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Abstract: Estimating the prevalence of an infectious disease in a big population typically

requires testing a specimen (e.g. blood, urine or swab) for the disease. When the disease

spreads quickly, time constraints and limited resources often restrict the number of tests

that can be performed. There, if prevalence is not too high, the group testing procedure

can be employed to save time, money and resources. It consists in testing pooled specimens

of groups of individuals instead of testing each individual for the disease. This technique is

also used in other contexts, for example to detect abnormality or contamination in animals,

plants, food, water or other. There exist methods for estimating a prevalence conditional on

explanatory variables from group testing data. However, they require the specimen to be

available for all individuals, which is not always possible. We construct new nonparametric

estimators that are consistent when some of the specimens are missing. We illustrate the

numerical performance of our methods through simulations and a hepatitis B example.

Keywords: cost saving, disease monitoring, limited resources, pooling, time saving.
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1 Introduction

Group testing refers to a technique introduced by Dorfman (1943) to reduce costs and accel-

erate the detection process of syphilis in soldiers during WWII. It consists in testing groups

of individuals at once by testing the pooled specimen of the individuals from each group. If

a group tests negative, the individuals from the group are declared negative. If the goal is

to detect infected individuals, all individuals from positive groups are retested; if the goal

is to estimate prevalence, they may or may not be retested, depending on the context (see

e.g. Xie, 2001). This technique can significantly reduce the number of tests that need to be

performed, especially when prevalence is low (Bilder et al., 2020); for example it has been

used during the covid-19 pandemic (see e.g. Mallapaty, 2020; Mutesa, 2021).

While often described in the context of disease infection, group testing is also employed

to detect transgenic plants, such as transgenic corn in fields. There, leaf tissues of plants are

pooled, and each pool of ground tissues is tested (see e.g. Montesinos-López et al., 2016).

This approach is also used to detect a contaminant (e.g. in food or water) when batches

are tested at once, and to preserve the confidentiality of participants in a study (see e.g.

Gastwirth and Hammick, 1989). For other interesting applications such as DNA screening

or communication and security networks, see Malinovsky and Albert (2019).

In group testing applications, a quantity of interest is the prevalence conditional on an

explanatory variable X (e.g. age). Parametric (Vansteelandt et al., 2000; Bilder and Tebbs,

2009; Chen et al., 2009; Zhang et al., 2013; Lin et al., 2019; Chatterjee and Bandyopadhyay,

2020), non and semiparametric (Delaigle and Meister, 2011; Delaigle and Hall, 2012; Wang

et al., 2013; Delaigle et al., 2014; Delaigle and Hall, 2015; Delaigle and Zhou, 2015; Lin and
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Wang, 2018; Yuan et al., 2021) and Bayesian (e.g. McMahan et al., 2017; Joyner et al., 2020;

Liu et al., 2021) techniques have been developed for estimating this conditional prevalence.

However, they usually rely on the specimen and X to be fully observed, whereas these are

sometimes missing for some individuals and ignoring missingness can introduce significant

bias into estimators. Delaigle et al. (2020) developed nonparametric estimators valid when

X is missing. In this work, we develop nonparametric consistent estimators of conditional

prevalence in the case where individual specimens are missing.

Following Rubin (1976) and Little and Rubin (2002), we can distinguish three main types

of missing mechanisms: missing completely at random (MCAR), where the missing data

mechanism is independent of the variables of interest; missing at random (MAR), where

missingness depends only on observed data; and missing not at random (MNAR), where

missingness depends also on unobserved data. With the MCAR assumption, a complete

cases analysis that applies standard techniques to the fully observed individuals is usually

consistent but this assumption is often too strong. When a single variable is subject to

missingness, to ensure identification, it is common to make the MAR assumption (Little

and Rubin, 2002; Molenberghs et al., 2014). There has been growing interest in the MNAR

assumption, but there, to ensure identification, one usually requires additional observations

such as a validation sample (Kim and Yu, 2011), instrumental variables (Sun et al., 2018;

Tchetgen Tchetgen and Wirth, 2017) or shadow variables (Miao et al., 2015), which is often

not possible in practice. Therefore, we develop our methodology assuming that before being

grouped, the unobserved individual specimens are MAR.

This article is organised as follows. We introduce our model and data in Section 2, where

we discuss three ways in which the individual MAR specimens can impact the grouped data.
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After summarising existing nonparametric methods in the standard group testing setting

in Section 3, we deal with the simplest MAR setting for grouped data in Section 4. There

we show that, as in the non grouped case, procedures developed for fully observed grouped

data remain valid when some specimens are MAR before the others are pooled in groups of

non random size. In Section 5, we develop new nonparametric estimators of the conditional

prevalence under the other two scenarios. We investigate asymptotic properties in Section 6.

We illustrate our procedures on simulated data in Section 7 and discuss an application in

Section 8. We conclude by discussing some extensions such as the multivariate case and the

use of auxiliary variables in Section 9. The supplementary file contains technical details.

2 Model and data

We are interested in estimating the conditional prevalence of a phenomenon,

p(x) = P (D = 1|X = x) = E(D|X = x) , (2.1)

where X is a continuous explanatory random variable (e.g. age or weight) and D is a bi-

nary response random variable indicating the presence (D = 1) or absence (D = 0) of

the phenomenon. Often, D is not directly observed and is assessed through a specimen

(e.g. blood, urine, swab or tissue) test whose outcome Y = 1{specimen tests positive} is

typically error-prone (i.e. Y is not always equal to D).

In large population screenings, time constrains and limited resources often make it im-

possible to test all individuals, where throughout we use individual to refer to a unit whose

status D is of interest, for example a patient, a plant or an animal. A useful approach for

estimating the conditional prevalence in this case is to use group testing, where the sample
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of, say, N individuals is randomly divided into J groups of respective sizes n1, ..., nJ . Using

i,j to refer to the ith individual from the jth group (omitting the index when referring to

generic individuals), we assume that the (Xi,j, Di,j)’s are independent and identically dis-

tributed (i.i.d.), where Di,j is the unobserved true status, and Xi,j is an observed covariate,

for individual i in group j. In standard group testing, instead of performing individual tests

to assess the Di,j’s, for j = 1, . . . , J , we assess the disease status

D∗
st,j = max

i=1,...,nj

Di,j (2.2)

of the jth group through a test performed on the pooled specimens of all individuals in

the group, yielding the test result Y ∗
st,j. As mentioned in the introduction, this technique is

advantageous only when the overall prevalence θ = P (D = 1) in the population is relatively

small, say up to 15%, or 30% if the groups are small (Kim et al., 2007; Bilder et al., 2020).

Indeed, since P (D∗
st,j = 1) = 1 − (1 − θ)nj , then if θ is large, we can expect most D∗

st,j’s to

be equal to 1, which is not very useful or informative; for example, if θ ≥ 0.78 and nj ≥ 2

or if θ ≥ 0.64 and nj ≥ 3 then P (D∗
st,j = 1) > 0.95. See also Remark 2.

In practice, the specimens are not always available for all individuals. For example, in

the case of a disease, some patients may be less likely to provide it depending on their age or

overall health condition, and in the case of detection in plants, some plants can die during the

experiment. We let RD = 1{specimen is available} indicate whether an individual specimen

is available or not. We know from the literature on non grouped data that even in the

parametric context, when a single variable is missing, the model is not generally identifiable

without relatively strong identifiability assumptions; see Miao et al. (2016). As noted in

the introduction, a common approach to ensure identifiability is to assume that the missing
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variable is MAR; an alternative is to assume that it is MNAR, but this requires either strong

additional assumptions, or the availability of some instrumental variables, which is often not

feasible in practice (Miao et al., 2016). Following the first approach, we assume that the

individual specimens are MAR, or equivalently, that the unobserved Di,j’s are MAR, i.e. that

P (RD = r|X,D) = P (RD = r|X) , for r = 0 and r = 1 . (2.3)

Thus, what is MAR are the unobserved individual Di,j’s; in particular, we do not make

assumptions on their grouped versions defined below. Of course, the MAR D assumption is

not always satisfied in practice, for example when patients decide to provide their specimen

based on their disease status (e.g. if they feel fine or not). However, it is an approximation

often used in practice because it enables to identify the model; it is also milder when more

covariates are available; see Section 9 for a discussion of the multivariate case.

When some specimens are missing, only the individuals with available specimens can

contribute to the test performed on each group. If the missing status of all specimens is

known before we start pooling the data, we can create the groups using only the individuals

with non missing specimens. There, the sample size N ′ is random, where N ′ is the number of

observed specimens in the original sample of size N . Given N ′, we fix the number of groups

J ′ and their sizes n1, . . . , nJ ′ . For j = 1, . . . , J ′, we define the true status for group j as

D̃∗
j = max

i=1,...,nj

Di,j|RD
i,j = 1 , (2.4)

where Di,j denotes the unobserved true status of the ith individual from the jth group. Here

we highlight the fact that since we only keep individuals whose specimen is observed, then

the Di,j’s are conditional on RD
i,j = 1 (and so are the Xi,j’s).
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If the groups have been predetermined for practicality of the experiment or if it is difficult

to identify the missing individuals (e.g. because of confidentiality), then once the data are

collected, only the subset of complete cases from each group contributes to the test of the

group. There, we fix the number J of groups and their sizes n1, . . . , nJ and assume that

the grouping is independent of the missing data mechanism. Then, for j = 1, . . . , J , letting

Ij = {i = 1, . . . , nj : RD
i,j = 1}, the effective size of group j is |Ij| =

∑nj

i=1R
D
i,j, which is

random. The true status for group j, computed from |Ij| individuals, is defined as

D∗
j =


maxi∈Ij Di,j |Ij| > 0 ,

−1 |Ij| = 0 .

