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PETER HALL’S MAIN CONTRIBUTIONS TO
DECONVOLUTION

By Aurore Delaigle∗

University of Melbourne

Peter Hall died in Melbourne on January 9, 2016. He was an
extremely prolific researcher and contributed to many different areas
of statistics. In this paper, I talk about my experience with Peter and
I summarise his main contributions to deconvolution, which include
measurement error problems and problems in image analysis.

1. My experience with Peter. I met Peter for the first time at a
workshop in Belgium in 2001 when I was a PhD student. I was a nobody
and he was a god in Statistics, but he took the time to discuss my work,
which left me with the impression that he was a very nice person. That
was the general experience that young researchers had when meeting Pe-
ter. Even if you were very insignificant in a department with many senior
statisticians, he managed to make you feel included just through the shear
warmth of his personality. Indeed, Peter was a wonderful person. He was
gentle, generous, passionate, enthusiastic, optimistic and very supportive.
He not only inspired me, but he also had a massive impact on hundreds of
other young statisticians all over the world.

Two years after I met Peter for the first time, he visited the University
of California at Davis where I was a postdoc. We were office neighbours,
and again I was amazed at how gentle and accessible he was. He discussed
with me as if we were equal, which made me feel very comfortable. I told
him about the topic of my PhD thesis (deconvolution), and a few days later,
when I got into my office, there was a 20 page document waiting for me
on my chair. It was Peter who had essentially written a paper on a new
problem in the area, and he was asking if I would be interested in joining
him to work on it. This is a story I share with many. He continuously had
academic visitors from overseas who talked to him about a problem they
had. Often he got very enthusiastic about it, or about a modified version of
it, and soon after there was a 20 page document with a solution and long
proofs waiting under their door.
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2 A. DELAIGLE

Fig 1: Left: Jianqing Fan, Jiashun Jin, Peter Hall, Aurore Delaigle and
Maozai Tian on a trip to Puffing Billy. Right: lunch break on that day.

Peter was extremely prolific, his work was deep and very creative, and the
breadth of problems he tackled was very unique. Although I worked with
him continuously, he kept on managing to surprise me regularly with some
of his unbelievably creative and beautiful ideas. I often told him: “how on
earth did you even get to think about this in the first place?” It seemed like
this came out of nowhere, I was wondering how such inventive things could
come out of someone’s brain. Peter also had the reputation of being able
to prove almost any theoretical result, which was essentially true. He was
a problem solver; he really enjoyed the challenge of solving a new problem
and he was absolutely passionate about science and mathematics in general.

Peter won the most prestigious awards a statistician can get, including
Fellowships of the Royal Society of London and of the Australian Academies
of Science and Social Sciences, the election to Foreign associate of the US
National Academy of Sciences and to Officer of the Order of Australia. Yet,
he was the most unassuming person I’ve ever met.

He liked having visitors around the department, which he found very stim-
ulating. He had lunch with them every day, but at lunch he much preferred
talking about the news, politics, trains, planes or cats than about statistics.
When he had time on the week-end, he enjoyed taking them to the coun-
tryside of his beautiful Australia that he loved so much. In Melbourne, his
favourite activity with visitors was to take them for a ride on a steam train
called “Puffing Billy”. We went there many times after he acquired a digital
camera, and his biggest pleasure was to photograph the locomotive under
every possible angle. He developed his passion for trains and photography
at a young age. It is him who introduced photography to his sister Fiona
Hall, who later became a distinguished artist in Australia and of whom he
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PETER HALL AND DECONVOLUTION 3

Fig 2: Peter Hall, Aurore Delaigle and Raymond Carroll on a trip to Puffing
Billy.

was very proud (Delaigle and Wand, 2016).
Peter loved animals, and cats in particular. He often told me that when

he got home, he used to stroke his cat Pumpkin 150 times, and that she
complained if he stopped before 150. When he was at the Australian Na-
tional University, he also developed an interest in cockatoos. He liked their
company so much that he had bags of bird seeds in his office, from which he
would feed the cockatoos through his window. Many visitors still remember
the noise of the cockatoos knocking on his window, begging for food.

