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Abstract

Predicting the value of a variable Y corresponding to a future value of an ex-
planatory variable X, based on a sample of previously observed independent data
pairs (X1, Y1), . . . , (Xn, Yn) distributed like (X, Y ), is very important in statistics.
In the error-free case, where X is observed accurately, this problem is strongly
related to that of standard regression estimation, since prediction of Y can be
achieved via estimation of the regression curve E(Y |X). When the observed Xis
and the future observation of X are measured with error, prediction is of a quite
different nature. Here, if T denotes the future (contaminated) available version
of X, prediction of Y can be achieved via estimation of E(Y |T ). In practice,
estimating E(Y |T ) can be quite challenging, as data may be collected under dif-
ferent conditions, making the measurement errors on Xi and X non-identically
distributed. We take up this problem in the nonparametric setting and introduce
estimators which allow a highly adaptive approach to smoothing. Reflecting the
complexity of the problem, optimal rates of convergence of estimators can vary
from the semiparametric n−1/2 rate to much slower rates that are characteristic
of nonparametric problems. Nevertheless, we are able to develop highly adaptive,
data-driven methods that achieve very good performance in practice.

Some Key Words: Bandwidth, Contamination, Deconvolution, Errors-in-variables,
Parametric rates, Regression, Ridge parameter, Smoothing
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1 Introduction

We consider prediction in a problem of nonparametric errors-in-variables regres-

sion. In the classical errors-in-variables context, the data consist of a sample of

independent and identically distributed observations (Wi, Yi), i = 1, . . . , n, gen-

erated by the model Yi = g(Xi) + εi , Wi = Xi + Ui , where each Wi represents

a contaminated version of a variable Xi, Xi and Ui are independent, and, for

i = 1, . . . , n, Ui has the distribution with density fU , which we indicate by writ-

ing Ui ∼ fU . Nonparametric estimation of g in this context is a difficult problem,

for which optimal estimators converge at notoriously slow rates, see e.g. Fan and

Truong (1993). When the interest lies in predicting future values of Y , however,

there is often no need to estimate the function g explicitly. In particular, if fu-

ture observations of X are also measured with an error U ∼ fU , then it is rarely

necessary to address the measurement error, as prediction of Y can be achieved

via estimation of E(Y |X + U) = E(Y |W ) by standard nonparametric regression

estimators from the sample (Wi, Yi), i = 1, . . . , n. See Carroll et al. (2006) for

further discussion of this and related issues.

In empirical applications, however, the above model can be too restrictive,

because individuals are not necessarily observed in similar conditions. For exam-

ple, the data may have been collected from different laboratories (see National

Research Council, 1993), and future observations may come from yet another

laboratory. In such cases, the data are a sample of independent observations

(Wi, Yi), i = 1, . . . , n, generated by

Yi = g(Xi) + εi , Wi = Xi + Ui, (1.1)

where each Wi represents a contaminated version of a variable Xi ∼ fX , with

error Ui ∼ fUi
and where {Xi, Ui, εi}i=1,...,n are mutually independent, and future

1



observations are of the type T = X+UF , where X and UF are independent, UF ∼
fUF and X has the same distribution as the Xis. As in the setting of the previous

paragraph, since future values of X are of the type T = X + UF , nonparametric

prediction of Y can be achieved via nonparametric estimation of µ(t) = E(Y |T =

t). Unlike the case of the previous paragraph, however, this cannot be done via

standard nonparametric regression estimators. Indeed, given that fU1, . . . , fUn

and fUF can all be different, the Wis are not necessarily identically distributed,

nor are they distributed like T . Despite this difficulty, the major purpose of this

paper is to show that it is possible to estimate µ(t) nonparametrically. Moreover,

the convergence rates of our estimator can be as fast as the parametric n−1/2

rate. While we acknowledge that asymptotic convergence rates do not tell the

entire story about the relative performance of estimators, and in particular that

multiplicative constants can also be important, our numerical results indicate

that our method also does very well in practice.

Heteroscedasticity in the errors arises in many different ways and has been

treated by several authors. See, for example, Devanarayana and Stefanski (2002),

Kulathinal et al. (2002), Thamerus (2003), Cheng and Riu (2006), Delaigle and

Meister (2007), Staudenmayer et al. (2008) and Delaigle and Meister (2008).

In some contexts, it is reasonable to assume that there is only a small number

of different error densities. In other cases of interest, the error densities could

reasonably all come from the same parametric family and differ only through the

parameters of their distributions. Indeed, it is commonly assumed that all errors

are centered normal random variables. See, for example, Cook and Stefanski

(1994), Carroll et al. (1999), Berry et al. (2002), Devanarayana and Stefanski

(2002), Kulathinal et al. (2002), Staudenmayer and Ruppert (2004) and Stau-

denmayer et al. (2008).
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The work in this paper was originally motivated by applications where the

errors in the sample W1, . . . , Wn are of only two types, and the error on future

observations is of one of these two types. To fix ideas, suppose the data have been

rearranged such that, for i = 1, . . . , m, Ui ∼ fU(1) and for i = m + 1, . . . , n, Ui ∼
fU(2) , whereas future observations are of the type T = X + UF with UF ∼ fU(1) .

Although it is much simpler, this model is important in practical applications

(see also Carroll et al. 2006, page 38–39), and we shall discuss it in detail. In

Section 5, we apply this two-error model on a dietary data set where the goal is

to predict a nutrient intake from a Food Frequency Questionnaire.

There is an extensive literature on estimation of a regression curve from con-

taminated data sets. A contemporary introduction to this problem is provided

by Carroll et al. (2006), and recent contributions include those of Kim and Gleser

(2000), Stefanski (2000), Taupin (2001), Linton and Whang (2002), Schennach

(2004a,b) and Huang et al. (2006). Nonparametric estimation of a regression

curve without contamination is a much older problem, treated in monographs

such as those by Wand and Jones (1995) and Simonoff (1996).