(2.5)

We use the value −1 in (2.5) to code the case where D∗
j is missing because there are no

complete cases in group j.

Since tests are usually imperfect, instead of reflecting perfectly the true group status

D̃∗
j (resp., D∗

j ), the test result Ỹ ∗
j (resp., Y ∗

j ) of group j (i.e., the result of the test applied

to the non missing pooled specimens from group j) is prone to two types of errors: false

positive, where Ỹ ∗
j = 1 when D̃∗

j = 0 (resp., Y ∗
j = 1 when D∗

j = 0) and false negative, where

Ỹ ∗
j = 0 when D̃∗

j = 1 (resp., Y ∗
j = 0 when D∗

j = 1). In the setting corresponding to (2.5),

if no specimen is available for group j (D∗
j = −1), then no test is performed and we define

Y ∗
j = −1. Following Vansteelandt et al. (2000) and a large part of the literature on group

testing, we assume that the known specificity sp = P (Ỹ ∗
j = 0|D̃∗

j = 0) = P (Y ∗
j = 0|D∗

j = 0)

and sensitivity se = P (Ỹ ∗
j = 1|D̃∗

j = 1) = P (Y ∗
j = 1|D∗

j = 1) of the test do not depend on

the group sizes, which is usually reasonable when the groups are not too large, and that the
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test results depend only on the true status. Specifically, for y = 0, 1,

P (Ỹ ∗
j = y|D̃∗

j , Xi,j, i = 1, . . . , nj) = P (Ỹ ∗
j = y|D̃∗

j ) (2.6)

in the setting at (2.4), whereas in the setting at (2.5), we assume that, for y = 0, 1,

P (Y ∗
j = y|D∗

j , Xi,j, R
D
i,j, i = 1, . . . , nj) = P (Y ∗

j = y|D∗
j ) . (2.7)

There is no test error when Y ∗
j = −1, since there, no test is performed. In practice, sp and

se are usually estimated before the test being used widely for screening, for example using a

medical diagnosis. This can usually be done at fast parametric rates, so that estimating sp

and se has no first order impact on asymptotic properties of nonparametric estimators of p;

see for example Delaigle and Hall (2015), who derived such results in a group testing setting

involving dilution effects. Since the results we derive in this paper remain valid when sp and

se are estimated, for simplicity we assume throughout that sp and se are known. We also

assume throughout that sp > 0.5 and se > 0.5 (or else the test result is less accurate than

that obtained by tossing a coin).

Because the randomness of the missing specimens affects D̃∗
j and D∗

j differently, these

two settings require different estimation techniques. In Section 4 we show that in the first

case, we can consistently estimate p by applying the technique of Delaigle et al. (2014) to

the subset of individuals with non missing status. This estimator cannot be used in the

second case, which is more widely applicable, and in Section 5.1 we develop a consistent

estimator valid in that case. In Section 5.2, we also develop a consistent estimator that can

be computed even if we know how many specimens are missing from each group, but we do

not know which ones are missing.
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3 Review of existing methods without missing data

In this section we review existing local polynomial regression estimation techniques in stan-

dard settings without missing data.

3.1 Standard local polynomial estimators

In the standard setting with non grouped data, to estimate a regression curve g(x) =

E(Y |X = x) from i.i.d. data (X1, Y1), . . . , (XN , YN), a popular nonparametric estimator

is the ℓth order local polynomial regression estimator ĝLP,ℓ(x) (Fan and Gijbels, 1996), with

ℓ ≥ 0 an integer. It is obtained by fitting, locally around x, a polynomial

gℓ(z) =
∑

0≤k≤ℓ

αk,x(z − x)k (3.1)

to the (Xi, Yi)’s. It is equal to ĝLP,ℓ(x) = α̂0,x, where, for each x, the α̂k,x’s are computed by

minimising, w.r.t. the αk,x’s,

N∑
i=1

{
Yi −

∑
0≤k≤ℓ

αk,x(Xi − x)k
}2

Kh(Xi − x) , (3.2)

with K a kernel function, h > 0 a bandwidth and Kh(x) = h−1K(x/h). In can be ex-

pressed as ĝLP,ℓ(x) = eT1 S
−1T, where S = (Sk,k′)0≤k,k′≤ℓ and T = (T0, ..., Tℓ)

T , with Sk,k′ =

(Nhk+k
′
)−1

∑N
i=1Kh(Xi − x)(Xi − x)k+k

′
and Tk = (Nhk)−1

∑N
i=1 YiKh(Xi − x)(Xi − x)k.

3.2 Local polynomial estimators for group testing data

In the standard group testing setting without missing data considered by Delaigle and Meister

(2011) and Delaigle et al. (2014), we observe (Xi,j, Y
∗
st,j), for j = 1, . . . , J and i = 1, . . . , nj,

where Y ∗
st,j is the imperfect test result that measures the disease status D∗

st,j of group j,
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defined at (2.2). Combining the fact that the test results depend only on the true disease

status with the fact that P (D∗
st,j = 1|Xi,j = x) = 1 − P (Di,j = 0|Xi,j = x)

∏
k ̸=i P (Dk,j =

0) = 1− qnj−1{1− p(x)}, where q = P (D = 0), and letting Z∗
st,j = 1− Y ∗

st,j, sp = P (Y ∗
st,j =

0|Dst,j = 0) and se = P (Y ∗
st,j = 1|Dst,j = 1), those authors deduced that

g(x) = E{q1−nj(Z∗
st,j + se−1)/(sp+ se−1)|Xi,j = x} = 1− p(x) . (3.3)

Similarly, P (D∗
st,j = 1) = 1− qnj so that

P (Z∗
st,j = 0) = 1− P (Z∗

st,j = 1) = se−(sp+ se−1)qnj . (3.4)

To estimate p, they first estimated q by a maximum likelihood estimator (MLE), q̂,

obtained by maximising, w.r.t. q ∈ [0, 1], the likelihood of the Z∗
st,j’s:

L(q;Z∗
st,1, . . . , Z

∗
st,J) =

J∏
j=1

P (Z∗
st,j = z∗j ) , (3.5)

where z∗j is the realization of Z∗
st,j in the sample and with P (Z∗

st,j = k), k = 0, 1, as above.

Then, since g is a regression curve, they estimated it by the standard ℓth order local poly-

nomial estimator from Section 3.1 applied to the pairs
(
Xi,j, q̂

1−nj(Z∗
st,j+se−1)/(sp+ se−1)

)
,

and adding to the sum at (3.2) a group weight ψj that depends on the group size nj,

with the idea that larger groups blur the information more and should be given less

weight. Their estimator ĝst,ℓ(x) of g(x) is obtained by fitting, locally around x, (3.1) to

the pairs
(
Xi,j, q̂

1−nj(Z∗
st,j + se−1)/(sp+ se−1)

)
. Taking K and h as in (3.2), it is equal to

ĝst,ℓ(x) = α̂0,x, where, for each x, the α̂k,x’s are computed by minimising, w.r.t. the αk,x’s,

J∑
j=1

nj∑
i=1

{
q̂1−nj(Z∗

st,j + se−1)/(sp+ se−1)−
∑

0≤k≤ℓ

αk,x(Xi,j − x)k
}2

ψjKh(Xi,j − x) . (3.6)
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It can be expressed as ĝst,ℓ(x) = eT1 S
−1
st Tst, where Sst = (Sst,k,k′)0≤k,k′≤ℓ and Tst =

(Tst,0, ..., Tst,ℓ)
T , with Sst,k,k′ = (Nhk+k

′
)−1

∑J
j=1 ψj

∑nj

i=1Kh(Xi,j − x)(Xi,j − x)k+k
′
and

Tst,k = (Nhk)−1
∑J

j=1 ψj q̂
1−nj(Z∗

st,j + se−1)/(sp+ se−1)
∑nj

i=1Kh(Xi,j − x)(Xi,j − x)k.

Finally, they estimated p by p̂st = 1− ĝst,ℓ.

4 Estimator for missing data in the setting at (2.4)

We start with the simplest case with missing specimens, where the groups are created after

the data are collected, using only the N ′ individuals with non missing specimen out of the N

individuals in the study. Here the sample size N ′ is random; it has a binomial Bi
(
N,E(RD)

)
distribution. Given N ′, we fix the number J ′ of groups and the group sizes n1, . . . , nJ ′

such that
∑J ′

j=1 nj = N ′, and for i = 1, ..., nj, j = 1, ..., J ′, we observe Xi,j|RD
i,j = 1 and

Ỹ ∗
j defined under (2.5). To define an estimator of p in this case, a naive approach would

be to apply the estimator p̂st from Section 3.2, replacing there (Xi,j, Y
∗
st,j), j = 1, . . . , J ,

i = 1, . . . , nj by (Xi,j|RD
i,j = 1, Ỹ ∗

j ), i = 1, ..., nj, j = 1, ..., J ′, and replacing the definition

of q in Section 3.2 by the quantity its MLE converges to when replacing, in (3.5), Z∗
st,j by

Z̃∗
j = 1− Ỹ ∗

j . Compared to the standard setting from Section 3.2, all variables used here are

defined conditional on RD
i,j = 1 and the effective sample size is random; we need to check

whether the results from Section 3.2 still hold in that case.