Peter was someone really special. His sheer presence made the whole at-
mosphere around him peaceful, joyful and exciting. He was an extraordinary,
kind, gentle and generous person, of the type most people do not even have
the chance to meet once in their lifetime. I feel blessed for having had him
as a friend, collaborator and mentor for many years, but I miss him terribly,
and I will miss him for the rest of my life.

2. Peter and errors-in-variables deconvolution problems.

2.1. Introduction. Peter made important and groundbreaking contribu-
tions to deconvolution problems in statistics, also referred to as nonpara-
metric errors-in-variables or measurement errors problems. For an excellent
introduction to measurement errors problems, the reader is referred to Car-
roll, Ruppert, Stefanski and Crainiceanu (2006). In the measurement errors
literature, one can principally distinguish two types of errors called classical
errors and Berkson errors. Peter contributed to nonparametric density and
regression estimation problems for the two types of errors.

imsart-aos ver. 2013/03/06 file: HallDeconvAOS.tex date: June 2, 2016



4 A. DELAIGLE

In its most basic form, the classical errors-in-variables problem can be
described as follows. Suppose we are interested in estimating the density fX
of a variable X, but we can observe only an i.i.d. sample W1, . . . ,Wn where,
for each i,

Wi = Xi + Ui . (2.1)

Here, the Xi’s are i.i.d. with unknown density fX , the Ui’s are i.i.d. with
symmetric known or estimable density fU , and the Xi’s are independent
of the Ui’s. In this model, the Ui’s typically represent measurement errors
made when collecting the data. If we let fW denote the density of the Wi’s,
then fW is the convolution of fX and fU , that is fW = fX ∗fU , and we have
to de-convolve this equation in order to estimate fX from an estimator of
fW , whence the name “deconvolution”.

Throughout this article, φT will denote the characteristic function of a
random variable T or the Fourier transform of a function T . Assuming that

inf
t∈R
|φU (t)| > 0 , (2.2)

and using the fact that φW = φXφU , combined with the Fourier inversion
theorem, Carroll and Hall (1988) and Stefanski and Carroll (1990) proposed
the deconvolution kernel density estimator of fX , defined by:

f̂X(x) =

∫
e−itxφ̂W (t)φK(ht)/φU (t) dt = (nh)−1

n∑
j=1

KU

(x−Wj

h

)
, (2.3)

where KU (x) = (2π)−1
∫
eituφK(t)/φU (t/h) dt . (2.4)

Here φ̂W (t) = n−1
∑n

j=1 e
itWj denotes the empirical characteristic function

of the Wi’s, h > 0 is a smoothing parameter called bandwidth, and φK
denotes the Fourier transform of a function K called kernel, and used to
dampen the effect of the unreliability of φ̂W (t) for |t| large.

In the regression context, the classical errors-in-variables problem consists
in estimating a regression curve m from i.i.d. data (W1, Y1), . . . , (Wn, Yn)
generated by the model

Yi = m(Xi) + εi , Wi = Xi + Ui , (2.5)

where the Wi’s are as in (2.1),the Xi’s, the Ui’s and the εi’s are completely
independent, and the εi’s are i.i.d. with mean zero and finite variance. Recall
the definition of KU in (2.4). Fan and Truong (1993) proposed the following
kernel estimator of m(x):

m̂(x) =

n∑
j=1

YjKU

(x−Wj

h

)/ n∑
j=1

KU

(x−Wj

h

)
. (2.6)
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PETER HALL AND DECONVOLUTION 5

In the Berkson error model, the roles of Xi and Wi are reversed compared
to the classical error model. Specifically, in the Berkson errors-in-variables
regression model, we wish to estimate a regression curve m(x) = E(Y |X =
x), but we observe only i.i.d. data (W1, Y1), . . . , (Wn, Yn), where, for each i,

Yi = m(Xi) + εi , Xi = Wi + Ui , (2.7)

with the Wi’s, the Ui’s and the εi’s completely independent. The unobserv-
able Xi’s are i.i.d. with unknown density fX , the errors Ui are i.i.d. with
known symmetric density fU , and the εi’s are i.i.d. with mean zero and finite
variance.