An outline of this paper is as follows. In Section 2, when the measurement

error densities are known, we describe estimators of the target µ(t). In Section

3, we show how to extend these methods to the case that the measurement error

densities are unknown. Section 4 gives the rates of convergence of our estimators,

and in particular discusses cases where our estimators achieve parametric rates

of convergence. Section 5 gives numerical results, both in simulations and in a

nutritional epidemiology context.
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2 Estimators

2.1 Estimators for the general case

Suppose we have a sample of data (Wi, Yi), i = 1, . . . , n, generated as at (1.1);

that the future observations of X are of the type T = X + UF , where X and

UF are independent and UF ∼ fUF ; and that the error densities fUi
and fUF are

known. The case where these are totally or partially unknown will be discussed

in Section 3. We wish to predict Y nonparametrically, via estimation of

µ(t) = E(Y |T = t) =

∫
yfT,Y (t, y) dy

/
fT (t). (2.1)

The task seems challenging, as we need to estimate T -related quantities from

a sample of W -related quantities. The relationship between T and each Wj,

however, when expressed in terms of their characteristic functions, is relatively

simple. Let fFt
V denote the characteristic function of the distribution of a random

variable V . Then it is easy to check that fFt
T (t) = fFt

X (t)fFt
UF (t) and fFt

X (t) =

fFt
Wj

(t)/fFt
Uj

(t). Assuming that none of the fFt
Uj

(t)s vanishes and fFt
T (t) is integrable,

it follows that, by the Fourier inversion theorem,

fT (x) =
1

2π

∫
e−itxfFt

T (t) dt, (2.2)

where we can write

fFt
T (t) = fFt

UF (t)n−1
∑

j

{fFt
Wj

(t)/fFt
Uj

(t)}. (2.3)

Based on these considerations, we show below how to estimate fFt
T and fT . Then,

we construct an estimator of the numerator of (2.1), and finally obtain an esti-

mator of µ.

The simplest device to obtain a consistent estimator of fT is to replace fFt
Wj

(t)

in (2.3) by eitWj , an unbiased estimator. However, the form of a sum of ra-

tios in (2.3) implies that the variance of the resulting estimator of fT , which
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depends on the behavior of the fFt
Uj

s in the tails, would be dominated by the

variance of the least favorable errors. This simple approach thus does not lead

to optimal estimators. Alternatively, to gain more precision, we could rewrite

(2.3) by using the ratio of the sums of fFt
Wj

and fFt
Uj

. Specifically, first note that

1/fFt
Uj

(t) = fFt
Uj

(−t)/|fFt
Uj

(t)|2. Use the notation Ψj(t) = fFt
Uj

(−t)
/ ∑

k |fFt
Uk

(t)|2.
Since fFt

Wj
(t) = fFt

X (t)fFt
Uj

(t), it follows that fFt
Wj

(t)fFt
Uj

(−t) = fFt
X (t)|fFt

Uj
(t)|2, which

implies that

fFt
T (t) = fFt

UF (t)
∑

j

fFt
Wj

(t)fFt
Uj

(−t)/
∑

k

|fFt
Uk

(t)|2 =
∑

j

fFt
Wj

(t)Ψj(t)f
Ft
UF (t).

Now, replacing fFt
Wj

(t) by its unbiased estimate eitWj , we can estimate fFt
T (t) from

the data (W1, Y1), . . . , (Wn, Yn) by

f̂Ft
T (t) =

n∑

j=1

eitWjΨj(t)f
Ft
UF (t). (2.4)

We shall show in Section 4 that this procedure leads to optimal estimators of µ.

If fFt
UF (t)

∑
j Ψj(t) ∈ L1 we can obtain an estimator of the denominator of

(2.1) by plugging (2.4) into (2.2), which gives f̂T (x) =
∑

j fT,j(x − Wj), where

we employed the notation

fT,j(x) =
1

2π

∫
e−itxfFt

UF (t)Ψj(t) dt. (2.5)

Using a similar approach, we estimate the numerator of (2.1) by
∑

j YjfT,j(x −
Wj), and we obtain an estimator of µ by taking the ratio of these two estimators:

µ̂(x) =

∑
j YjfT,j(x − Wj)∑

j fT,j(x − Wj)
· (2.6)

When fFt
UF (t)

∑
j Ψj(t) 6∈ L1 we need to regularize f̂Ft

T before plugging it into

(2.2). This challenge is also encountered in relatively classical deconvolution

problems. We use a kernel approach to regularize this problem. Methodology
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based on another nonparametric technique, such as splines, orthogonal series

or the ridge technique of Hall and Meister (2007), could also be developed.

While those methods might be competitive with the kernel approach, the lat-

ter benefits from being relatively accessible to asymptotic analysis. Let K be

a kernel function with Fourier transform KFt, and let h > 0 be a bandwidth.

Assuming that KFt(t)fFt
UF (t/h)Ψj(t/h) ∈ L1, our regularized estimator of fT is

f̃T (x) = h−1
∑

j KT,j{(x − Wj)/h}, where

KT,j(x) =
1

2π

∫
e−itxKFt(t)fFt

UF (t/h)Ψj(t/h) dt.

Proceeding as above, we define our estimator of µ by

µ̃(x) =

∑
j YjKT,j

(x−Wj

h

)
∑

j KT,j

(x−Wj

h

) · (2.7)

2.2 The two-error model

In the two-error model which motivated our work, the estimators of µ are par-

ticularly simple. To keep the same notation as in the introduction, assume that

the first m observations are contaminated by an error with density fU(1), that the

last n−m are contaminated by an error with density fU(2) , and that the error in

the future observation is UF ∼ fU(1) . Let qFt = fFt
U(2)(t)/f

Ft
U(1)(t).

If 1/qFt ∈ L1, we use the estimator at (2.6), which becomes

µ̂(x) =

∑m
j=1 Yjfq,1(x − Wj) +

∑n
j=m+1 Yjfq,2(x − Wj)∑m

j=1 fq,1(x − Wj) +
∑n

j=m+1 fq,2(x − Wj)
, (2.8)

where we used the notations fq,1(x) = (2π)−1
∫

e−itx{m + (n − m)|qFt(t)|2}−1 dt

and fq,2(x) = (2π)−1
∫

e−itxqFt(−t){m + (n − m)|qFt(t)|2}−1 dt.