Recalling how p̂st was constructed, to see if the naive approach is valid, we derive the

relationship between E(Z̃∗
j |Xi,j = x) and p(x). Let Z̃∗

D,j = 1− D̃∗
j , with D̃

∗
j at (2.4). Using

a standard decomposition (e.g. Delaigle and Meister, 2011), we show in Appendix A.2 that

E(Z̃∗
j + se−1|Xi,j = x)/(sp+ se−1) = E(Z̃∗

D,j|Xi,j = x) . (4.1)
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Now we also have

E(Z̃∗
D,j|Xi,j = x) = P (D̃∗

j = 0|Xi,j = x)

= P (D1,j = . . . = Dnj ,j = 0|Xi,j = x,RD
1,j = . . . = RD

nj ,j
= 1)

= P (Di,j = 0|Xi,j = x,RD
i,j = 1)

nj∏
k ̸=i

P (Dk,j = 0|RD
k,j = 1)

= {1− p(x)}qnj−1

D|R ,

where qD|R = P (D = 0|RD = 1) and where we used the fact that E(D|X = x,RD = 1) =

E(D|X = x) = p(x), which follows from (2.3). Multiplying those equations by q
1−nj

D|R , we

deduce that m̃(x) ≡ E{q1−nj

D|R (Z̃∗
j + se−1)/(sp+ se−1)|Xi,j = x} = 1− p(x).

Comparing with (3.3), we see that m̃, qD|R, Z̃
∗
j and Xi,j satisfy the same equation as

g, q, Z∗
st,j and Xi,j in (3.3). Likewise, we show in Appendix A.1 that P (Z̃∗

j = 0) = 1−P (Z̃∗
j =

1) = se−(sp+ se−1)q
nj

D|R, which are the same expressions as (3.4), but with Z∗
st,j and q

replaced by Z̃∗
j and qD|R. Thus, although qD|R ̸= q and Z̃∗

j ̸= Z∗
st,j, we can estimate qD|R by

by q̂D|R obtained by applying to the Z̃∗
j ’s the MLE for q from Section 3.2, i.e. by maximising

L(qD|R; Z̃
∗
1 . . . , Z̃

∗
J ′) =

∏J ′

j=1 P (Z̃
∗
j = z∗j ) w.r.t. qD|R ∈ [0, 1], and where z∗j is the realization

of Z̃∗
j in the sample.

This suggests that we can estimate p(x) by the ‘naive’ estimator defined as in Section 3.2,

applied to the N ′ grouped individuals for which RD
i,j = 1, that is

p̂1(x) = 1− ̂̃m(x) , (4.2)

where the ℓth order local polynomial estimator of m̃(x) is given by ̂̃m(x) = eT1 S
′−1T′, with
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eT1 = (1, 0, ..., 0), S′ = (S ′
k,k′)0≤k,k′≤ℓ, T

′ = (T ′
0, ..., T

′
ℓ)
T , and

S ′
k,k′ =

1

N ′hk+k′

J ′∑
j=1

ψj

nj∑
i=1

Kh(Xi,j − x)(Xi,j − x)k+k
′
,

T ′
k =

1

N ′hk

J ′∑
j=1

ψj q̂
1−nj

D|R (Z̃∗
j + se−1)/(sp+ se−1)

nj∑
i=1

Kh(Xi,j − x)(Xi,j − x)k .

(4.3)

5 Estimators for missing data in the setting at (2.5)

5.1 Known individual missing status

Next, we develop a nonparametric estimator of p in the case where the groups are determined

before knowing the missing status of specimens. We observe (Xi,j, Y
∗
j , R

D
i,j), for i = 1, ..., nj,

j = 1, ..., J , where
∑J

j=1 nj = N , Y ∗
j is the imperfect test result measuring D∗

j at (2.5) and

RD
i,j = 1 if the corresponding specimen is observed and 0 otherwise. Unlike Section 4, the

number of tested specimens per group, i.e. the effective size |Ij| =
∑nj

i=1R
D
i,j of each group j,

is random since we only test the subset Ij of the nj individuals whose specimen is available.

As in Section 4, a naive way to estimate p(x) would be to apply p̂st(x) from Sec-

tion 3.2 to these data, but omitting the groups for which Z∗
j = 2, where Z∗

j = 1 − Y ∗
j ,

since p̂st is only defined for Z∗
st,j = 0 or 1. This gives p̂nai(x) = 1 − ĝnai,ℓ(x), where

ĝnai,ℓ(x) = eT1 Ŝ
−1
naiT̂nai, and where Ŝnai = (Snai,k,k′)0≤k,k′≤ℓ and T̂nai = (T̂nai,0, ..., T̂nai,ℓ)

T ,

with Ŝnai,k,k′ = (Nhk+k
′
)−1

∑J
j=1 1{Z∗

j ̸= 2}ψj
∑nj

i=1Kh(Xi,j − x)(Xi,j − x)k+k
′
and T̂nai,k =

(Nhk)−1
∑J

j=1 1{Z∗
j ̸= 2}ψj q̂

1−nj

nai (Z∗
j+se−1)/(sp+ se−1)

∑nj

i=1Kh(Xi,j−x)(Xi,j−x)k . Here,

q̂nai is the naive estimator of q obtained by maximising L(q;Z∗
1 , ..., Z

∗
J) =

∏J
j=1 Pnai(Z

∗
j =

z∗j )
1{z∗j ̸=2} w.r.t. q ∈ [0, 1], where Pnai(Z

∗
j = 0) = 1− Pnai(Z

∗
j = 1) = se−(sp+ se−1)qnj are

formulae valid for Z∗
st,j = 0 or 1 from Section 3.2.
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However, using the derivations below, it can be seen that this naive estimator does not

consistently estimate p(x), because in this case, our data do not satisfy the same equations

as the data from Section 3.2. For example, unlike for Z̃∗
j in Section 4, here Pnai(Z

∗
j = 0) and

Pnai(Z
∗
j = 1) are not valid for Z∗

j . To derive a consistent estimator of p, we need to express

p in terms of a regression curve that depends only the observed data; once that is done, we

can estimate that regression curve by a standard local polynomial estimator.

Mimicking the derivations in the standard case from Section 3.2, another approach would

be to try and express E(Z∗
j |Xi,j = x) in terms of p(x). However, using the results from

Appendix A.3, it can be proved that E(Z∗
j |Xi,j = x) = q

nj−1
RD {1−b(x)}(sp+ se−1)+q

nj−1
R {1−

d(x)}(2 − sp) + 1 − se, where b(x) = E(RD
i,jDi,j|Xi,j = x), d(x) = E(RD

i,j|Xi,j = x), qRD =

P (RDD = 0) and qR = P (RD = 0), which does not seem helpful for estimating p(x). Instead,

our idea is to condition also on the missing status. Using this approach combined with the

same standard decomposition as in Section 4 (see Appendix A.2), we first express the test

results in terms of the D∗
j ’s by writing, for all i ∈ Ij,

E(Z∗
j + se−1|Xi,j = x,RD

i,j = 1)/(sp+ se−1) = 1−mj(x) , (5.1)

where mj(x) = P (D∗
j = 1|Xi,j = x,RD

i,j = 1). To express this in terms of p(x), the difficulty

comes from the randomness of missing specimens within groups and the missing indicators,

which requires combinatorial arguments, as follows. First, note that

mj(x) =1− P (D∗
j = −1|Xi,j = x,RD

i,j = 1)− P (D∗
j = 0|Xi,j = x,RD

i,j = 1)

=1− P (D∗
j = 0|Xi,j = x,RD

i,j = 1)

=1−
nj∑
w=1

P
(
max
k∈Ij

Dk,j = 0, |Ij| = w
∣∣Xi,j = x,RD

i,j = 1
)
,
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since, using (2.5), D∗
j = −1 ⇒ RD

i,j = 0. Letting Ck
n denote the combination of k items

among n, and noting that P (Dk,j = 0, RD
k,j = 1) = qRD − qR, we deduce that

mj(x) =1− P
(
Di,j = 0

∣∣Xi,j = x,RD
i,j = 1

) nj∑
w=1

Cw−1
nj−1(qRD − qR)

w−1q
nj−w
R

=1− q
nj−1
RD {1− E(Di,j|Xi,j = x,RD

i,j = 1)} = 1− q
nj−1
RD {1− p(x)} , (5.2)

where we used the binomial theorem and (2.3).