2.2. Peter’s first influential contribution to classical error problems. Pe-
ter’s first work in the area was the influential Carroll and Hall (1988) paper.
There, the authors were the first to establish minimax convergence rates for
nonparametric estimation of the density fX in the model at (2.1). Let Ck(B)
denote the class of k-times differentiable densities f such that ‖f‖∞ ≤ B
and ‖f (k)‖∞ ≤ B, and for each fX ∈ Ck(B), let f̂X(x0) denote any non-
parametric estimator of fX(x0), constructed from the Wi’s at (2.1), where
x0 is a fixed real number.

The main result of the paper states that if, for a sequence of positive
constants an, n ≥ 1 we have

lim inf
n→∞

inf
fX∈Ck(B)

PfX
{
|f̂X(x0)− fX(x0)| ≤ an

}
= 1 for each B > 0,

then if fU is a standard normal density, limn→∞(log n)k/2an =∞ and if fU is
such that |φU (t)| decreases like |t|−α as |t| → ∞, then limn→∞ n

k/(2k+2α+1)an =
∞. In other words, in the class of densities in Ck(B), no nonparametric es-
timator can converge at a faster rate than (log n)−k/2 in the normal error
case, and than n−k/(2k+2α+1) in the algebraically decaying case. Moreover,
the deconvolution kernel estimator reaches those rates.

The distinction between these two rates of decay has now become stan-
dard in the deconvolution literature. Error densities whose Fourier transform
decays exponentially fast are usually referred to as supersmooth error den-
sities, and error densities whose Fourier transform decays algebraically fast
are referred to as ordinary smooth error densities; see Fan (1991), who gener-
alised the results of Carroll and Hall (1988) to those two classes of errors. In
the supersmooth error case, unless the density fX is itself supersmooth, the
convergence rates of nonparametric estimators are only logarithmic, whereas
in the ordinary smooth error case, these rates are polynomial in n.
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6 A. DELAIGLE

2.3. Classical error problems with unknown error distribution. Some of
Peter’s most important contributions to deconvolution focus on relaxing the
assumption that the error density fU in the model at (2.1) is known.

Diggle and Hall (1993) were among the first to relax this assumption. In
this paper, the authors assume that, in addition to the sample W1, . . . ,Wn,
an i.i.d. sample U1, . . . , Um, with Ui ∼ fU , is also available. Using this addi-
tional sample, they estimate the unknown φU (t) by φ̂U (t) = m−1

∑m
j=1 e

itUj ,

and then replace φU in (2.3) by φ̂U . Moreover, instead of using commonly
employed finite order kernels, they use the infinite order sinc kernel K, de-
fined by φK(t) = 1{|t| ≤ 1}. They derive asymptotic properties of their
density estimator in this case, from which they conclude that, as long as
m 6= o(n), estimating φU has no first order asymptotic effect on the mean
squared error of the estimator of fX . This problem was taken up later by
other authors, including Neumann (1997).

Discouraged by the slow convergence rates in the case of normally dis-
tributed errors, Peter essentially stopped working in the area for nearly ten
years. However, in 2002, he considered a more optimistic model where the
variance of the errors is regarded as tending to zero as sample size increases.
That is, var(Ui) → 0 as n → ∞. To justify this assumption, we can view
the asymptotic behaviour of an estimator as a way to reflect the estimator’s
behaviour when the sample becomes ideal. In the traditional sense, “ideal”
means “sample size tending to infinity”. In the measurement error setting,
it is sometimes reasonable to regard an ideal sample as a sample whose size
increases, but also whose error contamination decreases. Asymptotics based
on the assumption that var(Ui)→ 0 as n→∞ can suitably reflect the finite
sample scenario where the error variance is relatively small compared to the
variance of the Xi’s. In other words, methods that have good theoretical
properties under this scenario can work reasonably well in practice (indeed,
better than standard deconvolution approaches) as long as var(Ui) is rel-
atively small. In other cases, they can produce seriously biased estimator
(Delaigle, 2008).