If 1/qFt 6∈ L1, we use the estimator at (2.7), which becomes

µ̃(x) =

∑m
j=1 YjKq,1

(x−Wj

h

)
+

∑n
j=m+1 YjKq,2

(x−Wj

h

)
∑m

j=1 Kq,1

(x−Wj

h

)
+

∑n
j=m+1 Kq,2

(x−Wj

h

) , (2.9)
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where Kq,1(x) = (2π)−1
∫

e−itxKFt(t){m+(n−m)|qFt(t/h)|2}−1 dt and Kq,2(x) =

(2π)−1
∫

e−itxKFt(t)qFt(−t/h){m + (n − m)|qFt(t/h)|2}−1 dt. Note that in the

particular case where we have only observations contaminated by the error density

fU(1) , m = n and the estimator at (2.9) is nothing more than the usual Nadaraya-

Watson estimator without any contamination, see Wand and Jones (1995, p.

119).

Remark 2.1. In the terminology of nonparametric deconvolution, the smooth-

ness of an error (or error density) is usually described in terms of the speed

of convergence to zero of its characteristic function in the tails — the faster,

the smoother. See Section 4.2 for discussion. In this context, roughly speak-

ing, 1/qFt ∈ L1 implies that fU(1) is smoother than fU(2) . For example, if fU(1)

and fU(2) are normal densities with mean zero and variances σ2
1 and σ2

2, respec-

tively, then, 1/qFt ∈ L1 if σ2
1 > σ2

2 , and 1/qFt 6∈ L1 if σ2
1 ≤ σ2

2. The condition

fFt
UF (t)

∑
j Ψj(t) ∈ L1 can be understood in a related manner.

2.3 Local polynomial extension

The estimators presented above are an extension of the Nadaraya-Watson esti-

mator, which is nothing more than a local constant estimator appropriate for

error-free data. Recently, Delaigle, Fan and Carroll (2008) solved the long-open

problem of developing local polynomial estimators for errors-in-variables prob-

lems. Using their technique we can give a local polynomial version of our es-

timator µ̃. More precisely, we define a pth order local polynomial estimator

of µ by µ̃p(x) = (1, 0, . . . , 0)Ŝ−1

n
T̂n, where Ŝn = (Ŝn,j+`(x))0≤j,`≤p and T̂n =

(T̂n,0(x), . . . , T̂n,p(x))T with

Ŝn,k(x) =

n∑

j=1

KU,k,j;h(Wj − x) and T̂n,k(x) =

n∑

j=1

YjKU,k,j;h(Wj − x),
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where KU,k,j;h(x) = h−1KU,k,j(x/h) and

KU,k,j(x) =i−k 1

2π

∫
e−itx(KFt)(k)(t)fFt

UF (t/h)Ψj(t/h) dt.

Compared to local constant estimators (p = 0), local polynomial estimators for

p > 0 have the advantage of being less biased in the presence of boundary points.

On the other hand, in practice, increasing the value of p usually leads to an

increase of variability, and using values of p larger than 1 is rarely useful unless

the interest is in estimating derivatives of the curve µ. This, however, is usually

not the case in the prediction problem.

It is straightforward to extend the local-constant methodology of Delaigle,

Hall and Meister (2008) for the case of unknown error distributions to the context

of general local polynomial estimators. Properties are similar, too. For example,

convergence rates in the case of local linear methods are identical, under regularity

conditions discussed towards the end of Section 3.1, to those for the local constant

estimators treated in this paper.

3 Unknown error densities

There are many examples where it is too restrictive to assume that the error

densities are completely known, and in such cases, these densities have to be

estimated from the data. For a long time this problem was essentially ignored in

the nonparametric literature, where the error distributions were systematically

assumed to be known. Recently, however, several authors have shown that this

problem can be tackled if every observation is replicated at least once. Refer-

ences include Schennach (2004a,b), Delaigle, Hall and Meister (2008) and Hu and

Schennach (2008). In the next section we discuss parametric and nonparametric

methods for error density estimation in the two-error model treated in Section

2.2. A procedure for the general model is given in Section 3.2.
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3.1 Procedures for the two-error model

In the two-population case, if we do not have enough data to estimate the error

densities, and if m is not particularly small, then a consistent estimator of µ can

be obtained by taking n = m, i.e. discarding all observations contaminated by

fU(2) and using the standard Nadaraya-Watson estimator. See also Remark 3.1,

below. The most interesting setting is undoubtedly that where it is possible to

estimate the error densities, as it is in this case that the estimator of µ will enjoy

the fastest rates of convergence; see Section 4.

As discussed in the introduction, a large literature on measurement errors

assumes that the errors are normal. More generally, the errors could belong to

some parametric family, not necessarily normal. There, if we have a parametric

model fU(1)( · | θ1) (respectively, fU(2)( · | θ2)) that is identifiable from data on U −
U ′, where U and U ′ denote two independent variables from of fU(1) (respectively,

fU(2)), then θ1 and θ2 can be estimated from a sample of replicated data, i.e. a

sample of the form (Wij, Yi), i = 1, . . . , n and j = 1, 2, generated by the model

Yi = g(Xi) + εi , Wij = Xi + Uij, (3.1)

where, for i = 1, . . . , m, Uij ∼ fU(1), whereas, for i = m + 1, . . . , n, Uij ∼ fU(2) ,

and the Uijs are all independent, and independent of each Xi. For example, if

θi = σ2
U(i) , i = 1, 2, then we can take θ̂i equal to a weighted average of the within-

subject sample variance; see equation (4.3) of Carroll et al. (2006). Once the

unknown parameters have been estimated, the resulting estimated characteris-

tic functions f̂Ft
U(1) and f̂Ft

U(2) are plugged into the estimators (2.8) and (2.9), to

produce our estimators of µ.