We can get rid of the dependence on j by multiplying those equations by q
1−nj

RD , to get

p(x) = 1−m(x) , (5.3)

where m(x) = E{q1−nj

RD (Z∗
j + se−1)/(sp+ se−1)|Xi,j = x,RD

i,j = 1}. Since m is a regres-

sion curve that depends only on the observed data, it can be estimated by an ℓth order

local polynomial as in Section 3.2, but this time constructed from the subset of the pairs(
Xi,j, q̂

1−nj

RD (Z∗
j + se−1)/(sp+ se−1)

)
corresponding to the individuals for which RD

i,j = 1,

and with q̂RD an MLE of qRD defined below. This suggests estimating p(x) by

p̂2(x) = 1− eT1 Ŝ
−1T̂ , (5.4)

where m̂(x) = eT1 Ŝ
−1T̂, Ŝ = (Ŝk,k′)0≤k,k′≤ℓ and T̂ = (T̂0, ..., T̂ℓ)

T , with

Ŝk,k′ =
1

Nhk+k′

J∑
j=1

ψj

nj∑
i=1

RD
i,jKh(Xi,j − x)(Xi,j − x)k+k

′
,

T̂k =
1

Nhk

J∑
j=1

ψj q̂
1−nj

RD (Z∗
j + se−1)/(sp+ se−1)

nj∑
i=1

RD
i,jKh(Xi,j − x)(Xi,j − x)k ,

(5.5)

where the ψj’s are weights depending on the nj’s (see Section 7.1 for how to choose them in

practice). Note that the individuals with RD
i,j = 0 do not contribute to the estimator, i.e. we

do not use theirXi,j since it does not bring additional information about p(x) = E(D|X = x).
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It remains to show how to estimate qRD. In Appendix A.1 we show that P (Z∗
j = 2) =

q
nj

R , P (Z∗
j = 1) = 1 − se+(sp+ se−1)q

nj

RD − sp q
nj

R and P (Z∗
j = 0) = 1 − P (Z∗

j = 1) −

P (Z∗
j = 2). For r = 0, 1, 2, define P̂ (Z∗

j = r) obtained by replacing qR by q̂R = 1 −∑J
j=1

∑nj

i=1R
D
i,j/N in P (Z∗

j = r). We estimate qRD by the MLE q̂RD obtained by maximising

L(qRD, q̂R;Z∗
1 , ..., Z

∗
J) =

∏J
j=1 P̂ (Z

∗
j = z∗j ) w.r.t. qRD ∈ [q̂R, 1], with z

∗
j the realization of Z∗

j

in the sample.

5.2 Unknown individual missing status

In some cases, we may not know which individual specimens are missing. For example, the

information may have been masked or may be lost or missing. Here we show that it is

possible to construct a consistent estimator in that case too. We observe (Xi,j, Y
∗
j , |Ij|), for

i = 1, ..., nj, j = 1, ..., J , with Y ∗
j and the number |Ij| of observed specimens in group j as in

Section 2. As we do not observe the RD
i,j’s, we cannot estimate p at (2.1) as in Section 5.1.

Like there, the main difficulty is to express p in terms of the observed data. Since we

already know from there that E(Z∗
j |Xi,j = x) is not useful for estimating p(x), instead of

directly focusing on p, we start by studying functions that depend on the observed data, and

see how to relate them to p. Since |Ij| =
∑nj

k=1R
D
k,j, we can write E(|Ij||Xi,j = x) = (nj −

1)(1− qR) + d(x), where d(x) = E(RD
i,j|Xi,j = x). Recalling that Y ∗

j = −1 ⇐⇒ D∗
j = −1,

using combinatorial derivations from Appendix A.3, we also have P (Y ∗
j = −1|Xi,j = x) =

P (D∗
j = −1|Xi,j = x) = q

nj−1
R {1− d(x)} and, recalling (2.7) and the definition of sp and se,

P (Y ∗
j = 0|Xi,j = x) =

∑
k=0,1

P (Y ∗
j = 0, D∗

j = k|Xi,j = x)

= sp P (D∗
j = 0|Xi,j = x) + (1− se)P (D∗

j = 1|Xi,j = x)
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= (sp+ se−1)q
nj−1
RD {1− b(x)} − sp q

nj−1
R {1− d(x)}+ 1− se ,

where b(x) = E(RD
i,jDi,j|Xi,j = x) and with qRD as at (5.2). Using (2.3) and the fact that

RD and D are Bernoulli variables, we have p(x) = E(Di,j|Xi,j = x,RD
i,j = 1) = b(x)/d(x).

Together with the above calculations, this suggests that we can estimate p from our data.

Specifically, it follows from the results above that

d(x) = E{|Ij| − (nj − 1)(1− qR)|Xi,j = x} (5.6)

b(x) = E
{
1− q

1−nj

RD (Wj + 1− se)/(sp+ se−1)
∣∣Xi,j = x

}
, (5.7)

where Wj = 1{Y ∗
j = 0}+sp 1{Y ∗

j = −1}. We can estimate qR by q̂R from Section 5.1, since

we can write q̂R = 1 − N−1
∑J

j=1 |Ij|, which depends only on the observed |Ij|’s; therefore,

qRD can be estimated by the MLE q̂RD from Section 5.1. Then, the regression curves b

and d can be estimated from our data using ℓth order local polynomial estimators b̂ and d̂

similar to those in Section 5.1. We take b̂(x) = eT1 (Ŝ
p)−1T̂b and d̂(x) = eT1 (Ŝ

p)−1T̂d, where

Ŝp = (Spk,k′)0≤k,k′≤ℓ, T̂
b = (T̂ b0 , ..., T̂

b
ℓ )
T and T̂d = (T̂ d0 , ..., T̂

d
ℓ )
T , with, for s = b and d and

letting Ub,j = 1− q̂
1−nj

RD (Wj − 1 + se)/(sp+ se−1) and Ud,j = |Ij| − (nj − 1)(1− q̂R),

Spk,k′ =
1

Nhk+k′

J∑
j=1

ψj

nj∑
i=1

Kh(Xi,j − x)(Xi,j − x)k+k
′
,

T̂ sk =
1

Nhk

J∑
j=1

Us,j ψj

nj∑
i=1

Kh(Xi,j − x)(Xi,j − x)k .

(5.8)

Note that, unlike the estimator p̂2 in Section 5.1, we use all Xi,j’s, even those for individuals

whose specimen is missing since we do not know if RD
i,j = 0 or 1. Here we use the same h

and ψj for b̂(x) and d̂(x) (see Section 7.1 for how to choose them in practice). Finally, we

can estimate p(x) by the following ratio of two correlated local polynomial estimators:

p̂3(x) = b̂(x)/d̂(x) = eT1 (Ŝ
p)−1T̂b

/{
eT1 (Ŝ

p)−1T̂d
}
.
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6 Asymptotic properties

In this section, we investigate asymptotic properties of our estimators. We treat qR =

P (RD = 0) and qRD = P (RDD = 0) as parameters with unknown true values qR0 and qRD0,

respectively, and denote the corresponding value of qD|R = (qRD − qR)/(1− qR) by qD|R0.

We need the following conditions to establish the theoretical properties of the estimators

p̂1(x) and p̂2(x) from Sections 4 and 5.1, where x ∈ R.

Condition A

(A1) fX|RD(u|1) is twice differentiable for all u, ∥f (k)

X|RD(·|1)∥∞ < ∞, for k = 0, 1, 2 and

fX|RD(x|1) > 0.

(A2) K is an even density function such that
∫
|u|2ℓ+3K(u) du < ∞, and for some δ > 0,∫

|u2ℓK(u)|2+δ du <∞.

(A3) p is ℓ+ 3 times differentiable and ∥p(k)∥∞ <∞ for k = 0, ..., ℓ+ 3.

(A4) h→ 0 and Nh→ ∞ as N → ∞.

(A5) 0 < infj ψj ≤ supj ψj <∞.

(A6) supj nj <∞, qR0 < qRD0 < 1.

Conditions (A1) to (A4) are standard in nonparametric regression and (A5) and (A6) are

standard in group testing. (A1) and (A3) only assume that the functions are smooth; (A2),

(A4) and (A5) are easy to fulfill since we choose K, h and ψj (see Section 7.1). In (A6), the

boundedness of the nj’s is always satisfied in practice; qR0 < qRD0 < 1 is a mild condition

used to prevent pathological cases where all non missing data have the same disease status.
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Since, given N ′, p̂1 from Section 4 is the same as in the non missing case studied in

Delaigle and Meister (2011) and Delaigle et al. (2014), except that (X,D) there is replaced

by (X,D)|RD = 1 here, then asymptotic normality of p̂1 follows from the results in those

papers, combined with the fact that N ′/N
P→ 1− qR0 as N → ∞, since N ′ ∼ Bi(N, 1− qR0).

The central limit theorem for a random sum can be found e.g. Bethmann (1989). Specifically,

let N ′
ψ =

∑J ′

j=1 njψj, µK,j =
∫
ujK(u) du, νj =

∫
ujK2(u) du, µ = (µK,ℓ+1, ..., µK,2ℓ+1)

T ,

µ̃ = (µK,ℓ+2, ..., µK,2ℓ+2)
T , m(x) = {m(x), ..., hℓ(ℓ!)−1m(ℓ)(x)}, where m = 1−p, and let S, S̃

and S∗ be (ℓ+1)× (ℓ+1) matrices with (k+1, k′ +1)th element defined by Sk,k′ = µK,k+k′ ,

S̃k,k′ = µK,k+k′+1, S
∗
k,k′ = νk+k′ , for k, k

′ = 0, ..., ℓ. Under Conditions (A1)–(A6), it follows

from Delaigle and Meister (2011) and Delaigle et al. (2014) that

p̂1(x) = p(x) +B(x) +
√
V1(x)NN + op{B(x)}+ op{

√
V1(x)} ,

whereNN
D→ N(0, 1) asN → ∞, V1(x) = eT1 S

−1S∗S−1e1
∑J ′

j=1 njψ
2
jV1,j(x)/{(N ′

ψ)
2hfX|RD(x|1)} ,

with V1,j(x) =
(2 se−1)m(x)

q
nj−1

D|R0(sp+ se−1)
+

se− se2

q
2nj−2

D|R0 (sp+ se−1)2
−m2(x) ,

and for ℓ odd, B(x) = −eT1 S−1µm(ℓ+1)(x)hℓ+1/(ℓ+ 1)!, while for ℓ even,

B(x) = eT1 S
−1

{
(S̃S−1µ− µ̃)

m(ℓ+1)(x)f ′
X|RD(x|1)

(ℓ+ 1)!fX|RD(x|1)
− µ̃

m(ℓ+2)(x)

(ℓ+ 2)!