In Hall and Simar (2002) and Carroll and Hall (2004), the authors con-
sider two estimation problems under this small error variance assumption
where var(Ui) → 0 as n → ∞. Aware of the fact that it is often merely an
approximation to the truth, they argue that instead of attempting to con-
sistently estimate fX directly, using methods which have poor convergence
rates, one should instead estimate an approximation to fX obtained under
that assumption, but which can be estimated at standard error-free non-
parametric rates. In addition, instead of requiring knowledge of the whole
error density, the small error assumption permits to develop approaches that
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PETER HALL AND DECONVOLUTION 7

require only a few low order moments of the Ui’s. In Hall and Simar (2002),
the goal is to estimate changepoints and discontinuities of fX from data
generated by (2.1). Under the small error variance assumption, the authors
derive estimators that converge at standard polynomial rates, rather than
the slow typical deconvolution rates. In Carroll and Hall (2004), the authors
propose two nonparametric estimators of fX (kernel and orthogonal series)
constructed from data generated by (2.1). Under the small error variance
assumption, they show that these estimators converge at fast algebraic rates.

These two papers resparkled Peter’s interest in deconvolution problems,
to which he made contributions until the end of his life. In Delaigle, Hall
and Meister (2008), Peter tackled again the case where the error density fU
is unknown in model (2.1), this time assuming that replicated contaminated
measurements of the Xi’s are available. That is, for each i, we observe Wij =
Xi + Uij , where j ≥ 2 and the Xi’s and the Uij ’s are totally independent,
with Uij ∼ fU . Noting that, for j 6= k, we have Wij −Wik = Uij − Uik, and
recalling that fU is symmetric, we can construct a consistent estimator of
|φU |2 from the Wij −Wik’s. Assuming that φU (t) ≥ 0 for all t, we deduce

an estimator φ̂U of φU , which can replace φU in the estimator at (2.3).
More precisely, to avoid getting too close to zero, the authors replace φU by
φ̂U + ρ, where ρ ≥ 0 is a small ridge parameter. Proceeding similarly, they
also extend the regression estimator at (2.6) to this context. They show, in
both the density and the regression cases, that estimating φU only has second
order impact on the asymptotic properties of the curve estimators, although
in the ordinary smooth case, for this to hold they require fX to be a little
smoother than fU . This problem was also studied in Li and Vuong (1998)
in a more complex setting, but under a set of assumptions that are difficult
to satisfy.

Peter’s last paper in the area (Delaigle and Hall, 2016) was one of his
favourite contributions to deconvolution. In that paper, he considers the
density deconvolution problem in the difficult case where fU is unknown and
no additional data are available. Several authors (Butucea and Matias, 2005,
Meister, 2006 and Butucea, Matias and Pouet, 2008) had considered this
problem before, but under the assumption that fU belonged to a known
parametric family. In Delaigle and Hall (2016), the only assumptions about
fU are that it is symmetric and satisfies (2.2). Arguing that the real world
is dominated by irregular distributions, the density fX is assumed to be
sufficiently irregular for it to be distinguishable from the nice symmetric
error density fU . Specifically, it is assumed that fX cannot be expressed as
a mixture of two densities, one of which is symmetric. Peter showed that,
under this assumption, the density of X can be estimated from its phase
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8 A. DELAIGLE

function, which itself can be easily estimated from the Wi’s. The authors
propose a data-driven method that gives surprisingly good results.

2.4. Other contributions to classical error problems. In Hall and Meis-
ter (2007), the authors relax assumption (2.2) by proposing a ridge-based
procedure. As in Stefanski and Carroll (1990), their method is based on the
Fourier inversion theorem, but unlike the deconvolution kernel estimator at
(2.3), the authors regularise their estimator of fX through a positive ridge
parameter function ρ(t). Let φ̂W as defined above, and let r ≥ 0 be a tuning
parameter. Using data generated by the model at (2.1), in order to avoid
dividing by a number too close to zero, they propose to estimate fX(x) by

f̂X(x) =
1

2π

∫
e−itx

φ̂W (t)φ̄U (t)|φU (t)|r

max{|φU (t)|, ρ(t)}r+2
dt .

They also suggest a version of their estimator in the regression case at (2.5),
and establish optimality of their estimators in a wide variety of settings.