In some cases it can happen that we have no suitable parametric model

for the error densities. If the characteristic functions of the error densities

are positive and symmetric, as is the case for many common densities, then
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they can be estimated nonparametrically along the lines of Delaigle, Hall and

Meister (2008). More precisely, fFt
U(1) and fFt

U(2) , in (2.8) and (2.9), are esti-

mated by, respectively, f̂Ft
U(1)(t) =

∣∣m−1
∑m

j=1 cos{t(Wj1−Wj2)}
∣∣1/2

and f̂Ft
U(2)(t) =

∣∣(n − m)−1
∑n

j=m+1 cos{t(Wj1 − Wj2)}
∣∣1/2

. We then replace fFt
U(1) and fFt

U(2) by

f̂Ft
U(1) and f̂Ft

U(2) in the numerators of fq,1, fq,2, Kq,1 and Kq,2, but in the de-

nominators, to avoid division by zero, we replace m|fFt
U(1) |2 + (n − m)|fFt

U(2)|2

by m|f̂Ft
U(1) |2 + (n − m)|f̂Ft

U(2)|2 + r, with r > 0; see Delaigle, Hall and Meister

(2008). More general settings are considered by Li and Vuong (1998), Schennach

(2004a,b) and Hu and Schennach (2008).

Convergence rates in the unknown error case, and in the setting of classi-

cal errors-in-variables problems, have been given by Delaigle, Hall and Meister

(2008). The results there state that, if the characteristic function of the unknown

error distribution is estimated using a difference-based method, then the conver-

gence rate is the same as in the setting of a known error distribution, provided

the density of X is sufficiently smooth relative to the error density. This is also

true in the prediction problem treated in the present paper.

Remark 3.1. When m is large relative to n − m, and the error densities can-

not be well estimated, a classical Nadaraya-Watson estimator of µ, based on

(W1, Y1), . . . , (Wm, Ym), is likely to perform better than our estimator. For exam-

ple, this could happen if the errors densities had to be estimated nonparametri-

cally from a small number of individuals for which there were replicated obser-

vations. In such cases, a conservative approach would be to use the Nadaraya-

Watson estimator.
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3.2 A procedure for the general model

Before we show how to construct a consistent estimator in the general context

of the model (1.1), it is important to realize that, whatever approach we take,

in order for the function µ to be identifiable we need to be able to consistently

estimate the error density fUF of the future observations. See Section 3.1 for a

discussion on how to estimate an error density. We assume that sufficient effort

has been made by the experimenters to collect data permitting the construction of

a consistent estimator f̂UF of fUF . If fUF cannot be estimated then the prediction

problem is not identifiable.

As in Section 3.1, for simplicity we address the case where there are just

two replicated measurements of Xi for each i, that is, we have data of the form

(Wij, Yi), for i = 1, . . . , n and j = 1, 2, generated by the model (3.1), where

Uij ∼ fUi
and the Uijs are all independent, and independent of every Xi (the case

of a larger number of replicates can be treated similarly). Of course, it is not

possible to estimate each error density fUi
from such data. Nevertheless, if the

characteristic functions of the error densities are positive and symmetric and if we

modify our estimators at (2.6) and (2.7) appropriately, it is possible to construct

a consistent estimator of µ, as we show below.

Let W i = (Wi1 + Wi2)/2, and note that fFt
X (t) = fFt

W j
(t)/{fFt

Uj
(t/2)}2 =

Φ(t)
∑

j fFt
W j

(t), where we used the notation Φ(t) = 1/
∑

k{fFt
Uk

(t/2)}2. Replacing

the unknown Φ(t)−1 by the estimator Φ̂(t)−1 =
∑

k exp
(
it(Wk,1 − Wk,2)/2

)
, and

proceeding as in Section 2, we obtain the following versions of (2.6) and (2.7):

µ̂∗(t) =

∑n
j=1 Yjf

∗
T (x − W j)∑n

j=1 f ∗
T (x − W j)

, µ̃∗(t) =

∑n
j=1 YjK

∗
T

(x−W j

h

)

∑n
j=1 K∗

T

(x−W j

h

) ,
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with f ∗
T (x) = (2π)−1

∫
e−itxf̂Ft

UF
(t)/{Φ̂−1(t) + r}, and with

K∗
T (x) = (2π)−1

∫
e−itxKFt(t)f̂Ft

UF
(t/h)/{Φ̂−1(t/h) + r} dt,

where, as before, r > 0 is introduced to avoid division by zero.

4 Theoretical properties

The properties of the estimator µ̂ at (2.6) are clear. In particular, it is easy

to check that the numerator and the denominator are both unbiased estimators

of µ(t)fT (t) and fT (t), respectively, and that, under conditions similar to those

discussed below Theorem 4.1, µ̂ converges at the fast parametric n−1/2 rate.

Intuitive explanation of why this fast rate can occur in a nonparametric context

will be given in Remark 4.2. Properties of the estimator µ̃ are more complicated

and, in what follows, we derive them in the general case. Then we obtain more

detailed results in the two-error problem. Proofs of the results presented in this

section can be found in the supplemental material of this paper, available at

http://www.amstat.org/publications/jasa/supplemental_materials.

4.1 Asymptotic results for µ̃ in the general case

To study asymptotic properties of our estimator, we assume that:

εi, . . . , εn have zero means and uniformly bounded variances; (4.1)

K is symmetric, |K(x)| ≤ C3 (1 + |x|)−k−1−C4 for an integer k ≥ 2 and for

constants C3, C4 > 0,
∫

uj K(u) du = 0 for 1 ≤ j ≤ k − 1, sup |KFt| < ∞,

KFt(0) > 0, and, for some C5 > 0, KFt(t) = 0 for all |t| > C5, (4.2)

fX , fU1, . . . , fUn
, fUF and g are bounded, and fX and g have k bounded

derivatives; (4.3)

supk |fFt
Uk
|2 and |fFt

UF | are bounded and, for all t,
∑

k |fFt
Uk

(t)| > 0. (4.4)
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h → 0 as n → ∞ and n /v(h) → ∞ as n → ∞, (4.5)

where we defined

v(h) = nh−1

∫
|KFt(t)|2|fFt

UF (t/h)|2
/ n∑

k=1

|fFt
Uk

(t/h)|2 dt. (4.6)