}
hℓ+2 .

Comparing these results with those without missing data from Delaigle and Meister

(2011) and Delaigle et al. (2014), the only difference is that here quantities that depend on

X and D are conditional on RD = 1, and our sample size N ′ ∼ Bi(N, 1− qR0). The “bias”

term B is of the same order as in the case without missing data: B(x) ≍ hℓ+1 for ℓ odd,

B(x) ≍ hℓ+2 for ℓ even. The “variance” term is also of the same order as in the case without

missing data since V1(x) ≍ (N ′h)−1 = (N(1− qR0)h)
−1{1+ oP (1)}. The convergence rate of
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p̂1 is optimised by taking B(x) ≍
√
V1(x), i.e. h ≍ N−1/(2ℓ+3) for ℓ odd and h ≍ N−1/(2ℓ+5)

for ℓ even, which gives a rate of order N−(ℓ+1)/(2ℓ+3) for ℓ odd and N−(ℓ+2)/(2ℓ+5) for ℓ even,

as in the case without missing data.

The following theorem establishes asymptotic normality of p̂2(x) from Section 5.1. See

Appendix B.1 for a proof.

Theorem 6.1. Let Nψ =
∑J

j=1 njψj. Under Conditions (A1)–(A6), we have

p̂2(x) = p(x) +B(x) +
√
V2(x)NN + op{B(x)}+ op{

√
V2(x)} ,

where NN
D→ N(0, 1) as N → ∞, B(x) is as above and V2(x) = eT1 S

−1S∗S−1e1
∑J

j=1 njψ
2
jV2,j(x)

/{N2
ψh(1− qR0)fX|RD(x|1)} , with

V2,j(x) =
(2 se−1)m(x)

q
nj−1
RD0 (sp+ se−1)

+
se− se2

q
2nj−2
RD0 (sp+ se−1)2

−m2(x) .

Here too the “bias” and “variance” terms, B and V2, are of the same order as in the

case without missing data (B is the same as for p̂1 and V2(x) ≍ 1/(Nh)). The optimal

convergence rate of p̂2 is the same as that of p̂1, with h of the same order as for p̂1.

Recall that the advantage of p̂2 is that the groups can be created regardless of the missing

status of the specimens, but it is interesting to compare its performance relative to that of

p̂1. Both have the same asymptotic bias term B, but in general it is difficult to compare

their variance terms V1 and V2, which differ through the number of groups, the nj’s, qD|R0

and qRD0’s. We can compare them when all groups are of equal size nj = n, since there

ψj = 1, Nψ = N and N ′
ψ = N(1 − qR0){1 + oP (1)}. In that case p̂2 performs better than

p̂1 since qD|R0 = 1 − (1 − qRD0)/(1 − qR0) ≤ 1 − (1 − qRD0) = qRD0 and V2(x)/V1(x) =

V2,1(x)/V1,1(x) + oP (1), with V2,1(x) ≤ V1,1(x). However if the nj’s are smaller for p̂1 than
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for p̂2 and both estimators use the same number of groups J ′ = J , then p̂1 usually performs

better than p̂2.

We need the following conditions to derive theoretical properties of p̂3(x) from Section 5.2.

Condition B

(B1) fX is twice differentiable, ||f (k)
X ||∞ <∞, for k = 0, 1, 2 and fX(x) > 0.

(B2) K is an even density function,
∫
|u|2ℓ+3K(u) du <∞ and

∫
|u2ℓK(u)|3 du <∞.

(B3) b and d defined at (5.7) and (5.6) are ℓ + 3 times differentiable, ∥b(k)∥∞ < ∞ and

∥d(k)∥∞ <∞, for k = 0, ..., ℓ+ 3, and d(x) > 0.

(B4) to (B6) are defined as, respectively, (A4) to (A6).

(B7) cov{(Ub0,j, |Ij|)|Xi,j = x} =
(
Σj,kℓ(x)

)
k,ℓ=1,2

is invertible for j = 1, ..., J , where Ub0,j is

the version of Ub,j with q̂RD replaced by qRD0, and the expressions for the Σj,kℓ’s are

given in Appendices B.3 and B.4.

Conditions (B1)–(B6) are similar to Condition A. Condition (B7) is mild: Ub0,j is a func-

tion of Y ∗
j and |Ij| of the RD

k,j’s, so it would be very unusual for their conditional covariance

matrix to be non invertible. This condition plays the role of the standard assumption of

invertible covariance matrix used in the standard multivariate central limit theorem (Rao,

1973; Serfling, 2009), and is used only to establish asymptotic normality of p̂3 but is not

needed for p̂3 to be consistent.

The next theorem establishes asymptotic properties of p̂3. Here, for ℓ even, the bias

term of the asymptotic expansion is much more involved than for p̂2. Therefore, and since

in practice it is standard to use odd order local polynomial estimators (they have better
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properties, e.g. near boundaries, see Remark 3), we establish our theorem only for estimators

of odd order. See Appendix B.2 for a proof.

Theorem 6.2. Under Conditions (B1)–(B7), if ℓ is odd, we have p̂3(x) = p(x) + B3(x) +√
V3(x)NN + op{B3(x)}+ op{

√
V3(x)}, where NN

D−→ N(0, 1), as N → ∞,

B3(x) = eT1 S
−1µhℓ+1

{
d(x)b(ℓ+1)(x)− b(x)d(ℓ+1)(x)

}
/
{
(ℓ+ 1)!d2(x)

}
,

and V3(x) = {N2
ψh(1−qR0)fX|RD(x|1)}−1eT1 S

−1S∗S−1e1
∑J

j=1 njψ
2
jV3,j(x)/d(x), with V3,j(x) =

Σj,11(x)− 2p(x)Σj,12(x) + p2(x)Σj,22(x) and the Σj,kℓ’s as in Condition (B7)

As for Theorem 6.1, the rate of the “bias” term B3 and the “variance” term V3 in

Theorem 6.2 are the same as in the case without grouping for ℓ is odd, that is, B3(x) ≍ hℓ+1

and V3(x) ≍ (Nh)−1. Like there, the optimal convergence rate N−(ℓ+1)/(2ℓ+3) of p̂3 is obtained

by taking B3(x) ≍
√
V3(x), i.e. h ≍ N−1/(2ℓ+3). However p̂3(x) is a ratio of two correlated

local polynomial estimators, which makes the asymptotic expressions more involved and

difficult to compare in details with those for p̂1 and p̂2. We will compare those estimators

numerically in Section 7.

Remark 1. (Integrated squared error). For each estimator p̂k, k = 1, 2, 3, we can

also compute an asymptotic weighted mean integrated squared error by taking AMISEw =∫
{B2(x)+Vk(x)}fX|RD(x|1)w(x) dx, where w is an integrable weight function. The AMISEw,

which is commonly used in nonparametric regression problems to compute a plug-in band-

width (see Section 7.1), is of the same asymptotic order as its pointwise version, i.e. in our

case as the quantity B2(x) + Vk(x). For example, for ℓ odd and for our three estimators, it

is optimised at the rate N−(ℓ+1)/(2ℓ+3), obtained by taking h ≍ N−1/(2ℓ+3).
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Remark 2. (Group sizes). The choice of the nj’s for a study depends on a number of

factors that involves a trade-off between optimising the main goal of the study and remaining

within its time, budget and other constraints. If the main goal was to estimate p, then an

optimal strategy could be to minimise the AMISEw from Remark 1, computed with its optimal

bandwidth, under the various constraints (for ℓ = 1, the optimal bandwidth is derived in

Section 7.1). For example, if the only constraint is that the number tests that can be performed

is equal to a given number J , then the optimal AMISEw-based strategy is to take nj = n so

that Nψ = N and ψj = 1, and there is a corresponding value n that minimises AMISEw.

As in the parametric case without missing data studied in Section 3 of Vansteelandt et al.

(2000), finding this n would require a preliminary estimator of p, for example computed from

a small sample. If the main goal was rather to estimate the non conditional prevalence and

p was a side result then we would replace AMISEw by a criterion for that non conditional

estimator.