In Delaigle, Hall and Müller (2007), the authors consider a subtle variant
of the Berkson model at (2.7). As in the Berkson model, they observe data
(W1, Y1), . . . , (Wn, Yn) and are interested in estimating the curve m(x) =
E(Yi|Xi = x), where Wi, Xi and Ui are as in (2.7). However, a crucial
difference with (2.7) is that the Yi’s satisfy Yi = g(Wi) + ηi, where the ηi’s
are i.i.d. with zero mean. Thus instead of being generated by the Xi’s, the
Yi’s are generated by the Wi’s. This difference makes the problem in Delaigle,
Hall and Müller (2007) much simpler than the Berkson one, and the authors
propose a nonparametric estimator of m that converges at the parametric
rate. That work was taken further in Carroll, Delaigle and Hall (2009), where
the authors consider more general similar phenomena in a prediction setting.

In Hall and Ma (2007), the authors propose a bootstrap procedure for
testing whether a regression curve is polynomial, using data generated by the
model at (2.5). As a side result, they also suggest a nonparametric estimator
of the cumulative distribution function (cdf) of the Xi’s, a problem which
was later studied in depth by Hall and Lahiri (2008), where the authors
also propose moment and quantile estimators. In Hall and Lahiri (2008),
the authors showed that, in the ordinary smooth error case, as long as the
distribution of the Xi’s is sufficiently smooth, the cdf can be estimated at
the parametric convergence rate. They also make the striking discovery that
the convergence rate is not always the same at all points.

In Delaigle and Hall (2008), the authors propose an approximation method
for selecting smoothing parameters in general deconvolution problems. In
standard error-free nonparametric curve estimation problems, a standard
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PETER HALL AND DECONVOLUTION 9

and popular approach to choosing smoothing parameters is the so called
plug-in method. It consists in constructing an estimator of the smoothing pa-
rameter that minimises the asymptotic mean squared error of the nonparam-
etic curve estimator. A difficulty in the errors-in-variables context is that, in
some problems (e.g. for the regression estimator at (2.6)), this asymptotic
mean squared error is so complex that it is not possible to construct a reason-
able estimator of it. To overcome these difficulties, Delaigle and Hall (2008)
suggest applying simulation extrapolation (SIMEX) methods to smoothing
parameter choice. SIMEX methods were originally introduced by Cook and
Stefanski (1994) in the parametric context. Delaigle and Hall (2008) proved
that, although SIMEX methods generally provide non-consistent nonpara-
metric curve estimators (Staudenmayer and Ruppert, 2004), when used ap-
propriately they yield bandwidths of the right order, which, in turn, result
in consistent nonparametric curve estimators.

Their method consists of two steps (simulation and extrapolation), which
we explain in the density estimation case, for simplicity: (i) generate data
which contain more noise than the Wi’s: for i = 1, . . . , n, let W ∗i = Wi +U∗i
and W ∗∗i = W ∗i +U∗∗i , with U∗i ∼ fU and U∗∗i ∼ fU . Note that W ∗i and W ∗∗i
denote contaminated versions of, respectively, Wi and W ∗i , which are all
available. (ii) Consider temporarily that, instead of fX , the densities of inter-
est are fW and fW ∗ , and construct their deconvolution kernel estimators f̂W
and f̂W ∗ using the contaminated data W ∗i and W ∗∗i , respectively. Construct
also standard kernel estimators f̃W and f̃W ∗ using the error-free versions Wi

and W ∗i . Since f̃W and f̃W ∗ converge faster to fW and fW ∗ than f̂W and
f̂W ∗ do, bandwidths h∗ and h∗∗ that are appropriate for f̂W and f̂W ∗ can
be defined by h∗ = argmin

∫
(f̂W − f̃W )2 and h∗∗ = argmin

∫
(f̂W ∗ − f̃W ∗)2.