Assumptions such as these are fairly standard in the nonparametric regression

literature. Condition (4.1) is mild, and the smoothness of the various curves

in (4.3) is imposed only to determine the order of the bias of the estimator,

which depends of k. In particular, k is generally not a tuning parameter, and

in empirical examples, where the smoothness of the curves is usually unknown,

it is common to set k = 2. It is well known that, in practice, larger values of k

increase the variability of estimators and usually make them unattractive, see, for

example, Marron and Wand (1992). Of course, as in the standard error-free case,

our results can be extended to cases where fX and g have discontinuity points,

with the obvious modifications to the bias. Condition (4.2) only concerns the

kernel (which we can choose) and is satisfied by the kernels used in deconvolution

problems. Condition (4.4) is a weaker version of standard conditions usually

imposed in deconvolution problems (see e.g Fan, 1991), since, in our case, the

characteristic functions of the errors are permitted to vanish. Condition (4.5) is a

generalization of the standard condition nh → ∞ imposed in the error-free case,

but it looks more complicated here because the variance of the estimator is of

order v(h)/n rather than 1/(nh).

The asymptotic behavior of the estimator is described in the next theorem.

Theorem 4.1. Assume (4.1)–(4.5). Then, for each t such that fT (t) > 0,

µ̃(t) = µ(t) + Op

(
{v(h)/n}1/2 + hk

)
. (4.7)
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Precise rates of convergence of the estimator depend on the behavior of the

ratio Q(t) ≡ n|fFt
UF (t)|2/ ∑

k |fFt
Uk

(t)|2 in the tails. It is not possible here to con-

sider every possible combination of error types. To get some insight on these

results, consider the situation where, for all t,
∑

k |fFt
Uk

(t)|2 > nξ(t) where ξ is

a continuous, strictly positive function. Then, if Q(t) = o(|t|−1) as t → ∞, by

taking h = O(n−1/k), the estimator converges at the fast parametric n−1/2 rate.

When Q(t) = O(1) and |t|Q(t) → ∞ as t → ∞, the estimator converges at a

rate that lies between n−1/2 and the classical nonparametric rate n−k/(2k+1), and

in other cases it converges more slowly than n−k/(2k+1). An intuitive explanation

of the occurrence of fast parametric rates will be given in Remark 4.2.

4.2 Detailed results in the two-error case

In the two-error problem described in Section 2.2, it is possible to provide a more

detailed study of the convergence rates of the estimator µ̃, which, in this case,

reduces to (2.9). Precise rates of convergence depend on the values of m and n,

and on the behavior of qFt in the tails, which itself is dictated by the behaviors of

the characteristic functions fFt
U(1) and fFt

U(2) of the errors. In the measurement error

literature it is well known that convergence rates of nonparametric estimators

depend heavily on the behavior of the characteristic function of the error in the

tails. This tail behavior is usually referred to as the smoothness of the error, and

it is standard to divide the error distributions in two quite different categories,

called ordinary smooth and supersmooth in the terminology of Fan (1991). The

errors fU(1) and fU(2) are ordinary smooth of orders β and α, respectively, if they

satisfy, for positive constants C1 < C ′
1 and C ′

2 < C2 and for all t,

C ′
2 (1 + |t|)−β ≤

∣∣fFt
U(1)(t)

∣∣ ≤ C2 (1 + |t|)−β,

C1 (1 + |t|)−α ≤
∣∣fFt

U(2)(t)
∣∣ ≤ C ′

1 (1 + |t|)−α.
(4.8)
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An error density fU is supersmooth of order β > 0 if it satisfies, for positive

constants γ, D1 < D2 and for all t,

D1 exp(−|t|−β/γ) ≤
∣∣fFt

U (t)
∣∣ ≤ D2 exp(−|t|−β/γ). (4.9)

For simplicity of presentation we give our main results under the assumption

that, for constants α, β, C1, C2 > 0 and all real t,

C1 (1 + |t|)−α ≤
∣∣fFt

U(2)(t)
∣∣ ,

∣∣fFt
U(1)(t)

∣∣ ≤ C2 (1 + |t|)−β . (4.10)

Obviously, ordinary smooth errors satisfy both inequalities, but supersmooth

errors also satisfy the second inequality for any β > 0.

Define δ = α − β + 1
2

and, denoting the indicator function by 1{·}, let

v1(h) = h−2δ · 1{δ>0} + |logh| · 1{δ=0} + 1{δ<0} . (4.11)

Assume that, as n → ∞,

h → 0, n /v1(h) → ∞ and mh → ∞. (4.12)

The asymptotic behavior of µ̃ is described in the next theorem.

Theorem 4.2. Assume (4.1)–(4.4) and (4.10)–(4.12). Then, for each t such

that fT (t) > 0,

µ̃(t) = µ(t) + OP

(
hk + min{(mh)−1/2, (n − m)−1/2v1(h)1/2}

)
. (4.13)

This result shows that our estimator µ̃ converges at a rate at least as fast as

the Nadaraya-Watson estimator of µ based on direct data from (T, Y ), i.e. on

the first m observations (W1, Y1), . . . , (Wm, Ym). Indeed, the Nadaraya-Watson

estimator is optimized when taking h ∼ const. m−1/(2k+1), for which it converges

at the rate m−k/(2k+1). Of course, the cases where our estimator converges faster

that the Nadaraya-Watson estimator depend on the relative sizes of m and n,

but also on the relative smoothness of the two errors, as we show below.
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The most favorable situation is clearly the one where δ < 0. This includes the

case where fU(1) and fU(2) are ordinary smooth of orders β and α, respectively,

with β > α + 1
2
, but it also includes the case where, simultaneously, fU(1) is

supersmooth of any order, and fU(2) is ordinary smooth of any order. When

m = o{(n − m)(2k+1)/2k}, we obtain the very fast parametric rate (n − m)−1/2,

by taking h = O
{
(n − m)−1/(2k)

}
. In particular, when m and n − m are of

the same order, or m = o(n), the estimator converges at the rate n−1/2. When

m 6= o{(n − m)(2k+1)/2k}, i.e. when there are many more data contaminated by

fU(1) than by fU(2) , then, logically, the estimator converges at the same rate as

the Nadaraya-Watson estimator based on the m first data points. More precisely,

when h ∼ const. m−1/(2k+1) the estimator converges at the rate m−k/(2k+1).