Remark 3. (Boundary case). If fX|RD(·|1) is compactly supported and not continuous at the

endpoints of its support, then unlike kernel density estimators, local polynomial estimators,

and in particular our three estimators, remain consistent. However, while local polynomials

estimators of odd order ℓ converge at the same rate as in the absence of boundaries, the rate

degrades if ℓ is even. Specifically, in that case, for ℓ even, the bias component is of order hℓ+1

instead of hℓ+2, and the convergence rate of the estimator is of order N−(ℓ+1)/(2ℓ+3) instead of

N−(ℓ+2)/(2ℓ+5). For example a local constant estimator (ℓ = 0) converges at the rate N−1/3 in

the boundary case instead of the N−2/5 rate in the no boundary case, whereas a local linear

estimator (ℓ = 1) converges at the rate N−2/5 in both cases.
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7 Simulation study

7.1 Computing the estimators in practice

The estimators p̂1, p̂2 and p̂3 all include weight functions ψj and a tuning parameter h. In

this section, we show how to choose them in practice for the local linear version (ℓ = 1)

of the estimators, which is usually the most popular version of local polynomial estimators,

because of its nice properties at boundaries (see Remark 3).

As in Delaigle et al. (2014), since ψj does not affect the asymptotic bias of p̂1, p̂2 and p̂3,

we choose it by minimising
∫
v(x)fX|RD(x|1)w(x) dx w.r.t. ψj, with w a weight function (see

Section 7.2 for its choice) and where, for k = 1 to 3, v = Vk defined in Section 6. This gives

ψk,j =
{ ∫

Vk,j(x)w(x) dx
}−1

for p̂k, k = 1, 2 and ψ3,j =
{ ∫

V3,j(x)w(x)/d(x) dx
}−1

for p̂3,

with Vk,j(x) as in Section 6 for k = 1 to 3; see Appendix C.1. In practice, for k = 1, 2,

we estimate ψk,j by ψ̂k,j =
{ ∫

V̂k,j(x)w(x) dx
}−1

with V̂1,j and V̂2,j obtained by replacing

qD|R by q̂D|R given in Section 4, qRD by q̂RD given in Section 5.1, and m̃ and m by the

pilot estimators ̂̃mPILOT and m̂PILOT defined by ̂̃m and m̂ in Sections 4 and 5.1 with ℓ = 0,

ψj ≡ 1 and the cross-validation (CV) h from Appendix C.2. Similarly, we estimate ψ3,j

by ψ̂3,j =
{ ∫

V̂3,j(x)w(x)/d̂PILOT(x) dx
}−1

, with V̂3,j obtained by replacing, in V3,j, qR and

qRD by q̂R and q̂RD from Section 5.1, and b and d by b̂PILOT and d̂PILOT, defined by b̂ and d̂

above (5.8), with ℓ = 0, ψj ≡ 1 and the CV bandwidth h from Appendix C.2.

To choose h for p̂2, we use a plug-in (PI) approach as in Delaigle and Meister (2011). Let

B and V2 as in Theorem 6.1, w as for ψj and Θ2,1 =
∫
{p′′(x)}2fX|RD(x|1)w(x) dx. We choose

h by minimising, wrt h, an estimator of AMISEw =
∫
{B2(x) + V2(x)}fX|RD(x|1)w(x) dx =

µ2
K,2Θ2,1h

4/4+ν0
∑J

j=1 njψ
2
j

∫
V2,j(x)w(x) dx/

{
h(1−qR)N2

ψ

}
, obtained by estimating Θ2,1 by

24

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



Θ̂2,1 (Appendix C.3), ψj by ψ̂2,j and qR by q̂R (Section 5.1), resulting in our PI bandwidth

ĥPI,2 = ν
1/5
0

{
(1 − q̂R)µ

2
K,2Θ̂2,1

∑J
j=1 njψ̂2,j

}−1/5
. Similarly, replacing V2 by V1 for p̂1 and

B and V2 by B3 and V3 for p̂3, and following the same arguments, our PI bandwidths

for p̂1 is equal to ĥPI,1 = ν
1/5
0

(
µ2
K,2Θ̃2,1

∑J ′

j=1 njψ̂1,j

)−1/5
, and for p̂3 is equal to ĥPI,3 =

ν
1/5
0

{
(1−q̂R)µ2

K,2
Θ̂2,2

∑J
j=1 njψ̂3,j

}−1/5
where Θ̃2,1, Θ2,2 and Θ̂2,2 are defined in Appendix C.3.

7.2 Simulation results

We applied the local linear versions (ℓ = 1) of our estimators of p from Sections 4 and 5 to

simulated data, with h and ψj chosen as in Section 7.1. We used the same nj’s for p̂1 and

p̂2 (the groups for p̂2 are created without knowing the number of missing specimens, and

so there is not really a sensible way to use other nj’s than for p̂1). Therefore, the number

of groups J ′ for p̂1 is smaller than that, J , for p̂2 and we expect p̂2 to perform better than

p̂1 (see discussion under Theorem 6.1). Since p̂2 exploits the RD
i,j’s whereas p̂3 uses the less

informative |Ij| =
∑nj

i=1R
D
i,j, we also expect p̂2 to outperform p̂3.

Since group testing exploits less information, it is clear that estimators constructed from

J groups of N aggregated specimens are less accurate than an estimator constructed from

N non grouped specimens. To illustrate how much information is lost by grouping, we

computed the estimator p̂ungr,N constructed from N non grouped specimens, which is equal

to p̂2 with nj = 1 and J = N . We also computed the estimator p̂ungr,J constructed from J

non grouped specimens, which is equal to p̂2 with nj = 1 and N = J . Here the estimator p̂2

computed from J groups of N aggregated specimens can outperform p̂ungr,J because, as only

a small fraction of individuals are positive, we need the sample to contain enough positives
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Figure 1: True curve (—), first (- - -), second (- · - · -) and third (· · ·) quartile estimated

curves in the MAR D case. Top: p̂2 (left), p̂ungr,J (middle) and p̂nai (right), for model (ii)

in case (2) with J = 1000 and grouping (A). Bottom: model (iii) in case (1) with grouping

(A), when J = 500 for p̂2 (left) or p̂3 (middle) and when J = 2000 for p̂3 (right).

to get a good estimator, and p̂2 uses N individuals rather than J .

To illustrate why we need to take MAR into account, we compared p̂2 with the naive

estimator p̂nai of p introduced in Section 5.1. Note that we cannot compare p̂nai with p̂3, which

we use only when the RD
i,j’s are not available (so that p̂nai is not computable). There does

no seem to be an obvious naive version of p̂3 using the same data as p̂3. For all estimators,

we took the kernel K to be the standard normal density and w from Section 7.1 equal to

w(x) = 1[q0.1,q0.9](x), with qα the empirical α quantile of X. For the CV criterion used in

Section 7.1 we took [a, b] = [q0.1, q0.9].

To generate the (Xi,j, Ỹ
∗
j , R

D
i,j)’s and (Xi,j, Y

∗
j , R

D
i,j)’s, we generated the (Xi,j, Di,j, R

D
i,j)’s

and obtained the Ỹ ∗
j ’s following (2.4) and (2.6) and the Y ∗

j ’s following (2.5) and (2.7),
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where we took sp = 0.99 and se = 0.85, i.e. within ranges reported with covid-19 testing

(e.g. Arevalo-Rodriguez et al., 2020; Surkova et al., 2020). We generated the (Xi,j, Di,j)’s

from three models: (i) p(x) = min(x2/8, 1); (ii) p(x) = 1(−∞,−3)(x) +
[
1/{1 + exp(2x +

4)} + (x − 0.4)2 sin(πx)/20 + 0.1
]
1[−3,3.08](x) and (iii) p(x) = 1/{1 + exp(2x + 3)}, where

X ∼ N(0, 0.752) and D|X ∼ Be{p(X)}, a Bernoulli with parameter p(X). (i) was used

by Delaigle and Meister (2011) and Delaigle et al. (2014), (iii) is a logistic curve and (ii) has

a bit more features. In (i) and (ii), p is non differentiable at two points far in the tails of fX

which does not affect the overall performance of the estimators. In each case we generated

the RD
i,j’s in two ways similar to Zhou et al. (2008): (1) RD|X ∼ Be[0.7+0.3 sin{(X − 1)2}];

(2) RD|X ∼ Be
(
exp{sin(X) + 0.5}/[1 + exp{sin(X) + 0.5}]

)
. The average percentage of

missing data is 20% (resp. 39%) in case (1) (resp. (2)); case (2) is the most challenging.

We generated data from all combinations of models (i) to (iii) and (1) and (2), J =

250, 500, 1000 and 2000 groups of sizes nj chosen in three ways: (A) J/2 groups of size

nj = 4 and J/2 groups of size nj = 8; (B) J groups of size nj = 5; (C) J groups of size

nj = 12 (for p̂1 we took the same nj’s but replaced J by the random J ′ in each sample). We

ran simulations from each combination 200 times and summarized the results through the

integrated square error, ISE =
∫ 1.5

−1.5
{p̌(x) − p(x)}2 dx, where p̌ denotes any estimator of p

we computed, truncated to [0,1] since we know that p ∈ [0, 1]; note that [−1.5, 1.5] contains

about 95% of the Xi’s.