Since W ∗∗ and W ∗ measure W ∗ and W in the same way as W measures
X, then it is reasonable to expect that h∗∗ measures h∗ in the same way
as h∗ measures h, where h is a bandwidth appropriate for computing f̂X at
(2.3). This motivates taking h = h∗∗/(h∗)2. The same ideas can be used to
select the smoothing parameters of other errors-in-variables problems. See
for example Delaigle and Hall (2011) and Delaigle, Hall and Jamshidi (2015)

In Carroll, Delaigle and Hall (2011), the authors considered modified tilted
deconvolution estimators, where, instead of giving equal weight n−1 to each
observation in the estimators at (2.3) and (2.6), the ith observation receives
a nonnegative weight pi. The weights satisfy

∑
i pi = 1, and the pi’s are

chosen so that the estimators at (2.3) and (2.6) satisfy a shape constraint.
In Delaigle and Hall (2011), the authors consider a heteroscedastic version
of the model at (2.5), where the εi’s are replaced by σ(Xi)ηi, with the ηi’s
i.i.d. with mean zero and variance one, and independent of the Xi’s and
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10 A. DELAIGLE

the Ui’s, and with σ a nonnegative function. They propose parametric and
nonparametric estimators of σ. In Delaigle, Hall and Jamshidi (2015), the
authors construct pointwise confidence bands for the estimator m̂ at (2.6).
In the error-free case, constructing such bands is complex because of the
difficulty of choosing the smoothing parameters in practice, a problem which
remains largely unsolved. An interesting aspect of Delaigle et al.’s (2015)
contribution is that, exploiting SIMEX ideas from Delaigle and Hall (2008),
they manage to derive data-driven smoothing parameters relatively easily.

Other noticeable contributions of Peter to the deconvolution problem in-
clude Hall and Qiu (2005), where the authors propose to estimate fX from
data generated by the model at (2.1) using a cosine-series estimator, in
the case where fX is supported on a known compact interval; Delaigle and
Hall (2006), where the authors discuss the choice of an optimal kernel for
deconvolution; Hall and Maiti (2009) where the authors analyse clustered
data using deconvolution techniques; Chen, Delaigle and Hall (2010) where
the authors exploit deconvolution techniques for inference in a class of Lévy
processes; and Lee, Hall, Shen, Marron, Tolle and Burch (2013), where the
authors consider the case where the distribution of X is a mixture of a finite
number of discrete atoms and a continuous distribution. They use a sieve
estimator, which they compute using penalised likelihood.

2.5. Peter’s main contributions to Berkson error problems. Peter made
several contributions to the nonparametric Berkson errors-in-variables model
at (2.7). Estimating fX from data W1, . . . ,Wn generated as in (2.7) is trivial
because fX = fW ∗fU , where fU is known and fW can be estimated directly
from the Wi’s. By contrast, estimating the regression curve m is complex. To
understand this, let g(w) = E(Y |W = w) = E

{
m(X)|W = w

}
= m∗fU (w).

We can estimate g from the (Wi, Yi)’s, and since we know fU , in principle
we can obtain an estimator of m by deconvolving this equation. However,
deconvolving Berkson errors causes a number of difficulties which do not
arise when deconvolving classical errors.

Delaigle, Hall and Qiu (2006) highlighted a problem which arises when fW
and fU are compactly supported. Let [aW , bW ] and [−δ, δ] denote the support
of fW and fU , respectively, with δ > 0. Since Wi ∈ [aW , bW ] for all i, we
can estimate g(·) = E(Y |W = ·) nonparametrically only on [aW , bW ]. Now
g = m ∗ fU , which means that we can estimate m only on [aW + δ, bW − δ].
However often m(·) = E(Y |X = ·) has the same support as fX . Since
X = W + U with W and U independent, this support is [aW − δ, bW + δ].
Thus often we cannot estimate m nonparametrically on its entire support.

This example illustrates that, in the Berkson errors-in-variables problem,
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PETER HALL AND DECONVOLUTION 11

the regression curve m is not always identifiable, especially when the curves
are compactly supported. Under identifiability conditions, Delaigle, Hall and
Qiu (2006) propose and study properties of a sine-cosine series estimator of
m. They also suggest a kernel estimator, but Fourier transform-based kernel
approaches are really the topic of Carroll, Delaigle and Hall (2007). There,
the authors also consider a more general case with a mixture of Berkson
and classical errors, this time without compact support assumptions. How-
ever, the non compactly supported case causes problems too. In order to
deconvolve g = m ∗ fU using Fourier transforms, that is, in order to use
an estimator of the type m(x) = (2π)−1

∫
e−itxφ̂g(t)φK(ht)/φU (t) dt, where

φ̂g(t) =
∫
eitxĝ(x) dx denote the Fourier transform of a nonparametric esti-

mator ĝ of g, the estimator ĝ needs to be sufficiently good to be integrated
over the whole real line. This makes the problem particularly complex.

