = 2, and the last three
are for n1 = n2 = 25 and kI = 1. In each group of three boxes, the data are transformed by Q̂−1 (first box),
T−1 (second box), or untransformed (third box).

of missclassified curves for the centroid classifier constructed from the data Q−1

θ̂CV
Yij, Yij

and T−1Yij, where Yij was generated as in (4.5) with µj from model (a) and model (b),

respectively, Rr as in (4.6) and α = 2. For the case α = 10, see Figures 1 and 2 in the

Supplementary Material. Figure 8 shows similar results for the bivariate examples (c)

and (d), when the data were generated according to (4.5) with Rr as in (4.7) and α = 2.

See Figure 3 in the Supplementary Material for the case α = 4. These results indicate

that our inversion method can improve classification performance significantly even when

the errors are not exactly stationary; it usually does not degrade performance more than a

little.

4.4 Other classifiers

Although it is beyond the scope of this paper to develop theory for all types of classifiers, and

derive the theoretically optimal transform for each of them, we argue that our conclusions

extend to other classifiers. To illustrate this, we also implemented two other classifiers

often employed in high dimensional and functional data problems, which we applied to the

four versions of the data: Yij, T
−1Yij, R

−1Yij and Q−1

θ̂CV
Yij, with θ̂CV chosen to minimize the

crossvalidation estimate of classification error. Namely, we used the Support Vector Machine
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Figure 7: Boxplots of percentage of misclassified observations calculated from 100 simulated samples from
model (b) when θR = (ρR,r, ℓR), with ρR,r = ρR + 0.1 cos(r/2), ρR = 0.75, 0.5 and 0.25 in rows 1, 2 and
3, respectively, and ℓR = 3, 2 and 1 in columns 1, 2 and 3, respectively. In each group of 9 boxes, the first
three are for n1 = n2 = 10 and kI = 2, the next three are for n1 = n2 = 25 and kI = 2, and the last three
are for n1 = n2 = 25 and kI = 1. In each group of three boxes, the data are transformed by Q̂−1 (first box),
T−1 (second box), or untransformed (third box).

(SVM) classifier with a linear kernel (svmtrain in Matlab), and the logistic classifier applied

to the Partial Least Squares (PLS) projection of the data (here data refers to any of the

four versions, transformed or not, of the data); see Delaigle and Hall (2012b) and Section

A.3.3 in the Supplementary Material for more details about the logistic classifier, and

see Delaigle and Hall (2012a) for properties of PLS in the functional context.

Boxplots summarizing the results of our simulations, in the same settings as the centroid

classifier, are shown in Figures 6 to 11 of Section A.3.5 in the Supplementary Material.

From these figures we can see that the results obtained with these two classifiers are very

similar to those with the centroid classifier. In other words, inverting by T−1 usually did not

improve the results, and in general, inverting by the transform Q−1

θ̂CV
, chosen by crossvalida-

tion from the data, either improved the results significantly compared to using the data Yij

or T−1Yij, or, when the latter worked well, transforming the data by Q−1

θ̂CV
did not degrade

performance much.

As allready noted, the best transform to apply generally depends on the particular clas-

sifier. However, an attractive aspect of our methodology is that the suggested inversion,

Q−1

θ̂CV
, is chosen to minimize a crossvalidation estimator of classification error. Therefore our

approach is very flexible, since in a general setting it approximates the inverse transform
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Figure 8: Boxplots of percentage of misclassified observations calculated from 100 simulated
samples from models (c) (row 1) and (d) (rows 2) when Rr is of the form at (4.7), with
θM,rj = θM + 2 · [2 cos(rj/2)] and θM = 30, 20 and 10 in columns 1, 2 and 3, respectively. In
each group of 9 boxes, the first three are for n1 = n2 = 10 and kI = 2, the next three are for
n1 = n2 = 25 and kI = 2, and the last three are for n1 = n2 = 25 and kI = 1. In each group

of three boxes, the data are transformed by Q̂−1 (first box), T−1 (second box), or untransformed
(third box).

that optimizes classification.