Table 1 shows, for each estimator, the median and interquartile range of the 200 ISE×103

for J = 250 and 2000; see Table D.1 in Appendix D for the other values of J . To see what

this corresponds to for p̂1, recall that the number J ′ of groups used by p̂1 is random as it is

computed from the number N ′ ∼ Bi(N, 1 − qR) of individuals with non missing specimens

27

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



in each sample, where N =
∑J

j=1 nj and N ′ =
∑J ′

j=1 nj. Unsurprisingly, we see that in

general, for all estimators, the more missing data, the more difficult the estimating task. As

expected, p̂1, p̂2, p̂3 and p̂ungr,J improved as J increased, but the non consistent p̂nai was very

biased and performed poorly. p̂2 performed slightly better (or even much better for grouping

(C)) than p̂1 in all cases, which is consistent with our theory in Section 6. Although p̂3

requires only |Ij| =
∑nj

i=1R
D
i,j for each j, it was not much worse than p̂2 which needs the

individual RD
i,j’s, except for model (ii) with grouping (C), where the larger prevalence and

group sizes were more difficult to deal with for p̂3. Also, p̂2 outperformed p̂ungr,J in all cases

(p̂1 and p̂3 did in most cases, but again not for model (ii) with grouping (C)), which can be

expected in these low prevalence settings where we need to observe many individuals to find

some positives. Finally, while, as expected, the estimator p̂ungr,N that uses N non grouped

individuals significantly outperformed all the other estimators, the estimators constructed

from grouped data performed well; see the figures below for an illustration. Note that for

p̂ungr,N , the sample size N is larger with grouping (C) than (A), which is itself larger than

that of (B), which explains why it performed much better for grouping (C), and a bit better

for grouping (A), than for grouping (B).

To illustrate some of these results visually, we show, for a few cases, the true curve and

three estimated curves corresponding in each case to the samples that gave the first, second

and third quartile values out of the 200 ISEs. We refer to them as the first, second and third

quartile estimated curves. The top row of Fig. 1 compares p̂2, p̂ungr,J and p̂nai for model (ii)

in case (2) with grouping (A) and J = 1000. It illustrates the large bias of the non consistent

p̂nai, which performed poorly in most cases. It also illustrates how p̂2 can outperform p̂ungr,J .

As illustrated at the second row of Fig. 1, p̂2 and p̂3 often performed similarly; we show them
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Figure 2: True curve (—), first (- - -), second (- · - · -) and third (· · ·) quartile estimated

curves in the MAR D case for model (i) with grouping (B) and J = 1000 in case (2) for p̂2

(left), and in case (1) for p̂2 (middle) and p̂ungr,J (right).

for model (iii) in case (1) with grouping (A) and J = 500. To illustrate that our estimators

improve as J increases, we also show p̂3 for J = 2000 (we got similar results for p̂1 and p̂2).

Fig. 2 illustrates the finite sample advantage of p̂2 over p̂ungr,J ; we show them for model (i),

grouping (B) and J = 1000 in case (1). We also see that p̂2 performed worse in case (2) than

in case (1), which illustrates the degradation of the estimators when more data are missing.

8 Real data illustration

As usual in real data analyses from the group testing literature, our goal was to compare our

estimators based on grouped data with usual estimators based on non-grouped data, to show

that group testing can be applied in practice. As in that literature (e.g. Xie, 2001; Chen

et al., 2009; Zhang et al., 2013), in our datasets we had access to individual test results which

we treated as perfect, i.e. Di,j ≡ Yi,j (the documentation available for those data suggests

that this is reasonable, see e.g. Maheu-Giroux et al., 2017, for HIV data). Then, as in the

literature, we grouped the individuals into J−1 (resp. J ′−1) groups of equal size nj = n (we
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considered two cases (D): n = 8 and (E): n = 4), and one group of size N − n(J − 1) where

J = ⌊N/n⌋ (resp. N ′ − n(J ′ − 1) where J ′ = ⌊N ′/n⌋), and generated the Y ∗
j ’s (resp. the

Ỹ ∗
j ’s) following (2.5) and (2.7) (resp. (2.4) and (2.6)), for different values of sp and se.

Our dataset, collected from 2015 to 2016, comes from the National Health and Nutrition

Examination Survey study carried out in the US (NHANES, 2017). Note that we use this

dataset merely for illustration purposes, and we ignore the sampling weights, as often done

in this case. Our goal is to estimate p(x) = E(D|X = x), where D is the indicator of the

presence of hepatitis B core antibody (HBcAb) for a patient, and X is the patient’s age

ranging from 6 to 80 years. The sample size is N = 8021, D is missing for 897 individuals so

that N ′ = 7124, and no X is missing. A point-biserial correlation coefficient test suggested a

strong relationship between X and RD. Thus, it seems reasonable to assume that the missing

data mechanism depends on X, and we illustrate our techniques with MAR D on these data.

Since p is unknown, we took our target curve to be p̂ideal, the estimator p̂2 computed from

the Yi,j’s, with sp = se = n = 1.

The presence of HBcAb indicates current or past infection by the hepatitis B virus.

Several factors can influence prevalence in the general population; for example, baby boomers

(people born during 1945–1965, aged 50 to 70 in the dataset) are known to have higher

prevalence, the vaccine was approved in the US in 1982, and further infection controls started

around 1992 (see Shing et al., 2020). Moreover, all other factors equal, older individuals

have more chances of having been exposed to the virus. Reflecting this, the prevalence curve

p̂ideal increases with age, with a striking peak for patients in the age bracket 50–70, before

decreasing again as age increases to 80.

We grouped the individuals as described above, either with sp = se = 1 or, to illustrate
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Figure 3: p̂ideal (—) for the hepatitis B dataset, first (- - -), second (- · - · -) and third (· · ·)

quartile estimated curves with sp = 0.995 and se = 0.95 for, from left to right, p̂1, p̂2 and p̂3

in the first row, and p̂ungr,J and p̂nai in the second row, for grouping (E).

the impact of imperfect tests, sp = 0.995 and se = 0.95, as in White et al. (2003). In

each case, we randomly created 200 samples of (Xi,j, Ỹ
∗
j , R

D
i,j)’s and (Xi,j, Y

∗
j , R

D
i,j)’s, and

calculated our estimators, p̂1, p̂2 and p̂3, as well as p̂ungr,J computed with J non-grouped

individuals selected randomly among N , with J equal to the number of groups used by p̂2,

and the naive estimator p̂nai from Section 7.2. Recall that p̂1 and p̂2 require knowing each

missing status RD
i,j, whereas p̂3 only requires |Ij| =

∑n
i=1R

D
i,j.

We chose h, ψj and K as in Section 7.2. To assess the performance of each of those

estimators, denoted here generically by p̌, we calculated the integrated squared difference

ISD =
∫ b
a
{p̌(x) − p̂ideal(x)}2 dx, with a and b the 2.5% and 97.5% empirical quantiles of X.

We summarize the ISDs in Table 2. In this example, p̂2 and p̂3 outperformed p̂1, p̂ungr,J and

p̂nai, especially when n = 4 and J = 2006. Since prevalence is low and sample size is not
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extremely large, p̂ungr,J was the worst as very few out of J individuals were positive, making

estimation challenging. The same conclusions can be drawn from Fig. 3, which shows the

estimated quartile curves corresponding to the samples that give the first, second and third

quartiles of the 200 ISDs of p̂1, p̂2, p̂3, p̂ungr,J and p̂nai with grouping (E). Overall all estimators

captured the increasing trend of prevalence with a peak in the bracket 50–70, followed by a

decreasing trend, but the naive estimator p̂nai, which is biased, tended to flatten the peak

and p̂3 and p̂ungr,J were more variable, especially p̂ungr,J (as prevalence is low, J individuals

contain too few positives to produce reliable estimators).

9 Extensions

In this section we discuss a few interesting extensions of our methods that could be explored.

We only discuss the main ideas; details such as fully data-driven implementation would

require more thorough investigation than can be reasonably undertaken here.

Our methods can be extended to the multivariate case of a d-dimensional covariate

X ∈ Rd, by using a purely nonparametric approach as in Delaigle and Meister (2011), or, to

avoid the curse of dimensionality, using single-index or partially linear models as in Delaigle

et al. (2014). These extensions are technical but conceptually rather straightforward because

the main difficulty is to express p in terms of a regression curve estimable from the data, which

is identical to the univariate case treated in this paper. For example, in the purely nonpara-

metric case, to extend the local linear version of p̂2 to d dimensions, it suffices to replace X

by X = (X1, . . . , Xd)
T in (2.3) and (2.7). Then for x = (x1, . . . , xd)

T , we can estimate p(x) =

E(Di,j|Xi,j = x) by p̂2(x) = 1 − eT1 Ŝ
−1T̂, where eT1 = (1, 0, ..., 0), Ŝ = (Ŝk,k′)0≤k,k′≤d and
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T̂ = (T̂0, ..., T̂d)
T , with Ŝk,k′ =

∑J
j=1 ψj

∑nj

i=1R
D
i,jKH(Xi,j − x)(Xi,j,k − xk)

δk(Xi,j,k′ − xk′)
δk′ ,

T̂k =
∑J

j=1 q̂
nj−1
RD (Z∗

j + se−1)/(sp+ se−1)ψj
∑nj

i=1R
D
i,jKH(Xi,j − x)(Xi,j,k − xk)

δk , where

δk = 1(k > 0), H = diag(h1, . . . , hd) is the bandwidth matrix (often taken to be a diago-

nal rescaled by the standard deviations of the Xi,j,k’s), K is a d-dimensional kernel (e.g. a

d-dimensional standard normal density), and KH(x) = |H|−1/2K(H−1/2x) with |H| the de-

terminant of H.