3. Peter and deconvolution problems in image analysis. Through
his interest in photography, Peter made a number of contributions to im-
age anaylsis, which also extensively use the Fourier inversion techniques
employed in the deconvolution problems discussed above. Images are often
obtained in a blurred and noisy way. Specifically, letting X denote the ideal
image, the observed image Z is often modelled by

Z(r) =

∫
T (u)X(r + u) du+ δ(r) , (3.1)

where T is a point spread function blurring the signal, δ represents additive
noise and r ∈ Rd (or a bounded subset of Rd). Often, for images, d = 2 or 3,
but the techniques can be employed for more general d-dimensional signals.
Since images are only observed discretely, often the model at (3.1) is replaced
by a discrete version of it. Peter worked under the two models (continuous
and discrete), and for simplicity, in our discussion below we shall not make
the distinction between the two. Often but not always, Peter took T to be a
multivariate double exponential point-spread function (or a discrete version
of it when working with discrete models), but we shall not specify the form
of T in our discussion below.

As in the deconvolution problems discussed above, because of the convo-
lution structure in (3.1), techniques for reconstructing the image X from Z
are often based on inverse Fourier transforms. Assuming that the Fourier
transform of Z never vanishes, without the error δ and with T known, X
could be recovered by direct Fourier inversion of the equation φX = φZ/φT .
However, the presence of the noise δ makes that inversion unstable, espe-
cially at points where φT is close to zero. One way to address this difficulty
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12 A. DELAIGLE

is to use some form of regularisation of the Fourier inversion; for example,
φZ/φT can be replaced by zero when φT becomes too small.

A first body of work by Peter in the area was dedicated to establishing the-
oretical properties of such image reconstruction methods. Hall and Tittering-
ton (1986) studied theoretical properties of several commonly employed reg-
ularised Fourier-based techniques. Other properties, including lower bounds,
were established in Hall (1987a). Further properties were also derived in
Hall (1987b), where Peter also made the interesting discovery that, in some
cases, blurring a blurred image can produce an image of better quality than
the originally blurred image. Optimal convergence rates for image recovery
were established in Hall (1990), where it was also shown that Fourier-based
techniques reach those rates. Further theoretical properties were developed
in Hall and Koch (1990), and practical choices for the level of regularisation
were suggested in Hall and Koch (1992).

Peter also tackled other related problems. In Hall and Qiu (2007a), the
point-spread function T is known up to the value of one or several unknown
parameters θ. Motivated by the fact that images often contain sharp edges,
they propose to estimate θ by the value θ̂ for which the reconstructed image
gives the most plausible edges. In Hall and Qiu (2007b), T is also unknown,
but no parametric model is available for it. The authors propose to estimate
T in such as way that a test signal Xtest is best recovered. Motivated by the
fact that, in image restoration, it is often desirable for rectangular shapes
to be well reconstructed, they suggest taking Xtest to be a d-dimensional
version of a rectangle. Then, to estimate T , they use inverse Fourier inversion
techniques, where on this occasion it is X that is known (and equal to Xtest)
and T that is unknown. A problem with this approach is that the Fourier
transform of their test signal vanishes periodically, and to overcome this
difficulty they use a ridge-based technique similar to the one used in Hall
and Meister (2007).

Peter’s last contribution to the area was his work in Carroll, Delaigle
and Hall (2012), where rather than recovering the image X, the goal was
to classify noisy data of the same type as Z into two groups. The authors
proposed to use a parametric model for T , where the parameters are chosen
so as to minimise a cross-validation estimate of classification error. They
showed that, in general, the optimal inversion is not necessarily the one that
gives the best image reconstruction.
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