4.5 Empirical example

We have access to data from a small experiment involving long range infrared light detection

and ranging (Lidar) methods. Briefly, the idea is to discriminate between two types of

aerosols that have been emitted and are to be detected by Lidar, those that are biological in

nature and those that are non-biological. There are 29 curves available to us, with n1 = 15

non-biological and n2 = 14 biological signals.

The process involves a signal or waveform sent out in a series of bursts, and received

Lidar data were observed. Some of the bursts were sent before the aerosol was released, and

these were used to background-correct the received signal after the aerosol was released. For

each sample, the data used here are the background-corrected received signals for a burst,

19 wavelengths and 250 backscatter time points. In our illustrative analysis we followed the

procedure described below for 20 bursts collected almost simultaneously in the middle of the

release period and then averaged over the bursts before classification. Thus, in our notation,

Yij consists of the two-dimensional collection of background-corrected received signals over

the wavelengths and the backscatter time points for the ith sample within the jth aerosol

class. This observed data is the convolution of a true signal, the Lidar response function for

a delta-pulse transmitter, with the transmitted signal. If we write Gijw(t) for this true signal
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Figure 9: Plotted are two background corrected received data curves from population 1 (left)
and population 2 (right), averaged over the 20 bursts, across wavelength and the backscatter
spectral range.

for wavelength w at backscatter time point t, Rijw(t) for the background-corrected received

signal, and Tw(t) for the transmitted signal, then, using an integral approximation to the

discrete convolution, the signal we observe is

Rijw(t) =

∫ t

0

Gijw(t− v)Tw(v) dv + κijw(t),

where ξijw(t) has mean zero. If we define Njw(t) = E{Gijw(t)}, Mjw(t) =
∫ t

0
Njw(t −

v)Tw(v) dv and Pijw(t) =
∫ t

0
{Gijw(t− v)−Njw(t− v)} Tijw(v) dv + κijw(t), then we have

that the observed data are given by Rijw(t) = Mjw(t) + Pijw(t), where Pijw(t) has mean

zero. In our notation, Yij, µj, Tµj and ϵij are the collection of Rijw(t), Njw(t), Mjw(t) and

Pijw(t) over the wavelengths and backscatter ranges, respectively, but averaged across 20

bursts. It is readily observed that the transformation Tµj is linear. Two typical observed

average curves for each population are given in Figure 9.

We considered three approaches. The first simply used the observed data Yij. The

second was our method applied to the Q−1

θ̂CV
Yij, where Qθ had the form at (4.4). In the

third, for each burst and wavelength, we deconvolved to estimate Gijw(t) using the Wiener-

Helstrom method described by Warren, et al. (2008), and averaged over the bursts. In

each case, since we could not generate new data, we estimated the misclassification error

rate (i.e. misclassification percentage) by crossvalidation. In other words, as in the case of

the procedure described in Section 2.3.3, we built the classifier from all but one of the 29

curves, classified that curve in one of the two populations (non-biological or biological), and

averaged the results over all 29 curves.

For the centroid classifier, the crossvalidation estimator of misclassification error rate was
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34.5% for the first approach based on non-transformed data, 24.1% for our crossvalidation

based inversion approach, and 34.5% for the third approach based on inversion of T . For

the SVM and logistic regression classifiers, the estimator of misclassification error rate was

37.9% (SVM) or 27.6% (logistic) when the classifier was based on non-transformed data,

17.2% (SVM) or 21% (logistic) when the classifier was based on our crossvalidation based

inversion method, and 58.6% (SVM) or 31% (logistic) when the classifier was based on

inversion of T . For all three classifiers, the reduction in misclassification error rate obtained

by our crossvalidation-based data inversion illustrates the significant improvement that can

be obtained by inverting the data through a data-driven transform chosen to minimize an

estimator of classification error.
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