The case where δ > 0 is more involved since, there, the term (n−m)−1/2v1(h)1/2

in (4.13) is only an upper bound to the contribution of the data (Wi, Yi) for

i = m+1, . . . , n, and precise characterization of convergence rates can be obtained

only at the expense of more precise characterization of qFt. We shall assume that

the errors are ordinary smooth of order β and α, as defined at (4.8). Under this

assumption, the convergence rate of the estimator is exactly of the order given

in the theorem. The optimal bandwidth is thus of order h ∼ const. m−1/(2k+1)

when (n − m)(2k+1)/(2k+2δ) = o(m), and the estimator then converges at the rate

m−k/(2k+1). When m = o
{
(n−m)(2k+1)/(2k+2δ)

}
, the optimal bandwidth is of order

h ∼ const. (n−m)−1/(2k+2δ) and the estimator converges at rate (n−m)−k/(2k+2δ).

Remark 4.1. (Other types of errors). Calculation of the rates for µ̃ can be

extended to cases more general than (4.10). For example, it can be shown

that the convergence rates are of order min{m−k/(2k+1), (n − m)−1/2} whenever

t1/2/qFt(t) < const. as t → ∞; they are of order min{m−k/(2k+1), B(n)} where

B(n) → 0 as n → ∞ at a speed similar to typical deconvolution rates (see e.g.
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Fan and Truong, 1993), when 1/qFt(t) → ∞ as t → ∞; and it is of an or-

der between min{m−k/(2k+1), B(n)} and min{m−k/(2k+1), (n−m)−1/2} in all other

cases.

Remark 4.2. (On the parametric rates — I). The very fast parametric rate

noted above may appear counter-intuitive. It can be understood from the fact

that, since we know that fT = fX ∗ fU(1), we have some valuable information

about the structure of fT : we know that it is the convolution of an estimable

density fX and a known density fU(1). If we had a direct sample from fX , this

would be the so-called Berkson problem, for which it has been established that the

rates of convergence are parametric. See Delaigle (2007). Our situation is more

complicated since we can estimate fX only indirectly, and it is only when fU(1) is

smooth enough that we can obtain fast parametric convergence rates. Unlike our

situation, note that, in the Berkson problem, the parametric rate occurs only in

the density estimation context, and not in the regression setting.

Remark 4.3. (On the parametric rates — II). When the covariate X is observed

without error, for past and future observations, instead of applying standard

nonparametric estimators of E(Y |X), which only converge at the rate n−k/(2k+1),

it may seem to be a better idea to artificially add random noise U ∼ fU to the

future observed value of X, with fU such that fFt
U ∈ L1, and predict Y by an

estimator of E(Y |T ), where T = X + U . Indeed, this would correspond to our

model, in the situation where 1/qFt(t) = fFt
U ∈ L1, in which case we can use

µ̂, which converges at a n−1/2 rate. However, it is not clear that, despite the

convergence rate, this would lead to better prediction of Y than the error-free

estimator of E(Y |X), since Y is more dispersed around E(Y |T ) than Y is around

E(Y |X) because T exhibits larger errors than X.
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4.3 Optimal convergence rates

Here we indicate that in the ordinary smooth case, the convergence rates given

by Theorem 4.2 are optimal when δ > 0. A simpler argument can be used to

demonstrate optimality when δ < 0, and similar methods can be employed to

verify optimality in supersmooth settings. We prove results only in the two-error

case, but similar techniques can be used to show that, under regularity conditions,

our estimator is also optimal in the general setting of model (1.1).

Let fU(2) and fU(1) denote symmetric densities for which

lim sup
|t|→∞

max
j=0,1,2

(1 + |t|)α+j

∣∣∣∣
dj

dtj
fFt

U(2)(t)

∣∣∣∣ < ∞ , (4.14)

lim inf
|t|→∞

min
j=0,1,2

(1 + |t|)β+j

∣∣∣∣
dj

dtj
fFt

U(1)(t)

∣∣∣∣ > 0 . (4.15)

Given −∞ < a < b < ∞, C > 0 and an integer k ≥ 1, write F(a, b, C, k) for

the class of densities fXY of (X, Y ) such that (a) µ = E(Y |T = · ) and fX are

both k times differentiable, with each of these derivatives uniformly bounded, in

absolute value, by C; (b) E(Y 2 |X = x) ≤ C for all x; and (c) fX(x) ≥ C−1 for

x ∈ [a, b]. Let C denote the class of all estimators µ̆ of µ.

Theorem 4.3. Assume that (4.14) and (4.15) hold, and δ > 0. Then, for each

real number w, there exists a constant c > 0 such that

lim inf
n→∞

inf
µ̆∈C

sup
fXY ∈F(a,b,C,k)

P
[∣∣µ̆(w) − µ(w)

∣∣ > c min
{

(n − m)−k/{2k+2δ}, m−k/(2k+1)
}]

> 0 . (4.16)

These rates correspond exactly to those in Theorem 4.2. They show that the

rate at (4.16) is achieved by the estimator µ̃. Although our upper bound giving

this rate was derived only for a particular fixed distribution, that bound is readily

established uniformly over a function class for which (4.16) holds.
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5 Numerical results

We applied our estimators in the particular case where the observations are con-

taminated by only two types of errors, which is the setting of our empirical

example. Note that we have defined two estimators, at (2.8) and (2.9). The first

exists only when 1/qFt is integrable, and is simpler to calculate. In particular, it

requires neither a bandwidth nor a kernel, and our numerical work showed that

it systematically outperformed µ̃, which therefore we do not present in the cases

where µ̂ exists. We use the notations µ̂∗ and µ̃∗ for the versions of the estimator µ̂

and µ̃, respectively, with the error variances estimated from replicated data as in

Section 3. We use the notation µ̂NW for the classical Nadaraya-Watson estimator

calculated from the data (Wi, Yi), i = 1, . . . , m. Note that µ̂NW is exactly equal

to µ̃ when m = n.