Such multivariate estimators could be useful in the case where we can observe additional

auxiliary variables U ∈ Rd−1 for the MAR assumption. See for example Wang et al. (2010)

in the cases with non grouped data, where the authors are interested in estimating a curve

p(x) = E(D|X = x) and assume that the MAR assumption holds with X and U, that is

P (RD = r|X,U, D) = P (RD = r|X,U) for r = 0, 1 .

There, they use a parametric model for P (RD = r|X,U) and a doubly robust method to

mitigate the impact of incorrect parametric assumptions. In our case with grouped data, to

avoid this parametric specification we could use pmult(x,u) = E(D|X = x,U = u), which can

be estimated by p̂mult(x,u), one of the multivariate estimators discussed in the previous para-

graph. Then, noting that p(x) = E{pmult(X,U)|X = x}, we could estimate p(x) using a lo-

cally smoothed version of p̂mult(x,u), for example p̂(x) =
∑J

j=1

∑nj

i=1 p̂mult(Xi,j,Ui,j)Kh′(x−

Xi,j)
/∑J

j=1

∑nj

i=1Kh′(x−Xi,j) , with h
′ > 0 a bandwidth.

The local constant (ℓ = 0) versions of our three estimators can also be extended to the

case where X is discrete, by replacing the local weights Kh(x − Xi,j) by discrete weights

L(x,Xi,j, h). For example, if X takes c values 0, 1, . . . , c − 1, then following Racine and Li

(2004) we could use L(x,Xi,j, h) = 1{Xi,j = x} + h · 1{Xi,j ̸= x}, where h ∈ [0, 1]. More
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generally, if X has a natural ordering and |Xi,j − x| is well defined, following Racine and Li

(2004), we could use L(x,Xi,j, h) = h|Xi,j−x|. In the bivariate case where X = (X1, X2) with

X1 continuous and X2 discrete, to estimate p(x) = E(Y |X = x), we could rather replace

Kh(Xi,j − x) by Kh(Xi,j,1 − x1)L(x2, Xi,j,2, λ), where λ ∈ [0, 1] and h > 0 are bandwidths.

Another interesting extension is the estimation of prevalence conditional on X lying

within a range [a, b] of values, that is, p(a, b) = P (D = 1|X ∈ [a, b]), where a, b ∈ R. For

example, when X is age, it is often of interest to consider prevalence given an age range.

We have p(a, b) =
∫ b
a
P (D = 1|X = x)fX(x) dx/

∫ b
a
fX(x) dx = E{p(X)1[a,b](X)}/{FX(b) −

FX(a)}, where FX denotes the distribution function of X. Therefore, we could estimate

p(a, b) by p̂(a, b) =
∑J

j=1

∑nj

i=1 p̂(Xi,j)1[a,b](Xi,j)/
∑J

j=1

∑nj

i=1 1[a,b](Xi,j), where p̂ = p̂1, p̂2 or

p̂3, depending on whether we are in the setting of Section 4, 5.1 or 5.2, respectively.
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Table 1: Simulation results for 5 nonparametric estimators of p with MAR D for models (i)

to (iv). We show the median (interquartile range) of ISE×103 computed from 200 samples.
Model p̂nai p̂2 p̂1 p̂3 p̂ungr,N p̂ungr,J

J = 250

(1) (i) (A) 8.29 (6.12) 5.68 (6.27) 6.66 (6.79) 7.46 (9.58) 2.96 (3.09)

14.17 (17.39)(B) 7.35 (6.76) 5.80 (5.56) 6.19 (8.12) 7.08 (9.40) 3.00 (3.14)

(C) 6.99 (7.02) 6.10 (6.32) 6.22 (6.27) 7.80 (7.87) 1.62 (1.65)

(ii) (A) 21.21 (14.59) 9.57 (9.47) 11.99 (12.42) 11.67 (14.22) 2.86 (3.10)

13.34 (15.42)(B) 18.67 (14.62) 9.05 (6.93) 10.52 (10.83) 10.89 (13.16) 3.28 (3.19)

(C) 24.14 (21.52) 18.17 (17.14) 20.67 (25.07) 20.29 (26.02) 1.65 (1.45)

(iii) (A) 14.90 (12.58) 5.30 (7.76) 5.87 (7.95) 5.95 (9.52) 1.65 (2.48)

8.49 (14.82)(B) 13.77 (12.67) 4.41 (5.80) 4.86 (7.67) 6.44 (8.37) 1.88 (2.67)

(C) 14.91 (15.64) 5.85 (7.74) 7.14 (9.51) 8.04 (13.66) 1.06 (1.16)

(2) (i) (A) 11.03 (8.58) 6.20 (6.29) 7.92 (9.41) 9.56 (10.76) 3.24 (3.40)

18.46 (21.22)(B) 11.18 (9.37) 6.86 (6.80) 8.33 (8.37) 10.45 (12.87) 3.62 (4.53)

(C) 10.74 (8.41) 6.76 (6.94) 10.62 (12.08) 9.64 (14.83) 1.75 (1.95)

(ii) (A) 37.50 (21.97) 11.07 (13.10) 14.36 (16.39) 14.55 (19.74) 3.83 (4.66)

15.41 (20.12)(B) 40.83 (19.56) 11.68 (11.44) 14.10 (18.15) 14.91 (18.29) 4.69 (4.64)

(C) 42.64 (21.78) 12.88 (12.52) 25.64 (28.92) 18.04 (27.22) 2.14 (2.65)

(iii) (A) 33.19 (16.81) 5.87 (8.66) 5.96 (7.89) 7.14 (11.69) 2.65 (4.11)

13.08 (22.93)(B) 34.81 (17.60) 5.78 (7.27) 6.46 (9.71) 8.55 (10.62) 3.19 (5.31)

(C) 37.21 (17.37) 4.31 (6.57) 8.16 (10.66) 8.17 (16.50) 1.55 (1.80)

J = 2000

(1) (i) (A) 5.48 (2.67) 0.97 (0.89) 1.22 (1.05) 1.54 (1.39) 0.54 (0.57)

2.39 (2.11)(B) 5.59 (2.54) 1.08 (0.87) 1.12 (0.99) 1.36 (1.51) 0.59 (0.65)

(C) 5.27 (2.78) 1.17 (1.02) 1.44 (1.47) 1.70 (1.86) 0.33 (0.30)

(ii) (A) 15.23 (5.71) 2.21 (2.02) 2.48 (2.25) 2.26 (3.04) 0.62 (0.48)

2.42 (2.43)(B) 14.92 (6.36) 1.95 (1.75) 2.24 (1.63) 2.31 (2.80) 0.65 (0.61)

(C) 16.31 (8.88) 3.22 (2.77) 4.84 (4.30) 3.56 (4.57) 0.36 (0.32)

(iii) (A) 13.98 (4.94) 0.94 (1.06) 1.03 (1.29) 1.48 (1.72) 0.37 (0.42)

1.35 (1.54)(B) 14.29 (5.46) 0.99 (1.15) 0.89 (1.12) 1.49 (2.23) 0.39 (0.49)

(C) 13.59 (5.98) 1.10 (1.07) 1.30 (1.81) 1.90 (2.32) 0.21 (0.25)

(2) (i) (A) 8.93 (3.31) 1.12 (1.09) 1.42 (1.15) 1.82 (2.05) 0.61 (0.63)

2.52 (2.89)(B) 9.07 (3.41) 1.16 (1.08) 1.48 (1.41) 1.58 (1.83) 0.70 (0.71)

(C) 9.73 (3.54) 1.23 (1.13) 1.80 (1.79) 1.81 (1.93) 0.32 (0.30)

(ii) (A) 35.12 (7.62) 2.15 (1.96) 3.52 (3.51) 3.23 (3.01) 0.80 (0.63)

3.11 (3.18)(B) 34.88 (7.65) 2.07 (1.89) 3.51 (2.70) 2.98 (2.95) 0.91 (0.89)

(C) 35.73 (9.49) 2.72 (2.41) 6.29 (6.56) 3.81 (3.44) 0.49 (0.46)

(iii) (A) 31.63 (5.70) 0.84 (0.99) 1.15 (1.34) 1.31 (1.52) 0.48 (0.52)

2.07 (2.51)(B) 32.11 (7.38) 0.94 (1.11) 1.24 (1.35) 1.18 (1.51) 0.56 (0.67)

(C) 32.70 (5.84) 0.84 (0.90) 1.45 (1.42) 1.18 (1.87) 0.28 (0.31)
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Table 2: Estimators of p for the hepatitis B dataset with groupings (D) and (E). The numbers

shown are the median (interquartile range) of the ISD×103 computed from 200 samples.

Grouping p̂1 p̂2 p̂3 p̂ungr,J p̂nai

sp = se = 1

(D) 12.78 (12.77) 11.63 (10.95) 11.85 (11.93) 15.76 (17.01) 13.37 (14.33)

(E) 5.65 (5.26) 4.62 (4.14) 5.00 (4.79) 7.54 (7.69) 7.26 (6.54)

sp = 0.995, se = 0.95

(D) 13.51 (13.75) 11.68 (13.09) 12.82 (14.63) 17.30 (20.59) 13.58 (14.38)

(E) 6.09 (5.55) 5.29 (4.34) 5.49 (5.07) 8.67 (8.34) 7.38 (6.66)
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