5.1 Simulations

We applied the various estimators introduced above to some simulated exam-

ples, corresponding to the following models, where we took the {εi} identically

distributed as ε (we use Be(p) to denote the Bernoulli(p) distribution):

(i) g(x) = 3x + 20 exp{−100(x − 0.5)2}/
√

2π, X ∼ N(0.5, 1.0/3.922), ε ∼
N(0, 0.673);

(ii) Y |X = x ∼ Be{g(x)}, g(x) = 0.45 sin(2πx) + 0.5 and X ∼ U[0, 1];

(iii) g(x) = sin(πx/2)/{1 + 2x2(sgn x + 1)}, X ∼ N(0, 1), ε ∼ N(0, 0.09).

In each case we took UF ∼ fU(1) , and fU(1) and fU(2) to be either Laplace or

normal with zero mean. We generated 200 samples of various sizes, and, for

each calculated estimator, say µest, we computed the integrated squared error,
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Figure 1: Quartile curves for the estimation of curve (i) when fU(1) ∼ N, fU(2) ∼
Laplace, σ2

U(1) = σ2
U(2) = 0.2 var(X), m = n/2 = 125, using µ̂NW (left) or µ̂∗

(right).

ISE =
∫

(µest − µ)2. In the graphs, to illustrate the performance of an estimator,

we show the estimated curves corresponding to the first (q1), second (q2) and

third (q3) quartiles of these calculated ISEs. In each case the target curve is

represented by a solid curve. In the tables we provide the average values, denoted

by MISE, of the 200 calculated ISEs.

In addition to the bandwidth h, necessary to calculate µ̃ and the classical

Nadaraya-Watson estimator µ̂NW, all methods, including µ̂, required the choice

of a ridge parameter ρ, used in their denominators to avoid division by a num-

ber close to zero. For each method, at points x where the denominator of the

estimator was smaller than ρ, we replaced it by ρ. For a given estimator µest, we

selected (ρ, h) — or ρ alone for µ̂ — by minimizing the following cross-validation

(CV) criterion:

CV =

m∑

j=1

{
Yj − µest,(−j)(Wj)

}2
, (5.1)

where the superscript (−j) meant that the estimator was constructed without

using the jth observation.

Figure 1 and Table 1 compare, for various sample sizes, the results obtained for

estimating curve (i) when fU(1) was smoother than fU(2), with either both errors

normal, or fU(1) normal and fU(2) Laplace. We compare µ̂NW, µ̂ and µ̂∗ (recall
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Table 1: MISE for estimation of curve (i) when fU(1) ∼ Normal (N) and fU(2) ∼
Laplace (L), with σ2

U(1) = σ2
U(2) = 0.2 var(X); fU(1) and fU(2) ∼ N, with σ2

U(1) =
2σ2

U(2) = 0.2 var(X); and fU(1) and fU(2) ∼ N, with 2σ2
U(1) = σ2

U(2) = 0.2 var(X).
Results for µ̂∗ and µ̃∗ are given within parenthesis.

fU(1) smoother than fU(2) fU(2) smoother than fU(1)

fU(1)∼N,fU(2)∼L fU(1)∼N,fU(2)∼N fU(1)∼N,fU(2)∼N

m n Method MISE MISE Method MISE

125 250 µ̂NW 0.352 0.317 µ̂NW 0.310
500 1000 0.0859 0.0897 0.132
125 250 µ̂ at (2.8) 0.1290 (0.1363) 0.0897 (0.0985) µ̃ at (2.9) 0.294 (0.291)
500 1000 0.0284 (0.0304) 0.0221 (0.0242) 0.120 (0.121)

that the ∗ version of estimators is used when the error variances are estimated

from replicated observations). Our results show that the estimator µ̂ outperforms

µ̂NW. The µ̂∗ version of µ̂ worked almost as well as the latter, showing the limited

loss incurred by estimating the error variances from replicated data. We also show

the results obtained when fU(2) was smoother than fU(1) with both errors normal,

where we compare µ̂NW, µ̃, and µ̃∗. Although the new estimator still outperforms

the Nadaraya-Watson estimator, here the gain is less impressive, as predicted by

the theory.

Figure 2 and Table 2 show the results obtained for estimating curve (ii) when

fU(1) was smoother than fU(2) , with both errors normal. We compare µ̂NW, µ̂ and

µ̂∗ for different combinations of sample sizes. Of course, the situation where we

can expect the largest gain by using the new estimator, compared to the classical

Nadaraya-Watson estimator, is that where the size, m, of the sample of data

contaminated by fU(1) is as small as possible, relative to the total sample size, n.

The results, however, indicate that, even when m = 5n/6, the gain can already

be quite significant. In this example, µ̂∗ performed so well that it even bettered

its known error version, µ̂, in the majority of cases.
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Figure 2: Quartile curves for the estimation of curve (ii) when fU(1) ∼N, fU(2) ∼
N, σ2

U(1) = 2σ2
U(2) = 0.2 var(X) and m = n/2 = 250, using µ̂NW (left) or µ̂∗ (right).

Table 2: MISE for estimation of curve (ii) when fU(1) and fU(2) ∼ Normal with
σ2

U(1) = 2σ2
U(2) = 0.2 var(X).

Method m n MISE m n MISE m n MISE

µ̂NW 125 250 0.00891 50 250 0.02118 200 250 0.00496
250 500 0.00418 100 500 0.00967 400 500 0.00285

µ̂ 125 250 0.00312 50 250 0.00499 200 250 0.00373
250 500 0.00157 100 500 0.00155 400 500 0.00190

µ̂∗ 125 250 0.00406 50 250 0.00304 200 250 0.00366
250 500 0.00156 100 500 0.00151 400 500 0.00186

Finally, Figure 3 compares the results obtained for estimating curve (iii) when

both errors are normal with σ2
U(1) = 2σ2

U(2) = 0.2 var(X) and m = n/2 = 250. We

show the quartile curves obtained for µ̂NW and µ̂∗. Again, we see the important

gain that can be obtained when using the new estimator compared to the classical

Nadaraya-Watson estimator, which uses only (W1, Y1), . . . , (Wm, Ym).

In summary, our simulations showed that when fU(1) was smoother than fU(2) ,

the new estimator substantially outperformed the Nadaraya-Watson estimator.

When fU(2) was smoother than fU(1), the gain from using the new estimator

was usually less impressive, unless m was relatively small, as predicted by the

theoretical results in Section 4. The empirical applications we had in mind when

developing the new estimators fall into the category where the fU(1) is smoother

than fU(2), see Section 5.2.
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Figure 3: Quartile curves for the estimation of curve (iii) when fU(1) ∼ N, fU(2) ∼
N, σ2

U(1) = 2σ2
U(2) = 0.2 var(X), m = n/2 = 250, using µ̂NW (left) or µ̂∗ (right).

5.2 Data Illustration

In part, this paper arises from the following considerations. In nutritional epi-

demiology, the standard method for correcting for the effects of measurement

error in evaluating diet-disease relationships is regression calibration (Carroll, et

al., 2006). Using our notation, the method works as follows. Let N be unob-

served true long-term nutrient intake. The goal is to regress a response, say

disease status D, on N . In the main study, nutrient intakes are measured by a

single food frequency questionnaire (FFQ), which is what we call W . Here X is

the long-term average intake as measured by the FFQ.

Because N is not observed, most nutritional epidemiology studies take a cali-

bration random sub-sample of the main study population, generally much smaller

than the main sample, where they typically measure repeated versions of W , in

an effort to understand the measurement error properties of W in the sampled

population. In addition, in the sub-sample, they observe an unbiased estimate

Y of N . In regression calibration, instead of regressing D on the unobserved N ,

one regresses D on E(Y |W ), where E(Y |W ) is estimated from the observations

in the sub-sample. Of course, one way to estimate E(Y |W ) would be to use the

classical Nadaraya-Watson estimator of E(Y |W ) based on the direct observations
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on (W, Y ), but our new approach can be used with the averaged replicated data

to obtain a more efficient estimator of E(Y |W ), as we illustrate below, on a cal-

ibration sub-study from the American Cancer Society Cancer Prevention Study

II Nutrition Survey (ACS, Flagg et al., 2000).

The main study had approximately 185, 000 adults, while the calibration sub-

study was of size 598. In the calibration sub-study, several variables were mea-

sured, including Y , an average of protein intake from four food records which is

taken to be unbiased for usual intake N , and W , a log-transformed version of

protein intake using a FFQ, which was measured twice with error approximately

normal N(0, σ2
U). As above, X is the unobserved long-term average intake as

measured by the FFQ. The data we considered were a sample of size n = 598

from (Wi1, Wi2, Yi), for i = 1, . . . , n, where, for each i, Wi1 = Xi + Ui1 and

Wi2 = Xi + Ui2, with Ui1 and Ui2 independent and identically distributed as

N(0, σ2
U). Our target is E(Y |W ). A point to note here is that we have trans-

formed W to make the measurement errors normally distributed, but we have

not transformed Y , the idea being that disease risk models are interested in the

effects of nutrient intakes and not transformed intakes, see Ferrari, et al. (2004,

2008) for examples of this.

This example is convenient for illustrating the various approaches to regres-

sion estimation, since the fact that we have direct data from the quantity of

interest allows us to consider three different estimators: the classical Nadaraya-

Watson estimator µ̂NW of E(Y |W ) based on the independent data (Wi1, Yi), for

i = 1, . . . , n, the Nadaraya-Watson estimator µ̂NW,dep of E(Y |W ) based on the

dependent data (Wi1, Yi), (Wi2, Yi), for i = 1, . . . , n, and our new methodology µ̂∗,

based on the averaged data (Wi, Yi), for i = 1, . . . , n, where Wi = (Wi1 + Wi2)/2

and σ2
U is estimated by half the empirical variance of the differenced replicates. To
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Figure 4: Estimation of µ for the American Cancer data, using the new estimator
µ̂∗ (left), the classical NW estimator µ̂NW,dep (middle) with dependent data, or
the classical NW estimator µ̂NW (right), for subsamples of size 100 (row 1) or
30 (row 2). The dashed curves show estimators corresponding to 15 subsamples
randomly selected among 500 generated subsamples. The thick curves show the
respective estimators when using all 598 observations.

Table 3: Integrated variances (IVAR) for estimation of E(Y |W ) in the empirical
example, for various subsample sizes n.

Method n IVAR n IVAR n IVAR n IVAR

µ̂NW 30 129.933 50 117.645 75 106.527 100 92.440
µ̂NW,dep 30 124.517 50 112.512 75 99.624 100 75.746
µ̂∗ 30 116.875 50 92.934 75 66.149 100 51.018

use the notation of the previous sections, the last approach corresponds to m = 0

(since we do not use the direct data), fU(1) ∼ N(0, σ2
U) and fU(2) ∼ N(0, σ2

U/2).

Clearly, fU(1) is smoother than fU(2), so we can use our estimator µ̂.

Of course, here we do not know the true curve E(Y |W ), so we cannot say

which method gives the best estimator. However, the sample size is large, so

one way to illustrate the performance of the procedures in a way that is similar

to a simulation study is to create a large number (we took 500) of subsamples

of smaller size (we took 30, 50, 75 and 100), and examine the variability of

25



each method, for each subsample size. It is not hard to show that, for our

method, the squared bias is of smaller order than the variance, and since we do

not know the true target, it thus seems appropriate to focus on variance. In

Figure 4 we show the estimated curves for 15 subsamples of size 30 (respectively,

100) randomly selected from the 500 randomly created subsamples of size 30

(respectively, 100). We see that, although all methods indicate the same trend

for the relationship between W and Y , both versions of the Nadaraya-Watson

estimator experience some difficulty, as some of the estimated curves are quite

wiggly. To illustrate this further, in Table 3 we show, for each subsample size,

the integrated variance of each method on the interval [1, 4] (calculated via the

variance of the 500 replications in each case). The main message is the same:

our method is less variable than both Nadaraya-Watson estimators, as expected

by the theory.
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